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Banah spaes of bounded Szlenk indexbyE. Odell (Austin, TX), Th. Shlumpreht (College Station, TX)and A. Zsák (Nottingham)Abstrat. For a ountable ordinal α we denote by Cα the lass of separable, re�exiveBanah spaes whose Szlenk index and the Szlenk index of their dual are bounded by α.We show that eah Cα admits a separable, re�exive universal spae. We also show thatspaes in the lass Cωα·ω embed into spaes of the same lass with a basis. As a onsequenewe dedue that eah Cα is analyti in the E�ros�Borel struture of subspaes of C[0, 1].1. Introdution. A well known result that dates bak to the early daysof Banah spae theory [4, Théorème 9, p. 185℄ states that every separableBanah spae embeds into C[0, 1], i.e., that C[0, 1] is universal for the lassof all separable Banah spaes. Peªzy«ski [23℄ re�ned this result by showingthat there are Banah spaes X with a basis and Xu with an unonditionalbasis suh that every spae with a basis or with an unonditional basis isisomorphi to a omplemented subspae of X or Xu, respetively.By a famous result of Szlenk [26℄, there is no separable re�exive Banahspae X whih ontains isomorphially all separable re�exive Banah spaes.Bourgain [7℄ sharpened this result by showing that a separable Banah spaewhih ontains all separable re�exive Banah spaes must ontain C[0, 1]and, thus, all separable Banah spaes. An isometri relative of Bourgain'sresult has reently been shown by Kalton and Godefroy [13℄: if a separableBanah spae ontains an isometri opy of every separable stritly onvexBanah spae, then it is isometrially universal. Szlenk proved his result byintroduing for a Banah spae X an ordinal index Sz(X) (see Setion 5below) whih is ountable if and only if X has a separable dual and ishereditary (if Y embeds in X, then Sz(Y ) ≤ Sz(X)). Moreover he showedthat for any ountable ordinal α there is a separable re�exive spae X forwhih Sz(X) > α. Bourgain ahieved his result by introduing an index2000 Mathematis Subjet Classi�ation: 46B20, 54H05.Key words and phrases: Szlenk index, universal spae, embedding into FDDs, E�ros�Borel struture, analyti lasses.Researh of the �rst two authors was supported by the National Siene Foundation.[63℄ © Instytut Matematyzny PAN, 2007



64 E. Odell et al.whih measures how well �nite setions of the Shauder basis of C[0, 1] embedin X, and then he proved statements analogous to Szlenk's approah.Bourgain then raised the question whether there is a separable, re�exivespae that ontains isomorphially all uniformly onvex Banah spaes. Thisproblem was solved reently by the �rst two authors. It was proven in [20℄that if X is a separable, uniformly onvex Banah spae, then there exist
1 < q ≤ p < ∞ and a re�exive spae Z with an FDD (�nite-dimensional de-omposition) (En) so that X embeds into Z and (En) satis�es blok (ℓp, ℓq)-estimates. This means that for some C we have
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for any blok sequene (zi) of (En). In fat this holds (see [21, Theorems 3.4and 4.1℄) if we merely know that
X ∈ Cω = {Y : Y is separable, re�exive, Sz(Y ) ≤ ω, Sz(Y ∗) ≤ ω}.Using then a result of S. Prus [24℄, who solved Bourgain's question within thelass of Banah spaes with FDDs, we dedue that there exists a universalre�exive spae Z for the lass Cω, and in fat Z ∈ Cω2 .Inspired by the results of [20℄, A. Peªzy«ski raised the question whethera similar result ould be proved for the lasses Cα, where α < ω1 and where

Cα is de�ned analogously to the lass Cω. This would mean that, althoughthe lass of separable, re�exive spaes has no universal element, it is the(neessarily unountable) inreasing union of lasses whih are losed undertaking duals, and for whih universal separable, re�exive spaes do exist. Inthis paper we answer this in the a�rmative.As in the proof in [20℄, we will redue the universality problem to an em-bedding problem. We will show that any member of Cα, α < ω1, embeds intosome element of Cβ whih has a basis, where α ≤ β < ω1 depends on α. Thisresult an be seen as a quantitative version of Zippin's seminal theorem [28℄that every separable re�exive spae embeds into one with a basis. In light ofour embedding result we then only need to show that the lass of elementsin Cα with a basis admits a universal separable, re�exive spae. Let us men-tion here a di�erent quantitative version of Zippin's theorem by Bossard [5℄:for every α < ω1 there exists β < ω1 suh that every separable spae withSzlenk index at most α embeds into a Banah spae with shrinking basis andwith Szlenk index at most β. Our embedding result is very di�erent, sinethe Szlenk index of a separable spae does not ontrol the Szlenk index ofits dual.Our approah depends on showing that if X is a spae with separable dualand if Sz(X) ≤ ωα·ω for some α < ω1, then X satis�es �subsequential upper
Tα,c estimates�, where Tα,c is the Tsirelson spae de�ned by the Shreier lass
Sα and a parameter c ∈ (0, 1) (the de�nitions of Sα and Tα,c will be realled



Banah spaes of bounded Szlenk index 65in Setion 3). Subsequential upper Tα,c estimates an be expressed in termsof a game played as follows. Player (I) starts by hoosing X1 ∈ cof(X),the set of all �nite-odimensional subspaes of X, and an integer k1 ∈ N.Player (II) then responds by seleting x1 ∈ SX1 , the unit sphere of X1.Then (I) hooses X2 ∈ cof(X) and k2 ∈ N, and (II) hooses x2 ∈ SX2 , et.The spae X satis�es subsequential upper Tα,c estimates if for some C < ∞Player (I) has a winning strategy to fore (II) to selet (xi) satisfying∥∥∥
∑

aixi

∥∥∥
X

≤ C
∥∥∥

∑
aitki

∥∥∥
Tα,cfor all (ai) ⊂ R, where (ti) is the unit vetor basis of Tα,c. These gamesare a variation of those introdued in [19℄ and were de�ned and analysedin [22℄. Using the results therein we ultimately prove the following struturetheorem.Theorem A. Let α < ω1. For a separable, re�exive spae X the follow-ing are equivalent :(i) X ∈ Cωα·ω .(ii) X embeds into a separable, re�exive spae Z with an FDD (Ei) whihsatis�es subsequential (T ∗

α,c, Tα,c) estimates in Z for some c ∈ (0, 1).In part (ii) �subsequential (T ∗
α,c, Tα,c) estimates� mean the following: thereexists C < ∞ suh that if (zi) is a blok sequene of (En) with min supp(zi)

= ki, then
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.Of ourse the impliation �(ii)⇒(i)� shows that the spae Z lies in the samelass Cωα·ω as X does.Roughly speaking, the Tsirelson spaes Tα,c of order α form a sort ofupper envelope and their duals T ∗
α,c form a lower envelope for the entirelass Cωα·ω . Moreover, sine the spaes Tα,c also belong to the lass Cωα·ω ,this result is best possible.From Theorem A and the main result of [22℄ (see Theorem 1 below) wewill then dedue the following embedding and universality result.Theorem B. For eah α < ω1 every Banah spae in the lass Cωα·ωembeds into a spae Z with a basis that lies in the same lass Cωα·ω as Xdoes.Theorem C. For eah α < ω1 there is an element of Cωα·ω+1 with abasis whih is universal for the lass Cωα·ω .Our strutural result, Theorem A, will be proved in Setion 6 togetherwith some more general strutural results (Theorem 21, Corollary 20). Wewill then dedue FDD versions (see Theorem 23) of our embedding result,



66 E. Odell et al.Theorem B, and our universality result, Theorem C. A result of W. B. John-son [14℄ allows us to replae FDDs by bases in our onlusions (see Theo-rem 24 and the proof of Theorems B and C thereafter). In Setions 2 to 5we present the relevant notation and bakground material: the embeddingtheorem from [22℄, Tsirelson spaes, general ordinal indies and the Szlenkindex. Eah of these setions begins with a brief summary of its ontents.There is a ompletely di�erent approah to universality problems thatuses tools of desriptive set theory. There have been some remarkable ahie-vements in Banah spae theory using suh tehniques, inluding solutions ofuniversality problems [2, 11℄. However, in order to takle Peªzy«ski's ques-tion with this approah, one would need the lasses Cα to be analyti and thiswas not known. Note that if we knew the funtion max{Sz(X), Sz(X∗)} to bea o-analyti rank on the lass of separable, re�exive spaes, then we oulddedue that the lasses Cα are in fat Borel. Whether max{Sz(X), Sz(X∗)}is a o-analyti rank is still an open problem: it is mentioned by Bossardin [6℄, where he shows that this funtion is a o-analyti rank on the lass ofbases of re�exive spaes. Our results, however, now do show the following.Theorem D. For eah ountable ordinal α the lass Cα is analyti inthe E�ros�Borel struture of losed subspaes of C[0, 1].If α is of the form ωη·ω for some η < ω1, then Theorem D follows from ourmain results and from standard fats in desriptive set theory (as pointed outto us by C. Rosendal). This, ombined with a reent result of P. Dodos [10℄onerning analytiity of duals of analyti lasses, then gives the generalase. We present this result in the �nal setion of our paper. We are gratefulto P. Dodos, V. Ferenzi and C. Rosendal for showing us the desriptive-set-theoreti impliations of our results.Let us now mention some open problems. The �rst one asks if Theorem Can be sharpened.Problem. Is there a universal element of Cωα·ω for eah α < ω1?We do know that there is no spae Z in Cωα·ω suh that for some K > 0every spae in Cωα·ω K-embeds into Z (see the Remark following Theo-rem 22). We also know that the answer to the above question is negative ifthe Tsirelson spaes Tα,c are of bounded distortion with onstant D indepen-dent of c ∈ [1/2, 1). Of ourse, it is a famous, long standing open problemwhether even the Tsirelson spae T1,1/2 is of bounded distortion.It is known that one only needs to onsider lasses Cα where α is of theform ωη for some η < ω1 (Theorem 12 in Setion 5). In Setion 6 we obtainembedding and universality results for these general lasses (Theorem 22).However, these are not quite as sharp as Theorems B and C above. Thisleads to the following questions.



