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Two-weight norm inequalities for potential type
integral operators in the case p > q > 0 and p > 1

by

Hitoshi Tanaka (Tokyo)

Abstract. Sufficient conditions for a two-weight norm inequality for potential type
integral operators to hold are given in the case p > q > 0 and p > 1 in terms of the
Hedberg–Wolff potential.

1. Introduction. The purpose of this paper is to develop a theory of
weights for potential type integral operators in the case p > q > 0 and p > 1.
We first recall some standard notations.

We shall consider cubes in Rn with sides parallel to the coordinate axes.
We denote by Q the family of all such cubes. For a cube Q ∈ Q we use
`(Q) to denote the side-length of Q, |Q| to denote the volume of Q, and
cQ to denote the cube with the same center as Q but with side-length
c`(Q). We denote by D the family of all dyadic cubes Q = 2−i(k + [0, 1)n),
i ∈ Z, k ∈ Zn.

Let f be a locally integrable function on Rn. The Hardy–Littlewood max-
imal operator M is defined by

Mf(x) = sup
x∈Q∈Q

1

|Q|

�

Q

|f(y)| dy,

and the fractional integral operator (or the Riesz potential) Iα, 0 < α < n,
is defined by

Iαf(x) =
�

Rn

f(y)

|x− y|n−α
dy.

In this paper a weight is simply a positive measurable function w on Rn. For
each 1 < p <∞, p′ will denote the dual exponent of p, i.e., p′ = p/(p− 1).
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As is well-known, for the Hardy–Littlewood maximal operator M and
p > 1, Muckenhoupt [7] showed that the one-weight strong type inequality

(1.1) ‖(Mf)w‖Lp(dx) ≤ C‖fw‖Lp(dx)

holds if and only if

sup
Q∈Q

(
1

|Q|

�

Q

w(x)p dx

)1/p( 1

|Q|

�

Q

w(x)−p
′
dx

)1/p′

<∞.

For p > 1 one says that a weight w on Rn belongs to the class Ap when

sup
Q∈Q

(
1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)1−p
′
dx

)p−1
<∞.

That is, (1.1) holds if and only if wp ∈ Ap.
Muckenhoupt and Wheeden [8] showed that, for the fractional integral

operator Iα and q > p > 1 with 1/q = 1/p − α/n, the one-weight strong
type inequality

‖(Iαf)w‖Lq(dx) ≤ C‖fw‖Lp(dx)

holds if and only if

sup
Q∈Q

(
1

|Q|

�

Q

w(x)q dx

)1/q( 1

|Q|

�

Q

w(x)−p
′
dx

)1/p′

<∞.

Simple sufficient conditions are also known for two-weight strong type in-
equalities to hold.

Neugebauer [10] showed that, for the Hardy–Littlewood maximal oper-
ator M and p > 1, the condition

sup
Q∈Q

(
1

|Q|

�

Q

u(x)ap dx

)1/ap( 1

|Q|

�

Q

v(x)−ap
′
dx

)1/ap′

<∞,

for some a > 1, is sufficient for the two-weight strong type inequality

‖(Mf)u‖Lp(dx) ≤ C‖fv‖Lp(dx)

to hold. Sawyer and Wheeden [12] showed that, for the fractional integral
operator Iα and q ≥ p > 1, the condition

sup
Q∈Q
|Q|α/n+1/q−1/p

(
1

|Q|

�

Q

u(x)aq dx

)1/aq( 1

|Q|

�

Q

v(x)−ap
′
dx

)1/ap′

<∞,

for some a > 1, is sufficient for the two-weight strong type inequality

(1.2) ‖(Iαf)u‖Lq(dx) ≤ C‖fv‖Lp(dx)

to hold. For recent progress on this problem we refer to [3].
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In the case p > q > 0 and p > 1, in terms of the Hedberg–Wolff potential,
Cascante, Ortega and Verbitsky proved that the trace inequality

‖Iαf‖Lq(dµ) ≤ C‖f‖Lp(dx)

holds if and only if

WDα [µ]1/p
′ ∈ Lr(dµ), 1/q = 1/r + 1/p,

where µ is a nonnegative Borel measure on Rn and

WDα [µ](x) =
∑
Q∈D

(
|Q|αp/n

|Q|
µ(Q)

)p′−1
χQ(x).

