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Decompositions for real Banach spaces with

small spaces of operators

by

Manuel González and José M. Herrera (Santander)

Abstract. We consider real Banach spaces X for which the quotient algebra
L(X)/In(X) is finite-dimensional, where In(X) stands for the ideal of inessential op-
erators on X. We show that these spaces admit a decomposition as a finite direct sum of
indecomposable subspaces Xi for which L(Xi)/In(Xi) is isomorphic as a real algebra to
either the real numbers R, the complex numbers C, or the quaternion numbers H. More-
over, the set of subspaces Xi can be divided into subsets in such a way that if Xi and Xj

are in different subsets, then L(Xi, Xj) = In(Xi, Xj); and if they are in the same subset,
then Xi and Xj are isomorphic, up to a finite-dimensional subspace. Moreover, denoting
by X̂ the complexification of X, we show that L(X)/In(X) and L(X̂)/In(X̂) have the
same dimension.

1. Introduction. Gowers and Maurey obtained in [12] the first example
of an infinite-dimensional Banach space XGM which is hereditarily indecom-

posable, in the sense that no subspace of XGM can be written as the direct
sum of two infinite-dimensional closed subspaces. This space provided a neg-
ative answer to several long-standing open problems in Banach space theory.
Moreover, both in the real case F = R and in the complex case F = C, every
operator T acting on XGM can be written as T = λI +S, with λ ∈ F a scalar
number and S ∈ SS(XGM), where SS(X) denotes the ideal of strictly sin-

gular operators acting on the Banach space X. Afterwards, many examples
of hereditarily indecomposable spaces and some other classes of spaces with
unexpected properties were constructed. We refer to [17] for a readable pa-
per describing some basic constructions and interesting examples of spaces
of this kind. Moreover, [10] is a short survey describing the relation between
these spaces and Fredholm theory, as well as many examples of spaces X
for which L(X)/SS(X) is small.
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Let X be an infinite-dimensional, hereditarily indecomposable Banach
space. It is not difficult to see that in the case F = C, the quotient algebra
L(X)/SS(X) is one-dimensional, i.e., can be identified with C. However,
the case F = R is more complicated. It was proved by Ferenczi [5, 6] that
in the real case L(X)/SS(X) is isomorphic as a real algebra to either the
real numbers R, the complex numbers C, or the quaternion numbers H.
Recently, he showed in [7] that there are two examples of real hereditarily
indecomposable spaces for which L(X)/SS(X) is C and H, respectively. So
we have examples for the three possible cases.

In this paper, we consider real Banach spaces X for which L(X)/In(X)
is finite-dimensional, where In(X) stands for the inessential operators on X.
We show that these spaces X admit a decomposition

X =
k⊕

i=1

( ni⊕

j=1

Yij

)

as a direct sum of indecomposable subspaces Yij , 1 ≤ i ≤ k, 1 ≤ j ≤ ni,
where L(Yij)/In(Yij) is isomorphic as a real algebra to R, C, or H. We
also show that, given two of these subspaces Yij and Yi′j′ , every operator in
L(Yij , Yi′j′) is inessential when i 6= i′, and there exists a Fredholm operator

from Yij to Yi′j′ when i = i′. Moreover, denoting by X̂ the complexification

of X, we show that L(X̂)/In(X̂) can be identified with the complexification
of L(X)/In(X); in particular, these two quotient algebras have the same
dimension. Our main tools are the notion of complexification of a real Ba-
nach space, the Wedderburn representation theorem for semisimple algebras
and some techniques of Fredholm theory. In [11] we obtained similar results
in the case when X is a complex Banach space. In that case the results and
proofs were simpler; in particular, L(Yij)/In(Yij) was always isomorphic
to C.

Along the paper X, Y, Z, . . . will be real or complex Banach spaces, X∗

the dual space of X, and L(X, Y ) the (continuous linear) operators from X
into Y . We will write L(X) instead of L(X, X) and I will denote the identity
map on a Banach space. An operator T ∈ L(X, Y ) is upper semi-Fredholm if
its range R(T ) is closed and its kernel N(T ) is finite-dimensional; lower semi-

Fredholm if its range R(T ) is closed and finite-codimensional; and Fredholm

if it is upper and lower semi-Fredholm. We denote these classes of operators
by Φ+, Φ− and Φ, respectively.