Banah spaes of bounded Szlenk index 67Problem. Is it true that , given α < ω1, every spae in Cωα embeds intoa spae with a basis of the same lass?Is there a universal element of Cωα for eah α < ω1?2. Embeddings into spaes with FDDs. In this setion we statean embedding theorem from [22℄ (Theorem 1 below). This requires a fairamount of de�nitions. Muh of this will be used throughout the paper.Let Z be a Banah spae with an FDD E = (En). For n ∈ N we denoteby PE
n the nth oordinate projetion, i.e., PE

n : Z → En is the map de�nedby ∑
i zi 7→ zn, where zi ∈ Ei for all i ∈ N. For a �nite set A ⊂ N we put

PE
A =

∑
n∈A PE

n . The projetion onstant K(E, Z) of (En) (in Z) is de�nedby
K = K(E, Z) = sup

m≤n
‖PE

[m,n]‖,where [m, n] denotes the interval {m, m + 1, . . . , n} in N. Reall that K isalways �nite and, as in the ase of bases, we say that (En) is bimonotone(in Z) if K = 1. By passing to the equivalent norm
||| · |||: Z → R, z 7→ sup

m≤n
‖PE

[m,n](z)‖,we an always renorm Z so that K = 1.A sequene (Fn) of �nite-dimensional spaes is alled a bloking of (En)if for some sequene m1 < m2 < · · · in N we have Fn =
⊕mn

j=mn−1+1 Ej forall n ∈ N (m0 = 0). Note that if E = (En) is an FDD of a Banah spae Z,and if F = (Fn) is a bloking of (En), then (Fn) is also an FDD for Z with
K(F, Z) ≤ K(E, Z).For a sequene (Ei) of �nite-dimensional spaes we de�ne the vetor spae
c00

( ∞⊕

i=1

Ei

)
= {(zi) : zi ∈ Ei for all i ∈ N, and {i ∈ N : zi 6= 0} is �nite},whih is dense in eah Banah spae for whih (Ei) is an FDD. For a set

A ⊂ N we denote by ⊕
i∈A Ei the linear subspae of c00(

⊕
Ei) generatedby the elements of ⋃

i∈A Ei. As usual we denote by c00 the vetor spaeof sequenes in R whih are eventually zero. We will sometimes onsiderfor the same sequene (Ei) of �nite-dimensional spaes di�erent norms on
c00(

⊕
Ei). In order to avoid onfusion we will therefore often index the normby the Banah spae whose norm we are using, i.e., ‖ · ‖Z denotes the normof the Banah spae Z.If Z has an FDD (Ei), then the vetor spae c00(

⊕∞
i=1 E∗

i ), where E∗
i isthe dual spae of Ei for eah i ∈ N, an be identi�ed in a natural way witha w∗-dense subspae of Z∗. Note however that the embedding E∗

i →֒ Z∗ is,in general, not isometri unless K = 1. We will always onsider E∗
i with the



68 E. Odell et al.norm it inherits from Z∗ instead of the norm it has as the dual spae of Ei.We denote the norm losure of c00(
⊕∞

i=1 E∗
i ) in Z∗ by Z(∗). Note that Z(∗)is w∗-dense in Z∗, the unit ball BZ(∗) norms Z, and (E∗

i ) is an FDD of Z(∗)having a projetion onstant not exeeding K(E, Z). If K(E, Z) = 1, then
BZ(∗) is 1-norming for Z and Z(∗)(∗) = Z.For z ∈ c00(

⊕
Ei) we de�ne the support suppE(z) of z with respet to

(Ei) by
suppE(z) = {i ∈ N : PE

i (z) 6= 0}.A sequene (zi) (�nite or in�nite) of non-zero vetors in c00(
⊕

Ei) isalled a blok sequene of (Ei) if
max suppE(zn) < min suppE(zn+1) for n ∈ N (or n < length(zi)).A blok sequene (zi) of (Ei) is alled normalized (in Z) if ‖zn‖Z = 1 forall n.Let δ = (δi) ⊂ (0, 1) with δi ↓ 0. A (�nite or in�nite) sequene (zi) in SZis alled a δ-blok sequene of (Ei) if there exists a sequene 0 ≤ k0 < k1 <

k2 < · · · in N suh that
‖zn − PE

(kn−1,kn](zn)‖ < δn for all n ∈ N (or n ≤ length(zi)).Definition. Given two sequenes (ei) and (fi) in some Banah spaes,and given a onstant C > 0, we say that (fi) C-dominates (ei), or that (ei)is C-dominated by (fi), if
∥∥∥

∑
aiei

∥∥∥ ≤ C
∥∥∥

∑
aifi

∥∥∥ for all (ai) ∈ c00.We say that (ei) and (fi) are C-equivalent if there exist positive onstants Aand B with A · B ≤ C suh that (fi) A-dominates (ei) and is B-dominatedby (ei).We say that (fi) dominates (ei), or that (ei) is dominated by (fi), if thereexists a onstant C > 0 suh that (fi) C-dominates (ei). We say that (ei)and (fi) are equivalent if they are C-equivalent for some C > 0.We shall now introdue ertain lower and upper norm estimates forFDDs.Definition. Let Z be a Banah spae with an FDD (En), let V be a Ba-nah spae with a normalized, 1-unonditional basis (vi) and let 1≤C <∞.We say that (En) satis�es subsequential C-V -lower estimates (in Z) ifevery normalized blok sequene (zi) of (En) in Z C-dominates (vmi), where
mi = min suppE(zi) for all i ∈ N, and (En) satis�es subsequential C-V -upper estimates (in Z) if every normalized blok sequene (zi) of (En) in Zis C-dominated by (vmi), where mi = min suppE(zi) for all i ∈ N.



Banah spaes of bounded Szlenk index 69If U is another spae with a normalized and 1-unonditional basis (ui), wesay that (En) satis�es subsequential C-(V, U) estimates (in Z) if it satis�essubsequential C-V -lower and C-U -upper estimates in Z.We say that (En) satis�es subsequential V -lower , U -upper or (V, U) es-timates (in Z) if for some C ≥ 1 it satis�es subsequential C-V -lower, C-U -upper or C-(V, U) estimates in Z, respetively.We shall need a oordinate-free version of subsequential lower and upperestimates. This an be done in terms of a game as desribed in the Introdu-tion. Another way uses in�nite, ountably branhing trees, and this is whatwe shall follow here. For l ∈ N we de�ne
Tl = {(n1, . . . , nl) : n1 < · · · < nl are in N}and

T∞ =
∞⋃

l=1

Tl, T even
∞ =

∞⋃

l=1

T2l.An even tree in a Banah spae X is a family (xα)α∈T even
∞

in X. Sequenesof the form (x(α,n))n>n2l−1
, where l ∈ N and α = (n1, . . . , n2l−1) ∈ T∞, arealled nodes of the tree. For a sequene n1 < n2 < · · · of positive integersthe sequene (x(n1,...,n2l))

∞
l=1 is alled a branh of the tree.An even tree (xα)α∈T even
∞

in a Banah spae X is alled normalized if
‖xα‖ = 1 for all α ∈ T even

∞ , and weakly null if every node is a weakly nullsequene. If X has an FDD (En), then (xα)α∈T even
∞

is alled a blok even treeof (En) if every node is a blok sequene of (En).Definition. Let V be a Banah spae with a normalized and 1-unon-ditional basis (vi), and let C ∈ [1,∞). Let X be an in�nite-dimensionalBanah spae. We say that X satis�es subsequential C-V -lower tree esti-mates if every normalized, weakly null even tree (xα)α∈T even
∞

in X has abranh (x(n1,...,n2i)) whih C-dominates (vn2i−1).We say that X satis�es subsequential C-V -upper tree estimates if everynormalized, weakly null even tree (xα)α∈T even
∞

in X has a branh (x(n1,...,n2i))whih is C-dominated by (vn2i−1).If U is a seond spae with a 1-unonditional and normalized basis (ui),we say that X satis�es subsequential C-(V, U) tree estimates if it satis�essubsequential C-V -lower and C-U -upper tree estimates.We say that X satis�es subsequential V -lower , U -upper or (V, U) treeestimates if, for some 1 ≤ C < ∞, X satis�es subsequential C-V -lower,
C-U -upper or C-(V, U) tree estimates, respetively.We next de�ne some properties of bases whih appear in the statementof Theorem 1.



70 E. Odell et al.Definition. Let V be a Banah spae with a normalized, 1-unonditio-nal basis (vi) and let 1 ≤ C < ∞. We say that (vi) is C-blok-stable if anytwo normalized blok bases (xi) and (yi) with
max(supp(xi) ∪ supp(yi)) < min(supp(xi+1) ∪ supp(yi+1)) for all i ∈ Nare C-equivalent. We say that (vi) is blok-stable if it is C-blok-stable forsome onstant C.We say that (vi) is C-right-dominant (respetively, C-left-dominant) iffor all sequenes m1 < m2 < · · · and n1 < n2 < · · · of positive integers with

mi ≤ ni for all i ∈ N, (vmi) is C-dominated by (respetively, C-dominates)
(vni). We say that (vi) is right-dominant or left-dominant if for some C ≥ 1it is C-right-dominant or C-left-dominant, respetively.We are now ready to state the main embedding theorem from [22℄ whihwe shall use in the proofs of the main results of this paper.Let V and U be re�exive spaes with normalized, 1-unonditional, blok-stable bases (vi) and (ui), respetively, suh that (vi) is left-dominant, (ui) isright-dominant and (vi) is dominated by (ui). For eah C ∈ [1,∞) let
AV,U (C) denote the lass of all separable, in�nite-dimensional, re�exive Ba-nah spaes that satisfy subsequential C-(V, U)-tree estimates. We also let

AV,U =
⋃

C∈[1,∞)

AV,U (C),whih is the lass of all separable, in�nite-dimensional, re�exive Banahspaes that satisfy subsequential (V, U)-tree estimates.Theorem 1 ([22℄). The lass AV,U ontains a universal element. Morepreisely , for all B, D, L, R ∈ [1,∞) there exists a onstant C = C(B, D) ∈
[1,∞) and for all C ∈ [1,∞) there is a onstant K(C) = KB,D,L,R(C) ∈
[1,∞) suh that if (vi) is B-blok-stable and L-left-dominant , if (ui) is B-blok-stable and R-right-dominant , and if (vi) is D-dominated by (ui), thenthere exists Z ∈ AV,U suh that every X ∈ AV,U (C) K(C)-embeds into Z,and moreover Z has a bimonotone FDD satisfying subsequential C-(V, U)estimates in Z.At some point we shall also need the following duality result.Proposition 2 ([22℄). Assume that U is a spae with a normalized ,
1-unonditional basis (ui) whih is R-right-dominant for some R ≥ 1, andthat X is a re�exive spae whih satis�es subsequential C-U -upper tree es-timates for some C ≥ 1. Then, for any ε > 0, X∗ satis�es subsequential
(2CR + ε)-U (∗)-lower tree estimates.3. Tsirelson spaes. When we apply Theorem 1 we shall take U = Tα,the Tsirelson spae of order α with parameter 1/2, and V = T ∗

α, the dual



Banah spaes of bounded Szlenk index 71of Tα. In this setion we reall the de�nition and some of the propertiesof Tα. At the end we will state a ombinatorial priniple whih will be usedlater on.We begin with some preliminary de�nitions. We shall write [N]<ω for theset of all �nite subsets of N, and [N]ω for the set of all in�nite subsets of N.These two families will be given the produt topology as subsets of {0, 1}N.A family F ⊂ [N]<ω is alled hereditary if A ∈ F whenever A ⊂ B and
B ∈ F , and F is alled ompat if it is ompat in the produt topology.Note that a hereditary family is ompat if and only if it ontains no stritlyasending hains. A family F ⊂ [N]<ω is alled thin if, for all A, B ∈ F ,from A ⊂ B it follows that A = B, i.e., F ontains no two omparable (withrespet to inlusion) elements.Given n, a1 < · · · < an, b1 < · · · < bn in N we say that {b1, . . . , bn} isa spread of {a1, . . . , an} if ai ≤ bi for i = 1, . . . , n. A family F ⊂ [N]<ω isalled spreading if every spread of every element of F is also in F . This is anappropriate plae to make the onvention that the elements of a subset of Nwill always be written in inreasing order. So, for example, when we write
{m1, . . . , mk} ∈ [N]<ω, it is impliitly assumed that m1 < · · · < mk.For F ⊂ [N]<ω we write MAX(F) for the set of maximal (with respetto inlusion) elements of F . Note that MAX(F) is always a thin family.For subsets A and B of N we write A < B if a < b for all a ∈ A and
b ∈ B. For n ∈ N and A ⊂ N we write n < A if {n} < A. A (�nite or in�nite)sequene A1, A2, . . . of subsets of N is alled suessive if A1 < A2 < · · · .Given a family F ⊂ [N]<ω, a sequene A1, . . . , Ak of non-empty, �nite subsetsof N is alled F-admissible if it is suessive and {minA1, . . . , minAk} ∈ F .We next reall the de�nitions of the Shreier families Sα and the �neShreier families Fα, where α is a ountable ordinal. We �rst �x for everylimit ordinal λ a sequene (αn) of ordinals with 1 ≤ αn ր λ. We now de�nethe �ne Shreier families (Fα)α<ω1 by reursion:

F0 = {∅},
Fα+1 = {{n} ∪ A : n ∈ N, A ∈ Fα, n < A} ∪ {∅},

Fλ = {A ∈ [N]<ω : ∃n ≤ minA, A ∈ Fαn},where in the last line λ is a limit ordinal and αn ր λ is the sequene ofordinals �xed in advane. An easy indution shows that Fα is a ompat,hereditary and spreading family for all α < ω1. Moreover, (Fα)α<ω1 is an�almost� inreasing hain:
∀α ≤ β < ω1 ∃n ∈ N ∀F ∈ Fα, if n ≤ minF , then F ∈ Fβ.(1)This an be proved by an easy indution on β. We also note that for A ∈

Fα \ MAX(Fα) we have A ∪ {n} ∈ Fα for all n > maxA.



