2-summing multiplication operators

by
Dumitru Popa (Constanţa)

Abstract

Let $1 \leq p<\infty, \mathcal{X}=\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces and $l_{p}(\mathcal{X})$ the coresponding vector valued sequence space. Let $\mathcal{X}=\left(X_{n}\right)_{n \in \mathbb{N}}, \mathcal{Y}=\left(Y_{n}\right)_{n \in \mathbb{N}}$ be two sequences of Banach spaces, $\mathcal{V}=\left(V_{n}\right)_{n \in \mathbb{N}}, V_{n}: X_{n} \rightarrow Y_{n}$, a sequence of bounded linear operators and $1 \leq p, q<\infty$. We define the multiplication operator $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{Y})$ by $M_{\mathcal{V}}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=\left(V_{n}\left(x_{n}\right)\right)_{n \in \mathbb{N}}$. We give necessary and sufficient conditions for $M_{\mathcal{V}}$ to be 2 -summing when (p, q) is one of the couples $(1,2),(2,1),(2,2),(1,1),(p, 1),(p, 2),(2, p)$, $(1, p),(p, q)$; in the last case $1<p<2,1<q<\infty$.

Introduction and notation. The concept of absolutely summing operator is fundamental in operator theory as the reader can see in the books [2, 3, 9, 11, 15, 16]. The main purpose of this paper is to give necessary and sufficient conditions for the multiplication operator between vector valued sequence spaces to be 2 -summing.

Let us fix some notations and terminology. Let $1 \leq p<\infty$ and $\mathcal{X}=$ $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces. We write $l_{p}(\mathcal{X})$ to denote the Banach space of all sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ with $x_{n} \in X_{n}$ for all $n \in \mathbb{N}, \sum_{n=1}^{\infty}\left\|x_{n}\right\|_{X_{n}}^{p}$ $<\infty$, endowed with the norm $\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{l_{p}(\mathcal{X})}:=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|_{X_{n}}^{p}\right)^{1 / p}$ (see [16]). We consider the canonical mappings $\sigma_{k}: X_{k} \rightarrow l_{p}(\mathcal{X})$ and $p_{k}: l_{p}(\mathcal{X})$ $\rightarrow X_{k}$ defined by

$$
\sigma_{k}(x)=(0, \ldots, 0, \underbrace{x}_{k \mathrm{th}}, 0, \ldots), \quad p_{k}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=x_{k}
$$

where k is a natural number.
Let $\mathcal{X}=\left(X_{n}\right)_{n \in \mathbb{N}}, \mathcal{Y}=\left(Y_{n}\right)_{n \in \mathbb{N}}$ be two sequences of Banach spaces, $\mathcal{V}=\left(V_{n}\right)_{n \in \mathbb{N}}, V_{n}: X_{n} \rightarrow Y_{n}$, a sequence of bounded linear operators, and let $1 \leq p, q<\infty$. We define the multiplication operator $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{Y})$ by

$$
M_{\mathcal{V}}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=\left(V_{n}\left(x_{n}\right)\right)_{n \in \mathbb{N}} .
$$

[^0]As in the scalar case (see [1, p. 218]), we can prove that $M_{\mathcal{V}}$ is well defined if and only if it is bounded linear if and only if $\left(\left\|V_{n}\right\|\right)_{n \in \mathbb{N}} \in l_{\infty}$, for $p \leq q$, respectively $\left(\left\|V_{n}\right\|\right)_{n \in \mathbb{N}} \in l_{s}$ for $q<p$, where $1 / q=1 / p+1 / s$.

Given the importance of this issue, a lot of work has been done in order to give necessary and sufficient conditions for some natural operators to be absolutely summing.

For example, L. Schwartz [14] gave necessary and sufficient conditions for some multiplication operators from l_{s} to l_{t} to be p-summing, and D. J. H. Garling [4, Theorem 9] gave an almost complete description of the summing properties for multiplication operators from l_{s} to l_{t}. Also, E. D. Gluskin, S. V. Kislyakov and O. I. Reinov [5, Lemma I] studied the same problem in a more general context.

In this paper we give necessary and sufficient conditions for $M_{\mathcal{V}}$ to be 2 -summing when (p, q) is one of the couples $(1,2),(2,1),(2,2),(1,1),(p, 1)$, $(p, 2),(2, p),(1, p),(p, q)$; in the last case $1<p<2,1<q<\infty$.

As it turns out (see Theorems 3 8, 10, 17), we have a full extension of the scalar case shown by D. J. H. Garling [4, Theorem 9]. However, there is one notable exception: in case $(p, 1), p>2$, we need natural cotype 2 assumptions to obtain necessary and sufficient conditions for $M_{\mathcal{V}}$ to be s summing, $1 \leq s \leq 2$ resp. $1 \leq s<\infty$ (Theorem 9).

Let $1 \leq p<\infty, X$ a normed space and $\left(x_{k}\right)_{k=1}^{n} \subset X$. We write

$$
w_{p}\left(\left(x_{k}\right)_{k=1}^{n}\right):=\sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{k=1}^{n}\left|x^{*}\left(x_{k}\right)\right|^{p}\right)^{1 / p}
$$

Let $1 \leq p<\infty$ and X, Y be Banach spaces. A bounded linear operator $T: X \rightarrow Y$ is p-summing if there is a constant $C \geq 0$ such that for every $\left(x_{k}\right)_{1 \leq k \leq n} \subset X$,

$$
\left(\sum_{k=1}^{n}\left\|T\left(x_{k}\right)\right\|^{p}\right)^{1 / p} \leq C w_{p}\left(\left(x_{k}\right)_{k=1}^{n}\right)
$$

The p-summing norm of T is $\pi_{p}(T)=\inf \{C \mid C$ as above $\}$ (see [2, 3, 9, [11, 15, 16]). We denote by $\Pi_{p}(X, Y)$ the class of all p-summing operators $T: X \rightarrow Y$.