Here, χQ is the characteristic function of Q ∈ D.

In this paper we shall investigate the two-weight strong type inequal-
ity (1.2) in the case p > q > 0 and p > 1.

In their significant paper [2], Cascante, Ortega and Verbitsky established
the following: Let K : D → R+ be any map. Let σ be a nonnegative Borel
measure on Rn and f ∈ L1

loc(dσ). The dyadic integral operator TDK [fdσ] is
defined by

TDK [fdσ](x) =
∑
Q∈D

K(Q)
�

Q

f(y) dσ(y)χQ(x).

We denote by K(Q)(x) the function

K(Q)(x) =
1

σ(Q)

∑
Q′⊂Q

σ(Q′)K(Q′)χQ′(x), x ∈ Q ∈ D,

and K(Q)(x) = 0 when σ(Q) = 0. The pair (K,σ) is said to satisfy the
dyadic logarithmic bounded oscillation (DLBO) condition if

sup
x∈Q

K(Q)(x) ≤ A inf
x∈Q

K(Q)(x),

where A does not depend on Q ∈ D.

Proposition 1.1 ([2, Theorem A]). Let K : D → R+, 0 < q < p < ∞
and 1 < p <∞. Let µ and σ be nonnegative Borel measures on Rn. Suppose
that the pair (K,σ) satisfies the DLBO condition. Then the trace inequality

(1.3) ‖TDK [fdσ]‖Lq(dµ) ≤ C‖f‖Lp(dσ)

holds if and only if

WDK,σ[µ]1/p
′ ∈ Lr(dµ), 1/q = 1/r + 1/p,

where

WDK,σ[µ](x) =
∑
Q∈D

( �
Q

K(Q)(y) dµ(y)
)p′−1

σ(Q)K(Q)χQ(x).
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For recent developments on this problem we refer to [9, 5, 15, 13].
In [14], the author and Terasawa develop a theory of weights for positive
operators and generalized Doob maximal operators in a filtered measure
space.

In the general situation, where we do not assume that the pair (K,σ)
satisfies the DLBO condition, some sufficient condition for the trace inequal-
ity (1.3) to hold was obtained by Cascante, Ortega and Verbitsky:

Proposition 1.2 ([1, Theorem 2.7]). Let K : D → R+ and 1 < q <
p <∞. Let µ and σ be nonnegative Borel measures on Rn. Then the condi-
tion

WDK,σ[µ]1/p
′ ∈ Lr(dµ), 1/q = 1/r + 1/p,

where

WDK,σ[µ](x) =
∑
Q∈D

( �
Q

K(Q)(y) dµ(y)
)p′−1

σ(Q)K(Q)(x),

is sufficient for the trace inequality (1.3) to hold.

In this paper we shall establish two-weight extensions of Proposition 1.2.

Let K : D → R+. We define the integral operator TK [fdσ] by

TK [fdσ](x) =
∑
Q∈D

K(Q)
�

3Q

f(y) dσ(y)χQ(x).

For 0 < α < n we notice that, by Fubini’s theorem,

(1.4) Iα[|f |](x) ≈
∑
Q∈D

|Q|α/n

|Q|

�

3Q

|f(y)| dy χQ(x) a.e. x ∈ Rn

and

(1.5)
|Q|α/n

|Q|
χQ(x) ≈ 1

|Q|
∑
Q′⊂Q

|Q′|α/nχQ′(x) a.e. x ∈ Q ∈ D.

In this paper we shall prove the following theorem:

Theorem 1.3. Let K : D → R+, a > 1, 0 < q < p <∞ and 1 < p <∞.
Let µ be a nonnegative Borel measure, σ be a positive “doubling” Borel
measure and w be a weight on Rn. Then:

(a) There exists C > 0 such that whenever f is a nonnegative Borel
measurable function on Rn, the two-weight norm inequality

‖TK [fdσ]‖Lq(dµ) ≤ C‖W
D;p,a
K,σ [µ,w]1/p

′‖Lr(dµ)‖fw‖Lp(dσ),

1/q = 1/r + 1/p,
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holds, where

WD;p,aK,σ [µ,w](x) =
∑
Q∈D

(	
3Qw(y)−ap

′
dσ(y)

σ(Q)

)1/a

×
( �
Q

K(Q)(y) dµ(y)
)p′−1

σ(Q)K(Q)(x).