72 E. Odell et al.The Shreier families an now be de�ned by setting Sα = Fωα for all
α < ω1. This is not exatly how the Shreier families are usually de�ned,but it gives the same families provided we are more areful when hoosingthe sequenes (αn) with 1 ≤ αn ր λ for limit ordinals λ (these hoiesshould depend on the hoies made when de�ning the Shreier families inthe usual way). At any rate, what matters is that eah Sα be a ompat,hereditary and spreading family with Cantor�Bendixson index ωα+1 (see (2)in Setion 4). Note that S1 is the usual Shreier family S given by

S = {A ∈ [N]<ω : |A| ≤ minA}(provided that for λ = ω we hose the sequene αn = n).As usual we denote by (ei) the anonial (algebrai) basis of the vetorspae c00 of all eventually zero salar sequenes. For x =
∑

xiei ∈ c00 andfor A ⊂ N we write Ax for the obvious projetion of x onto span{ei : i ∈ A}:
Ax =

∑

i∈A

xiei.We are now ready to reall the de�nitions of ertain Tsirelson type spaes.For a ompat, hereditary family F ⊂ [N]<ω and for c ∈ (0, 1) there is aunique least norm on c00, denoted by ‖ · ‖F ,c, suh that
‖x‖F ,c = ‖x‖∞ ∨ c · sup

{ n∑

i=1

‖Aix‖F ,c : n ∈ N, A1, . . . , An is F -admissible}for all x ∈ c00. We shall write TF ,c for the ompletion of c00 in this norm. Notethat the (algebrai) basis (ei) of c00 beomes a 1-unonditional (Shauder)basis of TF ,c.For a non-zero, ountable ordinal α and for c ∈ (0, 1) the spae TSα,c isthe Tsirelson spae of order α with parameter c; we shall denote it by Tα,c.We further simplify notation in the ase c = 1/2 by letting Tα = Tα,1/2.When α = 1 this is just (the dual of) the original Tsirelson spae [27, 12℄.We gather some properties of Tsirelson spaes in the next proposition.In partiular, we note that the unit vetor bases of Tα and T ∗
α satisfy theonditions required in Theorem 1.Proposition 3 ([8℄, [18℄). Let α be a non-zero, ountable ordinal. TheTsirelson spae Tα is a re�exive Banah spae and (ei) is a 1-unonditional ,

1-right-dominant and B-blok-stable basis for Tα, where B is a onstant in-dependent of α.The biorthogonal funtionals (e∗i ) form a 1-unonditional , 1-left domi-nant and B-blok-stable basis for T ∗
α. Moreover , (e∗i ) is D-dominated by (ei),where D is a universal onstant.It is shown in [8℄ that Tsirelson's spae T1 is blok-stable (see also [9,Proposition II.4℄). The argument easily arries over to higher order Tsirelson



Banah spaes of bounded Szlenk index 73spaes giving the same onstant. A proof is given in [18℄ for an even largerlass of Tsirelson type spaes.It is proved in [9, Proposition V.10℄ that the unit vetor basis (ei) ofTsirelson's spae T1 dominates the unit vetor basis of ℓq for all q > 1. Thelast statement of Proposition 3 now follows immediately. (Note that S1 ⊂ Sα,and hene the unit vetor basis of T1 is 1-dominated by the unit vetor basisof Tα for any 1 ≤ α < ω1.)The rest of the properties laimed in Proposition 3 are immediate fromthe de�nition of the higher order Tsirelson spaes.We end this setion by stating a ombinatorial theorem of Pudlák andRödl whih also follows from in�nite Ramsey theory. This has nothing to dowith Tsirelson spaes, but as it onerns families of �nite subsets of N, thissetion is an appropriate plae for it.Theorem 4. Let F ⊂ [N]<ω be a thin family. Whenever eah elementof F is oloured red or blue, there is an in�nite subset M of N suh that
F∩[M ]<ω is monohromati, where [M ]<ω denotes the set of all �nite subsetsof M .4. Ordinal indies. The main aim of this setion is to introdue twoordinal indies in Banah spaes: the weak index and the blok index. Theformer will be related to the Szlenk index later on. In order to avoid tiresomerepetitions we begin by de�ning a lass of ordinal indies of trees on arbitrarysets. We then introdue the said indies as speial ases and prove a numberof their properties to be used in what follows.Let X be an arbitrary set. We de�ne X<ω =

⋃∞
n=0 Xn, the set of all�nite sequenes in X, whih inludes the sequene of length zero, denotedby ∅. For x ∈ X we shall write x instead of (x), i.e., we identify X withsequenes of length 1 in X. A tree on X is a non-empty subset F of X<ωlosed under taking initial segments: if (x1, . . . , xn) ∈ F and 0 ≤ m ≤ n,then (x1, . . . , xm) ∈ F . A tree F on X is hereditary if every subsequene ofevery member of F is also in F .Given x = (x1, . . . , xm) and y = (y1, . . . , yn) in X<ω, we write (x,y) forthe onatenation of x and y:

(x,y) = (x1, . . . , xm, y1, . . . , yn).Given F ⊂ X<ω and x ∈ X<ω, we let
F(x) = {y ∈ X<ω : (x,y) ∈ F}.Note that if F is a tree on X, then so is F(x) (unless it is empty). Moreover,if F is hereditary, then so is F(x) and F(x) ⊂ F .Let Xω denote the set of all (in�nite) sequenes in X. Fix S ⊂ Xω.For a tree F on X the S-derivative F ′

S of F onsists of all �nite sequenes
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x ∈ X<ω for whih there is a sequene (yi)

∞
i=1 ∈ S with (x, yi) ∈ F for all

i ∈ N. Note that F ′
S ⊂ F and that F ′

S is also a tree (unless it is empty). Wethen de�ne higher order derivatives F (α)
S for ordinals α < ω1 by reursion asfollows:

F (0)
S = F ,

F (α+1)
S = (F (α)

S )′S for all α < ω1,

F (λ)
S =

⋂

α<λ

F (α)
S for a limit ordinal λ < ω1.

It is lear that F (α)
S ⊃F (β)

S whenever α ≤ β and that F (α)
S is a tree (orthe empty set) for all α. An easy indution also shows that

(F(x))
(α)
S = (F (α)

S )(x) for all x ∈ X<ω, α < ω1.We now de�ne the S-index IS(F) of F by
IS(F) = min{α < ω1 : F (α)

S = ∅}if there exists α < ω1 with F (α)
S = ∅, and IS(F) = ω1 otherwise.Remark. If λ is a limit ordinal and F (α)

S 6= ∅ for all α < λ, then inpartiular ∅ ∈ F (α)
S for all α < λ, and hene F (λ)

S 6= ∅. This shows that
IS(F) is always a suessor ordinal.Examples. 1. A hereditary family F ⊂ [N]<ω an be thought of as a treeon N: a set F = {m1, . . . , mk} ∈ [N]<ω is identi�ed with (m1, . . . , mk) ∈ N

<ω(reall that m1 < · · · < mk by our onvention of always listing the elementsof a subset of N in inreasing order).Let S be the set of all stritly inreasing sequenes in N. In this ase the
S-index of a ompat, hereditary family F ⊂ [N]<ω is nothing else than theCantor�Bendixson index of F as a ompat topologial spae, whih we willdenote by ICB(F). We will also use the term �Cantor�Bendixson derivative�instead of �S-derivative� and use the notation F ′

CB and F (α)
CB .2. If X is an arbitrary set and S = Xω, then the S-index of a tree Fon X is what is usually alled the order (or height) of F , denoted by o(F).Note that in this ase the S-derivative of F onsists of all �nite sequenes

x ∈ X<ω for whih there exists y ∈ X suh that (x, y) ∈ F .The funtion o(·) is the largest index: for any S ⊂ Xω we have
o(F) ≥ IS(F).We say that S ⊂ Xω ontains diagonals if every subsequene of everymember of S also belongs to S and for every sequene (xn) in S with xn =
(xn,i)

∞
i=1 there exist i1 < i2 < · · · in N suh that (xn,in)∞n=1 belongs to S.



Banah spaes of bounded Szlenk index 75If S ontains diagonals, then the S-index of a tree on X may be mea-sured via the Cantor�Bendixson index of the �ne Shreier families (Fα)α<ω1introdued earlier. An easy indution argument shows that
ICB(Fα) = α + 1 for all α < ω1.(2)Given a tree F ⊂ [N]<ω on N, a family (xF )F∈F\{∅} in X will always beviewed as the tree

{(x{m1}, x{m1,m2}, . . . , x{m1,m2,...,mk}) : k ≥ 0, {m1, . . . , mk} ∈ F}on X.Proposition 5. Let X be an arbitrary set and let S ⊂ Xω. If S on-tains diagonals, then for a tree F on X and for a ountable ordinal α thefollowing are equivalent :(i) α < IS(F).(ii) There is a family (xF )F∈Fα\{∅} ⊂ F suh that for all F ∈ Fα \
MAX(Fα) the sequene (xF∪{n})n>maxF is in S.Proof. �(ii)⇒(i)� An easy indution on β < ω1 shows that for all F =

{m1, . . . , mk} ∈ (Fα)
(β)
CB we have

(x{m1}, x{m1,m2}, . . . , x{m1,m2,...,mk}) ∈ F (β)
S .It follows that IS(F) ≥ ICB(Fα) > α.�(i)⇒(ii)� We prove this by indution on α. When α = 0, statement (ii)says that ∅ ∈ F , whih does follow from 0 < IS(F).Next assume that α + 1 < IS(F). Then F (α+1)

S 6= ∅, so in partiular wehave ∅ ∈ F (α+1)
S . It follows that there is a sequene (xi)

∞
i=1 ∈ S suh that

xi ∈ F (α)
S for all i ∈ N. Hene (F (α)

S )(xi) = (F(xi))
(α)
S is non-empty, and

IS(F(xi)) > α. By the indution hypothesis, for eah i ∈ N there is a family
(yi,F )F∈Fα\{∅} ⊂ F(xi) suh that for all F ∈ Fα \ MAX(Fα) the sequene
(yi,F∪{n})n>maxF is in S.Now for eah F = {m1, . . . , mk} ∈ Fα+1 de�ne

xF =

{
xi if k = 1 and m1 = i,
yi,{m2,m3,...,mk} if k > 1 and m1 = i.It is routine to verify that statement (ii) holds with α + 1 replaing α.Finally, let λ be a limit ordinal, and assume that λ < IS(F). Let (αn)be the sequene of ordinals with 1 ≤ αn ր λ hosen in the de�nition of the�ne Shreier family Fλ. By the indution hypothesis, for eah n ∈ N thereis a family (yn,F )F∈Fαn\{∅} ⊂ F suh that for all F ∈ Fαn \ MAX(Fαn) thesequene (yn,F∪{i})i>maxF is in S. In partiular we have (yn,{i})