One of the main ingredients in the proofs is the famous Grothendieck composition theorem which asserts that the composition of two 2 -summing operators is nuclear (see [3, Theorem 5.31], [9, Theorem 17.6.4]).

For sequences $\mathcal{X}=\left(X_{n}\right)_{n \in \mathbb{N}}, \mathcal{Y}=\left(Y_{n}\right)_{n \in \mathbb{N}}, \mathcal{Z}=\left(Z_{n}\right)_{n \in \mathbb{N}}$ of Banach spaces, and sequences $\mathcal{V}=\left(V_{n}\right)_{n \in \mathbb{N}}, \mathcal{U}=\left(U_{n}\right)_{n \in \mathbb{N}}, V_{n}: X_{n} \rightarrow Y_{n}, U_{n}$: $Y_{n} \rightarrow Z_{n}$, of bounded linear operators, we define $\mathcal{U} \circ \mathcal{V}:=\left(U_{n} \circ V_{n}\right)_{n \in \mathbb{N}}$.

For sequences $\mathcal{X}=\left(X_{n}\right)_{n \in \mathbb{N}}, \mathcal{Y}=\left(Y_{n}\right)_{n \in \mathbb{N}}$ of Banach spaces, a sequence $\mathcal{V}=\left(V_{n}\right)_{n \in \mathbb{N}}, V_{n}: X_{n} \rightarrow Y_{n}$, of bounded linear operators and a sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ of scalars, we define $a \mathcal{V}:=\left(a_{n} V_{n}\right)_{n \in \mathbb{N}}$.

If $\mathcal{X}=\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of Banach spaces we define $\mathcal{J}:=\left(I_{X_{n}}\right)_{n \in \mathbb{N}}$, where $I_{X_{n}}: X_{n} \rightarrow X_{n}$ is the identity operator on X_{n}.

Note that if $1 \leq p, q<\infty$ and a is a sequence of scalars such that $M_{a}: l_{p} \rightarrow l_{q}$ is well defined, then $M_{a \mathcal{J}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{X})$ is also well defined and $\left\|M_{a \mathcal{J}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{X})\right\|=\left\|M_{a}: l_{p} \rightarrow l_{q}\right\|$.

Also if $1 \leq p, q, r<\infty$ are such that $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{Y})$ and $M_{a}:$ $l_{q} \rightarrow l_{r}\left(\right.$ resp. $\left.M_{a}: l_{r} \rightarrow l_{p}\right)$ are well defined, then $M_{a \mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{r}(\mathcal{Y})$ (resp. $\left.M_{a \mathcal{V}}: l_{r}(\mathcal{X}) \rightarrow l_{q}(\mathcal{Y})\right)$ is well defined and $M_{a \mathcal{J}} \circ M_{\mathcal{V}}=M_{a \mathcal{V}}$ (resp. $\left.M_{\mathcal{V}} \circ M_{a \mathcal{J}}=M_{a \mathcal{V}}\right)$.

If $V: X \rightarrow Y$ is 2 -summing, we define sgn $V: X \rightarrow Y$ by

$$
(\operatorname{sgn} V)(x):=\frac{V(x)}{\pi_{2}(V)} \quad \text { for } V \neq 0, x \in X ; \quad \operatorname{sgn} 0:=0
$$

Note that $\operatorname{sgn} V$ is 2 -summing, $\pi_{2}(\operatorname{sgn} V) \leq 1$ and $\pi_{2}(V) \operatorname{sgn} V=V$.
If $\mathcal{V}=\left(V_{n}\right)_{n \in \mathbb{N}}$ and all $V_{n}: X_{n} \rightarrow Y_{n}$ are 2 -summing, we define $\operatorname{sgn} \mathcal{V}=$ $\left(\operatorname{sgn} V_{n}\right)_{n \in \mathbb{N}}$.

If $1<p<\infty$ we denote by p^{*} the conjugate of p, i.e. $1 / p+1 / p^{*}=1$.
The notations and terminology used along the paper are standard in Banach space theory, as for instance in [2, 3, 9, 11, 15, 16 .

The results

The cases $(1,2),(2,1),(2,2),(1,1)$. Our first result, the case $(1,2)$ (see Theorem 3) was shown by E. D. Gluskin, S. V. Kislyakov and O. I. Reinov [5, Lemma I 3 p. 87, proof on p. 98]. For completeness we include its proof. Recall (see [2]) that if X and Y are Banach spaces, then $X \otimes_{\varepsilon} Y$ denotes their injective tensor product, i.e. the algebraic tensor product $X \otimes Y$ endowed with the injective cross-norm

$$
\varepsilon(u)=\sup _{\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1}\left|\left\langle u, x^{*} \otimes y^{*}\right\rangle\right|, \quad u \in X \otimes Y .
$$

By $X \widehat{\otimes}_{\varepsilon} Y$ we denote the completion of $X \otimes_{\varepsilon} Y$.
If $1 \leq p<\infty, n$ is a natural number, $l_{p}^{n}:=\mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or \mathbb{C}), endowed with the norm $\|\xi\|_{p}=\left(\sum_{k=1}^{n}\left|\xi_{k}\right|^{p}\right)^{1 / p}$ for $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, and for every $k=$ $1, \ldots, n, p_{k}: l_{p}^{n} \rightarrow \mathbb{K}$ denotes the canonical projection, $p_{k}\left(\left(\xi_{1}, \ldots, \xi_{n}\right)\right)=\xi_{k}$.

