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The Hypercyclicity Criterion for sequences of operators

by

L. Bernal-González (Sevilla) and K.-G. Grosse-Erdmann (Hagen)

Abstract. We show that under no hypotheses on the density of the ranges of the
mappings involved, an almost-commuting sequence (Tn) of operators on an F-space X
satisfies the Hypercyclicity Criterion if and only if it has a hereditarily hypercyclic sub-
sequence (Tnk), and if and only if the sequence (Tn ⊕ Tn) is hypercyclic on X ×X. This
strengthens and extends a recent result due to Bès and Peris. We also find a new charac-
terization of the Hypercyclicity Criterion in terms of a condition introduced by Godefroy
and Shapiro. Finally, we show that a weakly commuting hypercyclic sequence (Tn) sat-
isfies the Hypercyclicity Criterion whenever it has a dense set of points with precompact
orbits. We remark that some of our results are new even in the case of iterates (T n) of a
single operator T .

1. Introduction. Throughout this paper, X will denote a separable
F-space over the field K = R or C, where an F-space is a topological vector
space whose topology is induced by a complete translation-invariant metric.
Let L(X) denote the space of all operators on X, that is, all continuous
linear mappings X → X. Then an operator T ∈ L(X) is called hypercyclic
whenever there exists some x ∈ X such that the orbit {T nx : n ∈ N} of x
under T is dense in X. In this case the vector x is also called hypercyclic.
The theory of hypercyclic operators has recently been studied intensively.
We refer to the comprehensive survey [19]; see also [15, Section 1].

In this paper we shall study, more generally, an arbitrary sequence (Tn)
of operators on X. Then (Tn) is called hypercyclic provided there exists
some x ∈ X such that {Tnx : n ∈ N} is dense in X. Observe that X
must be separable in order to support such a sequence. We continue to refer
to the set {Tnx : n ∈ N} as the orbit of x under (Tn). A vector x with
dense orbit under (Tn) is called hypercyclic for (Tn). This more general
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notion of hypercyclicity is also sometimes referred to as universality (see
[19, Section 1]).

Moreover, the sequence (Tn) ⊂ L(X) is called densely hypercyclic when-
ever the set of its hypercyclic vectors is dense in X. It is called hereditarily
hypercyclic whenever each subsequence (Tnk) is hypercyclic, and densely
hereditarily hypercyclic whenever each subsequence is densely hypercyclic;
cf. [5] and [19, Section 2], but note that Bès and Peris [11] use a different
notion of hereditary hypercyclicity. Corresponding concepts can be defined
for a single operator T ∈ L(X) by looking at its sequence of iterates.

1.1. The Hypercyclicity Criterion. This criterion, which gives sufficient
conditions under which a sequence (Tn) is hypercyclic, has turned out to be
extremely useful in applications.

Definition 1.1. A sequence (Tn) ⊂ L(X) satisfies the Hypercyclicity
Criterion provided there exist dense subsets X0 and Y0 of X and an increas-
ing sequence (nk) of positive integers satisfying the following two conditions:

(i) Tnkx→ 0 (k →∞) for all x ∈ X0;
(ii) for any y ∈ Y0 there is a sequence (uk) in X such that uk → 0 and

Tnkuk → y (k →∞).

Note that this is an equivalent reformulation of the Hypercyclicity Crite-
rion as stated in [11, Definition 1.2 and Remark 2.6]. The criterion evolved
from earlier versions due to Kitai [23] and Gethner and Shapiro [14, Re-
mark 2.3]; see also [18] and [15, Corollary 1.4].

As before, an operator T is said to satisfy the Hypercyclicity Criterion
provided the sequence (T n) of its iterates satisfies it. It is worth to com-
ment here that H. Salas [29] and D. Herrero [20] have shown that there
are hypercyclic operators (on Hilbert space) that do not satisfy the Hy-
percyclicity Criterion for the full sequence (nk) = (1, 2, 3, . . .), but so far no
hypercyclic operator has been found that does not satisfy the Hypercyclicity
Criterion as stated in Definition 1.1. This has led to the following question
(see [11] and [25]), which can be distinguished as “the great open problem”
in hypercyclicity: Does every hypercyclic operator satisfy the Hypercyclicity
Criterion?

Remark 1.2. Formally, one may further weaken the Hypercyclicity Cri-
terion. The criterion remains a sufficient condition for hypercyclicity when
property (i) is replaced by the following weaker property:

(i′) for each x ∈ X0, (Tnkx) has a convergent subsequence.

