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Majorization of sequences,
sharp vector Khinchin inequalities,

and bisubharmonic functions

by

Albert Baernstein II and Robert C. Culverhouse (St. Louis, MO)

Abstract. Let X =
∑k
i=1 aiUi, Y =

∑k
i=1 biUi, where the Ui are independent ran-

dom vectors, each uniformly distributed on the unit sphere in Rn, and ai, bi are real con-
stants. We prove that if {b2i } is majorized by {a2

i } in the sense of Hardy–Littlewood–Pólya,
and if Φ : Rn → R is continuous and bisubharmonic, then EΦ(X) ≤ EΦ(Y ). Consequences
include most of the known sharp L2-Lp Khinchin inequalities for sums of the form X. For
radial Φ, bisubharmonicity is necessary as well as sufficient for the majorization inequal-
ity to always hold. Counterparts to the majorization inequality exist when the Ui are
uniformly distributed on the unit ball of Rn instead of on the unit sphere.

1. Main results. In this first section, we set up notation and state
our main results, about sums of independent random vectors uniformly dis-
tributed on spheres in Rn. History and background are provided in §2, The-
orems 1, 2, 3 are proved in §3, 4, 5, and §6 contains a formula which permits
transfer of the results in §1 to sums of independent random vectors uniformly
distributed on balls in Rn.

Throughout the paper, a = (a1, . . . , ak) and b = (b1, . . . , bk) will denote
k-tuples of real numbers. Following the terminology of [MO 79], we say that
a is majorized by b, and write a ≺ b, or {ai} ≺ {bi}, if

k∑

i=1

ai =
k∑

i=1

bi, and
j∑

i=1

a∗i ≤
j∑

i=1

b∗i , j = 1, . . . , k,

where {a∗i } denotes the sequence {ai} rearranged in decreasing order.
Let ∆ denote the Laplace operator in Rn. A continuous function Φ :

Rn → R is said to be bisubharmonic in Rn if the distribution ∆∆Φ equals
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a positive Radon measure on Rn. Equivalently, Φ is bisubharmonic if the
distribution ∆Φ equals a subharmonic function on Rn, in the sense of distri-
butions. If Φ ∈ C4(Rn,R), then Φ is bisubharmonic if and only if ∆∆Φ ≥ 0
at every point in Rn. A function is said to be bisuperharmonic if its negative
is bisubharmonic.

For n ≥ 1, let U1, . . . , Uk be independent Rn-valued random variables
defined on some probability space, each of which is uniformly distributed
on the unit sphere Sn−1 = {x ∈ Rn : |x| = 1} ⊂ Rn. We use |x| to denote
the Euclidean norm of x. When n = 1, the Ui take on each of ±1 with
probability 1/2 and are called symmetric Bernoulli random variables. Set,
for general n,

X =
k∑

i=1

aiUi, Y =
k∑

i=1

biUi.

Theorem 1. Let Φ be bisubharmonic and continuous on Rn. If {b2i } ≺
{a2
i }, then

(1.1) EΦ(X) ≤ EΦ(Y ).

If Φ is bisuperharmonic and continuous on Rn, then Theorem 1 implies
that the inequality in (1.1) reverses. The message of the theorem is that
spreading out the coefficients in the sum defining X, while keeping their
sum of squares constant, increases the Φ moment, when Φ is bisubharmonic.
A counterpart of Theorem 1 for balls will be discussed in §6.

In case Φ is radial, that is, Φ(x) depends only on |x|, Theorem 1 admits
a converse:

Theorem 2. Suppose that Φ : Rn → R is continuous and radial. If (1.1)
holds for every pair of k-tuples a, b with {b2i } ≺ {a2

i } and every k ≥ 2, then
Φ is bisubharmonic in Rn.

For any Φ ∈ C(Rn,R), let Φ1 be the radial function on Rn obtained by
setting Φ1(x) equal to the mean value of Φ on the sphere |x|Sn−1. We will
call Φ1 the radialization of Φ. Since the distribution of X is invariant under
rotations, we have EΦ(X) = EΦ1(X). Moreover, if Φ is continuous and
bisubharmonic, then so is Φ1. Using these facts, one sees that Theorems 1
and 2 are equivalent to the following “if and only if” statement:

EΦ(X) ≤ EΦ(Y ) for every a, b with {b2i } ≺ {a2
i }

⇔ Φ1 is bisubharmonic.

The statement above characterizes continuous functions Φ for which a
majorization inequality holds for Φ moments. The next statement, a close
neighbor to Theorems 1 and 2, gives a characterization of continuous func-
tions which are bisubharmonic.
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Theorem 3. Let Φ : Rn → R be continuous. Then Φ is bisubharmonic
in Rn if and only if the function

t 7→
�

Sn−1

Φ(x0 + t1/2x) dx

is convex on (0,∞) for every x0 ∈ Rn.
Convention. In integrals over Sn−1, dx will denote the uniform prob-

ability measure on Sn−1. In integrals over the unit ball Bn ⊂ Rn, dx will
denote the uniform probability measure on Bn.

For each k-tuple a with
∑k
i=1 a

2
i = 1 we have (k−1, . . . , k−1) ≺ {a2

i } ≺
(1, 0, . . . , 0), where the first and third sequences are k-tuples. Moreover, the
(k + 1)-tuple ((k + 1)−1, . . . , (k + 1)−1) is majorized by the (k + 1)-tuple
(k−1, . . . , k−1, 0). For n ≥ 1, k ≥ 1, define

Zn,k = k−1/2
k∑

i=1

Ui,

and define Zn to be the Rn-valued random variable whose components are
independent mean-zero real normal random variables, each with variance
1/n. Let Φ be continuous and bisubharmonic. Then Theorem 1 implies that
EΦ(Zn,k) increases as k increases when n is fixed. In §3, we will show that
the radialization Φ1 of Φ satisfies

(1.2) E((Φ1(Zn))−) <∞,
so that EΦ1(Zn) is well defined, and that

(1.3) lim
k→∞

EΦ(Zn,k) = EΦ1(Zn).

