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Homomorphisms of commutative Banach algebras and

extensions to multiplier algebras

with applications to Fourier algebras

by

E. Kaniuth (Paderborn), A. T. Lau (Edmonton) and
A. Ülger (Istanbul)

Abstract. Let A and B be semisimple commutative Banach algebras with bounded
approximate identities. We investigate the problem of extending a homomorphism ϕ :
A → B to a homomorphism of the multiplier algebras M(A) and M(B) of A and B,
respectively. Various sufficient conditions in terms of B (or B and ϕ) are given that allow
the construction of such extensions. We exhibit a number of classes of Banach algebras to
which these criteria apply. In addition, we prove a polar decomposition for homomorphisms
from A into A with closed range. Our results are applied to Fourier algebras of locally
compact groups.

Introduction. Let A and B be semisimple commutative Banach alge-
bras and suppose that A has a bounded approximate identity (eα)α. We
study homomorphisms ϕ from A to B from various aspects. Let Iϕ be the
largest ideal of B for which (ϕ(eα))α serves as an approximate identity, and
let Zϕ denote the zero set of Iϕ in the Gelfand spectrum ∆(B) of B. In
Section 1 we find criteria for Zϕ to be open in ∆(B) and Iϕ to be comple-
mented by a certain ideal Jϕ (Theorems 1.4 and 1.5). The results are applied
to the related question of when a homomorphism ϕ : A → B extends to a
homomorphism, φ : M(A) →M(B), between the multiplier algebras M(A)
and M(B). This extension problem is the main objective of the paper.

When Iϕ is complemented as above, we give in Theorem 2.1 (which
is a basic result of the paper) an explicit construction of an extension
φ : M(A) → M(B). Moreover, if in addition B is a BSE-algebra (named
after Bochner–Schoenberg–Eberlein), then all homomorphisms from M(A)
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to M(B) extending ϕ can be described (Theorem 2.7). BSE-algebras have
been investigated by several authors (see, for instance, [27] and [28]). In Sec-
tion 2 we also add two more examples of BSE-algebras, namely L1-algebras
of compact commutative hypergroups and ideals k(E) of Tauberian BSE-
algebras A, where E is a set of synthesis in ∆(A).

Section 3, which is the main part of the paper, is devoted to establishing
conditions on A and B which guarantee that every homomorphism from A
into B extends to a homomorphism from M(A) to M(B). We exhibit several
situations for this to happen. The first, and most important one, is when
B is the dual of some Banach space and multiplication of B is separately
continuous in the w∗-topology (Theorem 3.1). Theorem 3.1 applies in sev-
eral situations, such as homomorphisms into Fourier and Fourier–Stieltjes
algebras of locally compact groups and L1-algebras of commutative hyper-
groups. The second case is when B is weakly sequentially complete and A
has a sequential bounded approximate identity and, in addition, the equal-
ity A · A∗ = A∗ is satisfied (Theorem 3.8). This latter equality holds, for
instance, when A is Arens regular. Other sufficient conditions include: A
is Arens regular and regular and B is weakly sequentially complete (Theo-
rem 3.11(i)); B is Arens regular and weakly sequentially complete (Theorem
3.11(ii)). The proofs of all these results are not constructive. However, in
Theorem 3.9, we exploit a situation which is slightly more special than the
one of Theorem 3.1, but has the advantage of admitting a constructive proof
of the existence of an extending homomorphism. In view of the diversity of
these sufficient conditions for extendability of a homomorphism it appears
very unlikely that necessary and sufficient conditions can be found.

Finally, in Section 4 we establish a polar decomposition of homomor-
phisms ϕ : A → A with closed range (Theorem 4.2), similar to the polar
decomposition of bounded linear operators in Hilbert spaces.

Of course, homomorphisms between Banach algebras have been studied
for a long time and by numerous authors from various different aspects (see
[5], [7], [11], [15] and [16], to mention just a few, and the extensive list of
references in [6]).

Preliminaries. Let A be a commutative Banach algebra and ∆(A) the
set of all homomorphisms from A onto C. Then ∆(A) ⊆ A∗ and the Gelfand
topology on ∆(A) is the restriction to ∆(A) of the w∗-topology on A∗.
The algebra A is called regular if, given any closed subset E of ∆(A) and
γ0 ∈ ∆(A) \ E, there exists a ∈ A such that â(γ) = γ(a) = 0 for all γ ∈ E
and â(γ0) 6= 0. For γ ∈ ∆(A), let ker γ denote the kernel of γ, and recall
that γ 7→ ker γ sets up a bijection between ∆(A) and the set of all maximal
modular ideals of A. To E ⊆ ∆(A) and M ⊆ A, respectively, associate
k(E) =

⋂
γ∈E ker γ, the kernel of E, and h(M) = {γ ∈ ∆(A) : M ⊆ ker γ},
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the hull of M . There is a unique topology on ∆(A) such that E = h(k(E))
for every subset E of ∆(A). This so-called hull-kernel (hk) topology is weaker
than the Gelfand topology and the two topologies agree if and only if A is
regular.

On the second dual A∗∗ of A there exist two natural multiplications
extending that of A, known as the first and second Arens products. In this
paper, A∗∗ will always be equipped with the first Arens product, which is
defined as follows. For a, b ∈ A, f ∈ A∗ and m,n ∈ A∗∗, the elements f · a
and m · f of A∗ and mn of A∗∗ are defined by

〈f · a, b〉 = 〈f, ab〉, 〈m · f, b〉 = 〈m, f · b〉, 〈mn, f〉 = 〈m,n · f〉,

respectively. With this multiplication, A∗∗ is a Banach algebra and A is
a subalgebra of A∗∗. In general, A∗∗ is not commutative, but for a ∈ A
and m ∈ A∗∗, ma = am. Moreover, this multiplication is not separately
continuous with respect to the w∗-topology on A∗∗. But, for fixed n ∈ A∗∗,
the mapping m 7→ mn is w∗-continuous. Also, for all m,n ∈ A∗∗ and γ ∈
∆(A), we have 〈mn, γ〉 = 〈m, γ〉〈n, γ〉.

By a bounded approximate identity of A we mean a bounded net (eα)α
in A such that ‖aeα − a‖ → 0 for every a ∈ A. We shall frequently use the
fact that if (eα)α is such a bounded approximate identity in A, then each
w∗-cluster point u of this net in A∗∗ is a right unit for A∗∗, that is, mu = m
for all m ∈ A∗∗. Regarding all these facts, we refer the reader to [4, Section
28] and [6, Chapter 2].

A bounded linear operator T : A → A is said to be a multiplier of
A if T (ab) = aT (b) for all a, b ∈ A. The space M(A) of multipliers is
a commutative semisimple closed unital subalgebra of the algebra of all
bounded linear operators on A. Each a ∈ A defines an element La ∈ M(A)
by La(b) = ab, b ∈ A. Since A is semisimple and has a bounded approximate
identity, the map a 7→ La is a topological isomorphism of A onto the ideal
{La : a ∈ A} of M(A) (see [17]). Moreover, each γ ∈ ∆(A) extends uniquely
to an element of ∆(M(A)). In this manner, A will always be considered as
a closed ideal of M(A), and ∆(A) as a subset of ∆(M(A)).

Several applications of our results and examples will concern the Fourier
and the Fourier–Stieltjes algebras, A(G) and B(G), of a locally compact
group G. These algebras have been introduced and extensively studied by
Eymard in his fundamental paper [9]. Recall that B(G) is the set of all
coefficient functions x 7→ uπ,ξ,η(x) = 〈π(x)ξ, η〉, where π is a unitary repre-
sentation of G in a Hilbert space and ξ and η are elements of that space.
With pointwise operations and the norm ‖u‖ = inf ‖ξ‖ · ‖η‖, the infimum
being taken over all representations u = uπ,ξ,η of u, B(G) is a commutative
Banach algebra. The Fourier algebra A(G) is the closure of the subalgebra
of compactly supported functions in B(G). When G is abelian, B(G) is iso-
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metrically isomorphic to the measure algebra M(Ĝ) of the dual group Ĝ of

G and this identification maps A(G) onto L1(Ĝ). The space A(G) is a closed
ideal of B(G), and ∆(A(G)) can be canonically identified with G. In fact,
the mapping x 7→ γx, where γx(u) = u(x) for u ∈ A(G), is a homeomor-
phism from G onto ∆(A(G)). The algebra A(G) has a bounded approximate
identity if and only if the group G is amenable [19]. Moreover, in this case,
the mapping w 7→ Tw, where Tw(u) = uw for u ∈ A(G), is an isometric
isomorphism between B(G) and the multiplier algebra M(A(G)) of A(G)
(see [8]). The monographs [13] and [22] are very good accounts of the theory
of amenable groups.

1. Ideals and zero sets associated to a homomorphism. Let A
and B be two semisimple commutative Banach algebras, and throughout
the entire paper suppose that A has a bounded approximate identity, (eα)α
say. Let ϕ : A→ B be a homomorphism. Note that ϕ is continuous since A
and B are semisimple. Let ϕ∗ : B∗ → A∗ and ϕ∗∗ : A∗∗ → B∗∗ denote the
adjoints of ϕ and of ϕ∗, respectively. We associate to ϕ two ideals defined
by

Iϕ = {b ∈ B : bϕ(eα) → b} and Jϕ = {b ∈ B : bϕ(eα) → 0},

and two subsets of ∆(B) defined by

Zϕ = {γ ∈ ∆(B) : ϕ∗(γ) = 0} and Eϕ = {γ ∈ ∆(B) : ϕ∗(γ) 6= 0}.

Obviously, Iϕ is the largest closed ideal of B for which (ϕ(eα))α serves as
an approximate identity.

We study the ideals Iϕ and Jϕ, in particular the question of when B =
Iϕ ⊕ Jϕ, and (topological) properties of the sets Zϕ and Eϕ. These results
will turn out to be of relevance when addressing the extension problem for
homomorphisms.

Lemma 1.1.

(i) The definition of the ideal Iϕ does not depend on the choice of the

bounded approximate identity of A.

(ii) The set Zϕ equals the hull of Iϕ and Zϕ is hull-kernel closed in ∆(B).