Similarly, if $\left(X_{k}\right)_{k=1}^{n}$ are Banach spaces, we define $l_{p}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)$ as the cartesian product $\prod_{k=1}^{n} X_{k}$ endowed with the norm $\|x\|=\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\right)^{1 / p}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$. When $X_{1}=\cdots=X_{n}=X$ we write $l_{p}^{n}(X)$.

Let n be a natural number, $J_{n}: l_{1}^{n} \hookrightarrow l_{2}^{n}$ the canonical inclusion, i.e. $J_{n}(\xi)=\xi$, and let $T: Z \rightarrow W$ be a bounded linear operator. We define $J_{n} \otimes T: l_{1}^{n} \otimes_{\varepsilon} Z \rightarrow l_{2}^{n}(W)$ in the usual way, i.e.
$\left(J_{n} \otimes T\right)(\xi \otimes z):=\left(p_{1}\left(J_{n}(\xi)\right) T(z), \ldots, p_{n}\left(J_{n}(\xi)\right) T(z)\right) \quad$ for $\xi \in l_{1}^{n}, z \in Z$
and

$$
\left(J_{n} \otimes T\right)(u):=\sum_{j=1}^{k}\left(J_{n} \otimes T\right)\left(\xi_{j} \otimes z_{j}\right) \quad \text { for } u=\sum_{j=1}^{k} \xi_{j} \otimes z_{j} \in l_{1}^{n} \otimes_{\varepsilon} Z
$$

Proposition 1. Let $T: Z \rightarrow W$ be a bounded linear operator. Then $J_{n} \otimes T: l_{1}^{n} \otimes_{\varepsilon} Z \rightarrow l_{2}^{n}(W)$ is a bounded linear operator, $\left\|J_{n} \otimes T\right\| \leq \sqrt{n}\|T\|$ and hence, by density, $J_{n} \otimes T: l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z \rightarrow l_{2}^{n}(W)$ is also a bounded linear operator.

$$
\begin{aligned}
& \text { Proof. Let } u=\sum_{j=1}^{k} \xi_{j} \otimes z_{j} \in l_{1}^{n} \otimes_{\varepsilon} Z . \text { We have } \\
& \qquad \begin{aligned}
\left(J_{n} \otimes T\right)(u) & =\sum_{j=1}^{k}\left(J_{n} \otimes T\right)\left(\xi_{j} \otimes z_{j}\right) \\
& =\sum_{j=1}^{k}\left(p_{1}\left(J_{n}\left(\xi_{j}\right)\right) T\left(z_{j}\right), \ldots, p_{n}\left(J_{n}\left(\xi_{j}\right)\right) T\left(z_{j}\right)\right) \\
& =\left(T\left(\sum_{j=1}^{k} p_{1}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right), \ldots, T\left(\sum_{j=1}^{k} p_{n}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right)\right)
\end{aligned}
\end{aligned}
$$

and thus

$$
\begin{equation*}
\left\|\left(J_{n} \otimes T\right)(u)\right\|_{l_{2}^{n}(W)}^{2}=\sum_{i=1}^{n}\left\|T\left(\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right)\right\|^{2} \tag{1}
\end{equation*}
$$

For every $i=1, \ldots, n$ and $w^{*} \in W^{*}$ we have

$$
\begin{aligned}
& \left|\left\langle T\left(\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right), w^{*}\right\rangle\right|=\left|\sum_{j=1}^{k}\left(p_{i} \circ J_{n}\right)\left(\xi_{j}\right)\left\langle z_{j}, T^{*} w^{*}\right\rangle\right| \\
& \leq\left\|T^{*} w^{*}\right\| \sup _{\left\|y^{*}\right\| \leq 1,\left\|z^{*}\right\| \leq 1}\left|\sum_{j=1}^{k}\left\langle\xi_{j}, y^{*}\right\rangle\left\langle z_{j}, z^{*}\right\rangle\right|=\left\|T^{*} w^{*}\right\| \varepsilon(u)
\end{aligned}
$$

so

$$
\left\|T\left(\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right)\right\| \leq\left\|T^{*}\right\| \varepsilon(u)=\|T\| \varepsilon(u)
$$

Together with (1) we get

$$
\begin{equation*}
\left\|\left(J_{n} \otimes T\right)(u)\right\|_{l_{2}^{n}(W)} \leq \sqrt{n}\|T\| \varepsilon(u) \tag{2}
\end{equation*}
$$

Hence $J_{n} \otimes T$ is well defined. Since it is linear, from (2) we deduce that it is a bounded linear operator and $\left\|J_{n} \otimes T\right\| \leq \sqrt{n}\|T\|$. Since $l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z$ is the completion of $l_{1}^{n} \otimes_{\varepsilon} Z, J_{n} \otimes T$ can be extended by continuity to $l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z$.

Lemma 1. Let X and Y be Banach spaces and $1 \leq p<\infty$. Then

$$
w_{p}\left(\left(u_{i}\right)_{i=1}^{n} ; X \otimes_{\varepsilon} Y\right)=\sup _{\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1}\left(\sum_{i=1}^{n}\left|\left\langle u_{i}, x^{*} \otimes y^{*}\right\rangle\right|^{p}\right)^{1 / p}
$$

for $\left(u_{i}\right)_{i=1}^{n} \subset X \otimes_{\varepsilon} Y$.