Note that for X =
∑k
i=1 aiUi, we have E|X|2 =

∑k
i=1 a

2
i . In particu-

lar, E|Zn,k|2 = E|U1|2 = 1. For fixed n and appropriate Φ, the corollaries
to follow assert two things: (a) Among all X with fixed L2 norm and at
most k summands, the extremal Φ moments are achieved by multiples of U1

and Zn,k. (b) Among all X with fixed L2 norm, the supremum and infimum
of the Φ moments are furnished by multiples of U1 and Zn.

Corollary 1. If Φ is continuous and bisubharmonic on Rn and E|X|2
= 1, then

(1.4) EΦ(U1) ≤ EΦ(X) ≤ EΦ(Zn,k) ≤ EΦ1(Zn).

The quantities on the right and left ends are the best possible constants which
work simultaneously for all k and fixed n.

The inequalities follow from Theorem 1 and (1.3). The left-hand con-
stant is obviously optimal; optimality of the right-hand constant follows
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from (1.3). The right-hand constant is sometimes∞. But if it is finite, then
E|Φ(Zn)| is also finite, and EΦ1(Zn) = EΦ(Zn).

Of course, one could replace the hypothesis E|X|2 = 1 with E|X|2 =
some fixed number M2, provided a factor M is inserted at appropriate places
in the inequalities.

Let us consider the pth moment case: Φ(x) = |x|p, p > 0. For radial Φ
on Rn, we have ∆Φ = Φrr + ((n− 1)/r)Φr, where the subscript r denotes
radial differentiation. Thus, for x ∈ Rn \ {0},

(1.5)
∆|x|p = p(p+ n− 2)|x|p−2,

∆∆|x|p = p(p+ n− 2)(p− 2)(p+ n− 4)|x|p−4.

The task of deciding which functions |x|p are bisub- or bisuperharmonic
on all of Rn is complicated by the singularity at the origin. One way to
overcome the difficulty is to consider the functions uε(x) = (|x|2 + ε)p/2.
Then uε ∈ C∞(Rn) for ε > 0, p > 0, and for x ∈ Rn,

∆uε(x) = p(p− 2)(r2 + ε)p/2−4(Ar4 +Br2 + C),

where r = |x| and

A = (p+ n− 2)(p+ n− 4), B = 2ε(n+ 2)(p+ n− 4), C = ε2n(n+ 2).

We deduce that, when n = 1, uε is bisubharmonic for p ≥ 3; when
n ≥ 2, uε is bisubharmonic for p ≥ 2; when n = 3, uε is bisuperharmonic
for 1 ≤ p ≤ 2; and when n ≥ 4, uε is bisuperharmonic for 0 < p ≤ 2.
Since uε → |x|p uniformly on compact subsets of Rn as ε → 0, it follows
that |x|p is bisub- or bisuperharmonic for the same range of p and n. From
Corollary 1 we obtain

Corollary 2. Let X be as in Corollary 1. If p ≥ 3 when n = 1, or if
p ≥ 2 when n ≥ 2, then

(1.6) 1 ≤ E|X|p ≤ E|Zn,k|p ≤ E|Zn|p =
Γ ((p+ n)/2)
Γ (n/2)

2p/2n−p/2.

Moreover , when n = 3 and 1 ≤ p ≤ 2 all the inequalities reverse, and when
n ≥ 4 and 0 < p ≤ 2 all the inequalities reverse. In each of the stated cases
for n and p, the quantities on the right and left ends are the best possible
constants which work simultaneously for all k and fixed n.

For p and n not covered by Corollary 2, |x|p is neither bisub- nor bisu-
perharmonic on Rn. Consider, for example, n = 2 and 0 < p < 2. One can
show that the distributional Laplacian of |x|p on R2 is the locally integrable
function p2|x|p−2. This function is subharmonic in R2 \ {0}, but is not a.e.
equal to a subharmonic function in R2, since its limit as x→ 0 is ∞. Thus,
|x|p is neither bisub- nor bisuperharmonic on R2.
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Corollary 1 also produces sharp logarithmic Khinchin inequalities, pro-
vided the dimension n is sufficiently large. For x ∈ Rn \ {0} and r = |x|, the
reader is invited to verify that

∆ log(1 + |x|) =
n− 1 + (n− 2)r

r(1 + r)2

and that

(1.7) r3(1 + r)4∆∆ log(1 + |x|) = −
3∑

j=0

cjr
j ,

where
c0 = (n− 1)(n− 3), c1 = 4(n− 1)(n− 3),

c2 = (n− 1)(5n− 19), c3 = 2(n− 2)(n− 4).

If n ≥ 4 then all the ci are nonnegative. Thus, log(1 + |x|) is bisuper-
harmonic in Rn \ {0}. By an approximation argument like the one for pth
moments, or by other means, one can show that log(1 + |x|) is bisuperhar-
monic on all of Rn. The same is true for log(A + |x|) for each nonnegative
constant A. Corollary 1 implies

Corollary 3. Let X be as in Corollary 1, and n ≥ 4. Then for every
nonnegative constant A,

E log(A+ |Zn|) ≤ E log(A+ |Zn,k|)(1.8)

≤ E log(A+ |X|) ≤ log(A+ 1).