Proof. (i) Let (dβ)β be another bounded approximate identity for A, and
let I = {b ∈ B : bϕ(dβ) → b}. If b ∈ I, then bϕ(dβ) → b and bϕ(dβ) ∈ Iϕ
since ϕ(A) ⊆ Iϕ. Since Iϕ is closed, I ⊆ Iϕ. Interchanging the roles of (eα)α
and (dβ)β shows the reverse inclusion.

(ii) Let γ ∈ Zϕ and b ∈ Iϕ. Then

γ(b) = lim
α
γ(bϕ(eα)) = γ(b) lim

α
γ(ϕ(eα)) = γ(b) lim

α
ϕ∗(γ)(eα) = 0.

Hence Zϕ ⊆ h(Iϕ). Conversely, if γ ∈ h(Iϕ), then γ(ϕ(A)) ⊆ γ(Iϕ) = {0},
whence ϕ∗(γ) = 0 and hence γ ∈ Zϕ. So Zϕ = h(Iϕ), which is hk-closed.
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Lemma 1.2.

(i) The sum Iϕ + Jϕ is closed in B and Jϕ = k(Eϕ). In particular ,
the definition of the ideal Jϕ does not depend on the choice of the

bounded approximate identity in A.

(ii) The set ϕ∗(Eϕ) is closed in ∆(A) and kerϕ = k(ϕ∗(Eϕ)).

Proof. (i) It is clear from the definition of Iϕ and Jϕ that Iϕ∩Jϕ = {0}.
Since Iϕ has a bounded approximate identity, it follows from a theorem of
Rudin [23, Theorem 4.2] that the sum Iϕ + Jϕ is closed in B (see also [16,
Lemma 3.2]).

To prove that k(Eϕ) ⊆ Jϕ, let b be an arbitrary element of k(Eϕ). Then
γ(bϕ(eα)) = 0 for every α and every γ ∈ ∆(B) since γ(b) = 0 for γ ∈ Eϕ,
whereas γ(ϕ(eα)) = 0 for γ ∈ Zϕ. Thus, since B is semisimple, bϕ(eα) = 0
for all α, whence b ∈ Jϕ. For the reverse inclusion it suffices to show that
Eϕ ⊆ h(Jϕ), since then Jϕ ⊆ k(h(Jϕ)) ⊆ k(Eϕ).

To this end, consider an element γ of Eϕ and let b ∈ Jϕ. Since ϕ∗(γ) 6= 0,
γ(ϕ(a)) 6= 0 for some a ∈ A and

γ(ϕ(a)) = lim
α
γ(ϕ(aeα)) = γ(ϕ(a)) lim

α
γ(ϕ(eα)).

This implies that γ(ϕ(eα)) → 1. On the other hand, bϕ(eα) → 0 and hence
γ(b)γ(ϕ(eα)) → 0. It follows that γ(b) = 0. Thus Eϕ ⊆ h(Jϕ).

(ii) Let (γα)α be a net in Eϕ such that (ϕ∗(γα))α converges pointwise
on A to some δ ∈ ∆(A). Let γ be a w∗-cluster point of (γα)α in B∗. Then
either γ = 0 or γ ∈ ∆(B). Since ϕ∗ is w∗-w∗-continuous, it follows that
δ = ϕ∗(γ). Thus γ 6∈ Zϕ ∪ {0}, and hence γ ∈ Eϕ and δ ∈ ϕ∗(Eϕ).

Now, since B is semisimple, an element a ∈ A belongs to kerϕ if and
only if 〈ϕ(a), γ〉 = 〈a, ϕ∗(γ)〉 = 0 for all γ ∈ Eϕ. It follows that kerϕ =
k(ϕ∗(Eϕ)).

Lemma 1.3.

(i) Zϕ is open in the hull-kernel topology (equivalently , open in the

Gelfand topology) of ∆(B) if and only if h(Iϕ + Jϕ) = ∅.
(ii) If A/kerϕ is unital , then Zϕ is open in ∆(B).

Proof. (i) Since ∆(B) is the disjoint union of Zϕ and Eϕ, Zϕ is hk-open

in ∆(B) if and only if Zϕ ∩ Eϕ
hk

= ∅. Since Zϕ = h(Iϕ) (Lemma 1.1) and
Jϕ = k(Eϕ) (Lemma 1.2), this in turn is equivalent to

∅ = h(Iϕ) ∩ h(k(Eϕ)) = h(Iϕ + k(Eϕ)) = h(Iϕ + Jϕ).

Moreover, if Zϕ is open in the Gelfand topology, then Zϕ = ∆(k(Eϕ)) and
hence Eϕ = h(k(Eϕ)). Thus Zϕ is hk-open.
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(ii) Let e ∈ A be such that e+kerϕ is the identity of A/kerϕ. Since ϕ(e)
is an idempotent in B, the decomposition b = bϕ(e) + [b − bϕ(e)], b ∈ B,
shows that B = Iϕ ⊕ Jϕ. The statement now follows from (i).

In what follows we let E(A) denote the set of all w∗-cluster points of
bounded approximate identities of A.

Theorem 1.4. Let ϕ : A→ B be a homomorphism. Then the following

conditions are equivalent :

(i) Bϕ∗∗(e) ⊆ B for some e ∈ E(A).
(ii) B = Iϕ ⊕ Jϕ.
(iii) Bϕ∗∗(f) ⊆ B for every f ∈ E(A).

Proof. (i)⇒(ii). The element ϕ∗∗(e) is an idempotent in B∗∗, and there-
fore the map b 7→ bϕ∗∗(e) is a projection in B by hypothesis. Then

Iϕ = {b ∈ B : bϕ(eα) → b} = {b ∈ B : bϕ∗∗(e) = b},

Jϕ = {b ∈ B : bϕ(eα) → 0} = {b ∈ B : bϕ∗∗(e) = 0}.

Thus Bϕ∗∗(e) ⊆ Iϕ and B(1 − ϕ∗∗(e)) ⊆ Jϕ, and hence B = Iϕ ⊕ Jϕ.
(ii)⇒(iii). Let f ∈ E(A) and let (fβ)β be a bounded approximate iden-

tity for A such that f = w∗-limβ fβ. Note that, by Lemmas 1.1 and 1.2,
the definition of the ideals Iϕ and Jϕ does not depend on the choice of the
bounded approximate identity. Thus, for b ∈ Iϕ, we have bϕ(fβ) → b and
hence bϕ∗∗(f) = b. On the other hand, for b ∈ Jϕ, bϕ(fβ) → 0 and hence
bϕ∗∗(f) = 0. Consequently, Bϕ∗∗(f) ⊆ B.

The implication (iii)⇒(i) is trivial.

It follows from Theorem 1.4 that the condition that Bϕ∗∗(e) ⊆ B does
not depend on the choice of e ∈ E(A).

Theorem 1.5. Let ϕ : A→ B be a homomorphism, and let I = Iϕ⊕Jϕ.
Then the following two conditions are equivalent :

(i) Zϕ is open in ∆(B).
(ii) There exists a subset Z of ∆(M(I)) which is open and closed in the

hk-topology of ∆(M(I)) and satisfies Z ∩∆(B) = Zϕ.

Proof. Suppose that (i) holds and notice first that ∆(B) = ∆(I) since
h(I) = ∅ by Lemma 1.3. Let P : I → I be the projection with P (I) = Iϕ
and kerP = Jϕ. By the closed graph theorem, P is continuous, and since
both the range and the kernel of P are ideals, P is a multiplier of I. Let
K = M(I)P and

Z = {γ ∈ ∆(M(I)) : P̂ (γ) = 0}.

Then, since P is an idempotent,K is a closed ideal ofM(I) and, by definition
of K and Z, h(K) = Z. Moreover, since M(I) is semisimple,

k(Z) = {T ∈M(I) : γ(T − TP ) = 0 for all γ ∈ ∆(M(I))} = K.
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So Z = h(k(Z)) is hk-closed in ∆(M(I)). Similarly, with L = M(I)(id−P ),
where id denotes the identity operator on I, we have h(L) = ∆(M(I)) \ Z
and L = k(∆(M(I))\Z), so that ∆(M(I))\Z is also hk-closed in ∆(M(I)).
Finally, since ∆(B) = ∆(I),

Z ∩∆(B) = {γ ∈ ∆(I) : 〈γ, P (b)〉 = 0 for all b ∈ I} = h(Iϕ) = Zϕ.

This shows (ii).
(ii)⇒(i). Let Zϕ = Z ∩ ∆(B) for some subset Z of ∆(M(I)) which is

open and closed in the hk-topology of ∆(M(I)). Then

h(Iϕ + Jϕ) = h(Iϕ) ∩ h(Jϕ) = Zϕ ∩ h(k(Eϕ))

= (Z ∩∆(B)) ∩ h(k((∆(M(I)) \ Z) ∩∆(B)))

⊆ Z ∩∆(B) ∩ (∆(M(I)) \ Z) = ∅,

where the hulls and hk-closures are taken in ∆(B). It follows that the hull
of Iϕ + Jϕ in ∆(B) is empty, and hence Zϕ is open in ∆(B) (Lemma 1.3).

Remark 1.6. In (ii) of Theorem 1.5 the condition that Z is open and
closed in the hull-kernel topology can be replaced by the condition that Z is
open and closed in the Gelfand topology. Indeed, in this case, by the Shilov
idempotent theorem (see [6, Theorem 2.4.33]), there exists T ∈M(B) such

that T̂ = 1Z , the characteristic function of Z. Since

Z = {γ ∈ ∆(M(B)) : γ(I − T ) = 0}

= ∆(M(B)) \ {γ ∈ ∆(M(B)) : γ(T ) = 0},

it follows that Z is open and closed in the hull-kernel topology.

For a semisimple Banach algebra B, let Z(B) denote the collection of
all subsets of ∆(B) of the form Zϕ, where ϕ is a homomorphism from a
semisimple commutative Banach algebra A with bounded approximate iden-
tity into B.

Proposition 1.7. The set Z(B) is closed under forming finite unions

and intersections.

Proof. Let A1 and A2 be two semisimple commutative Banach algebras
with bounded approximate identities and let ϕ1 : A1 → B and ϕ2 : A2 → B
be homomorphisms.