Furthermore, if (i′) and (ii) are satisfied then (Tn) has a dense set of hyper-
cyclic vectors. We shall need this result, which can be found in [19, Theo-
rem 2 with Remark 2], in Section 4. For the sake of completeness, we provide
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the following proof. Assume that a pair U, V of non-empty open subsets of
X is given. Since X0 is dense, we can select a vector x ∈ X0 ∩ U , so that
Tmkx → a as k → ∞ for some subsequence (mk) of (nk) and some a ∈ X.
By the density of Y0 there exists y ∈ Y0 ∩ (V − a). Hence we can find a
sequence (uk) ⊂ X such that uk → 0 and Tmkuk → y as k → ∞. By lin-
earity we obtain Tmk(x + uk) → a + y. Since U and V are open sets with
x ∈ U and a + y ∈ V we can find some k0 ∈ N with x + uk ∈ U and
Tmk(x + uk) ∈ V , hence Tmk(U) ∩ V 6= ∅, for k ≥ k0. The result is then
derived via an application of Lemma 2.1 (see Section 2).

We note that by a recent result of Bermúdez, Bonilla and Peris [4, Theo-
rem 2.2] the above weakened form of the Hypercyclicity Criterion is equiva-
lent to the original criterion in the case of iterates (T n) of a single operator T .

Bès and Peris [11, Theorem 2.3] have shown that an operator T satis-
fies the Hypercyclicity Criterion if and only if some subsequence (T nk) is
hereditarily hypercyclic (in the sense of the introduction), and if and only
if T ⊕ T is hypercyclic, where

T ⊕ T : X ×X → X ×X, (T ⊕ T )(x1, x2) = (Tx1, Tx2).

This is of great interest because it shows the equivalence of Herrero’s prob-
lem [21] of whether T ⊕ T is hypercyclic whenever T is to the problem,
mentioned above, of whether every hypercyclic operator satisfies the Hyper-
cyclicity Criterion.

Bès and Peris have generalized their result to certain sequences (Tn) of
operators [11, Remark 2.6(3)].

Theorem 1.3 (Bès, Peris). Let (Tn) be a commuting sequence (that is,
TnTm = TmTn for all m,n ∈ N) of operators in L(X) with dense range.
Then the following assertions are equivalent :

(A) (Tn) satisfies the Hypercyclicity Criterion.
(B) (Tn) has a hereditarily hypercyclic subsequence.
(C) (Tn ⊕ Tn) is hypercyclic on X ×X.

Note that, trivially, if T ∈ L(X) is hypercyclic then its sequence of it-
erates (Tn) is commuting and each power T n has dense range. Peris has
shown (cf. [19, Proposition 1]) that if (Tn) is a hypercyclic commuting se-
quence of operators with dense range then it is in fact densely hypercyclic.
Since (Tn⊕Tn) is a commuting sequence of operators with dense range when-
ever (Tn) is, we conclude that the following assertions are also equivalent to
the assertions in the theorem:

(B′) (Tn) has a densely hereditarily hypercyclic subsequence.
(C′) (Tn ⊕ Tn) is densely hypercyclic on X ×X.
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1.2. Chaos. Following Godefroy and Shapiro [15], Devaney’s notion of
chaos [13, p. 50] has been generally accepted in the theory of hypercyclicity.
Thus, an operator T on an F-space is called chaotic if it has a dense orbit,
a dense set of periodic points, and a property called sensitive dependence
on initial conditions. We propose here the following definition of chaos for
sequences of operators. By d we denote a translation-invariant metric on X.

Definition 1.4. Let (Tn) ⊂ L(X). Then (Tn) is called chaotic if the
following three conditions are satisfied:

(i) (Tn) is densely hypercyclic;
(ii) (Tn) has a dense set of periodic points, that is, points x ∈ X for

which there is some p ∈ N with Tn+px = Tnx for all n ∈ N;
(iii) (Tn) has sensitive dependence on initial conditions, that is, there

exists a δ > 0 such that for all x ∈ X and ε > 0 there is a point y ∈ X with
d(x, y) < ε such that d(Tnx, Tny) > δ for some n ∈ N.

Note that this reduces to Devaney’s notion of chaos for sequences (T n) of
iterates of a single operator T . Godefroy and Shapiro [15, Proposition 6.1]
have shown that, in fact, every hypercyclic operator on an F-space has sen-
sitive dependence on initial conditions (cf. also [3]). Since their proof also
works for general densely hypercyclic sequences (Tn) we see that a sequence
(Tn) is chaotic if and only if it is densely hypercyclic and has a dense set of
periodic points.

The reader is referred to [12] for a concept of chaos for operators on
locally convex spaces that are not necessarily F-spaces.

1.3. Outline of the paper. In Section 2 we characterize the sequences
(Tn) of operators that satisfy the Hypercyclicity Criterion without assuming
that the Tn commute or have dense range. The result will then be applied
to composition operators on spaces of holomorphic functions.