(b) There exists C > 0 such that whenever f is a nonnegative Borel
measurable function on Rn, the two-weight norm inequality

‖TK [fdσ]‖Lq(dµ)≤C‖W
D;p
K,σ[µ,w]1/p

′‖Lr(dµ)‖(Mσf)w‖Lp(dσ),

1/q = 1/r + 1/p,
holds, where

WD;pK,σ[µ,w](x) =
∑
Q∈D

�

Q

w(y)−p
′
dσ(y)

×
( �
Q

K(Q)(y) dµ(y)
)p′−1

K(Q)(x).

Here, Mσ stands for the Hardy–Littlewood maximal operator given by

Mσf(x) = sup
x∈Q∈Q

1

σ(Q)

�

Q

|f(y)| dσ(y).

In the last section, we will discuss the necessity of our sufficient condi-
tions.

In view of (1.4) and (1.5), we have the following:

Corollary 1.4. Let 0 < α < n, a > 1, 0 < q < p <∞ and 1 < p <∞.
Let µ be a nonnegative Borel measure and w be a weight on Rn. Then:

(a) There exists C > 0 such that whenever f is a nonnegative measurable
function on Rn, the two-weight norm inequality

‖Iαf‖Lq(dµ) ≤ C‖WD;p,aα [µ,w]1/p
′‖Lr(dµ)‖fw‖Lp(dx),

1/q = 1/r + 1/p,
holds, where

WD;p,aα [µ,w](x)

=
∑
Q∈D

(	
3Qw(y)−ap

′
dy

|Q|

)1/a( |Q|αp/n
|Q|

µ(Q)

)p′−1
χQ(x).

(b) There exists C > 0 such that, if wp ∈ Ap, whenever f is a nonnega-
tive measurable function on Rn, the two-weight norm inequality

‖Iαf‖Lq(dµ)≤C‖WD;pα [µ,w]1/p
′‖Lr(dµ)‖fw‖Lp(dx), 1/q= 1/r+1/p,
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holds, where

WD;pα [µ,w](x) =
∑
Q∈D

�

Q

w(y)−p
′
dy

{(
|Q|α/n

|Q|

)p
µ(Q)

}p′−1
χQ(x).

Remark 1.5. For nonnegative and locally σ-integrable functions Φ and
f on Rn, we define

TΦf(x) =
�

Rn

Φ(x− y)f(y) dσ(y).

We observe that

TΦf(x) =
∑
k∈Z

�

2k−1<|x−y|≤2k
Φ(x− y)f(y) dσ(y)

≤
∑
k∈Z

(
sup

2k−1<|y|≤2k
Φ(y)

) �

|x−y|≤2k
f(y) dσ(y)

≤
∑
Q∈D

(
sup

`(Q)/2<|y|≤`(Q)
Φ(y)

) �

3Q

f(y) dσ(y)χQ(x),

where we have used the geometric fact that if x ∈ Q ∈ D and `(Q) = 2k,
then 3Q ⊃ {y ∈ Rn : |x− y| ≤ 2k}.

The letter C will be used for constants that may change from one occur-
rence to another. Constants with subscripts, such as C1, C2, do not change
in different occurrences. By A ≈ B we mean that c−1B ≤ A ≤ cB with
some positive constant c independent of appropriate quantities.

2. Proof of Theorem 1.3. The theorem follows easily from the fol-
lowing lemma.

Lemma 2.1. Let K : D → R+, a > 1 and 1 < p < ∞. Let µ be a
nonnegative Borel measure, σ be a positive doubling Borel measure and w
be a weight on Rn. Define

µ1(x) =
dµ(x)

WD;p,aK,σ [µ,w](x)p−1
and µ2(x) =

dµ(x)

WD;pK,σ[µ,w](x)p−1
.

