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Volume thresholds for Gaussian and spherical

random polytopes and their duals

by

Peter Pivovarov (Edmonton)

Abstract. Let g be a Gaussian random vector in R
n. Let N = N(n) be a positive

integer and let KN be the convex hull of N independent copies of g. Fix R > 0 and
consider the ratio of volumes VN := E vol(KN ∩ RBn

2 )/vol(RBn

2 ). For a large range of
R = R(n), we establish a sharp threshold for N , above which VN → 1 as n → ∞, and
below which VN → 0 as n → ∞. We also consider the case when KN is generated by
independent random vectors distributed uniformly on the Euclidean sphere. In this case,
similar threshold results are proved for both R ∈ (0, 1) and R = 1. Lastly, we prove
complementary results for polytopes generated by random facets.

1. Introduction. A remarkable result due to M. E. Dyer, Z. Füredi,
and C. McDiarmid gives a threshold for the expected volume of random
polytopes generated by vertices of the cube [−1, 1]n. Specifically, let µ be
the uniform probability measure on {−1, 1} and let Z = (z1, . . . , zn) be
a random vector whose coordinates are independent and identically dis-
tributed according to µ. Consider N = N(n) independent random vectors
Z1, . . . , ZN , each with the same distribution as Z, and form their convex
hull CN = conv{Z1, . . . , ZN}. In [2], a threshold value for N is established
at which CN captures significant volume in the following sense: for each
ε > 0, we have

(1)
E voln(CN )

voln([−1, 1]n)
−−→
n→∞

{
0 if N ≤ (ν − ε)n,

1 if N ≥ (ν + ε)n,

where ν = 2/
√

e. The corresponding result for the case when µ is uniform on
[−1, 1] is also proved. Their method has since been significantly generalized;
namely, D. Gatzouras and A. Giannopoulos, in [3], obtain analogous results
for a large class of compactly supported probability measures µ on R.
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We consider similar problems for Gaussian random polytopes and poly-
topes generated by random points on the Euclidean sphere. In the Gaussian
case, let γ1, . . . , γn be independent N(0, 1) random variables and let g =
(γ1, . . . , γn). Consider N = N(n) independent copies of g, say g1, . . . , gN ,
and set KN := conv{g1, . . . , gN}. The Gaussian measure is not compactly
supported and so the following question arises: what does it mean for KN

to capture significant volume? Let Bn
2 denote the Euclidean ball and let R

be an arbitrary positive constant, possibly dependent on the dimension n.
We investigate the quantity

E voln(KN ∩ RBn
2 )

voln(RBn
2 )

.

For a large range of R = R(n), we establish sharp thresholds, analogous to
that of (1).

For the spherical setting, let u be a random vector distributed uniformly
on the Euclidean sphere Sn−1. Consider N = N(n) independent copies
of u, say u1, . . . , uN , and set LN := conv{u1, . . . , uN}. This case presents a
different model of randomness as the coordinates of u are not independent.
We study the quantity

E voln(LN ∩ RBn
2 )

voln(RBn
2 )

for the case when R is any fixed value in (0, 1) and the case of the entire
ball, i.e., R = 1. Sharp thresholds for N are obtained in both cases.

We follow the same approach as that of Dyer, Füredi and McDiarmid.
The tools developed in [2] have a simple realization in our setting; this sim-
plicity nicely illustrates the geometry behind the method. The lack of inde-
pendence of coordinates in the spherical case presents no difficulty as the
argument depends more on geometric considerations than on probabilistic
techniques such as the theory of large deviations, as in [2] and [3]. Also note-
worthy is the threshold for N in the spherical case: it is super-exponential
in the dimension n. The results in [2] are exponential in n and the authors
of [3] considered only measures for which there is an exponential threshold
in n.

Finally, as a natural complement to the above results, we prove corre-
sponding theorems for Gaussian and spherical polytopes generated by ran-
dom facets, i.e., for the polytopes

K ′
N := {x ∈ R

n : 〈gi, x〉 ≤ 1 for each i = 1, . . . , N},
L′

N := {x ∈ R
n : 〈ui, x〉 ≤ 1 for each i = 1, . . . , N},

where the gi’s and ui’s are as above. In this case, the arguments do not
invoke duality and use only elementary properties of the random vectors
involved.
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Notation. We shall denote the canonical Euclidean norm on R
n by

‖·‖2, and Bn
2 will denote the Euclidean ball. Lebesgue measure on R

n will
be denoted by voln(·); the unit sphere in R

n by Sn−1; and the surface area
of Sn−1 by voln−1(∂Bn

2 ).

2. Volume thresholds for polytopes generated by random

vertices

2.1. Results in the Gaussian case. Let γ1, . . . , γn be independent Gaus-
sian N(0, 1) random variables. Denote the standard unit vector basis in R

n

by e1, . . . , en. Consider the random vector g =
∑n

i=1 γiei; then g satisfies
E‖g‖2 ≈ √

n. Let N = N(n) > n be an integer and consider N independent
random vectors g1, . . . , gN , each with the same distribution as g. Form their
convex hull

KN := conv{g1, . . . , gN}.
We shall use the following standard notation:

(2) Φ(a) =
1√
2π

a\
−∞

e−x2/2 dx (a ∈ R).

Note that for a > −1 we have the approximation (see [6])

(3)
2

a + (a2 + 4)1/2
≤

√
2π exp(a2/2)(1 − Φ(a)) ≤ 4

3a + (a2 + 8)1/2
.

Using the method of [2], we establish the following theorem for the ex-
pected volume of KN lying inside RBn

2 , where R > 0.

Theorem 2.1. Let R > 0.