∞
i=1 ∈ S forall n ∈ N. Sine S ontains diagonals there exist i1 < i2 < · · · in N suh
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∞
n=1 ∈ S. We an also ensure that if m ≤ n, F ∈ Fαm and

in ≤ minF , then F ∈ Fαn (see (1)).Now for eah F = {m1, . . . , mk} ∈ Fλ de�ne
xF =

{
yn,{in} if k = 1 and m1 = n,
yn,{in,in+m2,in+m3,...,in+mk} if k > 1 and m1 = n.It is again routine to verify that statement (ii) with λ in plae of α follows.The set S = Xω for an arbitrary set X, and the set S used to de�ne theCantor�Bendixson index for a ompat, hereditary family in [N]<ω, triviallyontain diagonals. This will also be (mostly) the ase in the following twoexamples of S-indies in Banah spaes.Examples. 1. The weak index. Let X be a separable Banah spae. Let

S be the set of all weakly null sequenes in SX , the unit sphere of X. Weall the S-index of a tree F on SX the weak index of F and we denote itby Iw(F). We shall use the term �weak derivative� instead of �S-derivative�and use the notation F ′
w and F (α)

w .When the dual spae X∗ is separable, the weak topology on the unit ball
BX of X is metrizable. Hene in this ase the set S ontains diagonals andProposition 5 applies.2. The blok index. Let X be a Banah spae with an FDD E = (Ei).A blok tree of (Ei) in Z is a tree F on SX suh that every element of F isa (�nite) blok sequene of (Ei). Let S be the set of all normalized, in�niteblok sequenes of (Ei) in Z. We all the S-index of a blok tree F of (Ei)the blok index of F and we denote it by Ibl(F). We shall use the term �blokderivative� instead of �S-derivative� and use the notation F ′

bl and F (α)
bl . Notethat the set S ontains diagonals, and hene Proposition 5 applies.Note also that (Ei) is a shrinking FDD of X if and only if every elementof S is weakly null. In this ase we have

Ibl(F) ≤ Iw(F)(3)for any blok tree F of (Ei) in Z. The onverse is false in general, but it istrue up to perturbations and without the assumption that (Ei) is shrinking(see the Remark preeding Proposition 8 below).Remark. If (Ei) and (Fi) are two di�erent FDDs of the Banah spae X,then the orresponding blok indies they give rise to may well be di�erentin general. However, it is lear that if (Fi) is a bloking of (Ei), then theydo yield the same blok index. Sine this is exatly the kind of situationin whih we shall use the blok index in this paper, we did not inorporatethe underlying FDD in the notation for blok derivatives and for the blokindex.



Banah spaes of bounded Szlenk index 77In the next setion we will relate the Szlenk index to the weak index ofertain trees. In the rest of the present setion we prove two propositions.The �rst one is a perturbation result: it onerns the weak index of the�fattening� of a tree. The seond result relates the blok index of blok treesin Banah spaes to the Cantor�Bendixson index of ompat, hereditaryfamilies in [N]<ω. It is a kind of disretization result.Let X be a separable Banah spae. For a tree F ⊂ S<ω
X and for ε =

(εi) ⊂ (0, 1) we write
FX

ε = {(xi)
n
i=1 ∈ S<ω

X : n ∈ N, ∃(yi)
n
i=1 ∈ F , ‖xi−yi‖ ≤ εi for i = 1, . . . , n}.Proposition 6. Let X ⊂ Y be Banah spaes with separable duals ,and let F ⊂ S<ω

X be a tree on SX . Then for all ε = (εi) ⊂ (0, 1) we have
Iw(FY

ε ) ≤ Iw(FX
5ε).Proof. By a theorem of Zippin [28℄, Y embeds into a Banah spae witha shrinking FDD. So without loss of generality we may assume that Y itselfhas a shrinking FDD E = (Ei). Let K = K(E, Y ), the projetion onstantof E in Y , and set

Xm = X ∩ ⊕∞
j=m+1 Ej (m ∈ N).For ε ∈ (0, 1) and for A ⊂ SY we de�ne AY

ε by
AY

ε = {y ∈ SY : ∃x ∈ A, ‖x − y‖ ≤ ε}.We shall need the following lemma.Lemma 7. Let ε ∈ (0, 1) and let (yi) be a weakly null sequene in (SX)Y
ε .Then there is a weakly null sequene (xi) in SX and a subsequene (y′i) of (yi)suh that ‖xi − y′i‖ ≤ 4ε for all i ∈ N.Proof. Fix η > 0 suh that

ε′ = (1 + η)(2η + ε) < 1 and 2ε′ + ε < 4ε.Let m ∈ N. Sine (X/Xm)∗ ∼= X⊥
m is a �nite-dimensional subspae of X∗,there is a �nite subset Am of BX∗ suh that

d(x, Xm) ≤ (1 + η) · max
f∈Am

f(x) for all x ∈ X.Let Bm be a �nite subset of BY ∗ ontaining a Hahn�Banah extension to Yof eah element of Am. Then hoose n(m, η) ∈ N suh that
‖g − PE∗

[1,n(m,η)](g)‖ < η for all g ∈ Bm.Now let (y′i) be a subsequene of (yi) suh that
‖PE

[1,n(m,η)](y
′
m)‖ < η for all m ∈ N.



78 E. Odell et al.For eah m ∈ N hoose zm ∈ SX with ‖zm − y′m‖ ≤ ε. We have
d(zm, Xm) ≤ (1 + η) · max

g∈Bm

g(zm) ≤ (1 + η) · (max
g∈Bm

g(y′m) + ε)

< (1 + η) · (max
g∈Bm

PE∗

[1,n(m,η)](g)(y′m) + η + ε)

≤ (1 + η) · (‖PE
[1,n(m,η)](y

′
m)‖ + η + ε) ≤ (1 + η) · (2η + ε) = ε′.Choose x̃m ∈ Xm suh that ‖x̃m − zm‖ < ε′, and set xm = x̃m/‖x̃m‖. Aneasy omputation shows that

‖xm − y′m‖ < 2ε′ + ε < 4ε for all m ∈ N.Sine (Ei) is shrinking, it follows that the sequene (xi) is weakly null.We now ontinue with the proof of Proposition 6. Let ε = (εi) ⊂ (0, 1). Itis enough to show that if α < Iw(FY
ε ), then α < Iw(FX

5ε). Now if α < Iw(FY
ε ),then by Proposition 5 there is a family (yF )F∈Fα\{∅} ⊂ FY

ε suh that for all
F ∈ Fα \ MAX(Fα) the sequene (yF∪{n})n>maxF is weakly null.Given a spreading family F ⊂ [N]<ω we will all a funtion F 7→ F ′:
F → F a pruning funtion if for every F = {m1, . . . , ml} ∈ F the set
F ′ = {m′

1, . . . , m
′
l} is a spread of F and {m1, . . . , mk}′ = {m′

1, . . . , m
′
k} foreah k = 1, . . . , l. Now by repeated appliations of Lemma 7 we an �nd afamily (xF )F∈Fα\{∅} ⊂ SX and a pruning funtion F 7→ F ′: Fα → Fα suhthat

(xF∪{n})n>maxF is weakly null for all F ∈ Fα \ MAX(Fα)and
‖xF − yF ′‖ ≤ 4εi for all i ∈ N and for all F ∈ Fα with |F | = i.The last line implies that (xF )F∈Fα\{∅} ⊂ FX

5ε , and hene by Proposition 5we have α < Iw(FX
5ε), as required.Let Z be a Banah spae with an FDD E = (Ei), and let F be a bloktree of (Ei) in Z. Let us write Σ(E, Z) for the set of all �nite, normalizedblok sequenes on (Ei) in Z. For ε = (εi) ⊂ (0, 1) we let

FE,Z
ε = FZ

ε ∩ Σ(E, Z),i.e., FE,Z
ε is the restrition to blok sequenes of the ε-�fattening� of F in Z:

FE,Z
ε = {(xi)

n
i=1 ∈ Σ(E, Z) : n ∈ N, ∃(yi)

n
i=1 ∈ F , ‖xi − yi‖ ≤ εifor i = 1, . . . , n}.We also de�ne the ompression F̃ of F by

F̃ = {F ∈ [N]<ω : ∃(zi)
|F |
i=1 ∈ F , F = {min suppE(zi) : i = 1, . . . , |F |}}.Remark. Having introdued the above notation, we an now write downa sort of onverse for (3). If Z is a Banah spae with an FDD E = (Ei) and
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F is a blok tree of (Ei) in Z, then

Iw(F) ≤ Ibl(FE,Z
ε )for all ε = (εi) ⊂ (0, 1). Indeed, if α < Iw(F), then by Proposition 5 there isa family (xF )F∈Fα\{∅} ⊂ F suh that for all F ∈ Fα\MAX(Fα) the sequene

(xF∪{n})n>maxF is weakly null. By standard perturbation arguments we geta pruning funtion F 7→ F ′: Fα → Fα and a family (yF )F∈Fα\{∅} in SZ suhthat for all F ∈ Fα \ MAX(Fα) the sequene (yF∪{n})n>maxF is a bloksequene, and for all F ∈ Fα we have ‖xF ′ − yF ‖ < ε|F |. It follows fromProposition 5 that α < Ibl(FE,Z
ε ).Proposition 8. Let Z be a Banah spae with an FDD E = (Ei). Let

F be a hereditary blok tree of (Ei) in Z. Then for all ε = (εi) ⊂ (0, 1) andfor all limit ordinals α, if Ibl(FE,Z
ε ) < α, then ICB(F̃) < α.The proof onsists of two parts. We �rst replae blok sequenes of (Ei)with sequenes of �nite subsets of N (Lemma 9), and then prove a disreteompression result (Lemma 10). Before we begin we need to extend thenotion of blok index and related notions to a disrete setting. We write Σfor the set of all �nite suessive sequenes in [N]<ω \ {∅} and S for the setof all in�nite suessive sequenes in [N]<ω \ {∅}. A tree G ⊂ Σ on [N]<ωwill be alled a blok tree in [N]<ω, and its S-index will be alled the blokindex of G, denoted by Ibl(G). We shall also use the term �blok derivative�and the notation G′

bl, G(α)
bl just as in the Banah spae ase.Lemma 9. Let Z be a Banah spae with an FDD E = (Ei). Let F bea blok tree of (Ei) in Z. Let

suppF = {(Ai)
n
i=1 ∈ Σ : n ∈ N, ∃(zi)

n
i=1 ∈ F ,

suppE(zi) = Ai for i = 1, . . . , n}.Then for all ε = (εi) ⊂ (0, 1) we have
Ibl(supp(F)) ≤ Ibl(FE,Z

ε ).Proof. To simplify notation we are going to write Fε instead of FE,Z
ε .We show by indution that for all α < ω1 we have

(supp(F))
(α)
bl ⊂ supp((Fε)

(α)
bl ) ∀F , ∀ε.(4)Lemma 9 will then follow immediately. We begin with the ase α = 1.Let (A1, . . . , An) ∈ (supp(F))′bl. Then there is an in�nite suessive se-quene (Bi) in [N]<ω \ {∅} suh that (A1, . . . , An, Bi) ∈ supp(F) for all

i ∈ N. Now hoose (z1,i, . . . , zn,i, zi) ∈ F suh that suppE(zk,i) = Ak for
k = 1, . . . , n and suppE(zi) = Bi. By ompatness, for some i0 ∈ N wehave (z1,i0, . . . , zn,i0, zi) ∈ Fε for in�nitely many i ∈ N. It follows that
(z1,i0 , . . . , zn,i0) ∈ (Fε)

′
bl and (A1, . . . , An) ∈ supp((Fε)

′
bl), as required.