Then, if f is nonnegative, bounded and has compact support, we have

‖TK [fdσ]‖Lp(dµ1) ≤ C‖fw‖Lp(dσ),(2.1)

‖TK [fdσ]‖Lp(dµ2) ≤ C‖(Mσf)w‖Lp(dσ).(2.2)

Proof. For simplicity, we will use the notation

mQ(f) =
1

σ(Q)

�

3Q

f(x) dσ(x), Q ∈ D.
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We set

C0 = sup
Q∈Q

σ(3Q)

σ(Q)
.

Since σ is a positive doubling Borel measure, i.e.,

sup
Q∈Q

σ(2Q)

σ(Q)
<∞,

C0 is positive and finite.

We remember that f is nonnegative, bounded and has compact support.
Letting A = 2C3

0 , we define

Dk =
⋃
{Q ∈ D : mQ(f) > Ak} for k ∈ Z.

Considering the maximal cubes with respect to inclusion, we can write

Dk =
⋃
j

Qkj ,

where the cubes {Qkj } are nonoverlapping. By the maximality of Qkj ,

(2.3) Ak < m
Qj

k
(f) ≤ C0A

k.

Let Ekj = Qkj \Dk+1. We need the following properties:

(2.4) {Ekj } is a disjoint cover of the support of TK [fdσ],

(2.5) σ(Qkj ) ≤ 2σ(Ekj ).

The claim (2.4) is clear. The inequality (2.5) can be verified as follows:

By (2.3) we see that, if Qk+1
i ⊂ Qkj , then for any x ∈ Qk+1

i ,

Mσ[χ3Qk
j
f ](x) ≥ 1

σ(3Qk+1
i )

�

3Qk+1
i

f(y) dσ(y) ≥
mQk+1

i
(f)

C0
≥ Ak+1

C0
,

where we have used σ(3Qk+1
i ) ≤ C0σ(Qk+1

i ). This gives

Qkj ∩Dk+1 ⊂ {x ∈ Qkj : Mσ[χ3Qk
j
f ](x) > Ak+1/C0}.

Using the weak-(1, 1) boundedness of Mσ, which is justified since σ is a
doubling measure, we have

σ(Qkj ∩Dk+1) ≤
C2
0

Ak+1

�

3Qk
j

f(y) dσ(y) ≤ C3
0

A
σ(Qkj ) =

1

2
σ(Qkj ),

where we have used (2.3) again. This clearly implies (2.5).

We set

Dkj = {Q ∈ D : Q ⊂ Qkj , Ak < mQ(f) ≤ Ak+1}.
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Then we obtain

(2.6) {Q ∈ D : mQ(f) > 0} =
⋃
k,j

Dkj .

We shall prove the lemma by a duality argument. We first verify (2.1).
To this end, we take g ≥ 0 satisfying

(2.7) ‖g‖Lp′ (dµ1)
≤ 1

and evaluate

I =
∑
Q∈D

mQ(f)σ(Q)K(Q)
�

Q

g(x) dµ1(x).

Noticing (2.6), we shall estimate

II =
∑
Q∈Dk

j

mQ(f)σ(Q)K(Q)
�

Q

g(x) dµ1(x).

From the definition of Dkj ,

II

Ak+1
≤
∑
Q∈Dk

j

σ(Q)K(Q)
�

Q

g(x) dµ1(x) ≤
∑
Q⊂Qk

j

σ(Q)K(Q)
�

Q

g(x) dµ1(x)

=
�

Qk
j

( ∑
Q⊂Qk

j

σ(Q)K(Q)χQ(x)
)
g(x) dµ1(x)

=
�

Qk
j

K(Qkj )(x)g(x) dµ1(x)σ(Qkj ),

where we have used the definition of K(Qkj )(x). From (2.3) and (2.5),

II ≤ CmQk
j
(f)

�

Qk
j

K(Qkj )(x)g(x) dµ1(x)σ(Qkj )

≤ CmQk
j
(f)

�

Qk
j

K(Qkj )(x)g(x) dµ1(x)σ(Ekj ).