In Section 3 we characterize the Hypercyclicity Criterion for almost-
commuting sequences of operators. In particular we shall extend the re-
sult of Bès and Peris to this class of operators, without any assumption on
the density of ranges. In addition, we obtain a new characterization of the
Hypercyclicity Criterion in terms of a condition studied by Godefroy and
Shapiro.

Finally, in Section 4 we show that every hypercyclic weakly commuting
sequence (Tn) having a dense set of points with precompact orbit satisfies
the Hypercyclicity Criterion. As a special case we see that every weakly
commuting chaotic sequence (Tn) satisfies the Hypercyclicity Criterion.

We want to emphasize that some of our results are new even in the special
case of a (single) hypercyclic operator T .
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2. The Hypercyclicity Criterion for arbitrary sequences. We
begin with a characterization of the Hypercyclicity Criterion for general
sequences of operators. For the proof of this result we need the fol-
lowing characterization of dense hypercyclicity for sequences of operators
[17, Satz 1.2.2] (see also [15, Theorem 1.2] and [11, Lemma 2.5]).

Lemma 2.1. For any sequence (Tn) of operators on X the following as-
sertions are equivalent :

(i) The sequence (Tn) is densely hypercyclic.
(ii) For every pair U , V of non-empty open subsets of X there are in-

finitely many n ∈ N with Tn(U) ∩ V 6= ∅.
(iii) The set of hypercyclic vectors for (Tn) is residual , that is, its com-

plement is of first category.

We remark that assertion (ii) is equivalent to the apparently weaker
assertion that for all non-empty open sets U and V there is some n ∈ N
with Tn(U) ∩ V 6= ∅.

We are now ready to state the main result of this section.

Theorem 2.2. Let (Tn) be a sequence of operators on X. Then the fol-
lowing assertions are equivalent :

(A) (Tn) satisfies the Hypercyclicity Criterion.
(B) (Tn) has a densely hereditarily hypercyclic subsequence.
(Cfin) For every N ∈ N, (Tn ⊕ . . . ⊕ Tn) (N -fold) is densely hypercyclic

on XN .

Proof. (A)⇒(B). If (nk) is the sequence of positive integers appearing
in the Hypercyclicity Criterion then, obviously, every subsequence of (Tnk)
also satisfies the criterion. Hence, (Tnk) is densely hereditarily hypercyclic
(cf. Remark 1.2).

(B)⇒(Cfin). Fix N ∈ N and let U1, . . . , UN and V1, . . . , VN be non-
empty open subsets of X. Let (Tnk) be densely hereditarily hypercyclic. By
Lemma 2.1 there is a subsequence (n(1)

k ) of (nk) such that T
n

(1)
k

(U1)∩V1 6= ∅
for all k. Since, by heredity, (T

n
(1)
k

) is also densely hypercyclic there is a

subsequence (n(2)
k ) of (n(1)

k ) such that T
n

(2)
k

(U2) ∩ V2 6= ∅ for all k, and we

also have T
n

(2)
k

(U1)∩V1 6= ∅ for all k. Continuing in the same way we obtain

a subsequence (mk) = (n(N)
k ) of (nk) with Tmk(Ui) ∩ Vi 6= ∅ for 1 ≤ i ≤ N

and all k, hence (Tmk ⊕ . . .⊕ Tmk)(U1 × . . .×UN )∩ (V1 × . . .× VN ) 6= ∅ for
all k. Now, Lemma 2.1 implies (Cfin).

(Cfin)⇒(A). We fix a base (Uk) of neighbourhoods of zero in X with
Uk+1 ± Uk+1 ⊂ Uk for all k and a sequence (yk) that is dense in X. By
induction on k we shall show that there is an increasing sequence (nk) of
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positive integers, neighbourhoods Vk and Wk of zero (k ∈ N) and vectors
xj,k, uj,k ∈ X for k ∈ N and 1 ≤ j ≤ k such that

Wk +Wk ⊂ Vk ∩Wk−1 for k ≥ 2,(1)

Vk ⊂ Uk,(2)

xj,k ∈ xj,k−1 +Wk−1 if j 6= k, xk,k ∈ yk + Uk,(3)

uj,k ∈ Uk,(4)

Tnk(xj,k + Vk) ⊂ Uk,(5)

Tnkuj,k ∈ xj,k + Uk.(6)

We only show how to construct the objects with index k from those with
index k − 1, k ≥ 2; the initial construction for k = 1 is similar.