Given a closed subspace M of a Banach space X we denote by JM

the natural injection of M into X and by QM the quotient map of X
onto X/M . An operator T ∈ L(X, Y ) is strictly singular if there is no
infinite-dimensional subspace M of X such that the restriction TJM is an
isomorphism; strictly cosingular if there is no infinite-codimensional closed
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subspace N of Y such that QNT is surjective; and inessential if for every
S ∈ L(Y, X), the operator I − ST is Fredholm. We denote these classes of
operators by SS, SC and In, respectively. Moreover, K denotes the ideal
of compact operators. Note that both SS and SC are properly contained
in In.

We say that a closed two-sided ideal A(X) in L(X) is a Fredholm ideal

when an operator T ∈ L(X) is Fredholm if and only if the corresponding
class is invertible in L(X)/A(X). It follows from well-known results in Fred-
holm theory that A(X) is a Fredholm ideal if and only if A(X) contains the
ideal of finite range operators and is contained in the ideal of inessential
operators. As examples, we have K(X), SS(X), SC(X), In(X), and the
perturbation classes of the semi-Fredholm operators PΦ+(X) and PΦ−(X).
We refer to [9, 10] for the properties of these Fredholm ideals.

2. Preliminaries. Here we collect some basic results relating a Banach
space to its complexification, and operators between two real Banach spaces
with operators between their complexifications. Along this section, X and
Y will be real Banach spaces.

Recall that the complexification X̂ of a real Banach space X (see, for
example, [16, p. 81]) is defined as the space

X̂ = {x + iy : x, y ∈ X} ≡ X × X

with the external operation given by

(a + ib)(x + iy) := ax − by + i(ay + bx) ≡ (ax − by, ay + bx), a, b ∈ R,

and the norm defined by

‖x + iy‖ := max{(‖ax − by‖2 + ‖ay + bx‖2)1/2 : a, b ∈ R, a2 + b2 = 1}.
Set ‖(x, y)‖2 = (‖x‖2 + ‖y‖2)1/2 for x, y ∈ X. It is easy to check that

(1) ‖(x, y)‖2 ≤ ‖x + iy‖ ≤
√

2 ‖(x, y)‖2.

Similarly, if A is a real Banach algebra, we can define the complexification
Â of A, where the product in Â is given by

(u + iv)(x + iy) := ux − vy + i(uy + vx).

We refer to [3, Section 13] for additional information.

The following result is a direct consequence of (1) and the definition of
the map UX .

Proposition 2.1. The map UX : X̂ → X ×X defined by UX(x+ iy) :=
(x, y) has the following properties:

(i) UX and U−1
X are continuous: zn → z if and only if UXzn → UXz.

(ii) UX is bijective and additive.
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(iii) M is a subspace of X̂ ⇒ UX(M) is a subspace of X × X.

(iv) Let N be a subspace of X × X. Then

U−1
X (N) is a subspace of X̂ ⇔ (−y, x) ∈ N for each (x, y) ∈ N .

Let A, B ∈ L(X, Y ). Then

(A + iB)(x + iy) := Ax − By + i(Ay + Bx)

defines an operator A + iB ∈ L(X̂, Ŷ ) that satisfies

max{‖A‖, ‖B‖} ≤ ‖A + iB‖ ≤
√

2(‖A‖ + ‖B‖).
Conversely, given T ∈ L(X̂, Ŷ ), if we put T (x + i0) := Ax + iBx, then we
obtain A, B ∈ L(X, Y ) such that T = A + iB.

As a consequence of the previous arguments we get the following result.

Proposition 2.2. We can identify the space L(X̂, Ŷ ) and the complex-

ification ̂L(X, Y ) of L(X, Y ). In the case X = Y , this identification is an

isomorphism between the algebras L(X̂) and L̂(X).

Let UX : X̂ → X × X and UY : Ŷ → Y × Y be the maps defined in
Proposition 2.1. We have the commutative diagram

X × X Y × Y

X̂ Ŷ

-
MA,B

?

UX

?