Proof. We have (see [10, Lemma 1.14, p. 40]),

$$
\begin{aligned}
w_{p}\left(\left(u_{i}\right)_{i=1}^{n} ; X \otimes_{\varepsilon} Y\right) & =\sup _{\|\lambda\|_{p^{*} \leq 1}} \varepsilon\left(\sum_{i=1}^{n} \lambda_{i} u_{i}\right) \\
& =\sup _{\|\lambda\|_{p^{*} \leq 1}} \sup _{\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1}\left|\left\langle\sum_{i=1}^{n} \lambda_{i} u_{i}, x^{*} \otimes y^{*}\right\rangle\right| \\
& =\sup _{\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1} \sup _{\|\lambda\|_{p^{*} \leq 1}}\left|\sum_{i=1}^{n} \lambda_{i}\left\langle u_{i}, x^{*} \otimes y^{*}\right\rangle\right| \\
& =\sup _{\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1}\left(\sum_{i=1}^{n}\left|\left\langle u_{i}, x^{*} \otimes y^{*}\right\rangle\right|^{p}\right)^{1 / p}
\end{aligned}
$$

Theorem 1. If $T: Z \rightarrow W$ is 2-summing, then so is $J_{n} \otimes T: l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z \rightarrow$ $l_{2}^{n}(W)$ and $\pi_{2}\left(J_{n} \otimes T\right) \leq \pi_{2}(T)$.

Proof. Our proof is modelled on the well known proof that the injective tensor product of two p-summing operators is p-summing (see [6, Theorem 3.2], [10, Theorem 1.3.11, p. 51]). Let $u=\sum_{j=1}^{k} \xi_{j} \otimes z_{j} \in l_{1}^{n} \otimes_{\varepsilon} Z$. We have shown in Proposition 1 that

$$
\left\|\left(J_{n} \otimes T\right)(u)\right\|_{l_{2}^{n}(W)}^{2}=\sum_{i=1}^{n}\left\|T\left(\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right)\right\|^{2}
$$

Since T is 2-summing, by Pietsch's domination theorem (see [2, 3, 9, 11, [15, [16]), $\|T(z)\|^{2} \leq\left[\pi_{2}(T)\right]^{2} \int_{\Omega}\left|\left\langle z, z^{*}\right\rangle\right|^{2} d \mu\left(z^{*}\right)$ for $z \in Z$ and some Borel probability measure μ on $\Omega=B_{Z^{*}}$. We have

$$
\begin{aligned}
\left\|T\left(\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}\right)\right\|^{2} & \leq\left[\pi_{2}(T)\right]^{2} \int_{\Omega}\left|\left\langle\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right) z_{j}, z^{*}\right\rangle\right|^{2} d \mu\left(z^{*}\right) \\
& =\left[\pi_{2}(T)\right]^{2} \int_{\Omega}\left|\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right)\left\langle z_{j}, z^{*}\right\rangle\right|^{2} d \mu\left(z^{*}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|\sum_{j=1}^{k} p_{i}\left(J_{n}\left(\xi_{j}\right)\right)\left\langle z_{j}, z^{*}\right\rangle\right|^{2}=\sum_{i=1}^{n}\left|p_{i}\left(\sum_{j=1}^{k}\left\langle z_{j}, z^{*}\right\rangle J_{n}\left(\xi_{j}\right)\right)\right|^{2} \\
&=\left\|\sum_{j=1}^{k}\left\langle z_{j}, z^{*}\right\rangle J_{n}\left(\xi_{j}\right)\right\|_{l_{2}^{n}}^{2}=\left\|J_{n}\left(\sum_{j=1}^{k}\left\langle z_{j}, z^{*}\right\rangle \xi_{j}\right)\right\|_{l_{2}^{n}}^{2}
\end{aligned}
$$

we have

$$
\left\|\left(J_{n} \otimes T\right)(u)\right\|_{l_{2}^{n}(W)}^{2} \leq\left[\pi_{2}(T)\right]^{2} \int_{\Omega}\left\|J_{n}\left(\sum_{j=1}^{k}\left\langle z_{j}, z^{*}\right\rangle \xi_{j}\right)\right\|_{l_{2}^{n}}^{2} d \mu\left(z^{*}\right)
$$

Since $J_{n}: l_{1}^{n} \hookrightarrow l_{2}^{n}$ is 2-summing with $\pi_{2}\left(J_{n}\right)=1$, again by Pietsch's domination theorem,

$$
\left\|J_{n}(\xi)\right\|_{l_{2}^{n}}^{2} \leq \int_{\Psi}\left|\left\langle\xi, y^{*}\right\rangle\right|^{2} d \nu\left(y^{*}\right) \quad \text { for } \xi \in l_{1}^{n}
$$

and some Borel probability measure ν on $\Psi=B_{\left(l_{1}^{n}\right)^{*}}$. Then