The quantities on the right and left ends are the best possible constants which
work simultaneously for all k and fixed n ≥ 4.

2. A brief history of sharp Khinchin inequalities. First, we review
work in dimension n = 1, so that X =

∑k
i=1 aiUi is a real linear combination

of symmetric Bernoulli random variables. We remind the reader that Z1

denotes a real-valued standard normal random variable, and that

Z1,k = k−1/2
k∑

i=1

Ui.

In this whole section, we shall always assume the L2-normalization

E|X|2 =
k∑

i=1

a2
i = 1.

Khinchin [Kh 23] proved existence of constants Ap and Bp, 0 < p <∞,
such that Ap ≤ E|X|p ≤ Bp. We shall denote the best such constants also by
Ap, Bp, and call them the best L2-Lp constants. Hölder’s inequality implies
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that Bp = 1 for 0 < p ≤ 2 and Ap = 1 for 2 ≤ p < ∞. The first nontrivial
best constants were found by Whittle [W 60], who asserted that Bp = E|Z1|p
for 2 < p < ∞. However, as pointed out in [F 97, p. 998], Whittle’s proof
is valid only for 3 ≤ p < ∞. The “Gaussian bound” Bp = E|Z1|p, p ≥ 3,
was proved again by Young [Y 76]. Earlier, Stechkin [Ste 61] had proved
B2m = E|Z1|2m for positive integers m. Presumably, Young and Stechkin
were unaware of Whittle’s paper. Szarek [Sz 76] proved that Ap = E|Z1|p
for p = 1 or p slightly larger than 1.

To find the remaining best constants turned out to be much more dif-
ficult. This feat was accomplished by Haagerup [Ha 82], who proved that
Bp = E|Z1|p for all p > 2, while for 0 < p < 2, Ap is the smaller of E|Z1|p
and E|Z1,2|p. Letting p1 ≈ 1.8 be the unique solution p ∈ (0, 2) to the equa-
tion Γ

(
1
2 (p + 1)

)
= 1

2

√
π, the smaller is E|Z1|p when p1 < p < 2, and is

E|Z1,2|p when 0 < p < p1.
Haagerup’s proof requires lots of integrals and estimates. An ingenious

alternative proof for 0 < p < 2, shorter but still complicated, can be found
in [NP 96].

Turning now to majorization inequalities, still in dimension n = 1, set
Y =

∑k
i=1 biUi. Eaton [E 70] proved that {b2i } ≺ {a2

i } ⇒ EΦ(X) ≤ EΦ(Y )
for functions Φ : R → R which satisfy a certain condition. Komorowski
[Kom 88] showed that Eaton’s condition is satisfied by K(x) = |x|p when
p ≥ 3, and thereby obtained the n = 1 case of our Corollary 2.

It turns out that Eaton’s condition on Φ is in fact equivalent to convexity
of Φ′′. Thus, after tending to a few technicalities, one sees that Eaton’s
Theorem coincides with our Theorem 1 for n = 1.

When n = 2 the Ui are uniformly distributed on the unit circle S1, and
are sometimes called Steinhaus random variables. Suppressing their depen-
dence on the dimension, we continue to denote the corresponding best L2-Lp

Khinchin constants by Ap and Bp. The trivial bounds Ap = 1 for p ≥ 2,
Bp = 1 for p ≤ 2 are still true. Haagerup (see [Pe 85, p. 151]) conjectured
that Bp = E|Z2|p for p > 2, and Ap = min(E|Z2|p, E|Z2,2|p) for 0 < p < 2.
Here, for 0 < p < 2, the Gaussian is smaller if and only if p2 < p < 2, where
p2 ≈ 0.48. Haagerup’s conjecture was verified by Sawa [S 85] for p = 1 or p
close to 1. Sawa stated that he could prove Ap = E|Z2|p for every p ∈ [p2, 2)
and Bp = E|Z2|p for every p > 2, but the proofs were never published.

Peškir [Peš 95] proved that when n = 2 one has the majorization in-
equality {b2i } ≺ {a2

i } ⇒ E|X|2m ≤ E|Y |2m for positive integers m. A conse-
quence is that B2m = E|Z2|2m when n = 2. König [Kö 98] and Culverhouse
[C 98] independently confirmed that Bp = E|Z2|p for every p > 2. In fact,
they proved that the n-dimensional best L2-Lp Khinchin constant Bp is
Bp = E|Zn|p for every p > 2 and n ≥ 2. In addition, König proved that
the best n-dimensional constant Ap satisfies Ap = E|Zn|p for 1 ≤ p < 2
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when n ≥ 2, and for 0 < p < 2 when n ≥ 3. All of these results follow from
Theorem 1 and are included in Corollary 2 of the present paper, except for
1 ≤ p < 2 when n = 2, and 0 < p < 1 when n = 3.

For each n ≥ 1 and p ≥ 3, the bound Bp = E|Zn|p can also be obtained
by clever application of Theorem 1 in [F 97]. We thank S. Kwapień for
pointing this out to us.