UY

-
A+iB

where MA,B denotes the operator defined by the matrix
(

A −B
B A

)
.

The following result is a direct consequence of the definition of operator
ideal in the sense of Pietsch [19].

Proposition 2.3. Let A be an operator ideal. Then A, B ∈ A(X, Y ) if

and only if MA,B ∈ A(X × X, Y × Y ).

However, the relation between the properties of A, B and the properties
of A+ iB is not so direct. One reason for this is that the concept of operator
ideal does not mix real spaces and complex spaces. Moreover, even in the
case in which the definition of the operator ideal makes sense both in the
real and in the complex case, there are some difficulties because the relation
between X × X and X̂ is not C-linear.

Proposition 2.4. Let A, B ∈ L(X, Y ). Then A + iB ∈ K(X̂, Ŷ ) if and

only if A, B ∈ K(X, Y ).

Proof. Let A, B ∈ K and (zn) ⊂ X̂ bounded. If zn = xn + iyn, then
(A+iB)(zn) = Axn−Byn+i(Ayn+Bxn). Since (xn) and (yn) are bounded,
passing to subsequences we get (Axnk

), (Bynk
), (Bxnk

), (Aynk
) convergent.

Hence (A + iB)(znk
) converges and A + iB ∈ K.



Decompositions for Banach spaces 5

Conversely, let A + iB ∈ K and (xn) ⊂ X bounded. Then (xn + i0) ⊂ X̂
is bounded and there is a convergent subsequence (A+ iB)(xnk

) = (Axnk
+

iBxnk
). Thus (Axnk

), (Bxnk
) are convergent and A, B ∈ K.

Let A + iB ∈ L(X̂, Ŷ ). We have seen that there exist two homeomor-

phisms UX : X̂ → X×X and UY : Ŷ → Y ×Y so that A+iB = UY MA,BU−1
X .

Proposition 2.5. Let A be one of the classes of Fredholm Φ, upper

semi-Fredholm Φ+ or lower semi-Fredholm operators Φ−. Let A, B∈L(X, Y ).

Then A + iB ∈ A(X̂, Ŷ ) if and only if MA,B ∈ A(X × X, Y × Y ).

Proof. It is enough to observe that

(a) R(MA,B) is closed if and only if R(A + iB) is closed,
(b) dimR N(MA,B) = 2 dimC N(A + iB),
(c) codimR R(MA,B) = 2 codimC R(A + iB).

Proposition 2.6. Let A be one of the Fredholm ideals SS, SC, In, PΦ+

or PΦ−. If A, B ∈ A(X, Y ) then A + iB ∈ A(X̂, Ŷ ).

Proof. The result for SS and SC follows easily from the identification
A+iB = UY MA,BU−1

X and the properties of UY and UX given in Proposition
2.1.

The result for the perturbation classes In = PΦ, PΦ+ and PΦ− follows
from Proposition 2.5.

Remark 2.7. It is not known whether A + iB ∈ SS(X̂, Ŷ ) implies

A, B ∈ SS(X, Y ). Note that X × X has more subspaces than X̂. So it is
reasonable to expect a negative answer.

Proposition 2.8. Let U be an operator ideal. Suppose that K, L ∈
U(X, Y ) implies K + iL ∈ U(X̂, Ŷ ). Then

dimC L(X̂, Ŷ )/U(X̂, Ŷ ) ≤ dimR L(X, Y )/U(X, Y ).

Proof. Suppose dimL(X, Y )/U(X, Y ) = n. Then there exist A1, . . . , An

∈ L(X, Y ) such that, for every T = A + iB ∈ L(X̂, Ŷ ) we can find real
numbers λ1, . . . , λn and µ1, . . . , µn, and K, L ∈ U(X, Y ), such that A =
λ1A1 + · · · + λnAn + K and B = µ1A1 + · · · + µnAn + L. Thus

T = (λ1 + iµ1)(A1 + i0) + · · · + (λn + iµn)(An + i0) + (K + iL)

with K + iL ∈ U(X̂, Ŷ ).

Remark 2.9. The condition “K, L ∈ U(X, Y ) implies K+iL∈U(X̂, Ŷ )”

is equivalent to the inclusion ̂U(X, Y ) ⊆ U(X̂, Ŷ ). In the case X = Y we

get a natural surjection from ̂L(X)/U(X) ≃ L̂(X)/Û(X) onto L(X̂)/U(X̂).