Thus, fix k ≥ 2. Since (Tn ⊕ . . .⊕ Tn) (2k-fold) is densely hypercyclic on
X2k there is a hypercyclic vector (x1,k, . . . , xk,k, u1,k, . . . , uk,k) such that (3)
and (4) hold for 1 ≤ j ≤ k. By hypercyclicity of this vector there is an
integer nk > nk−1 such that

Tnkxj,k ∈ Uk
and (6) hold for 1 ≤ j ≤ k. Since Tnk is continuous we can find a neigh-
bourhood Vk of zero satisfying (2) and (5) for 1 ≤ j ≤ k. As a final step we
define Wk as a neighbourhood of zero that satisfies (1).

We shall now show that for each j ∈ N the sequence (xj,k)k≥j is a Cauchy
sequence in X. For l > k ≥ j we have, by (3),

xj,l ∈ xj,l−1 +Wl−1 ⊂ . . . ⊂ xj,k +Wk +Wk+1 + . . .+Wl−1.

It is easy to deduce from (1) that Wk + . . .+Wl−1 ⊂Wk +Wk ⊂ Vk, which
implies with (2) that

xj,l − xj,k ∈ Vk ⊂ Uk
for l > k ≥ j. Since (Uk) is a local base we see that (xj,k)k≥j is a Cauchy
sequence and hence converges to some xj ∈ X. We then have

xj ∈ xj,k + Vk for k ≥ j,(7)

hence by (5),
Tnkxj → 0 as k →∞, for all j ∈ N,

giving us condition (i) in the Hypercyclicity Criterion when we set X0 :=
{xj : j ∈ N}.

Next we find that, by (7), (3) and (2),

xj ∈ xj,j + V j ⊂ yj + Uj + Vj ⊂ yj + Uj + Uj ⊂ yj + Uj−1,

which implies that X0 is a dense subset of X.
Finally, by (6), (7) and (2) we have for k ≥ j,
Tnkuj,k ∈ xj,k + Uk ⊂ xj − Vk + Uk ⊂ xj − Uk + Uk ⊂ xj + Uk−1,
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so that also
Tnkuj,k → xj as k →∞, for all j ∈ N,

while (4) implies that

uj,k → 0 as k →∞, for all j ∈ N.
This shows that also condition (ii) in the Hypercyclicity Criterion is satisfied
when we set Y0 := X0. Thus, (Cfin) implies (A).

Remarks 2.3. (a) The proof of the theorem shows that the sequence
(nk) appearing in the Hypercyclicity Criterion produces a densely heredi-
tarily hypercyclic subsequence (Tnk) for assertion (B). Also, if (Tn) ⊂ L(X)
satisfies the Hypercyclicity Criterion then one may suppose that Y0 = X0;
cf. [11, Remark 2.6]. In fact, allowing Y0 6= X0 one can slightly simplify
the proof by replacing condition (6) by Tnkuj,k ∈ yj + Uk and setting
Y0 = {yj : j ∈ N}.

(b) Condition (Cfin) can be restated, perhaps more elegantly, in the fol-
lowing form:

(C∞) (Tn ⊕ Tn ⊕ . . .) is densely hypercyclic on XN, equipped with the
product topology.

This follows easily from the equivalence of (i) and (ii) in Lemma 2.1 since
the sets of the form U1×. . .×UN×X×X×. . . with non-empty open subsets
Ui ⊂ X (1 ≤ i ≤ N, N ∈ N) form a base for the topology of XN.

(c) One cannot drop the density assumptions in conditions (B) and (Cfin).
Indeed, let S be the scaled backward shift S : (x0, x1, . . .) 7→ (2x1, 2x2, . . .)
on X = l2 with the usual norm ‖ · ‖ (see [27]). Then it is well known, and
easy to see, that S satisfies the Hypercyclicity Criterion for the full sequence,
hence is hereditarily hypercyclic. Now, to each vector x = (x0, x1, x2, . . .) ∈
X we associate the vectors y = (x1, x2, . . .) ∈ X and x0e0 ∈ X, where e0 =
(1, 0, 0, 0, . . .). Let us define the operators Tn : X → X, x 7→ Sny + 3nx0e0,
n ∈ N. If y is hypercyclic for a subsequence (Snk) then it is clear that
x := (0, y0, y1, . . .) is hypercyclic for (Tnk), so (Tn) is hereditarily hyper-
cyclic. On the other hand, by the result of Bès and Peris, S⊕. . .⊕S (N -fold)
is hypercyclic on XN for each N , and introducing zeros as respective first
coordinates it is easy to see that (Tn ⊕ . . . ⊕ Tn) is also hypercyclic. How-
ever, (Tn) does not satisfy the Hypercyclicity Criterion because the set of
hypercyclic vectors for (Tn) is not dense in X. In fact, if x is such a vector
then its first coordinate satisfies x0 = 0 because, otherwise, we would have

‖Tnx‖ ≥ 3n|x0| − 2n‖x‖ → ∞ as n→∞,
which is clearly absurd.