Let V1, . . . , Vk be independent random variables, each of which is uni-
formly distributed on the unit interval [−1, 1]. Latała and Oleszkiewicz [LO
95] proved that

(2.1) {b2i } ≺ {ai}2 ⇒ E
∣∣∣
k∑

i=1

aiVi

∣∣∣
p

≤ E
∣∣∣
k∑

i=1

biVi

∣∣∣
p

for 2 ≤ p <∞, while for 1 ≤ p ≤ 2 the inequality reverses. As with spheres,
the majorization inequalities permit identification of the corresponding best
Khinchin L2-Lp constants for random variables of the form

∑k
i=1 aiVi. Cul-

verhouse [C 98], building on ideas in [LO 95], obtained the analogues of
(2.1) and its reverse inequality for Vi uniformly distributed on balls of any
dimension when 1 ≤ p < ∞. [C 98] also contains majorization inequali-
ties for Φ(

∑k
i=1 aiVi) and Φ(

∑k
i=1 biVi) for some more general Φ, and the

Sn−1-analogue of the majorization inequality (2.1) for n ≥ 2 and p ≥ 2.
The proofs in [C 98] required power series computations which were

pleasant for n = 2 but quite taxing for n ≥ 3. Accordingly, the computa-
tions for n ≥ 3 were omitted from the thesis [C 98], the intention being
to include them in a subsequent paper based on the thesis. Meanwhile, we
heard from Professor König about his work showing equivalence of ball and
sphere problems, and this inspired us to take a fresh look at all the results in
[C 98]. Eventually, we found the tie between Khinchin-type inequalities and
bisubharmonic functions embodied in Theorems 1–3. The present Theorem1
and its ball counterpart—stated in §6—contain results more general than
those stated in [C 98], and are proved with much less effort.

For Φ(x) = |x|p and p and n as in Corollary 2, the Lp majorization
inequalities supplied by our Theorem 1 are proved also in [KK 01], via a
somewhat different path. See Remark (ii), p. 122 of [KK 01]. A key element of
the KK proofs is convexity of the function t 7→ E|x0+t1/2U |p for appropriate
p and n, where U is uniformly distributed on Sn−1. It was after seeing
this that we were led to formulate our Theorem 3 and Lemma 1. (We had
already proved Theorems 1 and 2, by arguments less simple than those
used here.) The KK proof of convexity makes use of heavy-duty one- and
two-variable calculus, whereas our more general Theorem 3 uses only light-
duty n-variable calculus: an application of the divergence theorem to the
appropriate integral proves the convexity almost immediately.
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We remark also that Theorem 1 can be derived by combining Theorem 3
with some arguments in [KK 01] or [LO 95], but we have opted to give a self-
contained proof of Theorem 1, to highlight the salutary role the divergence
theorem can play in the study of vector Khinchin inequalities.

To recapitulate: On spheres Sn−1, sharp L2-Lp Khinchin inequalities,
and much more, can be painlessly proved when n = 1 and p ≥ 3, when n = 2
and p ≥ 2, when n = 3 and p ≥ 1, and when n = 4 and p > 0 (Theorem 1,
Corollary 2). With vigorous hard analysis, sharp Khinchin inequalities have
also been proved when n = 1 and 0 < p < 2 or 2 < p < 3, when n = 2 and
1 ≤ p < 2, and when n = 3 and 0 < p < 1 ([Ha 82], [Kö 98], [KK 01]). To
illustrate the difficulty gap between the two sets of results, one may note
that KK prove their results which overlap ours within a space of about 12
pages, but require approximately 25 pages full of estimates and integrals of
Bessel functions and other quantites to dispose of n = 2, p ∈ [1, 2).

For n = 2 and 0 < p < 1, Haagerup’s conjecture for the best Ap remains
open, except for p close enough to 1 so that Sawa’s proof is valid. The loga-
rithmic counterpart to Haagerup’s Conjecture seems especially interesting:
When n = 2, is it true that

(2.2) E log |X| ≥ E log |Z1,2|?

With some absolute constant on the right, (2.2) was proved, indepen-
dently, by Favorov [Fa 87] and Ullrich [U 88]. Gorin and Favorov [GF 87]
(see also [Fa 98]) generalized this result by proving n-dimensional inequali-
ties for negative moments: E|X|−p ≤ Cp,n when n ≥ 2 and 0 < p < n − 1.
As far as we know, the best constants Cp,n are not known in any dimension.
On the other hand, our Corollary 3 shows that if n ≥ 4 the best constant
on the right in (2.2) is E log |Zn|.

There remain some other open questions about which of the inequalities
in Theorem 1 and Corollary 2 continue to hold when n and p do not satisfy
the hypotheses of Corollary 2. We will forgo a systematic discussion, but
will present two examples which furnish negative results.

Example 1. Take n = 1. The function ψ(p) = 4p− 5− 3p−1 is concave
and has two zeros on R, at p = 2 and p = p∗, where 2.34 < p∗ < 2.35.
For each p ∈ (2, p∗), there exists εp > 0 such that if X =

∑3
i=1 aiUi, with

a1 = (2/3)1/2 cos θ, a2 = (2/3)1/2 sin θ, a3 = 3−1/2, and |θ − π/4| < εp,
then E|X|p > E|Z1,3|p. Thus, the second inequality in (1.6) can fail when
2 < p < p∗, whereas E|X|p ≤ E|Z1|p, by Haagerup’s Theorem.

Example 2. Take n = 2. For δ > 0, set

X = U1 + δU3, Y = U1 +
1√
2
δU2 +

1√
2
δU3.
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For p > 0 write α = p/2. Then, as δ → 0,

E|X|p = 1 + α2δ2 +
α2(α− 1)2

4
δ4 +O(δ6),

E|Y |p = 1 + α2δ2 +
3
2
α2(α− 1)2

4
δ4 +O(δ6).