(a) If 0 < t < R then for all n we have

(4)
E voln(KN ∩ RBn

2 )

voln(RBn
2 )

≤ (t/R)n + N(1 − Φ(t)).

(b) For all n > 2e we have

(5)
E voln(KN ∩ RBn

2 )

voln(RBn
2 )

≥ 1 − 2 exp(n lnN − N(1 − Φ(R))).

For suitable values of R = Rn, the theorem implies that, as n → ∞,
a threshold occurs around N ≈ (1 − Φ(Rn))−1. As a precise illustration of
this, we shall establish the following family of results for Rn = cnκ, where
c > 0 and κ > 0 are arbitrary absolute constants. Since E‖g‖2 ≈ √

n, the
case κ = 1/2 is of particular interest.

Corollary 2.2. Let κ > 0, c > 0 and let 0 < ε < c. Then, as n → ∞,

(6)
E voln(KN ∩ cnκBn

2 )

voln(cnκBn
2 )

→
{

0 if N ≤ (1 − Φ((c − ε)nκ))−1,

1 if N ≥ (1 − Φ((c + ε)nκ))−1.
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The proofs of the above statements are in Section 2.4. Compare Corol-
lary 2.2 with Theorem 3.4 in Section 3.1.

2.2. Results in the spherical case. Let µ denote Haar measure on Sn−1

and let u be a random vector distributed according to µ, i.e., P(u ∈ A) =
µ(A) for measurable sets A ⊂ Sn−1. Consider N = N(n) > n independent
random vectors u1, . . . , uN , each with the same distribution as u, and set

LN := conv{u1, . . . , uN}.
We shall prove the following theorems.

Theorem 2.3. Let 0 < R < 1 and let 0 < ε < 1. Then, as n → ∞,

(7)
E voln(LN ∩ RBn

2 )

voln(RBn
2 )

→
{

0 if N ≤ exp((1 − ε)n ln(1/
√

1 − R2)),

1 if N ≥ exp((1 + ε)n ln(1/
√

1 − R2)).

For the case of the entire ball, i.e. R = 1, the threshold is super-
exponential in n; this is in contrast with the results of [2] and [3], which
are exponential in n.

Theorem 2.4. Let 0 < ε < 1. Then, as n → ∞,

(8)
E voln(LN )

voln(Bn
2 )

→
{

0 if N ≤ exp((1 − ε)n ln
√

n),

1 if N ≥ exp((1 + ε)n ln
√

n).

The proofs of the above theorems are in Section 2.5. The rate of conver-
gence in each theorem is explained in the remark following its proof.

The complementary results for polytopes generated by random facets
are Theorems 3.8 and 3.9 in Section 3.2. See also the comments preceding
Theorem 3.9.

2.3. Related results and further directions. Theorems 2.3 and 2.4 are
similar to a result of J. S. Müller, in [4], about approximation of the Eu-
clidean ball by random polytopes (see [5] and the references cited therein
for related results and a discussion of similar questions of approximation).
In our notation, Müller’s result is an asymptotic formula for the difference
voln(Bn

2 )−E voln(LN ). The asymptotic treatment in [4], however, is for the
case when n is fixed and N → ∞. A major extension of Müller’s result was
done by Schütt and Werner in [5]. Namely, let K be a convex body whose
boundary satisfies certain regularity conditions. Let CN be the convex hull
of N points chosen randomly from the boundary of K. The authors of [5]
derive an asymptotic formula for voln(K) − E voln(CN ), where, as in [4], n
is fixed and N → ∞.

Further study of volume thresholds, involving more general random mod-
els, has been suggested by A. Giannopoulos. One might consider the case
when the polytope CN is generated by independent random vectors dis-
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tributed uniformly in a convex body K and examine the quantity

E voln(CN ∩ rK)

voln(rK)

for both r ∈ (0, 1) and r = 1. Similar problems may also be considered in
the framework of [5].

Another direction is the case of polytopes CN generated by independent
random vectors distributed according to an arbitrary measure. Since the
analysis in [3] is carried out for measures with compact support [−R, R]n,
one might examine the quantity

E voln(CN ∩ [−R, R]n)

voln([−R, R]n)

for various values of R.

2.4. Proofs in the Gaussian case. We shall use the notation defined in
Section 2.1. Before proving Theorem 2.1, we will present some tools that
were used in [2]. For x ∈ R

n, set

q(x) := inf{P(g ∈ H) : H is a halfspace containing x}.
Throughout this paper we assume that all halfspaces are closed.

Claim 2.5. P(x ∈ KN ) ≤ Nq(x).

Proof. Let H be a halfspace containing x. If none of g1, . . . , gn belongs
to H then KN lies in R

n \ H and hence x 6∈ KN . Consequently,

{x ∈ KN} ⊂
N⋃

i=1

{gi ∈ H}.

Since H was an arbitrary halfspace containing x, the result follows.

In the Gaussian case we can actually calculate q(x). For a closed set
A ⊂ R

n and a point x ∈ R
n, let d(x, A) := inf{‖x − a‖2 : a ∈ A}.

Lemma 2.6.

(a) Let H be a halfspace with d := d(0, H) > 0. Then P(g ∈ H) =
1 − Φ(d).

(b) For x ∈ R
n, we have q(x) = 1 − Φ(‖x‖2).

Proof. (a) The density of g with respect to Lebesgue measure is given
by

f(x) := (1/
√

2π)n exp(−‖x‖2
2/2).

By rotational invariance we may assume that H := {x ∈ R
n : x1 ≥ d}.
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Consequently,

P(g ∈ H) =
\
H

f(x) dx =

(
1√
2π

\
R

e−x2
n/2 dxn

)n−1( 1√
2π

∞\
d

e−x2

1
/2 dx1

)

= 1 − Φ(d).