(d) In this paper we are primarily interested in self-mappings. We want to
note, however, that under the obvious extensions of the notions appearing in
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Theorem 2.2 the result remains true for sequences (Tn) of continuous linear
mappings Tn : X → Y between different separable F-spaces X and Y ; the
proof is an obvious modification of the simplified proof mentioned in (a).

(e) The characterization of the Hypercyclicity Criterion for arbitrary se-
quences of operators obtained in Theorem 2.2 obviously poses the problem if
it suffices in condition (Cfin) to take N = 2 only. We do not know the answer
to this question. However, under the assumption of some commutativity on
the sequence (Tn) this improvement is possible (see Section 3).

As an application of the theorem we want to consider operators that have
been much studied in the theory of hypercyclicity, namely composition oper-
ators on spaces of holomorphic functions (cf. [19, Section 4a]). Let G ⊂ C be
a non-empty open subset of the complex plane and let ϕn : G→ G, n ∈ N,
be automorphisms on G, that is, each ϕn is an invertible holomorphic func-
tion from G onto itself. Then we consider the sequence (Tn) of composition
operators on the space H(G) of holomorphic functions on G given by

Tnf = f ◦ ϕn, f ∈ H(G),

where H(G) carries its usual topology of locally uniform convergence. It was
shown by Bernal and Montes [8], [26] that if G is not conformally equivalent
to C \ {0} then the sequence (Tn) is hypercyclic if and only if (ϕn) is a
run-away sequence, that is, if for every compact subset K ⊂ G there exists
some n ∈ N with K ∩ ϕn(K) = ∅. We shall now show that the sequence
always satisfies the Hypercyclicity Criterion if it is hypercyclic.

Proposition 2.4. Let (Tn) be a sequence of composition operators
Tnf = f ◦ ϕn on a non-empty open subset G of C that is not conformally
equivalent to C \ {0}. Then the following assertions are equivalent :

(i) (Tn) is hypercyclic.
(ii) (Tn) has a densely hereditarily hypercyclic subsequence.

(iii) (Tn) satisfies the Hypercyclicity Criterion.
(iv) (ϕn) is a run-away sequence.

Proof. The proof of (i)⇒(iv) is given in [26, p. 197], and (ii)⇒(i) is trivial.
Since the equivalence of (ii) and (iii) follows from Theorem 2.2 it suffices
to prove that (iv)⇒(ii). Now, there exists an increasing sequence (Kn) of
compact subsets of G such that each compact subset of G is contained in
some Kn. By (iv) there is an increasing sequence (nj) of positive integers
such that Kj ∩ ϕnj (Kj) = ∅ for all j ∈ N. It then follows easily that each
subsequence (ϕmj) of (ϕnj) is run-away. By [26, Remark 2] this shows that
(Tnj ) is densely hereditarily hypercyclic, proving (ii).

This result is particularly interesting because, in contrast to most other
classes of operators, the proofs of the hypercyclicity of composition opera-
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tors on spaces H(G) have so far usually relied on Lemma 2.1 or on explicit
constructions; the Hypercyclicity Criterion had turned out to be more cum-
bersome for these operators (see, for example, the proof of [14, 3.2]). We thus
see that at least in principle one could also use the Hypercyclicity Criterion
for these operators.

As an immediate consequence of this result and of [5, Theorem 2 and
following remark] we obtain the following.

Corollary 2.5. Under the assumptions of Proposition 2.4, every hy-
percyclic sequence of composition operators Tnf = f ◦ϕn has a dense vector
subspace L ⊂ H(G) so that each non-zero vector in L is hypercyclic for (Tn).

Incidentally, Theorem 2 of [5] should be compared with a remarkable
recent result of S. Grivaux [16] which asserts that for any sequence (Tn)
of hypercyclic operators on a Banach space X, there is a dense vector sub-
space L such that every non-zero vector in L is Tn-hypercyclic for every n.
Compare also with [7, Theorem 3.1].

3. The Hypercyclicity Criterion for almost-commuting sequen-
ces. In this section we study the Hypercyclicity Criterion under mild com-
mutativity assumptions on the sequence (Tn).

Definition 3.1. (a) A sequence (Tn) in L(X) is called almost-com-
muting if

lim
n→∞

(TnTm − TmTn)x = 0

for every m ∈ N and every x ∈ X.
(b) A sequence (Tn) in L(X) is called weakly commuting if

(TnTm − TmTn)n

is equicontinuous on X for every m ∈ N.