Thus, E|X|p < E|Y |p for sufficiently small δ and all p except p = 2. In
particular, a conceivable strengthening of Haagerup’s Conjecture,

{b2i } ≺ {a2
i } ⇒ E|Y |p ≤ E|X|p, p ∈ [p2, 2),

is false for every p ∈ [p2, 2).

3. Proof of Theorem 1. For continuous f ∈ C(Rn,R), set

(3.1) I(r) = I(r, f) =
�

Sn−1

f(rx) dx, r ≥ 0.

We remind the reader of our convention that in integrals over Sn−1, dx
denotes normalized uniform measure on Sn−1, and that in integrals over unit
balls Bn = {x ∈ Rn : |x| < 1}, dx denotes normalized Lebesgue measure
on Bn.

The proof of Theorem 1 involves mostly elementary integral identities,
two of which are stated in the following lemmas.

Lemma 1. Suppose that f ∈ C2(Rn,R). Then

(3.2)
d

dt
I(t1/2, f) =

1
2n

�

Bn
∆f(t1/2x) dx, 0 ≤ t <∞.

Proof. An argument using the divergence theorem, and the relation s =
nb between the unnormalized measures s of Sn−1 and b of Bn, gives

I ′(r) =
r

n

�

Bn
∆f(rx) dx,

from which (3.2) follows.

In the next lemma, e1 denotes the unit vector (1, 0, . . .) ∈ Rn.
Lemma 2. Suppose that f ∈ C(Rn,R). Then, for α, β ∈ R,

(3.3)
�

(Sn−1)2

f(αx+ βy) dx dy =
�

Sn−1

I(|αe1 + βy|, f) dy.

Proof. Fix n ≥ 2, and write S = Sn−1. Let G denote the special or-
thogonal group SO(n), and dg denote normalized Haar measure on G. Then
for continuous functions F on Rn and z ∈ Rn, we have �

G
F (gz) dg =
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�
S
F (|z|x) dx, where gz denotes the action of g on z. Thus

�

S×S
f(αx+ βy) dx dy =

�

G×G
f(αg1e1 + βg2e1) dg1 dg2

=
�

G

dg1

�

G

f(g1(αe1 + βg−1
1 g2e1)) dg2

=
�

G

dg1

�

G

f(g1(αe1 + βg2e1)) dg2

=
�

G

dg2

�

G

f(g1(αe1 + βg2e1)) dg1

=
�

G

dg2

�

S

f(|αe1 + βg2e1|y) dy

=
�

G

I(|αe1 + βg2e1|, f) dg2

=
�

S

I(|αe1 + βy|, f) dy.

Proof of Theorem 1. We may assume that each of the ai and each of
the bi are nonnegative, and, via the usual approximation arguments, that
the bisubharmonic function Φ is in C4. Let Rk+ be the set of all points
s = (s1, . . . , sk) ∈ Rk with each si ≥ 0. Define Q : Rk+ → R by

(3.4) Q(s) = EΦ
( k∑

j=1

s
1/2
j Ui

)
=

�

(Sn−1)k

Φ
( k∑

j=1

s
1/2
j xj

)
dx1 . . . dxk.

To prove Theorem 1, we must show that if a and b are points of Rk+ with
b = (b1, . . . , bk) ≺ (a1, . . . , ak) = a, then Q(a) ≤ Q(b). Now

Q(b)−Q(a) =
1�

0

d

dt
Q((1− t)a+ tb) dt(3.5)

=
1�

0

k∑

j=1

∂jQ((1− t)a+ tb)(bj − aj) dt,

where ∂jQ = ∂Q/∂sj . For i = 1, . . . , k, set Ωi = Sn−1×. . .×Bn×. . .×Sn−1,
where Bn is the ith factor. Fix i ∈ {1, . . . , k}, integrate in (3.4) first with
respect to xi, differentiate with respect to si, and apply Lemma 1 to the
function xi 7→ Φ(xi +

∑
j 6=i s

1/2
j xj). The result is

(3.6) ∂iQ(s) =
1

2n

�

Ωi

∆Φ
( k∑

j=1

s
1/2
j xj

)
dx1 . . . dxk, 1 ≤ i ≤ k.
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Taking i = 1 in (3.6), and using the relation

�

Bn
F (x) dx =

1�

0

nrn−1 dr
�

Sn−1

F (rx) dx,

we obtain

(3.7) ∂1Q(s) =
1
2

�

(Sn−1)k−2

dx3 . . . dxk . . .

1�

0

rn−1 dr
�

(Sn−1)2

∆Φ
(
s

1/2
1 rx1 + s

1/2
2 x2 +

k∑

j=3

s
1/2
j xj

)
dx1 dx2.

Fix the sj and xj for j ≥ 3, and set f(z) = ∆Φ(z +
∑k
j=3 s

1/2
j xj). By

Lemma 2, the dx1dx2 integral in (3.7) equals I(|rs1/2
1 + s

1/2
2 |, f). Formula

(3.7) holds also for ∂2Q(s), provided that I(|rs1/2
1 + s

1/2
2 |, f) is changed to

I(|s1/2
1 + rs

1/2
2 |, f). If s1 ≥ s2 and 0 ≤ r ≤ 1, then

|rs1/2
1 + s

1/2
2 |2 = r2s1 + 2rs1/2

1 s
1/2
2 + s2

≤ s1 + 2rs1/2
1 s

1/2
2 + r2s2 = |s1/2

1 + rs
1/2
2 |2.

Now f is subharmonic on Rn, so I(r, f)↗ as r↗. Thus, we have shown
that s1 ≥ s2 ⇒ ∂1Q(s) ≤ ∂2Q(s). The same argument shows that si ≥
si+1 ⇒ ∂iQ(s) ≤ ∂i+1Q(s) for each i = 1, . . . , k − 1. Hence:

(3.8) If s1 ≥ . . . ≥ sk, then ∂1Q(s) ≤ . . . ≤ ∂kQ(s).