$$
\begin{aligned}
\| J_{n}\left(\sum_{j=1}^{k}\left\langle z_{j}, z^{*}\right\rangle \xi_{j}\right) & \|_{l_{2}^{n}}^{2} \leq \int_{\Psi}\left|\left\langle\sum_{j=1}^{k}\left\langle z_{j}, z^{*}\right\rangle \xi_{j}, y^{*}\right\rangle\right|^{2} d \nu\left(y^{*}\right) \\
& =\int_{\Psi}\left|\sum_{j=1}^{k}\left\langle\xi_{j}, y^{*}\right\rangle\left\langle z_{j}, z^{*}\right\rangle\right|^{2} d \nu\left(y^{*}\right)=\int_{\Psi}\left|\left\langle u, y^{*} \otimes z^{*}\right\rangle\right|^{2} d \nu\left(y^{*}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|\left(J_{n} \otimes T\right)(u)\right\|_{l_{2}^{n}(W)}^{2} \leq\left[\pi_{2}(T)\right]^{2} \int_{\Omega \Psi} \int_{\Psi}\left|\left\langle u, y^{*} \otimes z^{*}\right\rangle\right|^{2} d \nu\left(y^{*}\right) d \mu\left(z^{*}\right) \tag{1}
\end{equation*}
$$

Let $\left(u_{k}\right)_{1 \leq k \leq m} \subset l_{1}^{n} \otimes_{\varepsilon} Z$. From (1) and Lemma 1 we deduce

$$
\begin{align*}
\sum_{k=1}^{m}\left\|\left(J_{n} \otimes T\right)\left(u_{k}\right)\right\|_{l_{2}^{n}(W)}^{2} & \leq\left[\pi_{2}(T)\right]^{2} \sup _{\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1}\left(\sum_{k=1}^{m}\left|\left\langle u_{k}, x^{*} \otimes y^{*}\right\rangle\right|^{2}\right) \tag{2}\\
& =\left[\pi_{2}(T)\right]^{2}\left[w_{2}\left(\left(u_{k}\right)_{k=1}^{n} ; l_{1}^{n} \otimes_{\varepsilon} Z\right)\right]^{2}
\end{align*}
$$

By the density of $l_{1}^{n} \otimes_{\varepsilon} Z$ in $l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z$, from (2) we deduce that for every $\left(u_{k}\right)_{1 \leq k \leq m} \subset l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z$, we have

$$
\left(\sum_{k=1}^{m}\left\|\left(J_{n} \otimes T\right)\left(u_{k}\right)\right\|_{l_{2}^{n}(W)}^{2}\right)^{1 / 2} \leq \pi_{2}(T) w_{2}\left(\left(u_{k}\right)_{k=1}^{n} ; l_{1}^{n} \widehat{\otimes}_{\varepsilon} Z\right)
$$

i.e. $J_{n} \otimes T$ is 2 -summing and $\pi_{2}\left(J_{n} \otimes T\right) \leq \pi_{2}(T)$.

Recall (see [3, p. 45], or [9, p. 234]) that if X is a Banach space, then $i_{X}: X \rightarrow C\left(B_{X^{*}}\right)$ is the operator defined by $i_{X}(x)\left(x^{*}\right)=x^{*}(x)$.

Theorem 2 (Gluskin-Kislyakov-Reinov). Let $T_{k}: X_{k} \rightarrow Y_{k}$ be 2summing operators with $\pi_{2}\left(T_{k}\right) \leq 1$ for every $k=1, \ldots, n$ and let M_{T} : $l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \rightarrow l_{2}^{n}\left(\left(Y_{k}\right)_{k=1}^{n}\right)$ be the multiplication operator

$$
M_{T}\left(x_{1}, \ldots, x_{n}\right)=\left(T_{1}\left(x_{1}\right), \ldots, T_{n}\left(x_{n}\right)\right) .
$$

Then M_{T} is 2-summing and $\pi_{2}\left(M_{T}\right) \leq 1$.
Proof. Let

$$
T_{k}: X_{k} \xrightarrow{i_{X_{k}}} C\left(B_{X_{k}^{*}}\right) \xrightarrow{J_{k}} L_{2}\left(\mu_{k}\right) \xrightarrow{A_{k}} Y_{k}
$$

be a Pietsch factorization of T_{k} with $\left\|A_{k}\right\|=\pi_{2}\left(T_{k}\right)$ (see [3, Corollary 2.16, p. 48], [9, Proposition 17.3.7, p. 234]). Let $\Omega=\prod_{k=1}^{n} B_{X_{k}^{*}}$ and $\mu=\prod_{k=1}^{n} \mu_{k}$. We define $S: l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \rightarrow C(\Omega)$ by

$$
\left[S\left(x_{1}, \ldots, x_{n}\right)\right]\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\sum_{k=1}^{n} x_{k}^{*}\left(x_{k}\right)
$$

and denote, as usual, by $J: C(\Omega) \hookrightarrow L_{2}(\mu)$ the canonical inclusion, $J(f)$ $=\widehat{\widehat{f}}$. Let us define also $V_{k}: L_{2}(\mu) \rightarrow Y_{k}$ by

$$
V_{k}(\widehat{\hat{f}})=A_{k}\left(\widehat{f \circ \sigma_{k}}\right),
$$

where $\sigma_{k}: B_{X_{k}^{*}} \rightarrow \prod_{k=1}^{n} B_{X_{k}^{*}}$ is the canonical injection. Here we denote by $\widehat{\hat{f}}$ (resp. $\widehat{f \circ \sigma_{k}}$) the equivalence class of f (resp. $f \circ \sigma_{k}$) in $L_{2}(\mu)$ (resp. $\left.L_{2}\left(\mu_{k}\right)\right)$. We will prove that $T:=J \circ S: l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \rightarrow L_{2}(\mu)$ is 2 -summing, $\pi_{2}(T) \leq 1$ and every T_{k} has the factorization

$$
T_{k}: X_{k} \xrightarrow{\sigma_{k}} l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \xrightarrow{S} C(\Omega) \xrightarrow{J} L_{2}(\mu) \xrightarrow{V_{k}} Y_{k} .
$$