The concept of almost-commutativity was introduced by the first au-
thor in [6]. It follows from the Banach–Steinhaus Theorem [28, Chapter 2]
that every almost-commuting sequence is weakly commuting, while almost-
commutativity is strictly weaker than commutativity. For example, if S and
T are operators on a Banach space with ‖S‖ < 1 and ‖T‖ < 1 then the
sequence (S, T, S2, T 2, S3, . . .) is almost-commuting even if S and T do not
commute, in which case the sequence is not commuting.

The following property of weakly commuting and hence also of almost-
commuting sequences of operators will be crucial.

Lemma 3.2. Let (Tn) be a weakly commuting sequence of operators on X.
If uk → 0 in X and Tnkuk → x0 ∈ X for some (nk) then Tnk(Tmuk)
→ Tmx0 for all m ∈ N.
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Proof. By weak commutativity the sequence (TnTm−TmTn)n is equicon-
tinuous for each m, hence so is the sequence (TnkTm − TmTnk)k. Thus it
follows from uk → 0 that

(TnkTm − TmTnk)uk → 0 as k →∞.

Since Tm is continuous and Tnkuk → x0 we conclude that

Tnk(Tmuk) = (TnkTmuk − TmTnkuk) + TmTnkuk → Tmx0

as k →∞.

From this we obtain the following improvement of Theorem 2.2 for
almost-commuting sequences of operators.

Theorem 3.3. Let (Tn) be an almost-commuting sequence of operators
on X. Then the following assertions are equivalent :

(A) (Tn) satisfies the Hypercyclicity Criterion.
(B) (Tn) has a (densely) hereditarily hypercyclic subsequence.
(C) (Tn ⊕ Tn) is (densely) hypercyclic on X ×X.
(D) There exists a hypercyclic vector x0 for (Tn), a sequence (uk) in X

with uk → 0, and an increasing sequence (nk) of positive integers
such that Tnkx0 → 0 and Tnkuk → x0 as k →∞.

(E) There exists a hypercyclic vector x0 for (Tn) and an increasing se-
quence (nk) of positive integers such that Tnkx0 → 0 as k → ∞ and
(Tnk) is hypercyclic.

Proof. The implication (A)⇒(B) follows from Theorem 2.2, and condi-
tion (B) without density clearly implies (E).

(E)⇒(D). Suppose that x0 is hypercyclic for (Tn), that Tnkx0 → 0 and
that (Tnk) has a hypercyclic vector u. Since uj := j−1u is also hypercyclic
for (Tnk) for each j ∈ N one can find a subsequence (mj) of (nk) with
Tmjuj → x0 as j →∞. Since uj → 0 and Tmjx0 → 0 as j →∞ we see that
condition (D) holds.

(D)⇒(A). Let X0 := {Tnx0 : n ∈ N}, which is dense in X by hyper-
cyclicity of x0. Fix x = Tmx0 ∈ X0. By hypothesis, we have

TnTmx0 − TmTnx0 → 0 (n→∞).

Thus we obtain

Tnkx = (TnkTmx0 − TmTnkx0) + TmTnkx0 → 0

because Tnkx0 → 0 and Tm is continuous. This gives us condition (i) in the
Hypercyclicity Criterion.

Next we define
u

(m)
k := Tmuk (k,m ∈ N).
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Since uk → 0 and Tnkuk → x0 as k →∞, Lemma 3.2 implies that

Tnku
(m)
k → Tmx0

as k → ∞ for all m ∈ N, and by continuity of Tm we have u(m)
k → 0 as

k →∞. Hence also condition (ii) in the Hypercyclicity Criterion is satisfied
when we set Y0 = X0 = {Tnx0 : n ∈ N}.

So far we have seen that conditions (A), (B), (D) and (E) are equiv-
alent. For the equivalence of (C) with these conditions it suffices, in view
of Theorem 2.2, to show that condition (C) without density implies (D).
Thus, suppose that there exists a vector (x0, u) ∈ X×X that is hypercyclic
for (Tn ⊕ Tn). Let (Uk) be a base of neighbourhoods of zero in X and set
uk = k−1u. Since every vector (x0, uk) is hypercyclic for (Tn⊕ Tn) there are
positive integers nk such that

Tnkx0 ∈ Uk and Tnkuk ∈ x0 + Uk

for all k ∈ N. Thus we have uk → 0, Tnkx0 → 0 and Tnkuk → x0 as k →∞.
Since x0 is necessarily hypercyclic for (Tn) condition (D) is satisfied.