We first show that Zϕ1
∪Zϕ2

∈ Z(B). Let ϕ1 ⊗̂ϕ2 be the unique homo-
morphism from the projective tensor product A1 ⊗̂A2 into B satisfying

ϕ1 ⊗̂ ϕ2(a1 ⊗ a2) = ϕ1(a1)ϕ2(a2), aj ∈ Aj , j = 1, 2.

It is clear that Zϕ1⊗̂ϕ2
= Zϕ1

∪Zϕ2
. However, A1⊗̂A2 need not be semisimple

unless one of A1 and A2 has the approximation property (see [21] and [4, p.
236]). Therefore, let R denote the radical of A1 ⊗̂ A2. Then R is contained
in the kernel of ϕ1 ⊗̂ϕ2. Indeed, if a ∈ A1 ⊗̂A2 is such that ϕ1 ⊗̂ϕ2(a) 6= 0,
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then γ ◦ (ϕ1 ⊗̂ ϕ2)(a) 6= 0 for some γ ∈ ∆(B) since B is semisimple, and
hence a 6∈ R. Thus ϕ1 ⊗̂ϕ2 induces a homomorphism ϕ from the semisimple
algebra (A1 ⊗̂A2)/R to B with Zϕ = Zϕ1

∪ Zϕ2
.

To see that Zϕ1
∩ Zϕ2

∈ Z(B), define ϕ : A1 ⊕ A1 → B ⊕ B → B by
ϕ = σ ◦ (ϕ1 ⊕ ϕ2), where σ(b1, b2) = b1 + b2, b1 ∈ B1, b2 ∈ B2. Then, for
γ ∈ ∆(B) and a1 ∈ A1, a2 ∈ A2,

ϕ∗(γ)(a1, a2) = γ(σ(ϕ1(a1), ϕ2(a2))) = γ(ϕ1(a1)) + γ(ϕ2(a2)).

Thus ϕ∗(γ) = 0 if and only if ϕ∗
1(γ) = 0 and ϕ∗

2(γ) = 0.

Example 1.8. Let G be an amenable locally compact group. Then
Z(A(G)) = Rc(G), the collection of closed sets in the coset ring of G
(see [10] for the definition of the coset ring). Clearly, if E ∈ Rc(G) then
the ideal k(E) is semisimple and has a bounded approximate identity [10,
Lemma 2.2], and if ϕ is the embedding of k(E) into A(G) then Zϕ = E.
Conversely, let ϕ be a homomorphism from a semisimple commutative
Banach algebra A with bounded approximate identity into A(G). Then
the ideal Iϕ has a bounded approximate identity. By Theorem 2.3 of [10],
Iϕ = k(E) for some E ∈ Rc(G). Since A(G) is regular, it follows that
Zϕ = h(Iϕ) = h(k(E)) = E ∈ Rc(G).

In passing, we recall that if A is regular and semisimple then given any
closed subset E of ∆(A), there exists a smallest ideal j(E) of A with hull
equal to E. More precisely, j(E) consists of all a ∈ A such that â has
compact support and vanishes on a neighbourhood of E. The set E is called
a set of synthesis if j(E) = k(E), and A is said to be Tauberian if ∅ is a set
of synthesis.

Proposition 1.9. Suppose that A and B are regular and that A is

Tauberian. Let ϕ : A→ B be a homomorphism, and let I denote the closed

ideal of B generated by ϕ(A). Then I has a bounded approximate identity and

I = j(Zϕ). In particular , Zϕ is a set of synthesis if and only if I = k(Zϕ).

Proof. Since A is regular and Tauberian, the ideal

j(∅) = {a ∈ A : supp â is compact}

is dense in A. Thus we can assume that the bounded approximate identity
(eα)α of A is contained in j(∅). Then, using regularity again, for every α
there exists aα ∈ A such that âα = 1 on supp êα. Since A is semisimple,

aαeα = eα. This implies that, for every γ ∈ ∆(B), ϕ̂(aα)(γ) = 1 whenever

ϕ̂(eα)(γ) 6= 0, and hence ϕ̂(aα) = 1 on supp ϕ̂(eα). Since ϕ̂(aα) ∈ C0(∆(B))

and ϕ̂(aα) vanishes on Zϕ, it follows that supp ϕ̂(eα) is compact and disjoint
from Zϕ. Thus we have seen that ϕ(eα) ∈ j(Zϕ) for every α, and hence

I ⊆ j(Zϕ). Now, since (eα)α is an approximate identity for A and hence I
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is generated by the set of all ϕ(eα),

h(I) = {γ ∈ ∆(B) : γ(ϕ(eα)) = 0 for all α} = Zϕ.

Finally, B being regular, j(Zϕ) is the smallest closed ideal of B with hull

equal to Zϕ. It follows that I = j(Zϕ), and hence Zϕ is a set of synthesis if
and only if I = k(Zϕ).

It remains to observe that I has a bounded approximate identity. Given
x ∈ I and ε > 0, there exist b1, . . . , bn ∈ B and a1, . . . , an ∈ A such that
‖x−

∑n
j=1 bjϕ(aj)‖ ≤ ε. Since A has a bounded approximate identity, there

exists e ∈ A such that

‖ϕ(aj) − ϕ(aje)‖ ≤ ε
( n∑

j=1

‖bj‖
)−1

for j = 1, . . . , n. Then

‖x− xϕ(e)‖ ≤
∥∥∥x−

n∑

j=1

bjϕ(aj)
∥∥∥ +

∥∥∥
n∑

j=1

bj(ϕ(aj) − ϕ(aje))
∥∥∥

≤ ε+

n∑

j=1

‖bj‖ · ‖ϕ(aj) − ϕ(aje)‖ ≤ 2ε.

This finishes the proof.

We conclude this section with an observation that will be used in the
next section. If ϕ : A → B is a homomorphism and (eα)α is a bounded

approximate identity of A, then the net of functions ϕ̂(eα) converges to 1
uniformly on compact subsets of Eϕ. To see this, let γ0 ∈ Eϕ be given,
choose a ∈ A such that |γ0(a)| > 1 and let V = {γ ∈ Eϕ : |γ(a)| > 1}. Then
V is an open neighbourhood of γ0 in ∆(B) and, for all γ ∈ V and all α,

|ϕ̂(eα)(γ) − 1| ≤ |ϕ̂(a)(γ)[ϕ̂(eα)(γ) − 1] = |ϕ̂(aeα)(γ) − ϕ̂(a)(γ)|

≤ ‖ϕ‖ · ‖aeα − a‖.

Thus the net of functions ϕ̂(eα) converges uniformly to 1 on V , and hence
it converges uniformly to 1 on every compact subset of Eϕ.

2. Extending homomorphisms to multiplier algebras. We con-
tinue to let A and B be semisimple commutative Banach algebras. Suppose
that both A and B have bounded approximate identities. The main pur-
pose of this section is to investigate the problem of when a homomorphism
ϕ : A → B extends to a homomorphism from M(A) to M(B). Let (eα)α
be a bounded approximate identity of A and e be a w∗-cluster point of the
net (eα)α in A∗∗. We first show that the condition that Bϕ∗∗(e) ⊆ B (which
by Theorem 1.4 is independent of the choice of the bounded approximate
identity) guarantees the existence of an extension φ : M(A) →M(B) of ϕ.
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Theorem 2.1. Let ϕ : A → B be a homomorphism and suppose that

Bϕ∗∗(e) ⊆ B. Then:

(i) For all T ∈M(A), Bϕ∗∗(T ∗∗(e)) ⊆ B.

(ii) The map φ : M(A) → M(B) defined by φ(T )(b) = bϕ∗∗(T ∗∗(e)) is

a homomorphism that extends ϕ. Moreover , φ(M(A)) ⊆ B if and

only if Eϕ is compact.

Proof. (i) Let T ∈M(A) and b ∈ Iϕ. Since ‖b− bϕ(eα)‖ → 0, we get

‖bϕ∗∗(T ∗∗(e)) − bϕ(eα)ϕ
∗∗(T ∗∗(e))‖ → 0.

On the other hand,

ϕ(eα)ϕ∗∗(T ∗∗(e)) = ϕ∗∗(eαT
∗∗(e)) = ϕ∗∗(T ∗∗(eα)) = ϕ(T (eα))

belongs to B since T (eα) ∈ A. It follows that bϕ(eα)ϕ
∗∗(T ∗∗(e)) ∈ B and

hence bϕ∗∗(T ∗∗(e) ∈ B. Now let b ∈ Jϕ. Then bϕ∗∗(T ∗∗(e)) = 0. Since
B = Iϕ ⊕ Jϕ by Theorem 1.4, we conclude that Bϕ∗∗(T ∗∗(e)) ⊆ B for all
T ∈M(A).

(ii) By (i), Bϕ∗∗(T ∗∗(e)) ⊆ B for every T ∈ M(A). Define φ : M(A) →
M(B) by φ(T )(b) = bϕ∗∗(T ∗∗(e)). Then, for T, S ∈M(A) and b ∈ B,

φ(T ◦ S)(b) = bϕ∗∗(T ∗∗ ◦ S∗∗(e)) = bϕ∗∗(T ∗∗(e)S∗∗(e))

= bϕ∗∗(T ∗∗(e))ϕ∗∗(S∗∗(e)) = φ(T ) ◦ φ(S)(b).

Similarly, φ(T + S) = φ(T ) + φ(S). Thus φ is a homomorphism, and φ
extends ϕ since, by definition of φ,

φ(La)(b) = bϕ∗∗(L∗∗

a (e)) = bϕ(a) = Lϕ(a)(b),

that is, φ(La) = Lϕ(a).

To prove that φ(M(A)) ⊆ B if and only if Eϕ is compact, recall that

〈ϕ∗∗(I∗∗(e)), γ〉 = 〈ϕ∗(γ), e〉 = lim
α
ϕ̂(eα)(γ) = 1Eϕ(γ)

for all γ ∈ ∆(B), and letm denote the multiplier of B defined by ϕ∗∗(I∗∗(e)).

If Eϕ is compact then, since Eϕ is also open, by the Shilov idempotent

theorem there exists b ∈ B such that b̂ = 1Eϕ . Thus m̂ and b̂ agree on ∆(B),
whence m = Lb. Since B is an ideal of M(B), from the definition of φ we
conclude that φ(M(A)) = φ(M(A)) ◦ φ(m) ⊆ B.