Let us return now to (3.5). The function Q is permutation invariant, so
we may assume that the components of a and of b decrease as i increases.
Then for 0 ≤ t ≤ 1 the components of (1− t)a+ tb also decrease. By (3.8),
the sequence ∂jQ((1 − t)a + tb) increases as j increases. By assumption,
b ≺ a. If λ = (λ1, . . . , λk) is a length k sequence with increasing terms,
it is easy to show, using summation by parts for example, that b ≺ a ⇒∑k
j=1 λjbj ≥

∑k
j=1 λjaj . Thus, the integrand on the right-hand side of (3.5)

is nonnegative, and hence Q(b) ≥ Q(a), as required.

Functions Q with the above property, that b ≺ a ⇒ Q(a) ≤ Q(b), are
said to be Schur-concave on Rk+.

The Gaussian in Corollary 1. With the situation of Corollary 1, we need
to verify that

(3.9) E((Φ1(Zn))−) <∞,
and that

(3.10) lim
k→∞

EΦ(Zn,k) = EΦ1(Zn).
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If Φ is continuous and bisubharmonic then so is Φ1. Moreover, for rota-
tionally-invariant Rn-valued random variables W, E|Φ(W )| <∞ if and only
if E|Φ1(W )| < ∞, in which case EΦ(W ) = EΦ1(W ). Thus, to prove (3.9)
and (3.10) we may assume that Φ is itself radial. Set u = ∆Φ. Then u is
radial and subharmonic. Write u(r) = u(re1), and Φ(r) = Φ(re1). Since u(r)
is the mean of a subharmonic function on |x| = r, it follows that u is finite,
continuous and increasing on (0,∞). Moreover, Φ satisfies the distributional
o.d.e.

(3.11) r1−n d

dr
(rn−1Φ′(r)) = u(r).

It is easy to verify that continuous distributional solutions of (3.11) on (0,∞)
are in C2. Thus, Φ ∈ C2(0,∞).

Let us assume now that n ≥ 3. Integrate (3.11) from 1 to r. The result
is, for 0 < r <∞,

Φ(r) = Φ(1) +
1

n− 2
Φ′(1)(1− r2−n)(3.12)

+
1

n− 2

r�

1

(1− tn−2r2−n)tu(t) dt.

Since u(t) ≥ u(1) for t ≥ 1, (3.12) implies existence of positive constants
a and b such that

(3.13) Φ(r) ≥ −ar2 − b, 1 ≤ r <∞.
Since Φ is continuous on Rn, it is bounded below in |x| ≤ 1, so (3.13) still
holds for r ∈ [0,∞), with perhaps a larger b. The statement (3.9) for n ≥ 3
follows from (3.13).

If u is bounded above on (0,∞), then from (3.12) it follows that |Φ(r)| ≤
ar2 + b for some constants a, b and all r ∈ (0,∞). Then (3.10), for n ≥ 3,
follows from either of the central limit type Theorems 2.2.11 or 2.2.20
in [St 93].

If u is not bounded above, define v : (0,∞) → R by u(r) = v(r2−n).
A calculation shows that subharmonicity of u is equivalent to convexity of v.
Moreover, our v is decreasing, and tends to infinity as r → 0. Let {rm} be a
positive sequence in (0, 1) which decreases to zero. Set vm = v on [rm,∞),
and define vm on [0, rm] to be the linear function with vm(rm) = v(rm) and
slope equal to the derivative of v from the right at rm. Then each vm is
convex on (0,∞), and vm(r) ↗ v(r) as m → ∞ for each r ∈ (0,∞). Set
um(r) = vm(r2−n). Define Φm = Φ on [0, 1], and on [1,∞) define Φm by
replacing u by um in (3.12). Extend Φm to Rn by defining Φm(x) = Φm(|x|).
Then {Φm} is a sequence of continuous radial bisubharmonic functions which
increases to Φ pointwise on (0,∞), and each ∆Φm = um is bounded above.
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Thus EΦm(Zn,k)↗ EΦm(Zn) for each fixed m. Hence

EΦm(Zn,k) ≤ EΦm(Zn) ≤ EΦ(Zn) for all k,m.

Letting m → ∞ and applying the Monotone Convergence Theorem,
we see that EΦ(Zn,k) ≤ EΦ(Zn) for each k, so that limk→∞ EΦ(Zn,k) ≤
EΦ(Zn). The opposite inequality can be obtained by writing Φ = Φ+ −Φ−,
then applying [St 93, 2.2.2] to Φ+, and (3.13) and [St 93, 2.11] or [St 93,
2.20] to Φ−. The proof of (3.10) is complete when n ≥ 3.

Suppose n = 2. Then instead of (3.12) we have

(3.14) Φ(r) = Φ(1) + Φ′(1) log r +
r�

1

(
log

r

t

)
tu(t) dt, 1 < r <∞.

The lower bound (3.13) is still true, and hence so is (3.9). If u is bounded
above then u is constant, which implies that Φ(r) has the form ar2+b, so that
(3.10) is trivial. To handle nonconstant u, define v : (−∞,∞)→ R by v(x) =
u(ex). Then v is convex and increasing. Approximate v by an increasing
sequence of convex functions, each of which is linear for sufficiently large x.
The corresponding approximants to Φ satisfy bounds of the form Φm(r) =
O(r2 log r) as r → ∞. Theorem 2.2.20 of [St 93] still applies to each Φm.
The proof of (3.10) for n = 2 can be now accomplished like the one for
n ≥ 3, with a few small changes. A proof of (3.9) and (3.10) for n = 1 can
be constructed along the same lines as for n = 2.