First, let us show that S is bounded linear. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in$ $l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)$. Then, obviously, $S(x)$ is a continuous function on $\Omega=\prod_{k=1}^{n} B_{X_{k}^{*}}$, i.e. $S(x) \in C(\Omega)$. For every $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \Omega$ we have

$$
\left|S(x)\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)\right| \leq \sum_{k=1}^{n}\left|x_{k}^{*}\left(x_{k}\right)\right| \leq \sum_{k=1}^{n}\left\|x_{k}\right\|=\|x\|_{l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)},
$$

i.e.

$$
\|S(x)\|_{C(\Omega)}=\sup _{\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \Omega}\left|S(x)\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)\right| \leq\|x\|_{l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)} .
$$

Since S is linear, it is bounded linear with $\|S\| \leq 1$. By measure-theoretical considerations (we omit the details), V_{k} are well defined, bounded linear with $\left\|V_{k}\right\| \leq\left\|A_{k}\right\|$ for $k=1, \ldots, n$. Since the canonical inclusion J : $C(\Omega) \hookrightarrow L_{2}(\mu)$ is 2-summing with $\pi_{2}(J)=1$, it follows that $T:=J \circ S$: $l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \rightarrow L_{2}(\mu)$ is 2 -summing with $\pi_{2}(T) \leq 1$.

Let us verify the factorization of every T_{k}.

Let $x_{k} \in X_{k}$ and denote $\left(S \circ \sigma_{k}\right)\left(x_{k}\right)=: f_{k} \in C(\Omega)$. Then

$$
f_{k}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\left[S\left(0, \ldots, 0, x_{k}, 0, \ldots, 0\right)\right]\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=x_{k}^{*}\left(x_{k}\right) .
$$

Also $f_{k} \circ \sigma_{k}: B_{X_{k}^{*}} \rightarrow \mathbb{K}$ is defined by

$$
\left(f_{k} \circ \sigma_{k}\right)\left(x_{k}^{*}\right)=f_{k}\left(0, \ldots, 0, x_{k}^{*}, 0, \ldots, 0\right)=x_{k}^{*}\left(x_{k}\right)=i_{X_{k}}\left(x_{k}\right)\left(x_{k}^{*}\right),
$$

i.e. $f_{k} \circ \sigma_{k}=i_{X_{k}}\left(x_{k}\right) \in C\left(B_{X_{k}^{*}}\right)$. We have

$$
\begin{aligned}
\left(V_{k} \circ J \circ S \circ \sigma_{k}\right)\left(x_{k}\right) & =V_{k}\left(J\left(f_{k}\right)\right)=V_{k}\left(\widehat{\hat{f}_{k}}\right)=A_{k}\left(\widehat{f_{k} \circ \sigma_{k}}\right) \\
& =A_{k}\left(J_{k}\left(f_{k} \circ \sigma_{k}\right)\right) \quad \text { since } f_{k} \circ \sigma_{k} \in C\left(B_{X_{k}^{*}}\right) \\
& =\left(A_{k} \circ J_{k}\right)\left(i_{X_{k}}\left(x_{k}\right)\right)=\left(A_{k} \circ J_{k} \circ i_{X_{k}}\right)\left(x_{k}\right) \\
& =T_{k}\left(x_{k}\right),
\end{aligned}
$$

the last equality holding by the Pietsch factorization of T_{k}.
Now since $T: l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)=: Z \rightarrow W:=L_{2}(\mu)$ is 2-summing, Theorem 1 implies that $J_{n} \otimes T: l_{1}^{n} \widehat{\otimes}_{\varepsilon} l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \rightarrow l_{2}^{n}\left(L_{2}(\mu)\right)$ is 2-summing and $\pi_{2}\left(J_{n} \otimes T\right) \leq \pi_{2}(T) \leq 1$. We show that

$$
M_{T}: l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \xrightarrow{U} l_{1}^{n} \widehat{\otimes}_{\varepsilon} l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \xrightarrow{J_{n} \otimes T} l_{2}^{n}\left(L_{2}(\mu)\right) \xrightarrow{M_{V}} l_{2}^{n}\left(\left(Y_{k}\right)_{k=1}^{n}\right)
$$

is a factorization of M_{T}, where

$$
U(x)=\sum_{k=1}^{n} e_{k} \otimes \sigma_{k}\left(x_{k}\right) \quad \text { for } x=\left(x_{1}, \ldots, x_{n}\right) .
$$

Indeed, for $x=\left(x_{1}, \ldots, x_{n}\right) \in l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)$ we have

$$
\begin{aligned}
& \left(\left(J_{n} \otimes T\right) \circ U\right)\left(x_{1}, \ldots, x_{n}\right)=\left(J_{n} \otimes T\right)\left(\sum_{k=1}^{n} e_{k} \otimes \sigma_{k}\left(x_{k}\right)\right) \\
& \quad=\sum_{k=1}^{n}\left(J_{n} \otimes T\right)\left(e_{k} \otimes \sigma_{k}\left(x_{k}\right)\right)=\left(T\left(\sigma_{1}\left(x_{1}\right)\right), \ldots, T\left(\sigma_{n}\left(x_{n}\right)\right)\right)
\end{aligned}
$$

since for $k=1, \ldots, n$,

$$
\begin{aligned}
& \left(J_{n} \otimes T\right)\left(e_{k} \otimes \sigma_{k}\left(x_{k}\right)\right) \\
& \quad=\left(p_{1}\left(e_{k}\right) T\left(\sigma_{k}\left(x_{k}\right)\right), \ldots, p_{k}\left(e_{k}\right) T\left(\sigma_{k}\left(x_{k}\right)\right), \ldots, p_{n}\left(e_{k}\right) T\left(\sigma_{k}\left(x_{k}\right)\right)\right) \\
& \quad=\left(0, \ldots, 0, T\left(\sigma_{k}\left(x_{k}\right)\right), 0, \ldots, 0\right) .
\end{aligned}
$$