It follows from Hölder’s inequality that

mQk
j
(f) ≤

(
1

σ(Qkj )

�

3Qk
j

w(y)−ap
′
dσ(y)

)1/ap′

×
(

1

σ(Qkj )

�

3Qk
j

(f(y)w(y))bp dσ(y)

)1/bp

,
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where b < 1 satisfies (bp)′ = ap′. These imply, as Qkj ⊃ Ekj ,

(2.8) II ≤ C
�

Ek
j

MD;p,aK,σ [gdµ1, w](x)Mσ[(fw)bp](x)1/bp dσ(x),

where

MD;p,aK,σ [gdµ1, w](x)

= sup
x∈Q∈D

(
1

σ(Q)

�

3Q

w(y)−ap
′
dσ(y)

)1/ap′ �

Q

K(Q)(y)g(y) dµ1(y).

Such maximal operators are essentially used in [6] and [4]. From (2.4), (2.6)
and (2.8), we obtain

I ≤ C
�

Rn

MD;p,aK,σ [gdµ1, w](x)Mσ[(fw)bp](x)1/bp dσ(x).

By Hölder’s inequality,

I ≤ C
{ �

Rn

MD;p,aK,σ [gdµ1, w](x)p
′
dσ(x)

}1/p′

(2.9)

×
{ �

Rn

Mσ[(fw)bp](x)1/b dσ(x)
}1/p

.

Since the L1/b(dσ)-boundedness of Mσ yields

(2.10)
{ �

Rn

Mσ[(fw)bp](x)1/b dσ(x)
}1/p

≤ C‖fw‖Lp(dσ),

we need only evaluate

(III)p
′

=
�

Rn

MD;p,aK,σ [gdµ1, w](x)p
′
dσ(x).

It is clear that for any x ∈ Rn,

MD;p,aK,σ [gdµ1, w](x)p
′

≤
∑
Q∈D

(
1

σ(Q)

�

3Q

w(y)−ap
′
dσ(y)

)1/a( �

Q

K(Q)(y)g(y) dµ1(y)
)p′
χQ(x).

This simple inequality shows that (III)p
′

is bounded by∑
Q∈D

(
1

σ(Q)

�

3Q

w(y)−ap
′
dσ(y)

)1/a

σ(Q)
( �
Q

K(Q)(y)g(y) dµ1(y)
)p′
.
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It follows from the definition of µ1 and Hölder’s inequality that( �
Q

K(Q)(y)g(y) dµ1(y)
)p′

=

( �

Q

K(Q)(y)1/p · g(y)
K(Q)(y)1/p

′

WD;p,aK,σ [µ,w](y)p−1
dµ(y)

)p′

≤
( �
Q

K(Q)(y) dµ(y)
)p′−1 �

Q

K(Q)(y)g(y)p
′

WD;p,aK,σ [µ,w](y)p
dµ(y)

=
( �
Q

K(Q)(y) dµ(y)
)p′−1 �

Q

K(Q)(y)g(y)p
′

WD;p,aK,σ [µ,w](y)
dµ1(y).

This yields, by the definition of WD;p,aK,σ [µ,w],

(III)p
′ ≤

�

Rn

WD;p,aK,σ [µ,w](y)

WD;p,aK,σ [µ,w](y)
g(y)p

′
dµ1(y).

Hence, by (2.7) we have

(2.11) III ≤ C.

The inequalities (2.9)–(2.11) yield (2.1).

We next verify (2.2). We use the above estimates with µ2 in place of µ1.
It follows by noticing Qkj ⊃ Ekj that

(2.12) II ≤ C
�

Ek
j

MDK,σ[gdµ2](x)Mσf(x) dσ(x),

where

MDK,σ[gdµ2](x) = sup
x∈Q∈D

�

Q

K(Q)(y)g(y) dµ2(y).

From (2.4), (2.6) and (2.12), we have

I ≤ C
�

Rn

MDK,σ[gdµ2](x)Mσf(x) dσ(x).

By Hölder’s inequality,

I ≤ C
{ �

Rn

MDK,σ[gdµ2](x)p
′
w(x)−p

′
dσ(x)

}1/p′

(2.13)

×
{ �

Rn

(Mσf(x)w(x))p dσ(x)
}1/p

.
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Now, we need only evaluate

(IV)p
′

=
�

Rn

MDK,σ[gdµ2](x)p
′
w(x)−p

′
dσ(x).