4. Proof of Theorem 2. Let Φ be a radial function on Rn, with the
property that b ≺ a ⇒ Q(a) ≤ Q(b) for each pair of nonnegative k-tuples
a, b ∈ Rk+, where Q is defined as in (3.4). Assume for now that Φ ∈ C4.
Take R > 0, B ≥ 0, ε > 0, k = 3, a = (R2, 0, B2), and b = (R2 − ε, ε,B2).
Then b ≺ a, so Q(a)−Q(b) ≤ 0. Dividing by ε and letting ε→ 0, we obtain
∂1Q(R2, 0, B2) − ∂2Q(R2, 0, B2) ≤ 0. Set u = ∆Φ. If we write x = x1,
y = x3, it follows from (3.6) that

(4.1)
�

Bn×Sn−1

u(Rx+By) dx dy ≤
�

Sn−1×Sn−1

u(Rx+By) dx dy.

As in the previous section, dx and dy denote uniform probability mea-
sures on Bn or Sn−1, according to the specified domain of integration. From
(4.1), (3.3) and a simple computation, we obtain

(4.2)
�

Bn
I(|Rx+ z0|, u) dx ≤

�

Sn−1

I(|Rx+ z0|, u) dx,

where z0 is any point of Rn with |z0| = B. But u is radial, so I(|Rx+z0|, u) =
u(Rx+ z0). Thus, the right-hand integral in (4.2) equals the mean value of
u over the sphere |x − z0| = R. Similarly, the left-hand integral equals the
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mean over the ball |x− z0| ≤ R. We have thus shown that for every z0 ∈ Rn
and every R > 0,

(4.3)
�

Bn
u(z0 +Rx) dx ≤

�

Sn−1

u(z0 +Rx) dx.

Now u ∈ C2(Rn,R). If u were not subharmonic, there would exist z0 ∈
Rn such that ∆u(z0) < 0. Then u would be strictly superharmonic in some
ball centered at z0, the spherical mean on the right in (4.3) would be a
strictly decreasing function of R for small R, and the left side would be
strictly larger than the right side for small R. This contradiction shows that
u must be subharmonic, so that Φ must be bisubharmonic. Theorem 2 is
proved for radial Φ ∈ C4.

Let now Φ be radial, continuous and satisfy the hypotheses of Theorem 2.
Take x0 ∈ Rn, and set Ψ(x) = Φ(x + x0), B = |x0|. By converting to
integrals over products of spheres, or otherwise, one may show that

EΨ
( k∑

i=1

aiUi

)
= EΦ

( k∑

i=1

aiUi +BUk+1

)

for sequences (a1, . . . , ak), where Uk+1 is uniformly distributed on Sn−1

and is independent of U1, . . . , Uk. If (b21, . . . , b
2
k) ≺ (a2

1, . . . , a
2
k), then

(b21, . . . , b
2
k, B

2) ≺ (a2
1, . . . , a

2
k, B

2). Since (1.1) holds for Φ and the aug-
mented sequences, it holds also for Ψ and the original sequences. Conse-
quently, for any nonnegative integrable compactly supported function K on
Rn, if {b2i } ≺ {a2

i } then (1.1) holds with Φ replaced by the convolution K∗Φ.
If we take K to be also C∞ and radial, then K ∗ Φ is C∞ and radial, so
the first part of the proof implies that K ∗ Φ is bisubharmonic. Standard
arguments, like those in [Hö 94, p.148], imply that Φ is bisubharmonic.

5. Proof of Theorem 3. The usual smoothing methods work straight-
forwardly in this situation, so we will only consider the case when Φ ∈
C4(Rn,R). Fix x0 ∈ Rn, and set

h(t) =
�

Sn−1

Φ(x0 + t1/2x) dx, u(x) = ∆Φ(x0 + x).

Lemma 1, with f(x) = Φ(x + x0), implies that h′(t) is 1/(2n) times the
mean value of u over the ball |x− x0| < t1/2, so that

(5.1) h′(t) =
1
2
t−n/2

t1/2�

0

I(s, u)sn−1 ds =
1

2n
t−n/2

tn/2�

0

I(r1/n, u) dr.

If Φ is bisubharmonic, then I(s, u)↗ as s↗, so h′(t)↗ as t↗, hence h
is convex. Conversely, if the C4 function Φ were not bisubharmonic, there
would exist x0 ∈ Rn such that ∆∆Φ(x) < 0 in some neighborhood of x0.
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The corresponding u would be strictly superharmonic in a ball around the
origin, I(s, u) would strictly decrease for all small s, and (5.1) would show
that h′(t) strictly decreases for all small t. Thus, h would not be convex.

6. Sharp Khinchin inequalities for balls. Let V1, . . . , Vk be inde-
pendent Rn-valued random variables, each of which is uniformly distributed
on the unit ball Bn of Rn. We continue to let a1, . . . , ak denote a real se-
quence of k elements. H. König [Kö 98], [KK 01] discovered the following
remarkable identity:

König’s Identity. For n ≥ 1,

(6.1) E
∣∣∣
k∑

i=1

aiVi

∣∣∣
p

=
n

n+ p
E
∣∣∣
k∑

i=1

aiUi

∣∣∣
p

, 0 < p <∞,

where U1, . . . , Uk are independent Rn+2-valued random variables, each of
which is uniformly distributed on Sn+1.