80 E. Odell et al.In the indutive step we shall use the fat that (F (α)
bl )ε ⊂ (Fε)

(α)
bl for all

F , ε, α, whih an be veri�ed by an easy indution. Assume now that (4)holds. We then have
(supp(F))

(α+1)
bl = ((supp(F))

(α)
bl )′bl

⊂ (supp((Fε)
(α)
bl ))′bl (by the indution hypothesis)

⊂ supp((Hε)
′
bl) (by the ase α = 1, where H = (Fε)

(α)
bl )

⊂ supp((F2ε)
(α+1)
bl ).This proves (4) with α replaed by α + 1.Finally, let λ be a limit ordinal and assume that (4) holds for all α < λ.We have

(supp(F))
(λ)
bl =

⋂

α<λ

(supp(F))
(α)
bl ⊂

⋂

α<λ

supp((Fε)
(α)
bl ) ⊂ supp((F2ε)

(λ)
bl ).The �rst inlusion follows from the indution hypothesis. To see the seondinlusion �x a sequene (αi) of ordinals with αi ր λ and assume that

(A1, . . . , An) ∈ supp((Fε)
(αi)
bl ) for all i ∈ N.For eah i ∈ N hoose

(z1,i, . . . , zn,i) ∈ (Fε)
(αi)
blsuh that suppE(zk,i) = Ak for k = 1, . . . , n. By ompatness, we �nd i0 ∈ Nsuh that for in�nitely many i ∈ N we have

‖zk,i − zk,i0‖ < εk for k = 1, . . . , n.It follows that (z1,i0 , . . . , zn,i0) ∈ (F2ε)
(αi)
bl for in�nitely many i ∈ N, andhene (z1,i0 , . . . , zn,i0) ∈ (F2ε)

(λ)
bl . In turn this implies that (A1, . . . , An) ∈

supp((F2ε)
(λ)
bl ), as required.Lemma 10. Let G ⊂ Σ be a hereditary blok tree in [N]<ω, and let

minG = {F ∈ [N]<ω : ∃(A1, . . . , A|F |) ∈ G, F = {minAi : i = 1, . . . , |F |}}.Then for any limit ordinal α, if Ibl(G) < α, then ICB(minG) < α.Proof. We are going to show the following three statements:(i) For all n < ω we have (minG)
(2n+2)
CB ⊂ min(G(n+1)

bl ).(ii) Let α be a limit ordinal. If
(minG)

(α)
CB ⊂

⋂

β<α

min(G(β)
bl ),then for all n < ω we have

(minG)
(α+2n+1)
CB ⊂ min(G(α+n)

bl ).



Banah spaes of bounded Szlenk index 81(iii) For every limit ordinal α < ω1 we have
(minG)

(α)
CB ⊂

⋂

β<α

min(G(β)
bl ).(5)

Sine the funtions ICB(·) and Ibl(·) only take suessor ordinal values, state-ment (iii) implies the lemma immediately. We start with a proof of (i) and (ii)in the ase n = 0. The general ase in both parts follows by an easy indution.Let (m1, . . . , mk) be an element of (minG)′′CB. Then there exist m ∈ Nand an in�nite subset N of N with mk < m < minN suh that
(m1, . . . , mk, m, n) ∈ minG for all n ∈ N.For eah n ∈ N hoose (A1,n, . . . , Ak,n, Bn, Cn) ∈ G suh that

(minA1,n, . . . , minAk,n, minBn, minCn) = (m1, . . . , mk, m, n).After passing to a subsequene we an assume that Aj,n = Aj for j = 1, . . . , kand for all n ∈ N . Sine G is hereditary, we have (A1, . . . , Ak, Cn) ∈ G forall n ∈ N , and hene (A1, . . . , Ak) ∈ G′
bl. It follows that (m1, . . . , mk) ∈

min(G′
bl), whih ompletes the proof of (i), n = 0.To show (ii) for n = 0, �x a sequene (βi) of ordinals with βi ր α.Pik an element (m1, . . . , mk) ∈ (minG)

(α+1)
CB . Then there exist m ∈ N with

mk < m suh that
(m1, . . . , mk, m) ∈ (minG)

(α)
CB ⊂ min(G(βi)

bl ) for all i ∈ N.For eah i ∈ N hoose (A1,i, . . . , Ak,i, Bi) ∈ G(βi)
bl suh that

(minA1,i, . . . , minAk,i, minBi) = (m1, . . . , mk, m).After passing to a subsequene we an assume that Aj,i = Aj for j =

1, . . . , k and for all i ∈ N. Sine (A1, . . . , Ak) ∈ G(βi)
bl for all i ∈ N, wehave (A1, . . . , Ak) ∈ G(α)

bl and (m1, . . . , mk) ∈ min(G(α)
bl ), as required.Finally, we are going to show (iii) by indution on α. It follows from (i)that (5) holds for α = ω. Moreover, if (5) holds for a limit ordinal α, thenit also holds for α + ω by (ii). Now, assume that α is the limit of a stritlyinreasing sequene (αn) of non-zero limit ordinals and that (iii) holds with

α replaed by αn for all n ∈ N. Then, in partiular, we have
(minG)

(αn+1)
CB ⊂ min(G(αn)

bl ) for all n ∈ N,from whih (iii) follows immediately for α.5. The Szlenk index. Here we reall the de�nition and basi propertiesof the Szlenk index. We then reall or prove further properties that arerelevant for our purposes. A fairly omprehensive survey on the Szlenk indexan be found in [17℄.



82 E. Odell et al.Let X be a separable Banah spae, and let K be a non-empty, w∗-ompat subset of X∗. For ε > 0 set
K ′

ε = {x∗ ∈ K : ∀w∗-neighbourhoods U of x∗, diam(K ∩ U) > ε},where diam(K ∩ U) denotes the norm-diameter of K ∩ U . We now de�ne
K

(α)
ε for eah ountable ordinal α by reursion as follows:

K(0)
ε = K,

K(α+1)
ε = (K(α)

ε )′ε for all α < ω1,

K(λ)
ε =

⋂

α<λ

K(α)
ε for a limit ordinal λ < ω1.Next, we assoiate to K the following ordinal indies:

η(K, ε) = sup{α < ω1 : K(α)
ε 6= ∅} and η(K) = sup

ε>0
η(K, ε).Finally, we de�ne the Szlenk index Sz(X) of X to be η(BX∗), where BX∗ isthe unit ball of X∗.Remark. The original de�nition in [26℄ is slightly di�erent, but it givesthe same ordinal index.Szlenk used his index to show that there is no separable, re�exive spaeuniversal for the lass of all separable, re�exive spaes. This result followsimmediately from the following properties of the funtion Sz(·).Theorem 11 ([26℄). Let X and Y be separable Banah spaes.(i) X∗ is separable if and only if Sz(X) < ω1.(ii) If X isomorphially embeds into Y , then Sz(X) ≤ Sz(Y ).(iii) For all α < ω1 there exists a separable, re�exive spae with Szlenkindex at least α.We next restate in one theorem a number of results from [1℄ in our ter-minology. This inludes an expression of the Szlenk index in terms of theweak index of ertain trees.Theorem 12 ([1℄). Let X be a separable, in�nite-dimensional Banahspae not ontaining ℓ1. For ̺ ∈ (0, 1) let

F̺ =
{
(xi)

n
i=1 ∈ S<ω

X : n ∈ N,
∥∥∥

n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.Then

Sz(X) = sup
̺>0

Iw(F̺).Moreover , if X∗ is separable, then for some α < ω1, we have Sz(X) = ωαand the above supremum is not attained.



Banah spaes of bounded Szlenk index 83We next onsider the Szlenk index of sums of Banah spaes. For �nitesums (Proposition 14) this an be omputed diretly from the de�nitionusing a kind of �Leibniz� rule for higher order derivatives of produts of
w∗-ompat sets (Lemma 13(iii)). For in�nite sums (Proposition 15) we usethe weak index as well as the result on �nite sums to obtain an upper bound.In what omes we will denote by α ⊞ β the �pointwise sum� of ordinals αand β, whih is de�ned as follows. We �rst write α and β in Cantor NormalForm as

α = ωγ1 · m1 + ωγ2 · m2 + · · · + ωγk · mkand
β = ωγ1 · n1 + ωγ2 · n2 + · · · + ωγk · nk,where k ∈ N, γ1 > · · · > γk ≥ 0 are ordinals, and mi, ni < ω for all i. Thenwe set

α ⊞ β = ωγ1 · (m1 + n1) + ωγ2 · (m2 + n2) + · · · + ωγk · (mk + nk).Lemma 13. Let X and Y be separable Banah spaes. Let m ∈ N, let
K, K1, . . . , Km be non-empty , w∗-ompat subsets of X∗, and let L be anon-empty , w∗-ompat subset of Y ∗. Let ε > 0.

(i) ( m⋃

j=1

Kj

)′

ε
⊂

m⋃

j=1

(Kj)
′
ε/2.(ii) For the subset K × L of X∗ ⊕∞ Y ∗ = (X ⊕1 Y )∗ we have

(K × L)′ε = K ′
ε × L ∪ K × L′

ε.(iii) For the subset K × L of X∗ ⊕∞ Y ∗ and for any ordinal α < ω1 wehave
(K × L)(α)

ε ⊂
⋃

β⊞γ=α

K
(β)
ε/2

× L
(γ)
ε/2

.

Proof. (i) Let x∗ ∈ (
⋃m

j=1 Kj)
′
ε. Sine the w∗-topology on a w∗-ompatsubset of X∗ is metrizable, it follows easily from the de�nition that there is asequene (x∗

n) in ⋃m
j=1 Kj suh that x∗

n
w∗

→ x∗ as n → ∞, and ‖x∗
n−x∗‖ > ε/2for all n ∈ N. After passing to a subsequene we may assume that for some

1 ≤ j ≤ m we have x∗
n ∈ Kj , and hene x∗ ∈ (Kj)

′
ε/2.(ii) This is immediate from the de�nition and from the fat that we areworking with the ℓ∞-sum of X∗ and Y ∗.(iii) We prove this statement by indution. The ase α = 0 is lear.Using parts (i) and (ii) and assuming the statement for some α, we



84 E. Odell et al.have
(K × L)(α+1)

ε ⊂
⋃

β⊞γ=α

(K
(β)
ε/2 × L

(γ)
ε/2)

′
ε/2

=
⋃

β⊞γ=α

(K
(β+1)
ε/2 × L

(γ)
ε/2 ∪ K

(β)
ε/2 × L

(γ+1)
ε/2 )

=
⋃

β⊞γ=α+1

K
(β)
ε/2 × L

(γ)
ε/2.Finally, if λ is a limit ordinal, then by the indution hypothesis we have

(K × L)(λ)
ε ⊂

⋂

α<λ

( ⋃

β⊞γ=α

K
(β)
ε/2 × L

(γ)
ε/2

)
.Write λ in Cantor Normal Form:

λ = ωλ1 · m1 + · · · + ωλk · mkwith mk > 0, and for all n ∈ N set
αn = ωλ1 · m1 + · · · + ωλk · (mk − 1) + ωδn · n,where λk = δn + 1 for all n ∈ N if λk is a suessor ordinal, and δn ր λk if

λk is a limit ordinal.Now let x∗ = (y∗, z∗) ∈ (K × L)
(λ)
ε . For eah n ∈ N we have αn < λ, sothere exist ordinals βn and γn with βn ⊞ γn = αn and x∗ ∈ K

(βn)
ε/2 × L

(γn)
ε/2 .Now there exist n1, . . . , nk, p1, . . . , pk < ω and an in�nite subset N of N suhthat

βn = ωλ1 · n1 + · · · + ωλk · nk + ωδn · un,

γn = ωλ1 · p1 + · · · + ωλk · pk + ωδn · vn,where un +vn = n for all n ∈ N . Assume supn un = ω (the ase supn vn = ωbeing similar). Set
β = ωλ1 · n1 + · · · + ωλk · (nk + 1), γ = ωλ1 · p1 + · · · + ωλk · pk.Then β = supn βn, whereas γ ≤ γn for all n ∈ N . It follows that y∗ ∈ K

(β)
ε/2 =

⋂
n K

(βn)
ε/2 , and z∗ ∈ L

(γ)
ε/2. Sine β ⊞ γ = λ, statement (iii) with λ replaing

α follows.Proposition 14. Let X and Y be separable Banah spaes. Then
Sz(X ⊕1 Y ) = max{Sz(X), Sz(Y )}.Proof. The inequality Sz(X ⊕1 Y ) ≥ max{Sz(X), Sz(Y )} follows imme-diately from Theorem 11(ii). The reverse inequality is trivial if either both Xand Y are �nite-dimensional, or one of X and Y has non-separable dual. Sowe an assume by the last part of Theorem 12 that max{Sz(X), Sz(Y )} = ωηfor some 0 < η < ω1.