Conversely, if m = Lb for some b ∈ B, then m̂ vanishes on ∆(M(B)) \
∆(B) and, since m is an idempotent, m̂ = 1E for some compact open subset
E of ∆(M(B)). On the other hand, E∩∆(B) = Eϕ. It follows that Eϕ = E,
which is compact.

The preceding theorem will be applied several times in this and the
following section.
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Corollary 2.2. Let ϕ : A → B be a homomorphism. If B = Iϕ ⊕ Jϕ,
then ϕ extends to a homomorphism from M(A) to M(B).

Proof. The statement is an immediate consequence of Theorem 2.1 and
the implication (ii)⇒(i) of Theorem 1.4.

We do not know whether conversely, given a homomorphism ϕ : A→ B,
the existence of an extension φ : M(A) → M(B) of ϕ implies that B =
Iϕ ⊕ Jϕ.

Let G and H be locally compact abelian groups and ϕ : L1(G) →M(H)

a homomorphism. As remarked in [5, p. 219, last two lines], Zϕ ∩ Ĥ is

open in Ĥ. In particular, if ϕ(L1(G)) ⊆ L1(H) then Zϕ is open in Ĥ. We
observe next that the same conclusion is true when ϕ is a weakly compact
homomorphism.

Corollary 2.3. Let ϕ : A → B be a weakly compact homomorphism.

Then Zϕ is open in ∆(B) and ϕ extends to a homomorphism from M(A)
into M(B).

Proof. Since eα → e in the w∗-topology of A∗∗, we have ϕ(eα) = ϕ∗∗(eα)
→ ϕ∗∗(e) in the w∗-topology of B∗∗. On the other hand, since ϕ is weakly
compact, we can assume that (ϕ(eα))α converges weakly in B. It follows
that ϕ∗∗(e) ∈ B and hence, by Theorem 2.1, ϕ extends to a homomorphism
from M(A) into M(B).

To show that Eϕ is closed in ∆(B), let (γβ)β be a net in Eϕ and let
γ ∈ ∆(B) be a w∗-limit point of (γβ)β. Since Eϕ = ∆(Iϕ) and (ϕ(eα))α is
an approximate identity for Iϕ, we have δ(ϕ(eα)) → 1 for each δ ∈ Eϕ. Thus
〈δ, ϕ∗∗(e)〉 = 1 for all δ ∈ Eϕ. Because ϕ∗∗(e) ∈ B, it follows that

〈γ, ϕ∗∗(e)〉 = lim
β

〈γβ , ϕ
∗∗(e)〉 = 1.

Consequently, 〈γ, ϕ∗∗(eα)〉 6= 0 eventually, whence γ ∈ Eϕ.

The first to study the problem of extending homomorphisms to multiplier
algebras and the uniqueness of such extensions was Cohen. In [5, Theorem 3]
a complete solution was given when A = L1(G) and B = M(H), where
G and H are locally compact abelian groups. The proof of the following
proposition is an adaptation of the one in [5].

In the next results, the reader should not confuse the sets Zϕ and Zφ.

Proposition 2.4. Let ϕ : A→ B be a homomorphism and suppose that

φ : M(A) → M(B) is a homomorphism extending ϕ. Then the following

two conditions are equivalent :

(i) φ is the only extension of ϕ.

(ii) Either A = M(A) or Zφ ∩∆(B) = ∅.
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Proof. Of course, we do not have to consider the case that A = M(A).
Suppose first that Zφ ∩ ∆(B) = ∅. Fix γ ∈ ∆(B) and let γ̃ denote its

extension to M(B). Then the function

T 7→ 〈φ(T ), γ̃〉 = 〈φ∗(γ̃), T 〉

on M(A) is multiplicative. On A, this function coincides with the function
a 7→ 〈φ∗(γ), a〉, a ∈ A. Since Zφ ∩ ∆(B) = ∅, we have ϕ∗(γ) 6= 0 and
hence φ∗(γ̃) is the unique element of ∆(M(A)) extending ϕ∗(γ). Thus, if
ψ : M(A) → M(B) is another homomorphism extending ϕ, then for all
γ ∈ ∆(B), ψ∗(γ̃) = φ∗(γ̃) and hence 〈γ̃, ψ(b)〉 = 〈γ̃, φ(b)〉 for all b ∈ B. This
implies that ψ = φ.

Conversely, assume that Zφ ∩ ∆(B) 6= ∅ and A 6= M(A). Since Zφ is
open and closed in ∆(M(B)), by Shilov’s idempotent theorem there exists

S ∈M(B) such that Ŝ = 1Zφ
. By hypothesis,M(A)/A is a non-trivial unital

commutative Banach algebra and hence ∆(M(A)) \ ∆(A) = ∆(M(A)/A)
6= ∅. Choose any ̺ ∈ ∆(M(A)) \ ∆(A) and define ψ : M(A) → M(B) by
ψ(T ) = φ(T )+̺(T )S. Clearly, ψ is linear and extends φ. For T1, T2 ∈M(A)
we have

ψ(T1)ψ(T2) = φ(T1T2) + ̺(T1T2) + ̺(T2)φ(T1)S + ̺(T1)φ(T2)S

= φ(T1T2) + ̺(T1T2)S = ψ(T1T2),

since Ŝ(γ) = 0 for γ 6∈ Zφ and φ∗(γ) = 0 for γ ∈ Zφ. Finally, ψ 6= φ since

̺(T ) 6= 0 for some T ∈ M(A) and Ŝ(γ) 6= 0 for some γ in the non-empty
set Zφ ∩∆(B).

Proposition 2.5. Let A1 and B1 be unital commutative Banach alge-

bras containing A and B as closed ideals, respectively. Let ϕ : A → B
be a homomorphism, and suppose that ϕ extends to a homomorphism φ :
A1 → B1. Then the following conditions are equivalent :

(i) Zϕ is open in ∆(B).
(ii) h∆(B)(ϕ(A)) ∩ Eφ is open in ∆(B).

In particular , if the ideal of B generated by ϕ(A) is dense in Iϕ, then Zϕ is

open in ∆(B) if and only if Zϕ ∩Eφ is open in ∆(B).

Proof. Since ϕ∗(γ) = φ∗(γ)|A for γ ∈ ∆(B), we have

Zϕ = (Zφ ∩∆(B)) ∪ (Eφ ∩ h∆(B)(ϕ(A))).

Since A1 is unital, Zφ and Eφ are both open in ∆(M(B)) and hence ∆(B)
is the disjoint union of the open subsets Zφ ∩∆(B) and Eφ ∩∆(B). Thus
Zϕ is open in ∆(B) if and only if h∆(B)(ϕ(A)) ∩ Eφ is open in Eφ ∩∆(B)
(equivalently, open in ∆(B)).

Finally, note that if the ideal generated by ϕ(A) in B is dense in Iϕ, then
h∆(B)(ϕ(A)) = h∆(B)(Iϕ) = Zϕ.
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As we have seen in Theorem 1.4, Bϕ∗∗(e) ⊆ B holds if and only if B =
Iϕ⊕Jϕ, and this latter condition implies (but is not equivalent to unless B is
Tauberian) that Zϕ is open in ∆(B) (Lemma 1.3). Thus the question arises
of whether, at least for a large class of algebras B, openness of Zϕ already
suffices to show the existence of an extension of a given homomorphism.
This question leads to the class of BSE-algebras (named after Bochner–
Schoenberg–Eberlein), and it actually turns out that for such B all the
extensions φ : M(A) → M(B) of a homomorphism ϕ : A → B can be
described.

Let A be a commutative Banach algebra. A complex-valued function σ
on ∆(A) is said to satisfy the BSE-condition if there exists C > 0 such that,
for every finite collection c1, . . . , cn of complex numbers and γ1, . . . , γn in
∆(A),

∣∣∣
n∑

j=1

cjσ(γj)
∣∣∣ ≤ C

∥∥∥
n∑

j=1

cjγj

∥∥∥
A∗

.

This condition is motivated by the Bochner–Schoenberg–Eberlein theorem,
which characterizes the Fourier–Stieltjes transforms of measures on a locally
compact abelian group. The algebra A is called a BSE-algebra if the con-
tinuous functions on ∆(A) satisfying the BSE-condition are precisely the

functions of the form T̂ where T ∈M(A).
Recall that, by Theorem 4 and Corollary 5 of [27], a semisimple commu-

tative Banach algebra A with a bounded approximate identity is a BSE-
algebra if every element u ∈ A∗∗ for which the Gelfand transform û :
∆(A) → C is continuous is a multiplier of A, that is, Au ⊆ A [27, The-
orem 4].

Theorem 2.6. Let ϕ : A → B be a homomorphism, and suppose that

B is a BSE-algebra and that Zϕ is open in ∆(B). Then ϕ extends to a

homomorphism from M(A) to M(B).

Proof. Since Zϕ is open in ∆(B), ϕ̂∗∗(e) is a continuous function on
∆(B). Since B is a BSE-algebra, it follows that Bϕ∗∗(e) ⊆ B and this
in turn implies that there exists a homomorphism from M(A) to M(B)
extending ϕ (Theorem 2.1).

Theorem 2.7. Let ϕ : A→ B be a homomorphism and suppose that Zϕ
is open and B is a BSE-algebra. Let φ : M(A) →M(B) be a homomorphism

extending ϕ, and let X be the set of all continuous mappings χ : γ 7→ χγ
from Zϕ into h(A) ∪ {0} ⊆ M(A)∗, where h(A) ∪ {0} is endowed with the

w∗-topology. For each χ ∈ X and T ∈M(A),

φ̂χ(T )(γ) =

{
φ̂(T )(γ) if γ ∈ Eϕ,

χγ(T ) if γ ∈ Zϕ,
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defines an element φχ(T ) of M(B), and the map

φχ : M(A) →M(B), T 7→ φχ(T ),

is a homomorphism extending ϕ. Moreover , the assignment χ 7→ φχ is a

bijection between X and the set of all homomorphisms from M(A) to M(B)
extending ϕ.