Then, using the equality $V_{k} \circ T \circ \sigma_{k}=T_{k}$ for $k=1, \ldots, n$, it follows that

$$
\begin{aligned}
\left(M_{V} \circ\left(J_{n} \otimes T\right) \circ U\right)\left(x_{1}, \ldots, x_{n}\right) & =M_{V}\left(T\left(\sigma_{1}\left(x_{1}\right)\right), \ldots, T\left(\sigma_{n}\left(x_{n}\right)\right)\right) \\
& =\left(V_{1}\left(T\left(\sigma_{1}\left(x_{1}\right)\right)\right), \ldots, V_{n}\left(T\left(\sigma_{n}\left(x_{n}\right)\right)\right)\right) \\
& =\left(T_{1}\left(x_{1}\right), \ldots, T_{n}\left(x_{n}\right)\right)=M_{T}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Moreover

$$
\left\|M_{V}\right\| \leq \sup _{1 \leq k \leq n}\left\|V_{k}\right\| \leq \sup _{1 \leq k \leq n}\left\|A_{k}\right\|=\sup _{1 \leq k \leq n} \pi_{2}\left(T_{k}\right) \leq 1
$$

Let us show that U is bounded linear. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)$. Let $x^{*}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(l_{1}^{n}\right)^{*}=l_{\infty}^{n}$ and $\psi \in\left(l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right)\right)^{*}$. Then

$$
\begin{aligned}
\left|\left\langle U(x), x^{*} \otimes \psi\right\rangle\right| & =\left|\sum_{k=1}^{n} x^{*}\left(e_{k}\right) \psi\left(\sigma_{k}\left(x_{k}\right)\right)\right| \\
& \leq \sum_{k=1}^{n}\left|\lambda_{k}\right|\left|\psi\left(\sigma_{k}\left(x_{k}\right)\right)\right| \leq\left\|x^{*}\right\| \sum_{k=1}^{n}\|\psi\|\left\|\sigma_{k}\left(x_{k}\right)\right\| \\
& \leq\left\|x^{*}\right\|\|\psi\| \sum_{k=1}^{n}\left\|x_{k}\right\|=\left\|x^{*}\right\|\|\psi\|\|x\|
\end{aligned}
$$

We deduce $\varepsilon(U(x)) \leq\|x\|$ and since U is linear, it is bounded linear with $\|U\| \leq 1$. By the ideal property, M_{T} is 2-summing and $\pi_{2}\left(M_{T}\right) \leq$ $\left\|M_{V}\right\| \pi_{2}\left(J_{n} \otimes T\right)\|U\| \leq \pi_{2}(T) \leq 1$.

Theorem 3. Let $M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{\infty}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\sup _{n \in \mathbb{N}} \pi_{2}\left(V_{n}\right)$.
Proof. (i) \Rightarrow (ii). Note that $V_{n}: X_{n} \xrightarrow{\sigma_{n}} l_{1}(\mathcal{X}) \xrightarrow{M_{\nu}} l_{2}(\mathcal{Y}) \xrightarrow{p_{n}} Y_{n}$ is a factorization of V_{n}. From the ideal property, all V_{n} are 2 -summing and $\pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)$ for $n \in \mathbb{N}$, which yields (ii).
(ii) \Rightarrow (i). Write $L=\sup _{n \in \mathbb{N}} \pi_{2}\left(V_{n}\right)$. If $L=0$, then all V_{n} are 0 , and $M_{\mathcal{V}}=$ $0, \pi_{2}\left(M_{\mathcal{V}}\right)=0$. Suppose $L>0$. Let $n \in \mathbb{N}$ and for $k=1, \ldots, n$ consider $T_{k}: X_{k} \rightarrow Y_{k}$ defined by $T_{k}=V_{k} / L$. Note that T_{k} is 2-summing with $\pi_{2}\left(T_{k}\right) \leq 1$ for every $k=1, \ldots, n$. Then, by Theorem 2 , the multiplication operator

$$
\begin{aligned}
& M_{\left(T_{1}, \ldots, T_{n}\right)}: l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \rightarrow l_{2}^{n}\left(\left(Y_{k}\right)_{k=1}^{n}\right) \\
& \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(T_{1}\left(x_{1}\right), \ldots, T_{n}\left(x_{n}\right)\right),
\end{aligned}
$$

is 2-summing and $\pi_{2}\left(M_{\left(T_{1}, \ldots, T_{n}\right)}\right) \leq 1$.
Consider the diagram

$$
l_{1}(\mathcal{X}) \xrightarrow{A_{n}} l_{1}^{n}\left(\left(X_{k}\right)_{k=1}^{n}\right) \xrightarrow{M_{\left(T_{1}, \ldots, T_{n}\right)}} l_{2}^{n}\left(\left(Y_{k}\right)_{k=1}^{n}\right) \xrightarrow{B_{n}} l_{2}(\mathcal{Y}),
$$