It is clear that for any x ∈ Rn,

MDK,σ[gdµ2](x)p
′ ≤

∑
Q∈D

( �
Q

K(Q)(y)g(y) dµ2(y)
)p′
χQ(x).

This inequality shows that (IV)p
′

is bounded by

(2.14)
∑
Q∈D

�

Q

w(y)−p
′
dσ(y)

( �
Q

K(Q)(y)g(y) dµ2(y)
)p′

=
∑
Q∈D

(
1

σ(Q)

�

Q

w(y)−p
′
dσ(y)

)
σ(Q)

( �
Q

K(Q)(y)g(y) dµ2(y)
)p′
.

Once we have verified (2.14), in the same manner as above, we obtain

(2.15) IV ≤ C.

The inequalities (2.13)–(2.15) complete the proof of (2.2).

Proof of Theorem 1.3. First, we recall that r = pq/(p− q). It follows
from Lemma 2.1 and Hölder’s inequality with exponent (p− q)/p+ q/p = 1
that

‖TK [fdσ]‖Lq(dµ)

=
{ �

Rn

WD;p,aK,σ [µ,w](x)q/p
′WD;p,aK,σ [µ,w](x)−q/p

′
TK [fdσ]q dµ(x)

}1/q

≤ ‖WD;p,aK,σ [µ,w]1/p
′‖Lr(dµ)‖TK [fdσ]‖Lp(dµ1)

≤ C‖WD;p,aK,σ [µ,w]1/p
′‖Lr(dµ)‖fw‖Lp(dσ).

This proves Theorem 1.3(a). Theorem 1.3(b) can be verified similarly.

Remark 2.2. Following [11], one can replace the norm(
1

σ(Q)

�

3Q

w(y)−ap
′
dσ(y)

)1/ap′

in WD;p,aK,σ [µ,w] by weaker norms which are defined in terms of certain map-
ping properties of appropriate maximal operators associated to each norm.

3. Appendix. In this appendix, we show that our sufficient conditions
are necessary in some special cases.
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Proposition 3.1. Let K : D → R+ and 1 < q < p < ∞. Let µ be a
nonnegative Borel measure on Rn and wp ∈ Ap. Suppose that for any Q ∈ D,

(3.1) sup
x∈Q

K(Q)(x) ≤ CK(Q).

Then the two-weight norm inequality

‖TK [fdx]‖Lq(dµ) ≤ C‖fw‖Lp(dx)

holds if and only if

WD;pK [µ,w]1/p
′ ∈ Lr(dµ), 1/q = 1/r + 1/p,

where

WD;pK [µ,w](x) =
∑
Q∈D

�

Q

w(y)−p
′
dy
( �
Q

K(Q)(y) dµ(y)
)p′−1

K(Q)(x).

To prove the proposition we need the following lemma.

Lemma 3.2. Let K : D → R+ and 1 < s < ∞. Let ν be a nonnegative
Borel measure on Rn and ws ∈ As. Suppose that (3.1) holds for any Q ∈ D.
Then

‖(TDK [ν])w‖Ls(dx) ≈ ‖(MDK [ν])w‖Ls(dx) ≈ ‖(W
D;s
K [ν])ws‖1/s

L1(dx)
,

where

TDK [ν](x) =
∑
Q∈D

K(Q)ν(Q)χQ(x),

MDK [ν](x) = sup
x∈Q∈D

�

Q

K(Q)(y) dν(y),

WD;sK [ν](x) =
∑
Q∈D

( �
Q

K(Q)(y) dν(y)
)s
χQ(x).

Proof. Given an f ∈ L1
loc(dx) and a Q ∈ D, let fQ denote the average of

f over Q:

fQ =
1

|Q|

�

Q

f(x) dx.

Define the dyadic sharp maximal function of f by

M ],Df(x) = sup
x∈Q∈D

1

|Q|

�

Q

|f(y)− fQ| dy.