Banah spaes of bounded Szlenk index 85Now let K = BX∗ , L = BY ∗ and set α = ωη · 2 + 1. Applying part (iii)of Lemma 13 we obtain
(B(X⊕1Y )∗)

(α)
ε = (BX∗ × BY ∗)(α)

ε = ∅.It follows that Sz(X ⊕1 Y ) < α, and hene Sz(X ⊕1 Y ) ≤ ωη, as required.Proposition 15. Let (Xn) be a sequene of separable Banah spaes.Let X = (
⊕

n Xn)ℓ2 be the ℓ2-sum of (Xn), and let α be a ountable ordinal.If Sz(Xn) ≤ ωα for all n ∈ N, then Sz(X) ≤ ωα+1.In the proof we shall use the following notation. For n ∈ N we denoteby Pn the anonial projetion of X onto Xn, i.e., for x = (xi) ∈ X with
xi ∈ Xi for all i ∈ N we have Pn(x) = xn. For a �nite subset A of N we let
PA =

∑
n∈A Pn.Proof. Assume for a ontradition that Sz(X) > ωα+1. By Theorem 12there exists ̺ ∈ (0, 1) suh that setting

F =
{
(xi)

n
i=1 ∈ S<ω

X : n ∈ N,
∥∥∥

∑
aixi

∥∥∥ ≥ ̺
∑

ai ∀(ai)
n
i=1 ⊂ R

+
}

we have Iw(F) > ωα+1. Note that by the geometri form of the Hahn�Banahtheorem, (x1, . . . , xn) ∈ S<ω
X belongs to F if and only if there exists x∗ ∈ SX∗suh that x∗(xi) ≥ ̺ for eah i = 1, . . . , n.We are going to show the following laim. Let x = (x1, . . . , xm) ∈ S<ω

X ,and let k ≥ 1, M ≥ 0 be integers. Assume that Iw(F(x)) > ωα · k. Thenthere exists y = (y1, . . . , yn) ∈ S<ω
X suh that(i) Iw(F(x,y)) > ωα · (k − 1),(ii) for all x∗ ∈ SX∗ there exists i ∈ {1, . . . , n}, with x∗(P[1,M ](yi)) < ̺/4.Let us �rst see how this laim ompletes the proof. Fix K ∈N with K > 4/̺2.We obtain sequenes x1, . . . ,xK in S<ω

X and N1 < · · · < NK in N reursivelyas follows: at the jth step we apply the laim with x = (x1, . . . ,xj−1),
k = K − j + 1 and M = Nj−1 to obtain y as above (for j = 1 we begin with
x = ∅, k = K and M = N0 = 0). Then we set xj = y and hoose Nj > Nj−1suh that writing xj = (yj,1, . . . , yj,Lj ) we have

‖yj,l − P[1,Nj ](yj,l)‖ < ̺/4 for l = 1, . . . , Lj .From property (i) we dedue in partiular that (x1, . . . ,xK) ∈ F . Thus thereexists x∗ ∈ SX∗ suh that
x∗(yj,l) ≥ ̺ for all j = 1, . . . , K, l = 1, . . . , Lj.It follows that for eah j = 1, . . . , K we an �nd 1 ≤ lj ≤ Lj suh that

x∗(P[Nj−1+1,Nj ](yj,lj )) > ̺/2,and hene we get ‖x∗‖ ≥
√

K̺/ 2 > 1, whih is a ontradition.



86 E. Odell et al.We now turn to the proof of the laim. De�ne
G = {(y1, . . . , yn) ∈ F(x) : n ∈ N, ∃x∗ ∈ SX∗ ,

x∗(P[1,M ](yi)) ≥ ̺/4 for i = 1, . . . , n}.Note that G is a tree on S<ω
X . If Iw(G) > ωα, then by Theorem 12 we have

Sz(X1 ⊕2 · · · ⊕2 XM ) > ωα, ontraditing Proposition 14. So we must have
Iw(G) ≤ ωα. On the other hand,

Iw((F(x))(ω
α·(k−1))

w ) > ωα.Thus we an �nd
y ∈ (F(x))(ω

α·(k−1))
w \ G.Properties (i) and (ii) are now easily heked.Proposition 16. Let α be an ordinal with 1 ≤ α < ω1. The Szlenkindex of the Tsirelson spae of order α is given by

Sz(Tα) = ωα·ω.Proof. For eah ̺ ∈ (0, 1) let
F̺ =

{
(xi)

n
i=1 ∈ S<ω

Tα
: n ∈ N,

∥∥∥
n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.We �rst show that Sz(Tα) ≥ ωα·ω. Let (ei) be the unit vetor basis of Tα. Itfollows from the de�nition of Tα that for eah n ∈ N, if F ∈ Sα·n, then (ei)i∈Fis 2n-equivalent to the unit vetor basis of ℓ

|F |
1 , so in partiular (ei)i∈F ∈

F2−n . Hene by Proposition 5 and Theorem 12 we have
ωα·n < Iw(F2−n) < Sz(Tα).Sine n ∈ N was arbitrary, the inequality Sz(Tα) ≥ ωα·ω follows at one.For the reverse inequality assume that ωγ < Sz(Tα), where γ = α · ω.Then by Theorem 12 there exists ̺ ∈ (0, 1) with ωγ < Iw(F̺), and byProposition 5 there is a family G = (xF )F∈Sγ\{∅} ⊂ F̺ suh that for all

F ∈ Sγ \ MAX(Sγ) the sequene (xF∪{n})n>maxF is weakly null.By standard perturbation arguments we may, after making ̺ smaller andreplaing (xF )F∈Sγ\{∅} by (xF ′)F∈Sγ\{∅} for an appropriate pruning funtion
F 7→ F ′: Sγ → Sγ if neessary, assume that G is a blok tree of (ei) in Tα.We now apply a result of R. Judd and the �rst named author [16℄. In theirterminology G is an ℓ1-K-blok basis tree of (ei) in Tα with K = ̺−1 (weare using the 1-unonditionality of (ei)), and hene its order o(G) is at mostthe Bourgain ℓ1-index of Tα, whih is shown in [16℄ to be ωγ . On the otherhand, by Proposition 5 we have o(G) > ωγ . This ontradition ompletes theproof.



Banah spaes of bounded Szlenk index 87Proposition 17. Let α be a ountable ordinal and let Z be a Banahspae with an FDD E = (Ei) that satis�es subsequential Tα-upper estimates.Then Sz(Z) ≤ ωα·ω.Proof. For eah ̺ ∈ (0, 1) let
F̺ =

{
(xi)

n
i=1 ∈ S<ω

Z : n ∈ N,
∥∥∥

n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.

G̺ =
{
(xi)

n
i=1 ∈ S<ω

Tα
: n ∈ N,

∥∥∥
n∑

i=1

aixi

∥∥∥ ≥ ̺
n∑

i=1

ai ∀(ai)
n
i=1 ⊂ R

+
}
.Fix γ < Sz(Z). By Theorem 12 there exists ̺ ∈ (0, 1) suh that Iw(F̺) > γ,and by Proposition 5 there is a family (xF )F∈Fγ\{∅} ⊂ F̺ suh that for all

F ∈ Fγ \ MAX(Fγ) the sequene (xF∪{n})n>maxF is weakly null.By standard perturbation arguments we may, after making ̺ smaller andappropriately pruning (xF )F∈Fγ\{∅} if neessary, assume that (xF )F∈Fγ\{∅}is a blok tree of (Ei) in Z, and that for all F ∈ Fγ \MAX(Fγ) the sequene
(xF∪{n})n>maxF is a blok basis of (Ei). Let (ei) be the unit vetor basisof Tα and de�ne

tF = emin suppE(xF ) for all F ∈ Fγ \ {∅}.Note that (tF )F∈Fγ\{∅} is a blok tree of (ei) in Tα and that it is ontained in
G̺′ for some ̺′ ∈ (0, 1) sine (Ei) satis�es subsequential Tα-upper estimates.Sine (ei) is shrinking, it follows by Proposition 5 that γ < Iw(G̺′). UsingTheorem 12 and Proposition 16 we dedue that Sz(Z) ≤ ωα·ω, as required.Remark. It follows from properties of higher order Tsirelson spaes(Proposition 3) that the unit vetor basis of T ∗

α satis�es subsequential Tα-upper estimates. Hene the above result shows that
Tα ∈ Cωα·ω = {X : X is separable, re�exive, max{Sz(X), Sz(X∗)} ≤ ωα·ω}.6. The main theorem and its onsequenesTheorem 18. Let Z be a Banah spae with a shrinking , bimonotoneFDD (Ei) and let X be an in�nite-dimensional losed subspae of Z. Thenfor any C > 4 there exist an ordinal α < Sz(X), a sequene δ = (δi) ⊂ (0, 1)with δi ↓ 0, and a bloking (Gi) of (Ei) with Gi =

⊕mi−1
j=mi−1

Ej , i ∈ N,
1 = m0 < m1 < m2 < · · · , suh that if (xi) ⊂ SX is a δ-blok sequene of
(Gn) with ‖xi − PG

(si−1,si]
xi‖ < δi for all i ∈ N, 1 ≤ s0 < s1 < s2 < · · · ,then (xi) is C-dominated by (emsi−1

), where (ei) is the unit vetor basisof TFα,1/2.We �rst prove some onsequenes of Theorem 18. In Corollary 20 belowwe reast the property of being in the lass Cα in terms of ertain lower and



88 E. Odell et al.upper Tsirelson-norm estimates. In Theorem 21 we show that for ertainvalues of α these estimates are best possible, whih proves Theorem A fromthe Introdution. These norm estimates and Theorem 1 are the two mainingredients in answering Peªzy«ski's question, whih we do in Theorem 22followed by a re�nement in Theorem 23. We then state a result of Johnsonwhih we use to dedue basis versions (Theorems B and C) of Theorem 23.The rest of the setion is taken up by the proof of Theorem 18.Corollary 19. Let X be an in�nite-dimensional Banah spae withseparable dual. There exists an ordinal α < Sz(X) suh that X satis�essubsequential C-TFγ ,1/2-upper tree estimates for any ordinal γ ≥ α, where
C is a universal onstant.Proof. By Zippin's theorem [28℄, X K-embeds into a Banah spae Zwith a shrinking, bimonotone FDD (Ei), where K is a universal onstant.Renorming X with a K-equivalent norm we may assume without loss ofgenerality that X is a subspae of Z. We now apply Theorem 18 to obtain
α < Sz(X), a sequene δ = (δi) ⊂ (0, 1), δi ↓ 0, and a bloking (Gi) of (Ei)with Gi =