Thus, if dimR L(X)/U(X) = dimC L(X̂)/U(X̂), we can identify L(X̂)/U(X̂)

and the complexification ̂L(X)/U(X).
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3. Main results. We say that a Banach space X is indecomposable if it
cannot be decomposed as the direct sum of two infinite-dimensional closed
subspaces; equivalently, if for each projection P ∈ L(X), the kernel or the
range of P is finite-dimensional.

In this section, for a real Banach space X such that L(X)/In(X) is
finite-dimensional, we obtain a decomposition of X into indecomposable
complemented subspaces Zj such that each of the algebras L(Zj)/In(Zj)
is isomorphic to one of the real division algebras R, C or H. Moreover, we
show that L(X)/In(X) and L(X̂)/In(X̂) have the same dimension, and we

relate the properties of the summands of the decompositions of X and X̂.
The following result describes L(X)/In(X) when it is finite-dimensional.

If D is a division algebra, we denote by Mn(D) the algebra of all n × n
matrices with entries in D.

Theorem 3.1. Let X be a real Banach space such that L(X)/In(X) is

finite-dimensional. Then there exist positive integers n1, . . . , nk so that

L(X)/In(X) ≡ Mn1
(D1) ⊕ · · · ⊕ Mnk

(Dk),

where each Di is R, C or H.

Proof. It was proved by Kleinecke [14] that the inessential operators
In(X) can be characterized as the inverse image under the quotient map
of the (Jacobson) radical of the algebra L(X)/K(X). As a consequence,
the quotient algebra L(X)/In(X) is semisimple, i.e., its radical is {0} [3,
Definition 24.13]. Thus the result is a direct consequence of the Wedderburn
structure theorem for semisimple finite-dimensional algebras [18, Section
3.5].

Remark 3.2. In the complex case Theorem 3.1 is valid, with Di = C

for all i = 1, . . . , k. See [11].

Remark 3.3. Let X be a real or complex space. If U is a Fredholm
ideal and L(X)/U(X) is semisimple, then U(X) = In(X). This is true, in
particular, for the real spaces X for which L(X)/SS(X) is R, C or H. See,
for example, [1], [2], [7], [12], and Koszmider’s real C(K) space for which
L(C(K))/SS(C(K)) ≡ C(K) [15].

Let us see that each algebra Mn1
(D1) ⊕ · · · ⊕ Mnk

(Dk) is isomorphic to
L(X)/In(X) for some real Banach space X.

Examples 3.4. In [7] Ferenczi constructed a real Banach space XH such
that L(XH)/SS(XH) ≡ H. This space admits a Schauder decomposition
X =

⊕
∞

k=1
Mk with dimMk = 4 for all k. For each n, we can define n

subspaces Yi :=
⊕

∞

k=1
M2ik, i = 1, . . . , n. Moreover, we set Y0 = XH.

Clearly Yi ⊂ Yi−1 with dimYi−1/Yi = ∞, and it is easy to check as in
[7] that L(Yi)/SS(Yi) ≡ H for each i = 1, . . . , n.
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For each i = 1, . . . , n, Yi is hereditarily indecomposable. Therefore
L(Yi−1, Yi) = SS(Yi−1, Yi); hence (see Remark 3.9 below)

(2) L(Yi−1, Yi) = In(Yi−1, Yi) and L(Yi, Yi−1) = In(Yi, Yi−1).

Let us denote by Y ni

i the product of ni copies of Yi. Clearly, if we take
X = Y n1

1 ⊕ · · · ⊕ Y nk

k , then

(3) L(X)/SS(X) ≡ Mn1
(H) ⊕ · · · ⊕ Mnk

(H).

Analogously, the real Banach space XGM constructed in [12] such that
L(XGM)/SS(XGM) ≡ R is hereditarily indecomposable and has a Schauder
basis, and the real Banach space XC in [7] such that L(XC)/SS(XC) ≡ C

is hereditarily indecomposable and admits a Schauder decomposition into
subspaces of dimension 2. So we can construct subspaces Yi (i = 1, . . . , n)
of XGM (respectively XC) satisfying (2) and (3) with R (respectively C)
instead of H.