Proof. For χ ∈ X and T ∈ M(A), define a function fχ,T on ∆(B) by

fχ,T (γ) = χγ(T ) for γ ∈ Zϕ and fχ,T (γ) = φ̂(T )(γ) for γ ∈ Eϕ. Then
fχ,T is continuous since ∆(B) is the disjoint union of the open sets Zϕ

and Eϕ and the functions γ 7→ χγ(T ) and φ̂(T ) are continuous on Zϕ and
Eϕ, respectively. Since B is a BSE-algebra, there exists a unique element

φχ(T ) ∈M(B) such that φ̂χ(T ) = fχ,T .

It is clear that φ̂(TS)(γ) = φ̂(T )(γ)φ̂(S)(γ) for all T, S ∈M(A) and γ ∈

∆(B) and therefore φχ(TS) = φχ(T )φχ(S). Moreover, for a ∈ A, φ̂χ(a)(γ) =

ϕ̂(a)(γ) for all γ ∈ ∆(B) since φ|A = ϕ, ϕ̂(a)(γ) = 0 for γ ∈ Zϕ and
χγ ∈ h(A). This shows that φχ : T 7→ φχ(T ) is a homomorphism from
M(A) to M(B) extending ϕ.

Obviously, the mapping χ 7→ φχ is injective. Finally, let ψ : M(A) →
M(B) be an arbitrary homomorphism extending ϕ. Let γ ∈ Eϕ. Then, since
ψ|A = φ|A = ϕ and ϕ∗(γ) 6= 0, ψ∗(γ) and φ∗(γ) are elements of ∆(M(A))
which restrict to the same element ϕ∗(γ) of ∆(A), and this implies that
ψ∗(γ) = φ∗(γ). On the other hand, for γ ∈ Zϕ, the function χγ : T 7→

ψ̂(T )(γ) is either zero or an element of ∆(M(A)), which annihilates A since
ϕ∗(γ) = 0. Moreover, the map γ 7→ χγ from Zϕ into h(A)∪{0} is continuous

since the function γ 7→ χγ(T ) = ψ̂(T )(γ) is continuous for every T ∈M(A).
This shows that χ : γ 7→ χγ belongs to X and that ψ = φχ.

Example 1.8 shows that the condition that Zϕ be open in Theorems 2.6
and 2.7 is far from being necessary for the homomorphism ϕ : A → B to
extend to some homomorphism φ : M(A) →M(B).

The Fourier algebras of amenable locally compact groups are known to
be BSE-algebras [9, p. 202, Corollaire 1] and so are the disk algebra and
Hardy algebras [27]. We continue by adding two more classes of examples
to the body of BSE-algebras.

Proposition 2.8. Let A be a semisimple, Tauberian, commutative Ba-

nach algebra with a (not necessarily bounded) approximate identity and let

E be a closed subset of ∆(A). Suppose that Av ⊆ A for every v ∈ A∗∗ such

that v̂ is continuous on ∆(A). Then k(E)u ⊆ k(E) for every u ∈ k(E)∗∗

such that û is continuous on ∆(k(E)). In particular , if k(E) has a bounded

approximate identity , then k(E) is a BSE-algebra.
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Proof. Since A is Tauberian, the ideal J = {a ∈ A : â has compact
support} is dense in A. We claim that the ideal I = k(E) ∩ J is dense in
k(E). To see this, let a ∈ k(E), a 6= 0, and ε > 0 be given. Since A has
an approximate identity and J is dense in A, there exist u ∈ A such that
‖a − au‖ ≤ ε and v ∈ J such that ‖v − u‖ ≤ ε/‖a‖. Then av ∈ I and
‖a− av‖ ≤ 2ε.

Now let u be an element of k(E)∗∗ ⊆ A∗∗ such that û is continuous on
∆(k(E)) = ∆(A) \ E. We have to show that au ∈ k(E) for each a ∈ k(E).

To that end, consider b ∈ I. Since b̂ has compact support and b̂ = 0 on E,

b̂u = b̂û has compact support contained in ∆(A) \E and b̂u is continuous on

∆(A) \E. Moreover, since b̂u = 0 on E, b̂u is continuous on ∆(A) if any net

(γα)α in ∆(A) \E converging to some γ ∈ E satisfies b̂u(γα) → 0. However,

this is clear since b̂ is continuous and vanishes on E and ‖û‖ ≤ ‖u‖.

Since ub ∈ k(E)∗∗ and ûb is continuous on ∆(A), the hypothesis implies

that Aub ⊆ A. Since ûb vanishes on E, uba ∈ k(E) for all a ∈ A. It follows
that ub ∈ A since A has an approximate identity and ‖ux‖ ≤ ‖u‖ · ‖x‖ for
all x ∈ A. This shows that uI ⊆ k(E) and hence uk(E) = uI ⊆ k(E).

We now apply Proposition 2.8 to the Fourier algebraA(G) of an amenable
locally compact group G. Recall that A(G) is semisimple and Tauberian [9]
and has a bounded approximate identity. Moreover, if u ∈ A(G)∗∗, then
there is a bounded net (uα)α in A(G) such that uα(x) → u(x) for all x ∈
G = ∆(A(G)). If, in addition, u is continuous on G then u ∈ B(G) (see [9,
p. 202, Corollaire 1]) and hence A(G)u ⊆ A(G). Thus the following corollary
is an immediate consequence of Proposition 2.8 and [10, Lemma 2.2].

Corollary 2.9. Let G be a locally compact amenable group and E a

closed subset of G such that the ideal k(E) of A(G) has a bounded ap-

proximate identity. Then k(E) is a BSE-algebra. In particular , k(E) is a

BSE-algebra for every E ∈ Rc(G).

In concluding this section we consider L1-algebras of compact commu-
tative hypergroups. We refrain from repeating the definition of a locally
compact hypergroup and instead refer to the literature (see [3] and [26]
and the references therein). Every commutative hypergroup K possesses a
Haar measure [26], and much of the basic theory of L1(K) parallels that of
L1-algebras of locally compact abelian groups.

Example 2.10. Let K be a compact commutative hypergroup such
that K̂, the set of all bounded characters of K, is a hypergroup with respect
to pointwise multiplication. For α ∈ K̂, let γα : L1(K) → C be defined by
γα(f) =

T
K
f(x)α(x) dx, f ∈ L1(K). Then the map α 7→ γα is a homeo-

morphism between K̂ and ∆(L1(K)) when K̂ is endowed with the topology



50 E. Kaniuth et al.

of uniform convergence of characters on K [3, Section 2.2]. We claim that
L1(K) is a BSE-algebra.

To verify this, consider the linear span T (K) of trigonometric polynomi-
als on K, that is, the set of all functions of the form f(x) =

∑n
j=1 cjαj(x),

αj ∈ K̂, cj ∈ C, n ∈ N. Then T (K) is uniformly dense in C(K) (see [3,
Theorem 2.4.5]), and it follows from the orthogonality relations for charac-
ters that every f ∈ T (K) has a unique such decomposition, where the αj
are different and the cj are non-zero. Now, let σ be a continuous function

on K̂ satisfying the BSE-condition. We can define a linear functional L on
T (K) by setting L(f) =

∑n
j=1 cjσ(αj) for f =

∑n
j=1 cjαj ∈ T (K). Then

|L(f)| ≤ C
∥∥∥

n∑

j=1

cjαj

∥∥∥
∞

= C‖f‖∞,

and hence L extends uniquely to a bounded linear functional, also denoted
by L, on C(K). By the Riesz representation theorem, there exists µ ∈M(K)
such that L(f) =

T
K
f(x) dµ(x) for all f ∈ C(K). It follows that µ̂(α) =

L(α) = σ(α) for all α ∈ K̂. Since µ defines a multiplier of L1(K) (in fact,
M(K) identifies canonically with M(L1(K)), see [3, Theorem 1.6.24]), we
conclude that L1(K) is a BSE-algebra.

3. When homomorphisms always extend to multiplier algebras.

Let G be a locally compact group. Then B(G) is a dual Banach space. In
fact, B(G) can be canonically identified with the dual space of the group
C∗-algebra C∗(G) via the pairing 〈u, f〉 =

T
G
f(x)u(x) dx for f ∈ L1(G) and

u ∈ B(G). Moreover, the multiplication of B(G) is separately continuous in
the w∗-topology of B(G). However, there are many other Banach algebras
sharing these properties. Therefore, it is worthwhile to prove an extension
result for homomorphisms into such algebras.

Theorem 3.1. Let A and B be semisimple commutative Banach algebras

such that A has a bounded approximate identity and B is unital. Suppose that

B is the dual space of some Banach space X and that the multiplication of B
is separately σ(B,X)-continuous. Then, for any homomorphism ϕ : A→ B,
we have B = Iϕ ⊕ Jϕ and hence ϕ extends to a homomorphism from M(A)
into B.

Proof. In view of Corollary 2.2 it suffices to show that B = Iϕ ⊕ Jϕ.
Let (eα)α be a bounded approximate identity for A. Then the net ϕ(eα)α,
being bounded in B, has a σ(B,X)-cluster point v in B. After passing to
a subnet if necessary, we can assume that ϕ(eα) → v in σ(B,X). Then, by
hypothesis, bϕ(eα) → bv for every b ∈ B in the topology σ(B,X). Thus

Iϕ = {b ∈ B : bv = b}, Jϕ = {b ∈ B : bv = 0}.
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We next show that v is an idempotent. To see this, let a ∈ A and consider the
net (ϕ(a)ϕ(eα))α in B. Then, on the one hand, ϕ(a)ϕ(eα) → ϕ(a)v, and on
the other hand, ϕ(a)ϕ(eα) = ϕ(aeα) → ϕ(a). This shows that ϕ(a)v = ϕ(a)
for all a ∈ A. In particular, ϕ(eα)v = ϕ(eα) for all α. Passing to the σ(B,X)-
cluster point v, we get v2 = v. The above description of Iϕ and Jϕ now yields
B = Iϕ ⊕ Jϕ.

Since, in proving Theorem 3.1, we have only used Corollary 2.2, it would
have been sufficient to assume that B has a bounded approximate identity
rather than being unital. However, as pointed out by the referee, a Banach
algebra which is a dual space such that the multiplication is w∗-continuous
(such Banach algebras are often termed dual Banach algebras) has to be
unital whenever it has a bounded approximate identity (see [24, Proposition
1.2]). Dual Banach algebras have been studied by several authors (see [25]
and the references therein).