⊕mi−1
j=mi−1

Ej , i ∈ N, 1 = m0 < m1 < · · · , suh that if (xi) ⊂ SXis a δ-blok sequene of (Gn) with ‖xi − PG
(si−1,si]

xi‖ < δi for all i ∈ N,
1 ≤ s0 < s1 < · · · , then (xi) is 5-dominated by (eα,msi−1

), where (eα,i) isthe unit vetor basis of TFα,1/2.Fix an ordinal γ ≥ α and an integer l suh that (eα,i)i≥l is 1-dominated by
(eγ,i)i≥l (suh an integer exists by property (1) of the �ne Shreier families).We now show that X satis�es subsequential C-TFγ ,1/2-upper tree estimateswith C = 5. Let (xt)t∈T even

∞
be a normalized, weakly null even tree in X. Wewill indutively hoose sequenes s0 < s1 < · · · and n1 < n2 < · · · in N asfollows. Set s0 = 1 and n1 = max(l, m1). Assume that for some i ∈ N wehave already hosen s0 < s1 < · · · < si−1 and n1 < n2 < · · · < n2i−1. Sinenodes are weakly null, there exists n2i > n2i−1 suh that

‖PG
[1,si−1]

x(n1,...,n2i)‖ < δi.Then hoose si > si−1 suh that
‖x(n1,...,n2i) − PG

(si−1,si]
x(n1,...,n2i)‖ < δi.Finally, hoose n2i+1 > n2i with n2i+1 ≥ msi . This ompletes the reursiveonstrution. It follows immediately from the hoie of α, δ, (Gi) and l, andfrom the 1-right-dominant property of (eα,i), that (x(n1,...,n2i)) is 5-dominatedby (eγ,n2i−1).Corollary 20. Let X be an in�nite-dimensional , separable, re�ex-ive Banah spae. Then there exists an ordinal γ < max{Sz(X), Sz(X∗)}suh that X satis�es subsequential C-(T ∗

Fδ,1/2, TFδ,1/2) tree estimates for any
δ ≥ γ, where C is a universal onstant.



Banah spaes of bounded Szlenk index 89Proof. By Corollary 19 there is a universal onstant C, and there existordinals α < Sz(X) and β < Sz(X∗), suh that X satis�es subsequential
C-TFγ ,1/2-upper tree estimates for any γ ≥ α, and X∗ satis�es subsequential
C-TFδ,1/2-upper tree estimates for any δ ≥ β. It follows from Proposition 2that X satis�es subsequential (2C + ε)-(T ∗

Fδ,1/2, TFδ,1/2) tree estimates forany ε > 0 and for any δ ≥ max{α, β}.The above results show that higher order Tsirelson spaes are more thanjust mere examples in the hierarhy (Cα)α<ω1 . Indeed they are intimatelyrelated to the Szlenk index of an arbitrary separable, re�exive spae and itsdual. The next theorem shows that this relationship is tight in the lasses
Cωα·ω : Tsirelson spaes of order α and their duals are maximal and, respe-tively, minimal in these lasses. In partiular, this proves Theorem A statedin the Introdution. The proof uses some further results from [22℄ whihwe shall not state here as Theorem 21 will not be used in the proof of ouruniversality results.Theorem 21. Let α < ω1. For a separable, re�exive spae X the fol-lowing are equivalent.(i) X ∈ Cωα·ω .(ii) X satis�es subsequential (T ∗

α,c, Tα,c) tree estimates for some c ∈
(0, 1).(iii) X embeds into a separable, re�exive spae Z with an FDD (Ei) whihsatis�es subsequential (T ∗

α,c, Tα,c) estimates in Z for some c ∈ (0, 1).Proof. �(i)⇒(ii)� By Corollary 20 there exists n < ω suh that X satis�essubsequential (T ∗
α·n, Tα·n) tree estimates. It is not hard to show diretly fromthe de�nition that the norms ‖ · ‖Tα·n and ‖ · ‖Tα,c on c00, where c = 1/21/n,are equivalent. Hene (ii) follows.�(ii)⇒(iii)� This is immediate from [22, Theorem 15℄. We note that theimpliation �(iii)⇒(ii)� is straightforward from the de�nition.�(iii)⇒(i)� Let Z be the spae given by (iii), and hoose n ∈ N suh that

cn ≤ 1/2. It follows diretly from the de�nition that the unit vetor basisof Tα,c is dominated by the unit vetor basis of Tα·n,cn , whih in turn isdominated by the unit vetor basis of Tα·n. Hene by Theorem 11(ii), andby Propositions 17 and 16, we have
Sz(X) ≤ Sz(Z) ≤ Sz(Tα·n) = ωα·n·ω = ωα·ω.(Alternatively, one an just observe that the proof of Proposition 16 worksfor Tα,c, i.e., we have Sz(Tα,c) = ωα·ω.) Now sine X satis�es (ii), it followsfrom duality (Proposition 2 and [22, Corollary 14℄) that (ii), and hene (iii),also hold with X replaed by X∗. This gives Sz(X∗) ≤ ωα·ω. Thus X ∈ Cωα·ω ,as required.



90 E. Odell et al.Remark. Using the proof of Proposition 16 one an show that Sz(TFα,c)
= αω whenever 1 ≤ α < ω1 and c ∈ (0, 1). Considering the Cantor NormalForm of α, it is possible to write αω = ωβ·ω for some β ≤ α. Thus, it is notpossible to obtain a �ner gradation of the hierarhy (Cα)α<ω1 by using �neShreier families.We are now in a position to answer Peªzy«ski's question. We shall usethe notation

Aα(C) = AT ∗
α ,Tα(C) and Aα =

⋃

C<∞

Aα(C),

where 0 < α < ω1 and C ∈ [1,∞) (see also the notation preeding Theo-rem 1). Reall that
Cα = {X : X is separable, re�exive, max{Sz(X), Sz(X∗)} ≤ α},and that the Szlenk index of an in�nite-dimensional Banah spae with sep-arable dual is of the form ωη for some 0 < η < ω1 (Theorem 12), so we needonly onsider the lasses Cα when α is of this form. We should also ommenton �nite-dimensional spaes before proeeding.For α < ω we have Cα = C0 is the lass of all �nite-dimensional spaes.Let Z be the ℓ2-sum of a ountable, dense (with respet to the Banah�Mazurdistane) subset of C0. Then by Proposition 15 we have Z ∈ Cω. Moreover, Zis universal for C0: for all X ∈ C0 and for all ε > 0, X (1+ ε)-embeds into Z.For ω ≤ α < ω1 we have ℓ2 ∈ Cα, and hene ℓ2 ⊕ X ∈ Cα for any �nite-dimensional spae X. Thus we an restrit attention to in�nite-dimensionalspaes for the purpose of �nding a universal spae for the lass Cα.Theorem 22. For every ordinal α with 0 < α < ω1 there is a separ-able, re�exive spae with an FDD whih is universal for the lass Cωα. Morepreisely , there is a universal onstant K suh that for all 0 < α < ω1there exists a spae Z ∈ Cωα·ω with an FDD suh that every spae X ∈ Cωα

K-embeds into Z.Proof. Let C ∈ [1,∞) be the universal onstant of Corollary 20, andlet B, D ∈ [1,∞) be the universal onstants of Proposition 3. Let K =
KB,D,1,1(C) be the onstant from Theorem 1. Given 0 < α < ω1, let Z ∈ Aαbe the universal spae given by Theorem 1 with U = Tα and V = U∗.In partiular Z has an FDD (Ei) that satis�es subsequential (T ∗

α, Tα) es-timates in Z. By an easy duality argument the FDD (E∗
i ) of Z∗ satis�essubsequential (T ∗

α, Tα) estimates in Z∗. Hene by Proposition 17 we have
max{Sz(Z), Sz(Z∗)} ≤ ωα·ω, i.e., Z ∈ Cωα·ω .Now let X ∈ Cωα be an in�nite-dimensional spae. By Corollary 20 wehave X ∈ Aα(C), and hene X K-embeds into Z.



Banah spaes of bounded Szlenk index 91Remark. By a result of Johnson and Odell [15℄, the spae Z onstrutedin the proof of Theorem 22 annot be in the lass Cωα . Indeed, if that was thease, then every spae that embeds into Z would in fat K-embed into Z.Suh a spae is alled elasti in [15℄, where it is proved that a separable,elasti spae ontains c0. Obviously, Z annot ontain c0, giving the requiredontradition.Note that the above theorem yields a universal spae for the lass Cωα·ωthat lives in the lass C
ωα·ω2 . A small modi�ation of the proof gives theslightly better result mentioned in the Introdution:Theorem 23. For every α < ω1 there is a spae Zα ∈ Cωα·ω+1 withan FDD whih is universal for the lass Cωα·ω . More preisely , there is auniversal onstant K, and for eah α < ω1 there is a sequene (Zα,n)∞n=1 ofspaes with FDDs in Cωα·ω suh that for all X ∈ Cωα·ω there exists n ∈ Nsuh that X K-embeds into Zα,n. The spae Zα an then be taken to be the

ℓ2-diret sum of the sequene (Zα,n)∞n=1.Proof. For α = 0 we have already done this just before stating Theo-rem 22. Now assume that 0 < α < ω1, and let C, K be the onstants de�nedin the proof of Theorem 22. Let Zα,n ∈ Aα·n be the universal spae givenby Theorem 1 with U = Tα·n and V = U∗. As in the proof of Theorem 22we dedue that max{Sz(Zα,n), Sz(Z∗
α,n)} ≤ ωα·n·ω = ωα·ω, i.e., Zα,n ∈ Cωα·ω .Now let Zα = (

⊕∞
n=1 Zα,n)ℓ2 be the ℓ2-diret sum of the sequene (Zα,n)∞n=1.By Proposition 15 we have Zα ∈ Cωα·ω+1 .Finally, let X ∈ Cωα·ω be an in�nite-dimensional spae. By Corollary 20there exists n ∈ N suh that X ∈ Aα·n(C), and hene X K-embeds into

Zα,n and into Zα.As indiated in the Introdution, Theorems B and C now follow fromTheorem 23 by applying the following result of Johnson [14℄.Theorem 24 ([14, Theorem A℄). Let (Gi) be a sequene of �nite-dimen-sional Banah spaes so that(i) if E is a �nite-dimensional Banah spae and ε > 0, then there isan i ∈ N so that d(E, Gi) = inf{‖T‖ · ‖T−1‖ : T : E → Gi is anisomorphism} < 1 + ε,(ii) for eah i ∈ N there is an in�nite J ⊂ N so that Gi and Gj areisometri for all j ∈ J .Let C2 = (
⊕∞

i=1 Gi)ℓ2 and let X be any separable spae whih has the λ-metri approximation property for some λ ≥ 1. Then X ⊕ C2 has a basis.Note that the λ-metri approximation property is also known as the
λ-bounded approximation property.