Using a suitable combination of subspaces Yi of the previously mentioned
three kinds, we can obtain a real Banach space X which can be written
as the direct sum of n1 + · · · + nk indecomposable subspaces such that
L(X)/SS(X) ≡ L(X)/In(X) is isomorphic to Mn1

(D1) ⊕ · · · ⊕ Mnk
(Dk),

where each Di is R, C or H.

Let U(X) be a Fredholm ideal, let π : L(X) → L(X)/U(X) denote the
quotient map, and let e denote the identity of L(X)/U(X).

The following result will allow us to lift idempotents in L(X)/U(X) to
projections in L(X).

Proposition 3.5. Let X be a Banach space and let U(X) be a Fredholm

ideal in L(X). Let p1, . . . , pn ∈ L(X)/U(X) be nonzero idempotents such

that pipj = 0 for i 6= j and p1 + · · · + pn = e. Then there exist projections

P1, . . . , Pn ∈ L(X) such that PiPj = 0 for i 6= j, P1 + · · · + Pn = I and

pi = π(Pi) for each i.

Proof. We define x := p1 + 2p2 + · · · + npn ∈ L(X)/U(X).

First we suppose that X is a complex space. Observe that the spectrum
of x is the set {1, . . . , n}. Indeed, for every λ ∈ C,

λe − x = λ(p1 + · · · + pn) − (p1 + 2p2 + · · · + npn) =
n∑

k=1

(λ − k)pk;

hence (λe − x)−1 =
∑n

k=1
(λ − k)−1pk for λ /∈ {1, . . . , n}.

We choose T ∈ L(X) such that π(T ) = x; hence the only possible
accumulation points of σ(T ) are 1, . . . , n. So we can take n disjoint, simple
closed curves Γk (k = 1, . . . , n) in C \ σ(T ) such that k is enclosed by Γk,
l is not enclosed by Γk for l ∈ {1, . . . , n} with k 6= l, and every point in
σ(T ) is enclosed by one of the curves Γk. It follows from the properties of
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the analytic functional calculus [20] that the expressions

Pk :=
1

2πi

\
Γk

(λI − T )−1 dλ (k = 1, . . . , n)

define projections that satisfy PiPj = 0 for i 6= j and P1 + · · · + Pn = I.
Moreover, by the continuity of π, for each k = 1, . . . , n,

π(Pk) =
1

2πi

\
Γk

(λe − π(T ))−1 dλ =
1

2πi

\
Γk

(λ − k)−1pk dλ = pk.

In the case that X is a real space, we take T ∈ L(X) as in the complex

case, and consider the complexification X̂ of X, the operator T̂ := T + i0 ∈
L(X̂) and the Fredholm ideal

U(X̂) := {A + iB : A, B ∈ U(X)}.
So we can identify L(X̂)/U(X̂) with the complexification of L(X)/U(X). It

is easy to check that λI − T̂ is invertible if and only if so is λI − T̂ , with

(λI − T̂ )−1 = (λI − T̂ )−1.

So σ(T̂ ) is symmetric with respect to the real axis, and we can proceed as
in the complex case taking the curves Γk symmetric with respect to the real
axis. We denote by Γ+

k and Γ−

k the intersections of Γk with the upper and
lower complex half-planes respectively. Then\

Γk

(λI − T̂ )−1 dλ =
\

Γ+

k

(λI − T̂ )−1 dλ +
\

Γ−

k

(λI − T̂ )−1 dλ

=
\

Γ+

k

(λI − T̂ )−1 dλ −
\

Γ+

k

(λI − T̂ )−1 dλ

= 2i Im
\

Γ+

k

(λI − T̂ )−1 dλ.

Thus the imaginary part of the projection P̂k obtained from T̂ is 0, hence
P̂k = Pk + i0 for some projection Pk ∈ L(X), and clearly π(Pk) = pk.

Recall that Frobenius proved that the only associative, finite-dimensional
division algebras over the real field are the real numbers R, the complex
numbers C, and the quaternion numbers H (see [13, Corollary IX.6.8]).