As an immediate consequence of Theorem 3.1 we obtain

Corollary 3.2. Let G be a locally compact group and let A be any

commutative semisimple Banach algebra with bounded approximate identity.

Then every homomorphism ϕ : A → B(G) extends to a homomorphism

φ : M(A) → B(G).

Proof. As mentioned above, B(G) is a dual Banach space and multipli-
cation in B(G) is separately w∗-continuous.

Corollary 3.2 in particular shows that if G and H are locally compact
groups and H is amenable, then every homomorphism from A(H) into B(G)
extends to a homomorphism from B(H) = M(A(H)) into B(G). The reader
should compare this with results on extensions of completely bounded ho-
momorphisms in Section 3 of [15].

Our second application of Theorem 3.1 concerns L1-algebras of commu-
tative hypergroups. There is a wealth of important examples of commuta-
tive, non-compact hypergroups which fail to be groups, and they arise in
several different contexts, of which we just mention two.

Example 3.3. (1) Let G be a locally compact group and H a compact
subgroup of G. Then the set K = G//H of all double cosets HxH, x ∈ G,
is a locally compact hypergroup when endowed with the quotient topology.
The pair (G,H) is called a Gelfand pair if G//H is commutative. Then
L1(G//H) is isomorphic to the subalgebra of L1(G) consisting of all H-
biinvariant functions in L1(G).

Let Hn denote the (2n + 1)-dimensional real Heisenberg group, model
Hn as Cn × R and let the unitary group U(n) act on Cn × R by k · (z, t) =
(k · z, t). Let K be a closed subgroup of U(n) and form the semidirect
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product Gn(K) = Hn ⋊ K. For many such K, for instance U(n) and the
n-dimensional torus T (n), (Gn(K),K) is a Gelfand pair [2].

Both (SL(2,R), SO(2)) and (SL(2,C), SU(2)) are Gelfand pairs. More
generally, if G is a connected semisimple Lie group with finite centre and
K is a maximal compact subgroup of G, then (G,K) is a Gelfand pair [14,
Chapter IV].

(2) Hypergroups with underlying set N0 or R+ arise, for instance, from
sequences of polynomials such as Jacobi polynomials and various kinds of
Sturm–Liouville functions (compare Chapter 3 of [3]).

Corollary 3.4. Let K be a commutative hypergroup, and let A be a

commutative semisimple Banach algebra with bounded approximate identity.

Then every homomorphism ϕ : A → L1(K) extends to a homomorphism

φ : M(A) →M(L1(K)).

Proof. Let M(K) be the Banach algebra of all bounded Radon measures
on K, and for µ ∈M(K), let

Tµ : L1(K) → L1(K), f 7→ f ∗ µ,

be the associated convolution operator. Then the map µ 7→ Tµ is an isomet-
ric isomorphism between M(K) and the multiplier algebra M(L1(K)) [3,
Theorem 1.6.24]. Moreover, the map µ 7→ Fµ, where Fµ(g) =

T
K
g(k) dµ(k)

for g ∈ C0(K), is an isometric isomorphism from M(K) onto C0(K)∗. The
multiplication in M(K) is separately continuous in the w∗-topology, so that
Theorem 3.1 applies.

For the next two lemmas, assume that A and B are semisimple com-
mutative Banach algebras and that A has a bounded approximate identity.
Then, by Cohen’s factorization theorem, the subset

A ·A∗ = {a · f : a ∈ A, f ∈ A∗}

of A∗ is a closed linear subspace of A∗.

Lemma 3.5. Let ϕ : A → B be a homomorphism and suppose that

Bϕ∗∗(e) ⊆ B. Then ϕ∗(B ·B∗) ⊆ A ·A∗.

Proof. Towards a contradiction, assume that for some b ∈ B and g ∈ B∗,
ϕ∗(b ·g) 6∈ A ·A∗. Then, by the Hahn–Banach theorem, there exists m ∈ A∗∗

such that

〈m,ϕ∗(b · g)〉 = 〈ϕ∗∗(m)b, g〉 6= 0,

but 〈ma, f〉 = 0 for all a ∈ A and f ∈ A∗. Thus

ϕ∗∗(m)b 6= 0 and em = lim
α

(eαm) = 0.

Now, em = 0 implies that ϕ∗∗(e)ϕ∗∗(m) = 0 and hence, for every x ∈ Iϕ,

ϕ∗∗(m)x = ϕ∗∗(m)ϕ∗∗(e)x = 0.
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On the other hand, since m = me and ϕ∗∗(m)b 6= 0,

ϕ∗∗(m)ϕ∗∗(e)b = ϕ∗∗(m)b 6= 0.

By Theorem 1.4, b can be written as b = x+ y, where x ∈ Iϕ and y ∈ Jϕ. It
follows that

ϕ∗∗(m)ϕ∗∗(e)b = ϕ∗∗(m)ϕ∗∗(e)x+ ϕ∗∗(m)ϕ∗∗(e)y = ϕ∗∗(m)x = 0.

This contradiction shows that ϕ∗(B ·B∗) ⊆ A ·A∗.

We remind the reader that a commutative Banach algebra A is said to
be Arens regular if A∗∗, equipped with the first Arens product, is commu-
tative. The class of Arens regular algebras is quite large. For instance, it
contains all uniform algebras and Arens regularity is inherited by quotient
algebras and closed subalgebras. We now present another situation in which
the conclusion of Lemma 3.5 can be drawn.

Lemma 3.6. Let ϕ : A → B be a homomorphism such that A/kerϕ is

Arens regular. Then ϕ∗(B ·B∗) ⊆ A ·A∗.

Proof. Note first that since the quotient algebra A∗∗/(kerϕ)∗∗ is isomor-
phic to (A/kerϕ)∗∗ and (A/kerϕ)∗∗ is commutative, for any two elements m
and n of A∗∗, we have mn− nm ∈ (kerϕ)∗∗. Since (kerϕ)∗∗ ⊆ ker(ϕ∗∗), we
get ϕ∗∗(m)ϕ∗∗(n) = ϕ∗∗(n)ϕ∗∗(m). Taking for n a right identity e of A∗∗,
it follows that ϕ∗∗(m) = ϕ∗∗(e)ϕ∗∗(m) = ϕ∗∗(em) for all m ∈ A∗∗. To-
wards a contradiction, assume that there exist b ∈ B and g ∈ B∗ such that
ϕ∗(b · g) 6∈ A · A∗. Now, exactly as in the proof of Lemma 3.5 we see that
there exists q ∈ A∗∗ such that aq = 0 for all a ∈ A and bϕ∗∗(q) 6= 0. Since
the map m 7→ mq of A∗∗ is w∗-continuous, it follows that eq = 0 and hence
ϕ∗∗(q) = ϕ∗∗(eq) = 0. This contradicts bϕ∗∗(q) 6= 0.

Recall that a Banach space E is weakly sequentially complete if every
weak Cauchy sequence in E is weakly convergent.

Proposition 3.7. Suppose that A has a sequential bounded approximate

identity and that B is weakly sequentially complete. Then, for any homo-

morphism ϕ : A → B, Bϕ∗∗(e) ⊆ B if and only if ϕ∗(B · B∗) ⊆ A · A∗. If

this is the case, then ϕ extends to a homomorphism φ : M(A) →M(B).

Proof. In view of Lemma 3.5 we only have to show that ϕ∗(B · B∗) ⊆
A · A∗ implies that Bϕ∗∗(e) ⊆ B. Let (en)n∈N be a bounded approximate
identity for A and let b be an arbitrary element of B. We claim that the
sequence (bϕ(en))n is weakly Cauchy in B. To see this, let f ∈ B∗ be given.
Then

〈bϕ(en), f〉 = 〈ϕ(en), b · f〉 = 〈en, ϕ
∗(b · f)〉.

Since, by hypothesis, ϕ∗(b · f) = a · g for some a ∈ A and g ∈ A∗,

〈en, ϕ
∗(b · f)〉 = 〈en, a · g〉 = 〈aen, g〉 → 〈a, g〉.
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This proves that the sequence (bϕ(en))n is weakly Cauchy in B. Since B is
weakly sequentially complete, (bϕ(en))n converges weakly to some element
b0 of B. On the other hand, the element bϕ∗∗(e) is a w∗-cluster point of
(bϕ(en))n in B∗∗. It follows that b0 = bϕ∗∗(e). Since b was arbitrary, this
proves that Bϕ∗∗(e) ⊆ B. In this case the last claim follows from Theorem
2.1.

As an immediate consequence of Proposition 3.7 and Theorem 2.1 we
obtain

Theorem 3.8. Let A and B be semisimple commutative Banach algebras

with bounded approximate identities. Suppose that B is weakly sequentially

complete and that A has a sequential bounded approximate identity. In addi-

tion, assume that A satisfies A∗ = A ·A∗. Then every homomorphism from

A to B extends to a homomorphism from M(A) to M(B).

Note that A∗ = A·A∗ when, for instance,A is Arens regular [30, Theorem
3.1].

To demonstrate the applicability of Theorem 3.8, we list some classes
of semisimple commutative Banach algebras that are weakly sequentially
complete.

(1) For any locally compact group G, L1(G) and M(G) are weakly se-
quentially complete. Similarly, for any locally compact group G, A(G) and
B(G) are weakly sequentially complete. This follows from the well known
fact that preduals of von Neumann algebras are weakly sequentially com-
plete (see [29, Chapter III, Corollary 5.2]).

(2) For a compact group G and 1 < p < ∞, the Figà-Talamanca–Herz
algebra Ap(G) is weakly sequentially complete. This follows from Lemma 18
of [12].

(3) The projective tensor product A ⊗̂ B of A and B is weakly sequen-
tially complete if both A and B are and at least one of the spaces has an
unconditional basis [20, Théorème 1].

(4) If E is a weakly sequentially complete Banach space, then so is ev-
ery closed subspace F of E. This follows readily from the Hahn–Banach
extension theorem.