(b) If x = 0 then q(0) = 1/2 = 1 − Φ(0). Suppose that x 6= 0. Let H(x)
be the halfspace bounded by the tangent hyperplane to ‖x‖2B

n
2 at x and

which does not contain 0. Then by part (a) we have

1 − Φ(‖x‖2) = P(g ∈ H(x)) ≥ q(x).

Conversely, let H be any halfspace containing x. Set d = d(0, H). If d = 0
then P(g ∈ H) ≥ 1/2 ≥ 1 − Φ(‖x‖2). If d > 0 then

P(g ∈ H) = 1 − Φ(d) ≥ 1 − Φ(‖x‖2)

since d ≤ ‖x‖2. It follows that q(x) ≥ 1 − Φ(‖x‖2).

An important consequence of Lemma 2.6 is the following simple obser-
vation:

(9) RBn
2 = {x ∈ R

n : q(x) ≥ 1 − Φ(R)}
for any R > 0. Equality (9) allows us to use an argument from [2] to establish
the next lemma; for the reader’s convenience, we have included the proof.

Lemma 2.7. Let R > 0. The inclusion RBn
2 ⊂ KN holds with probability

greater than 1 − 2
(
N
n

)
(Φ(R))N−n.

Proof. For any J ⊂ {1, . . . , N} with |J | = n, the set {gj}j∈J is linearly
(hence affinely) independent almost surely. In particular, the affine hull of
{gj}j∈J is a hyperplane almost surely. Let us now define the event EJ : one
of the two halfspaces H determined by {gj}j∈J contains KN and P(g 6∈ H)
≥ 1 − Φ(R).

Suppose x ∈ RBn
2 \ KN . Then there exists J ⊂ {1, . . . , N} with |J | = n

such that one of the two halfspaces H determined by {gj}j∈J contains KN

but excludes x. But then x belongs to the complementary halfspace H̃, so

P(g 6∈ H) ≥ q(x) ≥ 1 − Φ(R)

since ‖x‖2 ≤ R. It follows that

{RBn
2 6⊂ KN} ⊂

⋃

J⊂{1,...,n}
|J |=n

EJ .

Thus if we set D = {1, . . . , n} we have

P(RBn
2 6⊂ KN ) ≤

(
N

n

)
P(ED).
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Now let us estimate P(ED) by conditioning on g1, . . . , gn. Let H and H̃
denote the two halfspaces generated by g1, . . . , gn. If P(g 6∈ H) ≥ 1 − Φ(R)
then

P(gj ∈ H : j = n + 1, . . . , N) ≤ (Φ(R))N−n

and similarly for H̃. It follows that

P(ED | g1, . . . , gn) ≤ 2(Φ(R))N−n.

Now since

P(ED) = E(1ED
) = E(E(1ED

| g1, . . . , gn)) = E(P(ED | g1, . . . , gn)),

we obtain P(ED) ≤ 2(Φ(R))N−n and hence

P(RBn
2 6⊂ KN ) ≤ 2

(
N

n

)
(Φ(R))N−n.

Lemma 2.8. Let B be a bounded , measurable subset of R
n. Then

voln(B)P(B ⊂ KN ) ≤ E voln(KN ∩ B) ≤ N voln(B) sup
x∈B

(1 − Φ(‖x‖2)).

Proof. Note that

E voln(KN ∩ B) = E

\
B

1{x∈KN} dx =
\
B

P(x ∈ KN ) dx.

The upper bound follows from Claim 2.5 and Lemma 2.6, and the lower
bound is trivial.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. (a) Set B = RBn
2 \ tBn

2 and write

KN ∩ RBn
2 = (KN ∩ tBn

2 ) ∪ (KN ∩ B).

Clearly, we have

E voln(KN ∩ tBn
2 )

voln(RBn
2 )

≤ (t/R)n.

Referring to Lemma 2.8, we obtain

E voln(KN ∩ B)

voln(RBn
2 )

≤ N(1 − Φ(t)),

which gives us (4).

(b) By Lemma 2.8, we have

E voln(KN ∩ RBn
2 )

voln(RBn
2 )

≥ P(RBn
2 ⊂ KN ).
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Applying Lemma 2.7 gives us

P(RBn
2 6⊂ KN ) ≤ 2

(
N

n

)
(Φ(R))N−n(10)

≤ 2(eN/n)n exp((N − n) lnΦ(R))

= 2 exp(n ln(eN/n) + (N − n) lnΦ(R)).

Note that 1/2 < Φ(R) < 1 and hence for n > 2e the latter expression is less
than

(11) 2 exp(n lnN + N lnΦ(R)) ≤ 2 exp(n lnN − N(1 − Φ(R))),

where we have used the estimate lnx ≤ x − 1. This proves (5).

Proof of Corollary 2.2. Set Rn := cnκ. Assume first that we have N ≤
(1 − Φ((c − ε)nκ))−1. Set tn = (c − ε/2)nκ. Then

(12) lim
n→∞

(tn/Rn)n = 0

and, using (3), we see that

(13) N(1 − Φ(tn)) ≤ 2 exp((c − ε)2n2κ/2 − (c − ε/2)2n2κ/2) → 0

as n → ∞, giving us half of (6).
Assume now that N ≥ (1−Φ((c+ ε)nκ))−1. For convenience of notation

set rn := (c + ε)nκ. Without loss of generality we may assume that N =
⌈(1 − Φ(rn))−1⌉, where ⌈x⌉ denotes the smallest integer larger than x. Ap-
pealing to (3) yields

n ln N ≤ n ln((
√

2π/2)(rn + (r2
n + 4)1/2) exp(r2

n/2))

≤ n ln(
√

2π(rn + 1)) + nr2
n/2 ≤ nr2

n

provided that

(14) ln(
√

2π (rn + 1)) ≤ r2
n/2.