This identity permits deduction of sharp L2-Lp Khinchin inequalities for
balls from the corresponding inequalities for spheres. For example, using
(1.6), one obtains, for n ≥ 1, p ≥ 2 and

∑k
i=1 a

2
i = 1,

n

n+ p
≤ E

∣∣∣
k∑

i=1

aiVi

∣∣∣
p

≤ E
∣∣∣k−1/2

k∑

i=1

Vi

∣∣∣
p

≤ n

n+ p
E|Zn+2|p.

The quantities on the right and left ends are the smallest constants which
work for all k and fixed n. For n = 1, these inequalities, and the reverse
inequalities for 1 ≤ p ≤ 2, were first proved by Latała and Oleszkiewicz [LO
95].

We shall state a Φ moment generalization of König’s identity. For sim-
plicity, we confine attention to radial moments. Thus, let Φ be a continuous
radial function on Rn. Then Φ(x) = Φ1(|x|) for a continuous function Φ1 on
[0,∞). Define Ψ1 : (0,∞)→ R by

(6.2) Ψ1(r) = nr−n
r�

0

Φ1(s)sn−1 ds, r ≥ 0,

and define a radial function Ψ on Rn+2 by Ψ(x) = Ψ1(|x|).
Theorem 4. Let the Ui and Vi be as in König’s identity. Then

(6.3) EΦ
( k∑

i=1

aiVi

)
= EΨ

( k∑

i=1

aiUi

)
.

From Theorem 4, one sees that the inequalities (1.1) and (1.2) of The-
orem 1 and Corollary 1 hold when X =

∑k
i=1 aiUi, Y =

∑k
i=1 biUi, and

Zn,k are replaced by
∑k
i=1 aiVi,

∑k
i=1 biVi, and k−1/2∑k

i=1 Vi, provided Φ
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is radial and Ψ is bisubharmonic on Rn+2. The reader may verify that a
smooth radial Φ has biharmonic Ψ if and only if Φ1 satisfies the differential
inequality

(6.4) r2Φ1
′′′(r) + (n2 − n)(rΦ1

′′(r)− Φ1
′(r)) ≥ 0, 0 < r <∞.

Proof of Theorem 4. Let f and g denote the density functions of
|∑k

i=1 aiUi| and |∑k
i=1 aiVi|, respectively. We claim that

(6.5) f(r) = −r
n

n
(r1−ng(r))′.

Assuming (6.5), and using also (6.2), we have

EΨ
( k∑

i=1

aiUi

)
=
∞�

0

Ψ1(r)f(r) dr = −
∞�

0

Ψ1(r)
rn

n
(r1−ng(r))′ dr

= n−1
∞�

0

(rnΨ1(r))′r1−ng(r) dr =
∞�

0

Φ1(r)g(r) dr

= EΦ
( k∑

i=1

aiVi

)
.

To complete the proof of the theorem, we must verify (6.5). To do this, we
use some ideas from a proof of (6.1) in [KK 01, p. 126] which is attributed to
Latała. Its point of departure is the observation that if U is uniform on Sn+1

and V is uniform on Bn, then U · e1 and V · e1 have the same distribution,
given by the density cn(1− t2)(n−1)/2 for |t| < 1 and suitable constant cn.

Let F and G denote the density functions, defined on Rn+2 and Rn,
respectively, of

∑k
i=1 aiUi and

∑k
i=1 aiVi. Then F and G are radial, and so

are their Fourier transforms F̂ and Ĝ. With the normalizations of [SW 71],
we have

F̂ (re1) = E
(

exp
(
−2πire1 ·

k∑

i=1

aiUi

))
(6.6)

= E
(

exp
(
−2πire1 ·

k∑

i=1

aiVi

))
= Ĝ(re1), r ≥ 0.

Write H(r) = F̂ (re1) = Ĝ(re1), and define, for t ≥ 0, n ≥ 2,

(6.7) Pn(t) =
�

Sn−1

e2πite1·x dx = c

π�

0

e2πit cos θ sinn−2 θ dθ.

Here, and below, c will denote a constant depending on n which can change
from identity to identity. When n = 2 the term sinn−2 θ should be replaced
by the constant 1. When n = 1, define P1(t) = cos 2πt.
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The Fourier inversion formula and conversion to polar coordinates
[SW 71, pp. 11, 154, 155] give

(6.8)

F (re1) =
�

Rn+2

F̂ (ξ)e2πire1·ξ dξ = c

∞�

0

Pn+2(tr)H(t)tn+1 dt,

G(re1) =
�

Rn
Ĝ(ξ)e2πire1·ξ dξ = c

∞�

0

Pn(tr)H(t)tn−1 dt.

Differentiation, then integration by parts in the last integral in (6.7),
leads to P ′n(t) = −ctPn+2(t). Using this with (6.8), we deduce

(6.9)
∂G

∂r
(re1) = −crF (re1).

The density functions f, F, g,G are related by

(6.10) f(r) = cF (re1)rn+1, g(r) = cG(re1)rn−1.

From (6.9) and (6.10), it follows that f(r) = −crn(r1−ng(r))′. Using
� ∞0 f(r) dr = � ∞0 g(r) dr = 1, one can show that the constant c in the last
identity equals 1/n. The proof of (6.5), and of Theorem 4, is complete.

The function Pn is expressible in terms of Bessel functions:

Pn(t) =
2π
ωn−1

t−(n−2)/2J(n−2)/2(2πt),

where ωn−1 is the area of Sn−1. See, for example, [SW 71, p. 154].
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