Theorem 3.6. Let X be a real Banach space such that L(X)/In(X) is

finite-dimensional. Then X is indecomposable if and only if L(X)/In(X) is

a division algebra, i.e., if and only if it is isomorphic to R, C or H.

Proof. If L(X)/In(X) is a division algebra, then 0 and the identity are
the only idempotents it contains. Hence, for each projection in L(X) either
the kernel or the range is finite-dimensional. Thus, X is indecomposable.
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Conversely, suppose that L(X)/In(X) is not a division algebra. Then
by Theorem 3.1, there exists a nontrivial idempotent q ∈ L(X)/In(X). By
Proposition 3.5 applied to q and e−q, we can lift q to a projection P ∈ L(X),
and clearly both N(P ) and R(P ) are infinite-dimensional. Thus, X is not
indecomposable.

Remark 3.7. In the complex case Theorem 3.6 is also valid, but in this
case C is the only division algebra. See [11].

The following concepts were introduced in [8] and [11].

Definition 3.8. We say that two Banach spaces X and Y are essentially

incomparable if L(X, Y ) = In(X, Y ).

We say that X and Y are essentially isomorphic if Φ(X, Y ) 6= ∅.
Remark 3.9. The relations of being essentially incomparable and being

essentially isomorphic are symmetric [8], i.e., L(X, Y ) = In(X, Y ) if and
only if L(Y, X) = In(Y, X), and Φ(X, Y ) 6= ∅ if and only if Φ(Y, X) 6= ∅.
Moreover, X and Y essentially isomorphic means that there exists a finite-
dimensional space N such that X is isomorphic to Y ⊕N or Y is isomorphic
to X ⊕ N .

The following result shows that, under some conditions, two indecom-
posable Banach spaces are either essentially incomparable or essentially iso-
morphic.

Theorem 3.10. Let X and Y be indecomposable Banach spaces. Sup-

pose that dimL(X)/In(X) < ∞ or dimL(Y )/In(Y ) < ∞. Then either

L(X, Y ) = In(X, Y ) or Φ(X, Y ) 6= ∅.
Proof. Suppose that dimL(X)/In(X)<∞. Let π:L(X)→L(X)/In(X)

denote the quotient map, and assume that L(X, Y ) 6= In(X, Y ).

Taking T ∈ L(X, Y ) \ In(X, Y ), we can find S ∈ L(Y, X) such that
IX − ST is not a Fredholm operator; hence π(IX − ST ) is not invertible.
Since, by Theorem 3.6 and Remark 3.7, L(X)/In(X) is a division algebra,
π(IX −ST ) = 0. Then ST is a Fredholm operator, hence T is left invertible
modulo K(X); equivalently, T is an upper semi-Fredholm operator with
complemented range [4, 4.3.2 Theorem]. Since Y is indecomposable, R(T )
is finite-codimensional; hence T ∈ Φ(X, Y ).

The proof of the case dimL(Y )/In(Y ) < ∞ is similar.

Now we can give a real version of Proposition 2.9 in [11]. We denote by Φl

(respectively, Φr) the operators in Φ+ (respectively, Φ−) with complemented
range and kernel.

Proposition 3.11. For an infinite-dimensional Banach space X, the

following assertions are equivalent :
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(i) L(X)/In(X) is a division algebra;
(ii) L(X) = Φ(X) ∪ In(X);
(iii) L(X, Y ) = Φl(X, Y ) ∪ In(X, Y ) for every Banach space Y ;
(iv) L(Z, X) = Φr(Z, X) ∪ In(Z, X) for every Banach space Z.

Proof. It is similar to the proof of Theorem 3.10.

Next we apply Theorem 3.1 to obtain a decomposition of real Banach
spaces X for which dimL(X)/In(X) < ∞ into indecomposable comple-
mented subspaces.

Theorem 3.12. Let X be a real Banach space such that dimL(X)/In(X)
is finite-dimensional. Then there exist positive integers n1, . . . , nk and com-

plemented subspaces Yij of X, i = 1, . . . , k, j = 1, . . . , ni, so that

(i) X =
⊕k

i=1
(
⊕ni

j=1
Yij);

(ii) for each 1 ≤ i, i′ ≤ k, 1 ≤ j ≤ ni and 1 ≤ j′ ≤ ni′ ,

L(Yij , Yi′j′)/In(Yij, Yi′j′) ≡
{

Di for i = i′,

{0} for i 6= i′.