Since ws ∈ As, one knows that

(3.2) ‖fw‖Ls(dx) ≈ ‖(M ],Df)w‖Ls(dx).
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It follows that, for any Q ∈ D,

1

|Q|

�

Q

|TDK [ν](x)− (TDK [ν])Q| dx ≤ 2
�

Q

K(Q)(x) dν(x).

By (3.2) this yields

(3.3) ‖(TDK [ν])w‖Ls(dx) ≈ ‖(MDK [ν])w‖Ls(dx).

We see clearly that

‖(MDK [ν])w‖Ls(dx) ≤ ‖(W
D;s
K [ν])ws‖1/s

L1(dx)
.

Now, we shall verify the converse. We have

‖(WD;sK [ν])ws‖L1(dx)

=
�

Rn

{∑
Q∈D

( �
Q

K(Q)(y) dν(y)
)s
χQ(x)

}
w(x)s dx

≤
�

Rn

MDK [ν](x)s−1
{∑
Q∈D

�

Q

K(Q)(y) dν(y)χQ(x)
}
w(x)s dx.

From (3.1) and Hölder’s inequality, the above is

≤ C
�

Rn

MDK [ν](x)s−1
{∑
Q∈D

K(Q)µ(Q)χQ(x)
}
w(x)s dx

≤ C‖(MDK [ν])w‖s−1Ls(dx)‖(T
D
K [ν])w‖Ls(dx).

Thus, by (3.3) we obtain

‖(WD;sK [ν])ws‖1/s
L1(dx)

≤ C‖(MDK [ν])w‖Ls(dx).

This completes the proof.

Proof of Proposition 3.1. We need only verify the “only if” part. We
now assume that

‖TK [fdx]‖Lq(dµ) ≤ C‖fw‖Lp(dx).

This implies
‖TDK [fdx]‖Lq(dµ) ≤ C‖fw‖Lp(dx)

and, by duality,

‖TDK [gdµ]w−1‖Lp′ (dx) ≤ C‖g‖Lq′ (dµ).

Noticing w−p
′ ∈ Ap′ and applying Lemma 3.2, we have

(3.4) ‖WD;p
′

K [gdµ]w−p
′‖L1(dx) ≤ C

p′

1 ‖g‖
p′

Lq′ (dµ)
.

Let

cQ =
�

Q

w(y)−p
′
dy
( �
Q

K(Q)(y) dµ(y)
)p′
, Q ∈ D.
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For any nonnegative ψ ∈ Lq′/p′(dµ), by use of (3.4), we have

�

Rn

(∑
Q∈D

cQ
µ(Q)

χQ(x)

)
ψ(x) dµ(x) =

∑
Q∈D

cQ
µ(Q)

�

Q

ψ(x) dµ(x)

≤
∑
Q∈D

( �
Q

K(Q)(x)MDµ ψ(x)1/p
′
dµ(x)

)p′ �
Q

w(x)−p
′
dx

= ‖WD;p
′

K [(MDµ ψ)1/p
′
dµ]w−p

′‖L1(dx) ≤ C
p′

1 ‖(M
D
µ ψ)1/p

′‖p
′

Lq′ (dµ)
,

where

MDµ ψ(x) = sup
x∈Q∈D

1

µ(Q)

�

Q

ψ(y) dµ(y), x ∈ Rn.

The Lq
′/p′(dµ)-boundedness of MDµ yields

�

Rn

(∑
Q∈D

cQ
µ(Q)

χQ(x)
)
ψ(x) dµ(x) ≤ C‖ψ‖Lq′/p′ (dµ).

Thus, by duality again,∥∥∥∥∑
Q∈D

cQ
µ(Q)

χQ

∥∥∥∥
Lq(p−1)/(p−q)(dµ)

≤ CCp
′

1 .

It follows from (3.1) that

cQ
µ(Q)

≈
�

Q

w(y)−p
′
dy
( �
Q

K(Q)(y) dµ(y)
)p′−1

K(Q)(x), x ∈ Q ∈ D.

Thus, we obtain

‖WD;pK [µ,w]1/p
′‖Lr(dµ) ≤ CC1,

where we have used

r =
pq

p− q
=

p

p− 1
· q(p− 1)

p− q
.

This proves the proposition.
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