As in the previous sections, let A and B be semisimple commutative
Banach algebras, and suppose that both A andB have bounded approximate
identities. Let e ∈ E(A) and u ∈ E(B). Recall that for a ∈ A and f ∈ A∗,
a · f ∈ A∗ is defined by 〈a · f, x〉 = 〈f, ax〉, x ∈ A. We embed M(A) into A∗∗

and M(B) into B∗∗ by

T (a) = a · T ∗∗(e) and S(b) = b · S∗∗(u),

a ∈ A, b ∈ B, respectively. Moreover, suppose that there exists a closed
subspace X of B∗ with the following properties:



Homomorphisms of Banach algebras 55

(1) B ·X ⊆ X and X is w∗-dense in B∗.
(2) X∗ identifies naturally with M(B) in the sense that given any F ∈

X∗, there exists a unique S ∈M(B) such that

〈F, f〉 = 〈S∗∗(u), f〉 (f ∈ X).

Note that B ·X = X since B has a bounded approximate identity. If f ∈ X
is written as f = b · g with b ∈ B and g ∈ X, then

〈S∗∗(u), f〉 = 〈b · S∗∗(u), g〉 = 〈S(b), g〉.

The next theorem is less general than Theorem 3.1, but it has the ad-
vantage of being constructive. This is its main feature.

Theorem 3.9. Let A and B be as before and suppose that there exists

a subspace X of B∗ such that M(B) identifies with X∗ in the above sense.

Then every homomorphism ϕ : A → B extends to a homomorphism φ :
M(A) →M(B).

Proof. For T ∈M(A), define FT : X → C by

FT (f) = 〈ϕ∗∗(T ∗∗(e)), f〉 (f ∈ X).

Since ϕ∗∗(T ∗∗(e)) ∈ B∗∗, FT is a continuous linear functional on X. Thus,
by (2), there exists a unique ST ∈M(B) such that

〈S∗∗

T (u), f〉 = 〈ϕ∗∗(T ∗∗(e)), f〉

for all f ∈ X. We claim that the mapping

φ : M(A) →M(B), T 7→ ST ,

is a homomorphism extending ϕ. The following proof is similar to that of
Theorem 2.1(ii). Notice first that, since B · X ⊆ X, for a ∈ A, b ∈ B and
f ∈ X we have

〈φ(La)(b), f〉 = 〈SLa(b), f〉 = 〈S∗∗

La
(u), b · f〉 = 〈ϕ∗∗(L∗∗

a (e)), b · f〉

= 〈b · ϕ∗∗(L∗∗

a (e)), f〉 = 〈ϕ(a)b, f〉 = 〈Lϕ(a)(b), f〉.

Since X is w∗-dense in B∗, we conclude that φ(La) = Lϕ(a). For T1, T2 ∈
M(A) and b ∈ B, since b · ϕ∗∗(T ∗∗

1 (e)) = ST1
(b) ∈ B,

ST1◦T2
(b) = b · S∗∗

T1◦T2
(u) = b · ϕ∗∗((T1 ◦ T2)

∗∗(e)) = b · ϕ∗∗(T ∗∗

1 (e)T ∗∗

2 (e))

= ST2
(b · ϕ∗∗(T ∗∗

1 (e))) = ST2
(ST1

(b)) = ST1
◦ ST2

(b).

It is very easy to check that ST1+T2
= ST1

+ST2
. Thus φ is a homomorphism

extending ϕ.

The following corollary is an interesting application of Theorem 3.9.

Corollary 3.10. Suppose that A and B are semisimple commutative

Banach algebras with bounded approximate identities and that B is an ideal

in B∗∗. Then every homomorphism ϕ : A → M(B) extends to a homomor-

phism φ : M(A) →M(B).
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Proof. Let X = B ·B∗. Then X is closed and w∗-dense in B∗ since B has
a bounded approximate identity. As above, fix u ∈ E(B) and embed M(B)
into B∗∗ by S(b) = b · S∗∗(u), b ∈ B. Given F ∈ X∗, define S : B → B∗∗ by

〈S(b), f〉 = 〈F, b · f〉, f ∈ B∗, b ∈ B.

If F̃ is any element of B∗∗ extending F , then 〈F, b · f〉 = 〈b · F̃ , f〉 and

b · F̃ ∈ B since B is an ideal in B∗∗. Thus S(B) ⊆ B, and it is easily verified
that S is a multiplier of B and

〈S∗∗(u), b · f〉 = 〈F, b · f〉

for all f ∈ B∗ and b ∈ B.

We finish this section by briefly mentioning two further sets of conditions
on A and B which guarantee that every homomorphism from A into B
extends to a homomorphism from M(A) to M(B).

Theorem 3.11. Suppose that one of the following two conditions is sat-

isfied :

(i) B is Arens regular and weakly sequentially complete.

(ii) A is regular and Arens regular , and B is weakly sequentially com-

plete.

Then, for any homomorphism ϕ : A → B, we have B = Iϕ ⊕ Jϕ and hence

ϕ extends to a homomorphism from M(A) into M(B).

Proof. In view of Corollary 2.2 it suffices to show that B = Iϕ ⊕ Jϕ. If
(i) holds, then by [31, Theorem 3.3] or [6, Theorem 2.9.39], the ideal Iϕ is

unital. If (ii) holds, then the subalgebra ϕ(A) of B is unital by Theorem 4.1
of [31]. Denoting in either case the identity by ε, necessarily the net (ϕ(eα))α
converges to ε in norm. This readily implies that

Iϕ = {b ∈ B : bε = b} and Jϕ = {b ∈ B : bε = 0}.

Since ε is an idempotent, it follows that B = Iϕ ⊕ Jϕ.

4. Homomorphisms from A into A. Several authors have studied
multipliers with closed range on semisimple commutative Banach algebras
A (compare [1], [18], [32] and [33]). In particular, it is shown in [33] that, un-
der a certain assumption on the ideal structure of A, a multiplier T : A→ A
with closed range factors as a product of an idempotent multiplier and an
invertible multiplier. Theorem 4.2 below, which may be viewed as a polar
decomposition theorem, provides an analogous factorization for homomor-
phisms with closed range and will be applied to completely bounded ho-
momorphisms of Fourier algebras of amenable locally compact groups. In
preparation we need the following lemma.



Homomorphisms of Banach algebras 57

Lemma 4.1. Let A be a semisimple commutative Banach algebra with

bounded approximate identity and let ϕ : A→ A be a homomorphism satis-

fying A = Iϕ ⊕ Jϕ. If ϕ(A) is closed in A, then so is ϕ(Iϕ).

Proof. Let (an)n be a sequence in Iϕ such that ϕ(an) → y for some
y ∈ A. As ϕ(A) is closed in A, y = ϕ(a) for some a ∈ A. Let a = b + c be
the decomposition of a in the direct sum A = Iϕ⊕Jϕ. Then an− b ∈ Iϕ and

ϕ(an − b) = ϕ(an) + ϕ(c) − ϕ(a) → ϕ(c).

We claim that ϕ(c) = 0. Indeed, sinceA is semisimple, it suffices to show that
〈ϕ(c), γ〉 = 0 for every γ ∈ ∆(A). Recall from Section 1 that∆(A) = Zϕ∪Eϕ,
Iϕ ⊆ k(Zϕ) and Jϕ = k(Eϕ). Now, if γ ∈ Zϕ then ϕ∗(γ) = 0 and hence
〈ϕ(c), γ〉 = 0. For γ ∈ Eϕ we have to distinguish the two cases: ϕ∗(γ) ∈ Eϕ
and ϕ∗(γ) ∈ Zϕ. In the first case, 〈ϕ(c), γ〉 = 〈c, ϕ∗(γ)〉 = 0 since c ∈ Jϕ. In
the second case, 〈ϕ(an − b), γ〉 = 〈an − b, ϕ∗(γ)〉 = 0 since an − b ∈ Iϕ and
hence 〈ϕ(c), γ〉 = limn→∞〈ϕ(an − b), γ〉 = 0.

Finally, ϕ(c) = 0 implies that ϕ(an) → ϕ(b). Since b ∈ Iϕ, we conclude
that ϕ(Iϕ) is closed in A.

Theorem 4.2. Let A be a semisimple commutative Banach algebra with

bounded approximate identity , and let ϕ : A→ A be a homomorphism such

that A = Iϕ ⊕ Jϕ. Then ϕ decomposes as ϕ = S ◦ ̺, where S : A→ A is an

idempotent multiplier and ̺ is a homomorphism such that ̺∗(γ) 6= 0 for all

γ ∈ ∆(A). Moreover :

(i) If kerϕ ⊆ Jϕ, then ̺ is a one-to-one homomorphism.

(ii) ϕ has closed range if and only if ̺ has closed range.

Proof. Let S : A→ A be the idempotent multiplier with S(A) = Iϕ and
kerS = Jϕ corresponding to the decomposition A = Iϕ ⊕ Jϕ. To ϕ and S
we associate the mapping ̺ : A→ A defined by

̺(a) = ϕ(a) + a− S(a), a ∈ A.

Then, for every a ∈ A, since ϕ(A) ⊆ Iϕ,

S(̺(a)) = S(ϕ(a) + a− S(a)) = ϕ(a).

We claim that ̺ is a homomorphism. Linearity being obvious, let us check
multiplicativity. For a, b ∈ A, we have

aS(b) = S(a)b = S(ab) = S(a)S(b),

since S is an idempotent, and

ϕ(a)S(b) = S(ϕ(a)b) = ϕ(a)S(b) and S(a)ϕ(b) = S(aϕ(b)) = aϕ(b),



58 E. Kaniuth et al.

since ϕ(a)b ∈ Iϕ and aϕ(b) ∈ Iϕ. From these equations, it follows that

̺(a)̺(b) = ϕ(a)ϕ(b) + ϕ(a)b− ϕ(a)S(b) + aϕ(b)

+ ab− aS(b) − S(a)ϕ(b) − S(a)b+ S(a)S(b)

= ϕ(ab) + ab− S(ab) = ̺(ab).

Since S is a multiplier, S∗(γ) = Ŝ(γ)γ for every γ ∈ ∆(A), where Ŝ is the
Gelfand transform of S. Then we get

̺∗(γ) = ϕ∗(γ) + γ − Ŝ(γ)γ, γ ∈ ∆(A).

Since S is an idempotent which is zero on Jϕ and the identity on Iϕ, we

have Ŝ(γ) = 0 if γ ∈ Zϕ and Ŝ(γ) = 1 for γ ∈ Eϕ. This implies that
̺∗(γ) = ϕ∗(γ) for γ ∈ Eϕ and ̺∗(γ) = γ for γ ∈ Zϕ. In particular, ̺∗(γ) 6= 0
for all γ ∈ ∆(A).