Another application of (3) gives

N(1 − Φ(Rn)) ≥ 1

2

3rn + (r2
n + 8)1/2

Rn + (R2
n + 4)1/2

exp((r2
n − R2

n)/2)

≥ (1/2) exp((r2
n − R2

n)/2).

Thus if n satisfies (14) and n > 2e, we have

(15)
E[voln(KN ∩ cnκBn

2 )]

voln(cnκBn
2 )

≥ 1 − 2 exp(nr2
n − (1/2) exp((r2

n − R2
n)/2))

= 1 − 2 exp((c + ε)2n2κ+1 − (1/2) exp(((c + ε)2n2κ − c2n2κ)/2)) → 1

as n → ∞, which yields the other half of (6).
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Remark 2.9. The bounds on N in Corollary 2.2 may be improved in
the following sense: let (εn)n≥1 ⊂ (0, c) with εn → 0 such that (12)–(15)
are satisfied when ε is replaced by εn; then the corollary is true with ε
replaced by εn. For instance, we could take εn = min(c/2, n−γ) for any fixed
γ ∈ (0, min(1, 2κ)).

2.5. Proofs in the spherical case. We will use the notation defined in
Section 2.2. For x ∈ Bn

2 , set

q(x) := inf{P(u ∈ H) : H is a halfspace containing x}.
For v ∈ Sn−1 and 0 ≤ R ≤ 1 set

(16) C(R, v) := {x ∈ Sn−1 : 〈x, v〉 ≥ R}.
Since we are interested in surface area, we will omit the reference to v and
write C(R) := C(R, v). Upper and lower estimates for µ(C(R)) are included
in the Appendix.

The proofs of the following statements are similar to the Gaussian case.

Claim 2.10. P(x ∈ LN ) ≤ Nq(x).

Lemma 2.11.

(a) Let H be a halfspace with d := d(0, H). If d ∈ (0, 1] then P(u ∈ H) =
µ(C(d)).

(b) For x ∈ Bn
2 , we have q(x) = µ(C(‖x‖2)).

Lemma 2.12. Let R ∈ (0, 1). For each n > 2e, the inclusion RBn
2 ⊂ LN

holds with probability greater than 1 − 2 exp(n lnN − Nµ(C(R))).

Proof. The proof is analogous to that of Lemma 2.7 and the estimates
starting with (10) and ending with (11).

Lemma 2.13. Let B be a measurable subset of Bn
2 . Then

voln(B)P(B ⊂ LN ) ≤ E voln(LN ∩ B) ≤ N voln(B) sup
x∈B

µ(C(‖x‖2)).

Proof. Argue as in the proof of Lemma 2.8 and apply Claim 2.10 and
Lemma 2.11.

We now have all the tools for proving Theorem 2.3.

Proof of Theorem 2.3. It is more convenient to prove the theorem with
the bounds on N being

N ≤ exp((1 − ε)(n − 1) ln(1/
√

1 − R2)),(17)

N ≥ exp((1 + ε)(n − 1) ln(1/
√

1 − R2)).(18)

Assume first that (17) holds. Let t :=
√

1 − (1 − R2)1−ε/2 so that 0 <
t < R. Set B := RBn

2 \ tBn
2 and write

LN ∩ RBn
2 = (LN ∩ tBn

2 ) ∪ (LN ∩ B).
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Since

(19) lim
n→∞

voln(tBn
2 )

voln(RBn
2 )

= lim
n→∞

(t/R)n = 0,

we need only show that limn→∞ E voln(LN ∩ B)/voln(RBn
2 ) = 0.

By Lemma 4.2 of the Appendix and the fact that (1−ε/2) ln(
√

1 − R2) =
ln(

√
1 − t2), we have

µ(C(t)) ≤ 3 exp((n − 1) ln(
√

1 − t2))(20)

= 3 exp(−(1 − ε/2)(n − 1) ln(1/
√

1 − R2))

for all n ≥ 3.

Thus by Lemma 2.13 and (20), we have

E voln(LN ∩ B)

voln(RBn
2 )

≤ Nµ(C(t))(21)

≤ 3 exp(−(ε/2)(n − 1) ln(1/
√

1 − R2)) → 0

as n → ∞, giving us half of (7).

Assume now that (18) holds. Then by Lemma 2.13 we have

E voln(LN ∩ RBn
2 )

voln(RBn
2 )

≥ P(RBn
2 ⊂ LN ).

For convenience of notation, set r =
√

1 − R2. Without loss of generality,
we may assume that N = ⌈exp((1 + ε)(n − 1) ln(1/r))⌉. Lemma 4.1 of the
Appendix implies that

Nµ(C(R)) ≥ exp((1 + ε)(n − 1) ln(1/r) − (n − 1) ln(1/r) − ln(6
√

n))

≥ exp((ε/2)(n − 1) ln(1/r))

for all n satisfying

(22) ln(6
√

n) ≤ (ε/2)(n − 1) ln(1/r).

Thus if n satisfies (22) and n > 2e, Lemma 2.12 gives us

(23) P(RBn
2 6⊂ LN ) ≤ 2 exp(2n2 ln(1/r) − exp((ε/2)(n − 1) ln(1/r))) → 0

as n → ∞, which completes the proof of (7).

Remark 2.14. The rate of convergence in Theorem 2.3 can be obtained
from lines (19), (21), and (23).