In particular , each Yij is indecomposable; Yij and Yi′j′ are essentially

isomorphic for i = i′, and essentially incomparable for i 6= i′.

Proof. (i) By Theorem 3.1, L(X)/In(X) is isomorphic to an algebra

Mn1
(D1) ⊕ · · · ⊕ Mnk

(Dk),

where each Di is R, C or H. So we can identify each q ∈ L(X)/In(X) with
a k-tuple of square matrices.

For 1 ≤ i ≤ k and 1 ≤ j ≤ ni we consider pij ∈ L(X)/In(X) such
that all the matrices but the ith in its associated k-tuple are 0, and the ith
matrix has 1 in the jth entry of its diagonal and 0 in the remaining entries.

Clearly the elements of {pij : 1 ≤ i ≤ k, 1 ≤ j ≤ ni} are idempotents,

the product of two different ones is 0, and
∑k

i=1

∑ni

j=1
pij is the identity in

L(X)/In(X). Applying Proposition 3.5 we obtain projections {Pij : 1 ≤
i ≤ k, 1 ≤ j ≤ ni} in L(X) such that the product of two different ones is 0

and
∑k

i=1

∑ni

j=1
Pij = I . Thus

X =
k⊕

i=1

( ni⊕

j=1

R(Pij)
)
,

and taking Yij := R(Pij), we obtain (i).

(ii) Consider the quotient map π : L(X) → L(X)/In(X). Note that the
projections obtained in part (i) satisfy π(Pij) = pij for each i, j.

By part (i), each operator in L(X) can be identified with a square matrix
whose entries are operators in L(Yij , Yi′j′) with 1 ≤ i, i′ ≤ k, 1 ≤ j ≤ ni and
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1 ≤ j′ ≤ ni′ . Moreover, each operator in L(Yij, Yi′j′) can be identified with
an operator T ∈ L(X) satisfying T = Pi′j′TPij .

If i 6= i′, then for all T ∈ L(X), we have π(Pi′j′TPij) = pi′j′π(T )pij = 0,
hence Pi′j′TPij is inessential. Thus L(Yij , Yi′j′) = In(Yij , Yi′j′).

If i = i′, a similar argument shows that L(Yij , Yij′)/In(Yij, Yij′) ≡ Di.
The remaining assertion is a consequence of the previous parts, Theorem

3.6 and Theorem 3.10.

Remark 3.13. The decomposition of a semisimple finite-dimensional
algebra given by Wedderburn’s theorem is unique, up to isomorphisms. So
the same is true for the decomposition given in Theorem 3.12, up to essential
isomorphisms (i.e., Fredholm operators).

Remark 3.14. An alternative proof of Theorem 3.12 can be obtained
as follows. If dimL(X)/In(X) = N , then any decomposition of X as a di-
rect sum of (infinite-dimensional) complemented subspaces has at most N
summands. So we can find a decomposition of X as a direct sum of indecom-
posable complemented subspaces Yi. By Theorem 3.10, we can divide these
complemented subspaces into k sets of ni elements each, in such a way that
two of them are essentially incomparable if they belong to different subsets,
and they are essentially isomorphic if they belong to the same subset. By
Theorem 3.6, the algebras L(Yi)/In(Yi) are isomorphic to R, C or H; hence

L(X)/In(X) ≡ Mn1
(D1) ⊕ · · · ⊕ Mnk

(Dk),

where each Di is R, C or H.

Now we describe a decomposition for the complexification X̂ of a real
Banach space X for which L(X)/In(X) is finite-dimensional. Note that,

by Proposition 2.8, L(X̂)/In(X̂) is also finite-dimensional. We will see that
these dimensions are the same, and we will describe the relations between
the respective decompositions of X and X̂.

We begin with the case in which L(X)/In(X) is a division algebra.

Proposition 3.15. Let X be a real Banach space. If L(X)/In(X) is

isomorphic to R, C or H, then

dimC L(X̂)/In(X̂) = dimR L(X)/In(X).