Now assume that kerϕ ⊆ Jϕ. To show that ̺ is one-to-one, let a ∈ A
be such that ϕ(a) + a − S(a) = 0. Applying S, we get ϕ(a) = 0 and hence
a ∈ Jϕ by hypothesis. Since ϕ(a) = 0, we get a = S(a), which implies that
a ∈ Iϕ. It follows that a = 0 since Iϕ ∩ Jϕ = {0}. This shows (i).

For (ii), suppose that ϕ has closed range. To show that ̺ has closed
range, let (an)n be a sequence in A such that

̺(an) = ϕ(an) + an − S(an) → a

for some a ∈ A. Applying S, we get ϕ(an) → S(a). Since ϕ(A) is closed in A,
there exists b ∈ A such that S(a) = ϕ(b). Now, for an arbitrary element x of
A, let x = x′ +x′′ be the decomposition of x in the direct sum A = Iϕ⊕ Jϕ.
Then, by the definition of S,

̺(an) = ϕ(an) + a′n + a′′n − S(a′n + a′′n) = ϕ(an) + a′′n,

and hence, since ̺(an) → a and ϕ(an) → S(a),

̺(a′′n) = ̺(̺(an) − ϕ(an)) → ̺(a− S(a)) = ̺(a− ϕ(b)).

This in turn implies that

ϕ(a′n) = ̺(a′n) = ̺(an) − ̺(a′′n)

converges. Since a′n ∈ Iϕ and the range of ϕ is closed by hypothesis, by
the preceding lemma there exists c ∈ Iϕ such that ̺(a′n) → ϕ(c) = ̺(c). It
follows that

̺(an) = ̺(a′n) + ̺(a′′n) → ̺(c) + ̺(a− ϕ(b)) = ̺(c+ a− ϕ(b)),

as required.
Conversely, if ̺ has closed range, then so does ϕ = S ◦ ̺ since S is an

idempotent.

Let G be an amenable locally compact group. Given any homomorphism
ϕ : A(G) → A(G), by Theorem 3.1 there exists an idempotent u ∈ B(G)
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such that Iϕ = A(G)u, and conversely, given an idempotent u ∈ B(G),
the homomorphism ϕ : v 7→ vu has the property that Iϕ = A(G)u. If
the homomorphism is completely bounded, we have a more precise result
(Corollary 4.3 below). Before passing on to this, we briefly recall the no-
tion of a completely bounded homomorphism. A linear map T : C → D
between C∗-algebras is completely bounded if all its amplifications T (n) :
Mn(C) → Mn(D), defined by T (n)([cij]) = [T (cij)], give a bounded family
of norms ‖T (n)‖, n ∈ N. Now, A(G) being the predual of the group von
Neumann algebra VN(G), a homomorphism ϕ : A(G) → A(G) is called
completely bounded if ϕ∗ : VN(G) → VN(G) is completely bounded. When
G is amenable, in Theorem 3.13 of [15] the range of a completely bounded
homomorphism has been identified as the set

Lϕ = {a ∈ Iϕ : for γ1, γ2 ∈ Eϕ, ϕ
∗(γ1) = ϕ∗(γ2) ⇒ â(γ1) = â(γ2)}.

This description shows that the range of ϕ is closed and it generalizes con-
siderably the corresponding result for homomorphisms between L1-algebras
of locally compact abelian groups [16].

Corollary 4.3. Let G be an amenable locally compact group and let

ϕ : A(G) → A(G) be a homomorphism such that kerϕ ⊆ Jϕ. Then:

(i) Suppose that ϕ has closed range. Then ϕ is of the form ϕ(u) =
w̺(u), u ∈ A(G), where w is an idempotent in B(G) and ̺ : A(G) →
A(G) is a one-to-one homomorphism with closed range.

(ii) If ϕ is completely bounded , then ̺ can be chosen to be completely

bounded and hence to have closed range.

Proof. (i) If we view ϕ as a homomorphism, ψ say, of A(G) into B(G),
Theorem 3.1 shows that

B(G) = Iψ ⊕ Jψ = B(G)u⊕B(G)(1 − u),

where u is a w∗-cluster point of the net (ϕ(eα))α. This implies that

A(G) = A(G)u⊕A(G)(1 − u) = Iϕ ⊕ Jϕ,

and hence Theorem 4.2 applies.
(ii) Let w be the idempotent in B(G) corresponding to the decomposition

A(G) = Iϕ ⊕ Jϕ. Then Iϕ = A(G)w and Jϕ = A(G)(1 − w). Now, let ̺ be
defined as in the proof of Theorem 4.2, that is, ̺(u) = ϕ(u) + u− uw, u ∈
A(G). Then ̺ is completely bounded since both ϕ and the homomorphism
u 7→ uw are completely bounded. Moreover, since ϕ has closed range, so
does ̺ by Theorem 4.2.

Remark 4.4. Let A be a semisimple commutative Banach algebra with
bounded approximate identity, and let ϕ : A → A be a homomorphism
with closed range such that A = Iϕ⊕ kerϕ. The same proof as for Theorem
4.2 shows that ϕ factors as ϕ = S ◦ ̺ where S is an idempotent multiplier
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and ̺ : A → A is a one-to-one homomorphism with closed range such that
̺∗(γ) 6= 0 for all γ ∈ ∆(A).

In the following we characterize certain properties of a homomorphism
ϕ : A→ A in terms of the set Eϕ and the adjoint mapping ϕ∗.

Lemma 4.5. Let ϕ : A → A be a homomorphism and suppose that A is

regular. Then:

(i) kerϕ = Jϕ if and only if ϕ∗(Eϕ) = Eϕ.
(ii) ϕ is injective if and only if ϕ∗(Eϕ) = ∆(A).

Proof. Recall that by Lemma 1.2(ii), ϕ∗(Eϕ) is closed in ∆(A) and
k(ϕ∗(Eϕ)) = kerϕ. Thus, since Jϕ = k(Eϕ) (Lemma 1.2(i)), Jϕ = kerϕ
if and only if k(Eϕ) = k(Eϕ) = k(ϕ∗(Eϕ)), and this in turn is equivalent to
Eϕ = ϕ∗(Eϕ) since A is regular. This shows (i).

As for (ii), if ϕ∗(Eϕ) = ∆(A) then kerϕ = k(∆(A)) = {0} since A is
semisimple. Conversely, if {0} = kerϕ = k(ϕ∗(Eϕ)) then ϕ∗(Eϕ) = ∆(A)
since ϕ∗(Eϕ) is closed in ∆(A) and A is regular.

Lemma 4.6. Let ϕ : A→ A be a homomorphism satisfying Iϕ⊕Jϕ = A,
and let

Lϕ = {a ∈ Iϕ : for γ1, γ2 ∈ Eϕ, ϕ
∗(γ1) = ϕ∗(γ2) ⇒ â(γ1) = â(γ2)}.

Then:

(i) Lϕ = Iϕ if and only if ϕ∗ is one-to-one on Eϕ.
(ii) Lϕ = A if and only if Eϕ = ∆(A) and ϕ∗ is one-to-one on ∆(A).

Proof. (i) Suppose first that Lϕ = Iϕ and let γ1, γ2 ∈ Eϕ be such that
ϕ∗(γ1) = ϕ∗(γ2). Then either both γ1 and γ2 are in Eϕ or both belong
to Zϕ. In the first case, γ1 = γ2 by hypothesis and hence â(γ1) = â(γ2). In
the second case, ϕ∗(γ1) = ϕ∗(γ2) = 0 and this implies

â(γj) = lim
α
â(γj)ϕ

∗(γj)(eα) = 0

for j = 1, 2. This shows that a ∈ Lϕ.

(ii) If Lϕ = A then Iϕ = A and hence Zϕ = h(Iϕ) = ∅, so that Eϕ =
∆(A). If γ1, γ2 ∈ Eϕ are such that ϕ∗(γ1) = ϕ∗(γ2) then, by hypothesis,
â(γ1) = â(γ2) for all a ∈ A, whence γ1 = γ2.

Conversely, let Eϕ = ∆(A) and let ϕ∗ be one-to-one on ∆(A). Then,
by (i), Lϕ = Iϕ. Moreover, Jϕ = k(Eϕ) = {0} since A is semisimple and
hence Lϕ = Iϕ ⊕ Jϕ = A.

Let ϕ : A → A be a homomorphism. To avoid long paraphrasing, let
us say that ϕ is similar to a multiplier T : A → A if ϕ(A) = T (A) and
kerϕ = kerT .
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Corollary 4.7. Let G be an amenable locally compact group and ϕ :
A(G) → A(G) a completely bounded homomorphism. Then:

(i) ϕ is similar to an idempotent multiplier if and only if ϕ∗ is one-to-

one on the set Eϕ = {x ∈ G : ϕ∗(γx) 6= 0} and ϕ∗(Eϕ) = Eϕ.
(ii) ϕ is surjective if and only if Eϕ = G and ϕ∗ is one-to-one on G.

(iii) ϕ is injective if and only if ϕ∗(Eϕ) = G.

Proof. Suppose ϕ∗ is one-to-one on the set Eϕ and ϕ∗(Eϕ) = Eϕ. Then
Lϕ = Iϕ by Lemma 4.6(i), and hence ϕ(A(G)) = Iϕ. Since Iϕ⊕ Jϕ = A(G),
the set Eϕ is closed. Since by hypothesis ϕ∗(Eϕ) = Eϕ, Lemma 4.5(i) shows
that kerϕ = Jϕ. Now both ϕ(A(G)) = Iϕ and kerϕ = Jϕ are closed ideals
and Iϕ ⊕ Jϕ = A(G). Hence any projection inducing this decomposition is
an idempotent multiplier. So ϕ is similar to an idempotent multiplier on
A(G). The reverse implication is obvious.

The assertions (ii) and (iii) are immediate consequences of Lemmas 4.5
and 4.6.

When G is abelian, every homomorphism of L1(G) = A(Ĝ) is completely
bounded, and hence Corollaries 4.3 and 4.7 apply to homomorphisms from
L1(G) into L1(G).
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