92 E. Odell et al.Proof of Theorems B and C. Clearly, spaes X with an FDD have the
λ-metri approximation property for some λ ≥ 1, meaning that for anyompat set K ⊂ X and ε > 0 there is a �nite rank operator T with
‖T (x) − x‖ < ε for all x ∈ K. Let C2 be the spae de�ned in Theorem 24,and let Zα and Zα,n, n ∈ N, be the spaes from Theorem 23. Then Zα ⊕C2and Zα,n⊕C2 have Shauder bases and it follows from Propositions 14 and 15that Sz(Zα ⊕ C2) = Sz(Zα) = ωα·ω+1 and Sz(Zα,n ⊕ C2) = ωα·ω.In the remainder of this setion we give a proof of our main result, The-orem 18, whih is at the heart of our embedding and universality results.Proof of Theorem 18. Fix a onstant D with 4 < D < C, and hoose
̺ ∈ (0, 1) suh that 4 + 12̺D < D. Set

F =
{
(xi) ∈ S<ω

X :
∥∥∥

∑
aixi

∥∥∥ ≥ 2̺
∑

ai for all (ai) ⊂ [0,∞)
}
.Note that F is a hereditary tree on S<ω

X . Next �x a sequene ε = (εi) ⊂
(0, 1/2) suh that

FZ
10ε ⊂

{
(zi) ∈ S<ω

Z :
∥∥∥

∑
aizi

∥∥∥ ≥ ̺
∑

ai for all (ai) ⊂ R
+
}
.Now onsider the hereditary blok tree G = Σ(E, Z)∩FZ

ε of (Ei) in Z and itsompression G̃. Let α be the Cantor�Bendixson index of G̃. By Proposition 6and by Theorem 12 we have
Iw(FZ

2ε) ≤ Iw(FX
10ε) < Sz(X).Sine GE,Z

ε ⊂ FZ
2ε, we have Ibl(GE,Z

ε ) ≤ Iw(FZ
2ε). Sine Sz(X) is a limitordinal, it follows by Proposition 8 that

α = ICB(G̃) < Sz(X).We now apply Theorem 4 to obtain an in�nite subset M = {m1, m2, . . .}of N suh that
MAX(Fα) ∩ [M ]<ω ∩ G̃ = ∅.(6)To see this, give eah element A of the thin family MAX(Fα) olour red if

A ∈ G̃, and olour blue otherwise, and obtain M = {m1, m2, . . .} ∈ [N]ω suhthat MAX(Fα) ∩ [M ]<ω is monohromati. Now the map i 7→ mi: N → Mindues a homeomorphism [N]<ω → [M ]<ω that maps Fα onto Fα ∩ [M ]<ω(as Fα is a spreading). Sine the Cantor�Bendixson index is a topologialinvariant, it follows that ICB(Fα∩ [M ]<ω) = α+1. Hene MAX(Fα)∩ [M ]<ωannot be monohromati red , and thus (6) follows. Observe that if F ∈
G̃ ∩ [M ]<ω, then F ∈ Fα.Without loss of generality we may assume that m1 > 1. We set m0 = 1and Gi =

⊕mi−1
j=mi−1

Ej for all i∈N. Finally, we hoose δ = (δi)⊂ (0, 1), δi ↓ 0,
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4

∞∑

i=1

δi < min(̺, C − D) and 4
∑

j≥i

δj < εi for all i ∈ N.

We will now show that for these hoies of α, δ and (Gi) the onlusionof the theorem holds.Let (xi) ⊂ SX be a δ-blok sequene of (Gn) with ‖xi −PG
(si−1,si]

xi‖ < δifor all i ∈ N and 1 ≤ s0 < s1 < s2 < · · · . Set
zi =

PG
(si−1,si]

xi

‖PG
(si−1,si]

xi‖
for all i ∈ N.Note that ‖xi − zi‖ < 2δi for all i ∈ N. Replaing eah zi by a small pertur-bation of itself, if neessary, we an assume that min suppG(zi) = si−1 + 1and min suppE(zi) = msi−1 for all i ∈ N. We are going to show that for any

(ai) ∈ c00 we have ∥∥∥
∑

aizi

∥∥∥ ≤ D
∥∥∥

∑
aiemsi−1

∥∥∥.(7)It then follows easily from the hoie of δ that (xi) is C-dominated by
(emsi−1

). The proof of (7) proeeds by indution on the size of the sup-port of (ai). If this is 1, then the statement is lear. In general, we begin byhoosing z∗ ∈ BZ∗ suh that∥∥∥
∑

aizi

∥∥∥ =
∑

aiz
∗(zi).We then onsider the set

I = {i ∈ N : |z∗(zi)| ≥ 3̺},whih splits into I+ = {i ∈ N : z∗(zi) ≥ 3̺} and I− = I \ I+. For a �niteset F ⊂ N we shall write ms(F ) for the set {msi−1 : i ∈ F}. We laimthat ms(I+) and ms(I−) belong to Fα. Indeed, by the hoie of δ, for any
(bi)i∈I+ ⊂ R

+ we have∥∥∥
∑

i∈I+

bixi

∥∥∥ ≥
∑

i∈I+

biz
∗(zi) −

∑

i∈I+

bi · 2δi ≥ 2̺
∑

i∈I+

bi.This shows that (xi)i∈I+ belongs to F . It follows that (zi)i∈I+ ∈ G, andms(I+) ∈ G̃ ∩ [M ]<ω ⊂ Fα, as required. A similar argument, using −z∗instead of z∗, shows that ms(I−) ∈ Fα.We next partition supp(ai) \ I into sets J1 < · · · < Jl, where l ∈ N and
3̺ < ‖z∗|span{zi : i∈Jk}‖ ≤ 6̺ for 1 ≤ k < l,

‖z∗|span{zi : i∈Jl}‖ ≤ 6̺.
(8)This is learly possible by the de�nition of I and by the bimonotoniityof (Ei). Set F = {minJk : k = 1, . . . , l − 1}. We laim that ms(F ) ∈ Fα \
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MAX(Fα), from whih it follows that ms(F̃ ) ∈ Fα, where F̃ = F ∪{minJl}.To prove the laim �rst hoose for eah k = 1, . . . , l − 1 a vetor uk =∑

i∈Jk
cizi ∈ SZ suh that ∑

ciz
∗(zi) > 3̺. We an assume without lossof generality that cminJk

6= 0, i.e., that min suppE(uk) = msmin Jk−1 . Set
ṽk =

∑
i∈Jk

cixi and vk = ṽk/‖ṽk‖ for eah k = 1, . . . , l − 1, and note that
‖vk − uk‖ ≤ 2‖ṽk − uk‖ ≤ 2

∑

i∈Jk

|ci| · 2δi ≤ 4
∑

i≥k

δi.

It follows that for any (bk)
l−1
k=1 ⊂ R

+ we have
∥∥∥

l−1∑

k=1

bkvk

∥∥∥ ≥
l−1∑

k=1

bkz
∗(uk) −

l−1∑

k=1

bk · ‖vk − uk‖ ≥ 2̺
l−1∑

k=1

bk.We dedue that (vk) ∈ F , (uk) ∈ G and ms(F ) ∈ G̃∩[M ]<ω ⊂ Fα\MAX(Fα),as laimed.The following sequene of inequalities now ompletes the proof of (7):
∥∥∥

∑
aizi

∥∥∥ =
∑

aiz
∗(zi) ≤

∑

i∈I+

|ai| +
∑

i∈I−

|ai| +
l∑

k=1

6̺ ·
∥∥∥

∑

i∈Jk

aizi

∥∥∥

≤ 2
∥∥∥

∑

i∈I+

aiemsi−1

∥∥∥
TFα,1/2

+ 2
∥∥∥

∑

i∈I−

aiemsi−1

∥∥∥
TFα,1/2

+ 6̺ · D
l∑

k=1

∥∥∥
∑

i∈Jk

aiemsi−1

∥∥∥
TFα,1/2

≤ (4 + 12̺D) ·
∥∥∥

∑
aiemsi−1

∥∥∥
TFα,1/2

≤ D
∥∥∥

∑
aiemsi−1

∥∥∥
TFα,1/2

.It is the third line where we apply the indution hypothesis. Note that by (8)(and sine 12̺ < 1), eah Jk has size stritly smaller than that of the supportof (ai).7. Further remarks. In [11℄ the following universality result is proved.Theorem 25 ([11℄). For every ountable ordinal ξ there is a spae Yξwith separable dual suh that every Banah spae X with Sz(X) ≤ ξ embedsinto Yξ.This result of P. Dodos and V. Ferenzi is similar to our universalityresults, but the methods used are ompletely di�erent. Note that unlikeTheorems 22 and 23, the above result does not give information on theSzlenk index of the universal spae Yξ. The reason for this is that the useof desriptive set theory in proving results like Theorem 25 yields existeneproofs, whereas our approah is more onstrutive.



Banah spaes of bounded Szlenk index 95In this �nal setion we desribe the setting in whih desriptive set theoryan be used to study universality problems for ertain lasses of separableBanah spaes. We shall also explain what is missing if one tries to use thisapproah to prove the main results of our paper. For an extensive survey onthe interplay between desriptive set theory and Banah spaes the readeris referred to the Handbook artile by Argyros, Godefroy and Rosenthal [3℄.Reall that every separable Banah spae is a subspae of C[0, 1], thespae of ontinuous funtions on the Cantor set. The set SB of all losedsubspaes of C[0, 1] is given the E�ros�Borel struture, whih is the σ-algebragenerated by the sets {F ∈ SB : F ∩ U 6= ∅}, where U ranges over allopen subsets of C[0, 1]. This allows one to study lasses of Banah spaesaording to their desriptive omplexity and apply results of desriptive settheory. This has been �rst formalized by B. Bossard [6℄, and then taken upby S. Argyros and P. Dodos [2℄ to study universality problems. One of theentral notions introdued in [2℄ is the following.Definition. A lass C of separable Banah spae in SB is said to bestrongly bounded if for every analyti subset A of C there exists Y ∈ C thatontains isomorphi opies of every X ∈ A.The main result of [11℄ is that the lasses SR of separable, re�exivespaes and SD of spaes with separable dual are strongly bounded. Sine
{X ∈ SD : Sz(X) ≤ ξ} is analyti (even Borel, whih was proved in [6℄),Theorem 25 follows. However, it was not known whether the lasses Cα fromPeªzy«ski's question were analyti or not, and so the main theorem from [11℄ould not be applied. From our results we an now prove the following.Theorem 26. For every ountable ordinal α the lass Cα is analyti inthe E�ros�Borel struture of SB.Proof. Fix a ountable ordinal α. We begin by showing that the lass
Cωα·ω is analyti. By Theorem 23, if X ∈ Cωα·ω , then there exists n ∈ N suhthat X isomorphially embeds into Zα,n, whih we denote by X →֒ Zα,n.Conversely, assume that X →֒Zα,n. Sine Zα,n has an FDD satisfying subse-quential (T ∗

α·n, Tα·n) estimates, it follows easily that X satis�es subsequential
(T ∗

α·n, Tα·n)-tree estimates. By duality the same holds for X∗, and hene X∗also embeds into Zα,n. From Proposition 17 we now obtain
max{Sz(X), Sz(X∗)} ≤ Sz(Zα,n) ≤ ωα·n,and so X ∈ Cωα·ω .It is well known and easy to show that for any Y ∈ SB the set {X ∈ SB :

X →֒Y } is analyti. It follows that
Cωα·ω =

⋃

n∈N

{X ∈ SB : X →֒Zα,n}is analyti, as laimed.



96 E. Odell et al.To prove the general ase, we use a reent result of P. Dodos [10℄ whihstates that
Sα = {X ∈ SB : max{Sz(X), Sz(X∗)} ≤ α}is analyti. Sine Cα = Sα ∩ Cωα·ω , it follows immediately that Cα is alsoanalyti.Remark. As mentioned in the Introdution, it was C. Rosendal whopointed out to us that the analytiity of Cωα·ω follows from our results. LaterP. Dodos informed us that this fat together with his result implies thegeneral ase.
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