While condition (E) was taken from [9, Chapter 1] we had originally
introduced condition (D) as an auxiliary property for the proof of Theo-
rem 3.3. However, it turned out to have another, unexpected consequence for
almost-commuting sequences of operators: An interesting condition that was
shown by Godefroy and Shapiro [15, Corollary 1.3] to be sufficient for hyper-
cyclicity is in fact equivalent to the Hypercyclicity Criterion. This condition
should be compared with condition (ii) in Lemma 2.1 that is equivalent to
dense hypercyclicity.

Theorem 3.4. An almost-commuting sequence (Tn) of operators on X
satisfies the Hypercyclicity Criterion if and only if the following condition
holds:

(GS) For every pair U, V of non-empty open subsets of X and every
neighbourhood W of zero there is some n ∈ N with

Tn(U) ∩W 6= ∅ and Tn(W ) ∩ V 6= ∅.
As in Lemma 2.1, one may equivalently require in condition (GS) that

the stated property holds for infinitely many n ∈ N (cf. [15]).

Proof. If (Tn) satisfies the Hypercyclicity Criterion then by Theorem 2.2
the sequence (Tn ⊕ Tn) is densely hypercyclic, which by Lemma 2.1 implies
(GS) when we choose U × W and W × V as open subsets of X × X in
condition (ii) there.

Conversely, suppose that (Tn) satisfies (GS). It suffices to show that then
also condition (D) of Theorem 3.3 holds. First, by the proof of [15, Corol-
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lary 1.3], (Tn) has a dense Gδ-set of hypercyclic vectors. Since the inter-
section of two dense Gδ-sets in an F-space is non-empty, condition (D) will
follow once we have shown that the following property is satisfied by a dense
Gδ-set of points x ∈ X: there exists a sequence (uk) in X with uk → 0 and
an increasing sequence (nk) of positive integers such that Tnkx → 0 and
Tnkuk → x. Let P be the set of such points x and let (Uk) be a base of open
neighbourhoods of zero in X. Then we clearly have P =

⋂∞
k=1Ok with

Ok =
∞⋃

n=1

(T−1
n (Uk) ∩ {x ∈ X : Tn(Uk) ∩ (x+ Uk) 6= ∅}).

Since each Tn is continuous and x+Uk is open it follows easily that each set
Ok is open. Now, condition (GS) implies that each Ok is also dense. To see
this, fix k ∈ N and let V be a non-empty open subset of X. Choose an open
non-empty subset Ṽ of V with Ṽ − Ṽ ⊂ Uk (for example, let Ṽ = v + W
with v ∈ V and an open neighbourhood W of zero such that v + W ⊂ V
and W −W ⊂ Uk). Then by (GS) there is some n ∈ N and points x, y ∈ Ṽ
such that Tnx ∈ Uk and y ∈ Tn(Uk). Since y − x ∈ Ṽ − Ṽ ⊂ Uk we deduce
that y ∈ x + Uk. Therefore x ∈ T−1

n (Uk) and Tn(Uk) ∩ (x + Uk) 6= ∅. Since
x ∈ Ṽ ⊂ V we see that Ok contains a point from V . Thus we have shown
that each set Ok is dense and open, which makes P a dense Gδ-subset of X
by the Baire Category Theorem.

Remark 3.5. Even the special case of this theorem for single operators T
gives a new result. Namely, an operator T on X satisfies the Hypercyclicity
Criterion if and only if the following condition holds:

(GS) For every pair U, V of non-empty open subsets of X and every
neighbourhood W of zero there is some n ∈ N with

Tn(U) ∩W 6= ∅ and Tn(W ) ∩ V 6= ∅.
During the preparation of this paper we were kindly informed by

J. Bès [10], F. León [24] and L. Saldivia [30] that they have independently
obtained this result. We are grateful to all these people.

In view of the second part of the proof of Theorem 3.4 it is natural
to pose the following problem: Is U = V in condition (GS) sufficient for
hypercyclicity of a single operator T? If this is the case then the proof
shows that the weaker condition is also equivalent to the Hypercyclicity
Criterion for T . We are grateful to J. Bès and L. Saldivia for interesting
discussions about this matter.

4. Chaos for sequences of operators. In this section we show that
many hypercyclic weakly commuting sequences (Tn), including all chaotic
weakly commuting sequences, satisfy the Hypercyclicity Criterion, which we
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may take as further evidence for the importance of this criterion. Recall that
a subset A of a metric space is called precompact (or totally bounded) if for
every ε > 0 the set A can be covered by a finite union of ε-balls in the space.

Theorem 4.1. Let (Tn) be a hypercyclic weakly commuting sequence of
operators on X. If there is a dense set of points x ∈ X with precompact orbit
{Tnx : n ∈ N} then (Tn) satisfies the Hypercyclicity Criterion.