Remark 2.15. In Theorem 2.3, we may replace ε by εn where (εn)n≥1 ⊂
(0, 1) with εn → 0 provided that (εn) satisfies (19), (21), (22) and (23). One
may verify that εn = n−γ , for any fixed γ ∈ (0, 1), serves this purpose.
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Proof of Theorem 2.4. It is more convenient to prove the theorem with
the bounds on N being

N ≤ exp((1 − ε)(n − 1) ln
√

n),(24)

N ≥ exp((1 + ε)(n − 1) ln
√

n).(25)

We shall use the following elementary fact:

(26) lim
n→∞

(1 − n−β)n/2 =

{
0 if 0 < β < 1,

1 if β > 1.

Assume first that (24) holds. Let β := 1 − ε/2 and set Rn :=
√

1 − n−β.
Let B := Bn

2 \ RnBn
2 and write

LN = (LN ∩ RnBn
2 ) ∪ (LN ∩ B).

By (26), we have

(27) lim
n→∞

voln(RnBn
2 )

voln(Bn
2 )

= lim
n→∞

Rn
n = 0,

and thus we need only show that limn→∞ E voln(LN ∩ B)/voln(Bn
2 ) = 0.

By Lemma 4.2 of the Appendix and the fact that
√

1 − R2
n = n−β/2, we

obtain

µ(C(Rn)) ≤ 3 exp((n − 1) ln(
√

1 − R2
n))(28)

= 3 exp(−(1 − ε/2)(n − 1) ln
√

n)

for all n ≥ 3. Thus by Lemma 2.13 and (28), we have

E voln(LN ∩ B)

voln(Bn
2 )

≤ Nµ(C(Rn))(29)

≤ 3 exp(−(ε/2)(n − 1) ln
√

n) → 0

as n → ∞, giving us half of (8).

Let us now assume that (25) holds. Let γ = 1 + ε/2 and set rn :=√
1 − n−γ . Applying Lemma 2.13, we get

E voln(LN )

voln(Bn
2 )

≥ E voln(LN ∩ rnBn
2 )

voln(Bn
2 )

≥ rn
n · P(rnBn

2 ⊂ LN ).

Using (26), we have

(30) lim
n→∞

rn
n = 1,

and thus we need only prove that P(rnBn
2 ⊂ LN ) → 1 as n → ∞. Without

loss of generality, we may assume that N = ⌈exp((1 + ε)(n − 1) ln
√

n)⌉.
Using Lemma 4.1 of the Appendix and the fact that

√
1 − r2

n = n−γ/2, we
get
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Nµ(C(rn)) ≥ exp((1 + ε)(n − 1) ln
√

n + (n − 1) ln
√

1 − r2
n − ln(6

√
n))

= exp((1 + ε)(n − 1) ln
√

n − (1 + ε/2)(n − 1) ln
√

n − ln(6
√

n))

≥ exp((ε/4)(n − 1) ln
√

n)

for all n satisfying

(31) ln(6
√

n) ≤ (ε/4)(n − 1) ln
√

n.

Thus if n satisfies (31) and n > 2e, Lemma 2.12 yields

P(rnBn
2 6⊂ LN ) ≤ 2 exp(2n2 ln

√
n − exp((ε/4)(n − 1) ln

√
n)) → 0(32)

as n → ∞, which completes the proof of (8).

Remark 2.16. The rate of convergence in Theorem 2.4 can be obtained
from (27), (29), and (32).

Remark 2.17. In Theorem 2.4, we may replace ε by εn where (εn)n≥1 ⊂
(0, 1) with εn → 0 provided that (εn) satisfies (27) and (29)–(32). One can
check that εn = 1/ln(lnn) works.

3. Volume thresholds for polytopes generated by random facets

3.1. Gaussian case. In this section we consider Gaussian polytopes gen-
erated by random facets and prove a complement of Corollary 2.2. We shall
use the notation defined in Section 2.1. Consider the polytope

K ′
N := {x ∈ R

n : 〈gi, x〉 ≤ 1 for each i = 1, . . . , N}.
Before stating the main result, we will prove two lemmas.

Lemma 3.1. For each x ∈ R
n \ {0} we have

P(x ∈ K ′
N ) = (Φ(1/‖x‖2))

N .

Proof. By independence and rotational invariance of the gi’s, we have

P(x ∈ K ′
N ) = P{〈x, gi〉 ≤ 1 for each i = 1, . . . , N} = (P{〈x, g1〉 ≤ 1})N

= (P{γ1 ≤ 1/‖x‖2})N (γ1 ∼ N(0, 1))

= (Φ(1/‖x‖2))
N .

Lemma 3.2. Let 0 < t < R and set B = RBn
2 \ tBn

2 . Then for each n
we have

voln(B)(Φ(1/R))N ≤ E voln(K ′
N ∩ B) ≤ voln(B)(Φ(1/t))N .(33)

Proof. Argue as in the proof of Lemma 2.8 and apply Lemma 3.1.

Remark 3.3. Let a > 0. The identity (Φ(a))N = exp(N lnΦ(a)) and
the estimate

(34) x − 1 − (x − 1)2 ≤ lnx ≤ x − 1, x ∈ [1/2, 1],
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imply that

(Φ(a))N ≥ exp(−N(1 − Φ(a)) − N(1 − Φ(a))2),(35)

(Φ(a))N ≤ exp(−N(1 − Φ(a))).(36)

These estimates will be used in conjunction with Lemma 3.2.

Theorem 3.4. Let κ > 0, c > 0 and 0 < ε < c. Then, as n → ∞,

(37)
E voln(K ′

N ∩ (cnκ)−1Bn
2 )

voln((cnκ)−1Bn
2 )

→
{

1 if n < N ≤ (1 − Φ((c − ε)nκ))−1,

0 if N ≥ (1 − Φ((c + ε)nκ))−1.