Proof. By Proposition 2.8, dimC L(X̂)/In(X̂) ≤ dimR L(X)/In(X). So

it remains to prove the reverse inequality. Let π : L(X̂) → L(X̂)/In(X̂)
denote the quotient map.

Case L(X)/In(X) ≡ R. Clearly X is infinite-dimensional, and it is

enough to observe that the identity of X̂ does not belong to In(X̂).

Case L(X)/In(X) ≡ C. We take A ∈ L(X) such that its image in

L(X)/In(X) is i. Since the spectrum of π(A + i0) in L(X̂)/In(X̂) is non-
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empty and symmetric with respect to the real axis, it coincides with {i,−i}.
Thus π(A + i0) is not a multiple of the unit element.

Case L(X)/In(X) ≡ H. Let I, U, V, W ∈ L(X) be representatives of
the quaternions 1, i, j, k ∈ L(X)/In(X). We shall show that

e := π(I + i0), u := π(U + i0), v := π(V + i0) and w := π(W + i0)

are linearly independent in L(X̂)/In(X̂).

Let a, b, c, d ∈ C be such that ae + bu + cv + dw = 0. Multiplying by u
on the left and on the right we get

au − be + cw − dv = 0 and au − be − cw + dv = 0.

Adding these two formulas we get au − be = 0, hence a = b = 0 by the
argument of the case L(X)/In(X) ≡ C. Similarly, subtracting the formulas
and multiplying the result by w we get c = d = 0.

The next result shows that the complexification X̂ of an indecomposable
real Banach space X with L(X)/In(X) finite-dimensional is sometimes in-
decomposable and sometimes not.

Proposition 3.16. Let X be a real Banach space.

(i) If L(X)/In(X) ≡ R, then L(X̂)/In(X̂) ≡ C and X̂ is indecompos-

able.

(ii) If L(X)/In(X) ≡ C, then L(X̂)/In(X̂) ≡ C2 and we can write

X̂ = Y1 ⊕ Y2 with Y1 and Y2 essentially incomparable, indecompos-

able spaces.

(iii) If L(X)/In(X) ≡ H, then L(X̂)/In(X̂) ≡ M2(C) and we can write

X̂ = Z1⊕Z2 with Z1 and Z2 essentially isomorphic, indecomposable

spaces.

Proof. Remark 2.9 and Proposition 3.15 imply that, if L(X)/In(X) is

isomorphic to R, C or H, then L(X̂)/In(X̂) can be identified with the
respective complexification C, C2 or M2(C). So the decomposition we give

for X̂ follows from the complex version of Theorem 3.12. See [11, proof of
Theorem 2.18].

Proposition 3.17. Let X be a real Banach space.

(i) If L(X)/In(X) ≡ Mn(R), then L(X̂)/In(X̂) ≡ Mn(C).

(ii) If L(X)/In(X) ≡ Mn(C), then L(X̂)/In(X̂) ≡ Mn(C) × Mn(C).

(iii) If L(X)/In(X) ≡ Mn(H), then L(X̂)/In(X̂) ≡ M2n(C).

Proof. In the three cases we have a decomposition X = Y1 ⊕ · · · ⊕ Yn

into pairwise essentially isomorphic complemented subspaces, with each
L(Yi)/In(Yi) isomorphic to R, C and H, respectively.
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It is an immediate consequence of the definition that the complexification
X̂ is isomorphic to Ŷ1 ⊕ · · · ⊕ Ŷn. So it is enough to apply Proposition 3.16
to each factor.

Our last result resumes some of the previous ones.

Proposition 3.18. Let X be a real Banach space such that L(X)/In(X)

is finite-dimensional. Then L(X̂)/In(X̂) ≡ ̂L(X)/In(X).

Proof. Given real Banach spaces Y and Z, it is easy to see that L(Y, Z) =

In(Y, Z) if and only if L(Ŷ , Ẑ) = In(Ŷ , Ẑ). Moreover, if X =
⊕

i,j Xij is

the decomposition of X given in Theorem 3.12, then X̂ =
⊕

i,j X̂ij . Thus
the present result is a consequence of Proposition 3.17.
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