Proof. By Theorem 2.2 it suffices to show that (Tn) has a densely heredi-
tarily hypercyclic subsequence (Tnk). To see this, let x0 be a fixed hypercyclic
vector for (Tn). Since also each vector uk := k−1x0 is hypercyclic we can
find an increasing sequence (nk) of positive integers such that Tnkuk → x0
as k →∞, and we find that uk → 0.

Let
u

(m)
k := Tmuk (k,m ∈ N).

Then Lemma 3.2 implies that

Tnku
(m)
k → Tmx0

as k → ∞ for all m ∈ N, and by continuity of Tm we have u(m)
k → 0 for all

m ∈ N. Hence condition (ii) in the Hypercyclicity Criterion is satisfied when
we set Y0 = {Tnx0 : n ∈ N}, which is dense in X by hypercyclicity of x0.

We can now show that (Tnk) is densely hereditarily hypercyclic. Let (mk)
be a subsequence of (nk). Then also the sequence (Tmk) satisfies condition
(ii) in the Hypercyclicity Criterion for the same dense subset Y0. On the
other hand, let X0 be a dense set of points in X so that each x ∈ X0
has a precompact orbit. Then, for each x ∈ X0, (Tmkx) has a convergent
subsequence. Hence (Tmk) also satisfies condition (i′) in Remark 1.2, which
implies that it is densely hypercyclic. This had to be shown.

Bermúdez, Bonilla and Peris [4, Corollary 2.1] have obtained Theorem 4.1
for commuting operators in an F-space using a different argument.

The assumption of a dense set of points with precompact orbits includes
several interesting special cases. We refer to

lim inf
n→∞

Ker(Tn) =
∞⋃

n=1

∞⋂

j=n

Ker(Tj)

as the generalized kernel of the sequence (Tn). Observe that it is always
a linear submanifold of X. This notion extends the known concept of a
generalized kernel of a single operator (cf. [22] or [11]). And we call x an
almost-periodic point for (Tn) if for every neighbourhood U of zero there is
some N ∈ N such that for all m ∈ N there is some k with m ≤ k ≤ m+N
such that Tn+kx−Tnx ∈ U for all n ∈ N (cf. [31, p. 93]). An almost-periodic
point for an operator T is one for the sequence (T n).
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Corollary 4.2. Let (Tn) be a hypercyclic weakly commuting sequence
of operators on X. Suppose that at least one of the following conditions is
satisfied :

(a) (Tn) has dense generalized kernel.
(b) (Tn) converges pointwise on a dense subset of X.
(c) (Tn) is chaotic.
(d) (Tn) has a dense set of almost-periodic points.

Then (Tn) satisfies the Hypercyclicity Criterion.

Proof. Parts (a) to (c) are straightforward, but (d) needs some expla-
nation. In view of Theorem 4.1, we should show that every almost-periodic
point x for (Tn) has precompact orbit. For this, fix such an x and a neigh-
bourhood U of zero. Our goal is to find finitely many vectors yj , j = 1, . . . , p,
with Tnx ∈

⋃p
j=1(yj + U) for all n ∈ N. Now, if N is as in the definition of

almost-periodicity and n > N then there is k = k(n) with n − N ≤ k ≤ n
such that Tm+kx − Tmx ∈ U for all m ∈ N. If we take in particular
m = n− k+ 1 then Tn+1x ∈ Tn−k+1x+U ⊂ ⋃N+1

j=1 (Tjx+U). Consequently,
Tnx ∈

⋃p
j=1(yj + U) for all n ∈ N, where p := N + 1 and yj := Tjx.

Even in the special case of sequences (T n) of iterates of a single operator
Theorem 4.1 and Corollary 4.2 give new results.

Corollary 4.3. (1) Let T be a hypercyclic operator on X. If there is
a dense set of points x ∈ X with precompact orbit {T nx : n ∈ N} then T
satisfies the Hypercyclicity Criterion.

(2) In particular , the Hypercyclicity Criterion is satisfied for a hypercyclic
operator T on X if at least one of the following conditions holds:

(a) T has dense generalized kernel.
(b) (Tn) converges pointwise on a dense subset of X.
(c) T is chaotic.
(d) T has a dense set of almost-periodic points.

F. León [24] has independently proved part (1) of Corollary 4.3 on Hilbert
spaces. Moreover, part (2) of this corollary includes two results of Bès and
Peris [11, Propositions 2.11 and 2.14]; but see also [4, Remark 2.1(1)]. Note,
in particular, that for chaotic operators our proof is considerably simpler
than the one by Bès and Peris who use a deep theorem of Ansari [1], which
forced these authors to assume that X is a Fréchet space, that is, a locally
convex F-space; see also [2, Theorem 1.1].
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