Proof. Let Rn := (cnκ)−1, tn := ((c+ε/2)nκ)−1 and B := RnBn
2 \ tnBn

2 ,
and write

E voln(K ′
N ∩ RnBn

2 )

voln(RnBn
2 )

=
E voln(K ′

N ∩ tnBn
2 )

voln(RnBn
2 )

+
E voln(K ′

N ∩ B)

voln(RnBn
2 )

.

In particular, we have

E voln(K ′
N ∩ B)

voln(RnBn
2 )

≤ E voln(K ′
N ∩ RnBn

2 )

voln(RnBn
2 )

(38)

≤ (tn/Rn)n +
E voln(K ′

N ∩ B)

voln(RnBn
2 )

.

Assume first that n < N ≤ (1− Φ((c− ε)nκ))−1. Without loss of gener-
ality, we shall assume that N = ⌊(1 − Φ((c − ε)nκ))−1⌋, where ⌊x⌋ denotes
the largest integer smaller than x.

The bound from (3) gives us

N(1 − Φ(1/Rn)) ≤ 2 exp((c − ε)2n2κ/2 − c2n2κ/2) → 0(39)

as n → ∞, and hence

(40) N(1 − Φ(1/Rn))2 → 0 as n → ∞.

By (38) and Lemma 3.2, we have

E voln(K ′
N ∩ RnBn

2 )

voln(RnBn
2 )

≥ (1 − (tn/Rn)n)Φ(1/Rn)N .

The latter term tends to 1 as n → ∞ by (35), (39) and (40). This proves
half of (37).

Assume now that N ≥ (1−Φ((c+ ε)nκ))−1. For convenience of notation
set rn := (c + ε)nκ. Without loss of generality we may assume that N =
⌈(1 − Φ(rn))−1⌉.
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Note that

N(1 − Φ(1/tn)) ≥ 1

2

3rn + (r2
n + 8)1/2

(1/tn) + ((1/tn)2 + 4)1/2
exp((r2

n − (1/tn)2)/2)(41)

≥ (1/2) exp((r2
n − (1/tn)2)/2)

= (1/2) exp(((c + ε)2 − (c + ε/2)2)n2κ/2) → ∞
as n → ∞. By (38) and Lemma 3.2, we get

E voln(K ′
N ∩ RnBn

2 )

voln(RnBn
2 )

≤ (tn/Rn)n + (1 − (tn/Rn)n)Φ(1/tn)N .

The latter term tends to 0 as n → ∞ by (36) and (41). This yields the other
half of (37).

3.2. Spherical case. In this section we prove counterparts to Theo-
rems 2.3 and 2.4 for polytopes generated by random facets. We shall use
the notation defined in Section 2.2. Set

L′
N := {x ∈ R

n : 〈ui, x〉 ≤ 1 for each i = 1, . . . , N}.
Before stating the main results we will prove several lemmas. Recall that
the notation for a spherical cap C(R) was introduced in (16).

Lemma 3.5. For each x ∈ R
n \ Bn

2 we have

(42) P(x ∈ L′
N ) = (1 − µ(C(1/‖x‖2)))

N .

Proof. Let x ∈ R
n \ Bn

2 . Observe first that

{θ ∈ Sn−1 : 〈θ, x〉 ≤ 1} = {θ ∈ Sn−1 : 〈θ, x/‖x‖2〉 ≤ 1/‖x‖2}(43)

= Sn−1 \ intC(1/‖x‖2, x/‖x‖2),

where intA denotes the interior of A.
By independence of the ui’s, we have

P(x ∈ L′
N ) = P{〈ui, x〉 ≤ 1 for each i = 1, . . . , N} = (P{〈u1, x〉 ≤ 1})N

= (1 − µ(C(1/‖x‖2)))
N .

Lemma 3.6. Let 1 ≤ t < s and set B := sBn
2 \ tBn

2 . Then for each n,

voln(B)(1 − µ(C(1/s)))N ≤ E voln(L′
N ∩ B)(44)

≤ voln(B)(1 − µ(C(1/t)))N .

Proof. Argue as in the proof of Lemma 2.8 and apply Lemma 3.5.

Remark 3.7. Let 0≤a≤1. The identity (1−µ(C(a)))N = exp(N ln(1−
µ(C(a)))) and (34) imply that

(1 − µ(C(a)))N ≥ exp(−Nµ(C(a)) − Nµ(C(a))2),(45)

(1 − µ(C(a)))N ≤ exp(−Nµ(C(a))).(46)

These estimates will be used in conjunction with Lemma 3.6.
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Theorem 3.8. Let 0 < R < 1 and let 0 < ε < 1. Then, as n → ∞,

(47)
E voln(L′

N ∩ R−1Bn
2 )

voln(R−1Bn
2 )

→
{

1 if n < N ≤ exp((1 − ε)n ln(1/
√

1 − R2)),

0 if N ≥ exp((1 + ε)n ln(1/
√

1 − R2)).

Proof. As in the proof of Theorem 2.3, it is more convenient to use the
bounds on N in (17) and (18). Set t := 1/

√
1 − (1 − R2)1+ε/2 so that

(48) ln
√

1 − (1/t)2 = (1 + ε/2) ln
√

1 − R2.

Let s = 1/R so that 1 < t < s. Let B = sBn
2 \ tBn

2 and write

E voln(L′
N ∩ sBn

2 )

voln(sBn
2 )

=
E voln(L′

N ∩ tBn
2 )

voln(sBn
2 )

+
E voln(L′

N ∩ B)

voln(sBn
2 )

.

In particular, we have

(49)
E voln(L′

N ∩ B)

voln(sBn
2 )

≤ E voln(L′
N ∩ sBn

2 )

voln(sBn
2 )

≤ (t/s)n +
E voln(L′

N ∩ B)

voln(sBn
2 )

.

Assume first that (17) holds. Without loss of generality, we shall assume
that N = ⌊exp((1 − ε)(n − 1) ln(1/

√
1 − R2))⌋.

Lemma 4.2 of the Appendix gives us

µ(C(1/s)) = µ(C(R)) ≤ 3 exp(−(n − 1) ln(1/
√

1 − R2)).

Thus

(50) Nµ(C(1/s)) ≤ 3 exp(−ε(n − 1) ln(1/
√

1 − R2)) → 0

as n → ∞, and also

(51) Nµ(C(1/s))2 → 0 as n → ∞.

By (49) and Lemma 3.6, we obtain

E voln(L′
N ∩ sBn

2 )

voln(sBn
2 )

≥ (1 − (t/s)n)(1 − µ(C(1/s)))N .

The latter term tends to 1 as n → ∞ by (45), (50) and (51). This proves
half of (47).

Assume now that (18) holds. Without loss of generality we may assume
that N = ⌈exp((1 + ε)(n − 1) ln(1/

√
1 − R2))⌉.

By Lemma 4.1 of the Appendix and our choice (48) of t, we have

µ(C(1/t)) ≥ exp((n − 1) ln
√

1 − (1/t)2 − ln(6
√

n))

= exp(−(1 + ε/2)(n − 1) ln(1/
√

1 − R2) − ln(6
√

n))



30 P. Pivovarov

and hence

Nµ(C(1/t)) ≥ exp((ε/2)(n − 1) ln(1/
√

1 − R2) − ln(6
√

n))(52)

≥ exp((ε/4)(n − 1) ln(1/
√

1 − R2))

provided that

ln(6
√

n) ≤ (ε/4)(n − 1) ln(1/
√

1 − R2).(53)

By (49) and Lemma 3.6, we have

E voln(L′
N ∩ sBn

2 )

voln(sBn
2 )

≤ (t/s)n + (1 − (t/s)n)(1 − µ(C(1/t)))N .

The latter term tends to 0 as n → ∞ by (46) and (52). This yields the other
half of (47).

Next we turn our attention to similar threshold results for the entire
body L′

N . Since L′
N ⊃ Bn

2 , it is natural to consider the quantity

voln(Bn
2 )

E voln(L′
N )

.

In fact, E voln(L′
N ) = ∞. To see this, let 1 = t < s, set B = sBn

2 \ Bn
2 and

apply Lemma 3.6:

E voln(L′
N ∩ B) ≥ (1/2)N voln(sBn

2 \ Bn
2 ).

Thus if n is fixed, E voln(L′
N ∩ B) → ∞ as s → ∞. Nevertheless, we can

still prove the following threshold result.

Theorem 3.9. Let 0 < ε < 1.

(a) There exists a sequence (tn)∞n=1 = (tn(ε))∞n=1 with tn > 1 and

limn→∞ tn = 1 such that

(54) lim
n→∞

voln(Bn
2 )

E voln(L′
N ∩ tnBn

2 )
= 0 if n < N ≤ exp((1 − ε)n ln

√
n).

(b) There exists a sequence (Rn)∞n=1 = (Rn(ε))∞n=1 with Rn > 1 and

limn→∞ Rn = ∞ such that

(55) lim
n→∞

voln(Bn
2 )

E voln(L′
N ∩ RnBn

2 )
= 1 if N ≥ exp((1 + ε)n ln

√
n).

Proof. As in the proof of Theorem 2.4, it is more convenient to use the
bounds for N in (24) and (25).

Assume first that (24) holds. Without loss of generality we shall assume
that N = ⌊exp((1 − ε)(n − 1) ln

√
n)⌋.

Let (tn)∞n=2 ⊂ (1,∞) be any sequence satisfying the following conditions:

(i) limn→∞ tn = 1,
(ii) limn→∞ tnn = ∞,
(iii) limn→∞ Nµ(C(1/tn)) = 0.
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For instance, let tn := 1/
√

1 − n−(1−ε/2). Then tn > 1, tn → 1 as n → ∞
and tn satisfies condition (ii) by (26) (in the proof of Theorem 2.4).

To see that condition (iii) is satisfied, apply Lemma 4.2 of the Appendix
and the fact that ln

√
1 − (1/tn)2 = −(1 − ε/2) ln

√
n to get

µ(C(1/tn)) ≤ 3 exp((n − 1) ln
√

1 − (1/tn)2)

= 3 exp(−(1 − ε/2)(n − 1) ln
√

n)

and thus

(56) Nµ(C(1/tn)) ≤ 3 exp(−(ε/2)(n − 1) ln
√

n) → 0

as n → ∞, and hence also

(57) Nµ(C(1/tn))2 −→ 0 as n → ∞.

Set B = tnBn
2 \ Bn

2 . Since

E voln(L′
N ∩ tnBn

2 )

voln(Bn
2 )

=
voln(Bn

2 ) + E voln(L′
N ∩ B)

voln(Bn
2 )

(58)

= 1 +
E voln(L′

N ∩ B)

voln(Bn
2 )

,

it suffices to prove that

(59)
E voln(L′

N ∩ B)

voln(Bn
2 )

→ ∞ as n → ∞.

By Lemma 3.6, we have

E voln(L′
N ∩ B)

voln(Bn
2 )

≥ (tnn − 1)(1 − µ(C(1/tn)))N .

The latter term tends to ∞ as n → ∞ by our choice of (tn) and by (45),
(56), and (57).

Let us now assume that (25) holds. Without loss of generality, we shall
assume that N = ⌈exp((1 + ε)(n − 1) ln

√
n)⌉.

Before defining conditions for choosing the sequence Rn, we introduce
an auxiliary sequence. Let (rn)∞n=2 ⊂ (1,∞) be any sequence such that

(a) limn→∞ rn = 1,
(b) limn→∞ rn

n = 1,
(c) limn→∞ Nµ(C(1/rn)) = ∞.

For instance, let rn := 1/
√

1 − n−(1+ε/2). Then rn > 1, rn → 1 as n → ∞
and, by (26), condition (b) also holds. By Lemma 4.1 of the Appendix and
the fact that ln

√
1 − (1/rn)2 = −(1 + ε/2) ln

√
n, condition (c) is satisfied
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since

µ(C(1/rn)) ≥ exp((n − 1) ln
√

1 − (1/rn)2 − ln(6
√

n))

= exp(−(1 + ε/2)(n − 1) ln
√

n − ln(6
√

n))

and hence

Nµ(C(1/rn)) ≥ exp((ε/2)(n − 1) ln
√

n − ln(6
√

n))(60)

≥ exp((ε/4)(n − 1) ln
√

n)

provided that

ln(6
√

n) ≤ (ε/4)(n − 1) ln
√

n.(61)

Now let (Rn)∞n=2 ⊂ (1,∞) be any sequence such that

(A) Rn > rn for each n,
(B) limn→∞ Rn = ∞,
(C) limn→∞ Rn

n(1 − µ(C(1/rn)))N = 0.

For instance, choose (Rn) such that

n lnRn ≤ (1/2) exp((ε/4)(n − 1) ln
√

n).

In this case, if n satisfies (61), then (46) and (60) imply that

(62) Rn
n(1 − µ(C(1/rn)))N ≤ exp(n lnRn − exp((ε/4)(n − 1) ln

√
n)) → 0

as n → ∞. Set B = RnBn
2 \ Bn

2 . Since

E voln(L′
N ∩ RnBn

2 )

voln(Bn
2 )

=
voln(Bn

2 ) + E voln(L′
N ∩ B)

voln(Bn
2 )

(63)

= 1 +
E voln(L′

N ∩ B)

voln(Bn
2 )

,

it suffices to prove that

(64)
E voln(L′

N ∩ B)

voln(Bn
2 )

→ 0 as n → ∞.

Writing B = (RnBn
2 \ rnBn

2 ) ∪ (rnBn
2 \ Bn

2 ) and applying Lemma 3.6
twice gives

(65)
E voln(L′

N ∩ B)

voln(Bn
2 )

≤ (rn
n − 1) + Rn

n(1 − µ(C(1/rn)))N .

The right-hand side of the latter inequality tends to 0 by our choice of (rn)
and (Rn).

Concluding remark. The author recently obtained analogous results
with volume replaced by general log-concave probability measures. The de-
tails will be given in a forthcoming paper.
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4. Appendix: Area of caps on the sphere. Estimates for the area of
spherical caps are well-known. Such estimates, however, are not commonly
stated in the form that best serves our purpose. Therefore we have included
this Appendix for the reader’s convenience.

For v ∈ Sn−1 and 0 < R < 1, consider the cap

C(R, v) := {x ∈ Sn−1 : 〈x, v〉 ≥ R}.

Since we are interested in surface area, we will omit the reference to v and
write C(R) := C(R, v). Let α be the angle of the cap, i.e., cosα = R. Fix
0 < t < α. Let H be a hyperplane at distance cos t from the origin. Then
Bn

2 ∩ H is an (n − 1)-dimensional Euclidean ball of radius sin t. Thus if we
let µ denote Haar measure on Sn−1 then

µ(C(R)) =

Tα
0 voln−2(∂(sin tBn−1

2 )) dtTπ
0 voln−2(∂(sin tBn−1

2 )) dt
=

Tα
0 sinn−2 t dtTπ
0 sinn−2 t dt

.

Let In :=
Tπ/2
0 sinn t dt. Integrating by parts gives In = ((n − 1)/n)In−2.

The latter recurrence and Stirling’s formula may be used to verify that√
n In →

√
π/2; in fact, for n ≥ 3 we have

(66)
1

2

√
2π

n
≤

π\
0

sinn−2 t dt ≤ 2

√
2π

n
.

Lemma 4.1. Let R ∈ (0, 1). Then for each n ≥ 3, we have

(67) µ(C(R)) ≥ (1 − R2)(n−1)/2

6
√

n
.

Proof. Observe that

α\
0

sinn−2 t dt ≥
α\
0

sinn−2 t cos t dt =
sinn−1 α

n − 1
.

Applying (66) and noting that sinα =
√

1 − R2 yields the result.

Lemma 4.2. Let R ∈ (0, 1). Then for each n ≥ 3, we have

(68) µ(C(R)) ≤ 3(1 − R2)(n−1)/2.

Proof. Assume first that 1/
√

2 < R < 1. Using the inequality

(69) 1 − cos t ≤ 2 sin2 t cos t (t ∈ [0, π/4]),

and recalling that R = cos α, we have
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α\
0

sinn−2 t dt =

α\
0

sinn−2 t cos t dt +

α\
0

sinn−2 t(1 − cos t) dt

≤
α\
0

sinn−2 t cos t dt + 2

α\
0

sinn t cos t dt

=
sinn−1 α

n − 1
+

2 sinn+1 α

n + 1
≤ 3 sinn−1 α

n − 1
.

Applying again (66) and noting that sinα =
√

1 − R2 gives the result.
Finally, for 0 < R ≤ 1/

√
2, one may argue, for example, as in the proof

of [1, Lemma 2.2].
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