where $A_{n}\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{1}, \ldots, x_{n}\right), B_{n}\left(y_{1}, \ldots, y_{n}\right)=\left(y_{1}, \ldots, y_{n}, 0, \ldots\right)$. Then $S_{n}:=B_{n} \circ M_{\left(T_{1}, \ldots, T_{n}\right)} \circ A_{n}: l_{1}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y})$ with $S_{n}\left(x_{1}, \ldots, x_{n}, \ldots\right)=$
$\left(T_{1}\left(x_{1}\right), \ldots, T_{n}\left(x_{n}\right), 0, \ldots\right)$ is 2-summing and

$$
\pi_{2}\left(S_{n}\right) \leq \pi_{2}\left(M_{\left(T_{1}, \ldots, T_{n}\right)}\right)\left\|B_{n}\right\|\left\|A_{n}\right\| \leq 1
$$

Since $S_{n}(x) \rightarrow \frac{1}{L} M_{\mathcal{V}}(x)$ for $x \in l_{1}(\mathcal{X})$, from [2, Proposition 17.21, p. 220], $\frac{1}{L} M_{\mathcal{V}}$ is 2 -summing and $\pi_{2}\left(\frac{1}{L} M_{\mathcal{V}}\right) \leq 1$, i.e. $M_{\mathcal{V}}$ is 2-summing and $\pi_{2}\left(M_{\mathcal{V}}\right)$ $\leq L$.

The next result is a completion of Proposition 2.4 in [8] and will be another important ingredient in the proofs.

Lemma 2. Let $V: X \rightarrow Y$ be a bounded linear operator. The following assertions are equivalent:
(i) V is 2 -summing.
(ii) For each Banach space Z and each 2-summing operator $U: Z \rightarrow X$, $V \circ U$ is integral.
(iii) For each Banach space Z and each 2-summing operator $U: Z \rightarrow X$, $V \circ U$ is nuclear.

Moreover,

$$
\sup _{\pi_{2}(U) \leq 1}\|V \circ U\|_{\text {int }}=\sup _{\pi_{2}(U) \leq 1}\|V \circ U\|_{\text {nuc }}=\pi_{2}(V)
$$

Proof. (i) \Rightarrow (iii). From Grothendieck's theorem, $V \circ U$ is nuclear and $\|V \circ U\|_{\text {nuc }} \leq \pi_{2}(V) \pi_{2}(U)$. Then

$$
\begin{equation*}
\sup _{\pi_{2}(U) \leq 1}\|V \circ U\|_{\text {nuc }} \leq \pi_{2}(V) \tag{1}
\end{equation*}
$$

(iii) \Rightarrow (ii). This follows from the well known result that each nuclear operator is integral and $\|\cdot\|_{\text {int }} \leq\|\cdot\|_{\text {nuc }}$ (see [9, Proposition 6.7.3, p. 101]). Hence

$$
\begin{equation*}
\sup _{\pi_{2}(U) \leq 1}\|V \circ U\|_{\text {int }} \leq \sup _{\pi_{2}(U) \leq 1}\|V \circ U\|_{\text {nuc }} \tag{2}
\end{equation*}
$$

$($ ii $) \Leftrightarrow($ i). This was shown in [8, Proposition 2.4] together with the equality

$$
\begin{equation*}
\sup _{\pi_{2}(U) \leq 1}\|V \circ U\|_{\text {int }}=\pi_{2}(V) \tag{3}
\end{equation*}
$$

The equality from the statement follows from (1)-(3).
Theorem 4. Let $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{1}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right)$.

Proof. (i) \Rightarrow (ii). Let $\mathcal{Z}=\left(Z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces, let $U_{n}: Z_{n} \rightarrow X_{n}$ be 2-summing with $\pi_{2}\left(U_{n}\right) \leq 1$ for all $n \in \mathbb{N}$, and denote $\mathcal{U}=\left(U_{n}\right)_{n \in \mathbb{N}}$. From the nontrivial part of Theorem 3, $M_{\mathcal{U}}: l_{1}(\mathcal{Z}) \rightarrow$ $l_{2}(\mathcal{X})$ is 2-summing and $\pi_{2}\left(M_{\mathcal{U}}\right) \leq 1$. By Grothendieck's composition theorem, $M_{\mathcal{V} \circ \mathcal{U}}=M_{\mathcal{V}} \circ M_{\mathcal{U}}: l_{1}(\mathcal{Z}) \rightarrow l_{1}(\mathcal{Y})$ is nuclear and $\left\|M_{\mathcal{V} \circ \mathcal{U}}\right\|_{\text {nuc }} \leq$ $\pi_{2}\left(M_{\mathcal{V}}\right) \pi_{2}\left(M_{\mathcal{U}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)$.

But it is well known (see [9, Proposition 5.5.1, pp. 236-237] for the scalar case, or [12, Theorem 2] for the vector case) that if $T: Z \rightarrow l_{1}(\mathcal{Y}), T(x)=$ $\left(T_{n}(x)\right)_{n \in \mathbb{N}}$, and T is nuclear, then all T_{n} are nuclear and $\sum_{n=1}^{\infty}\left\|T_{n}\right\|_{\text {nuc }}=$ $\|T\|_{\text {nuc }}$. In our situation, $\sum_{n=1}^{\infty}\left\|V_{n} \circ U_{n}\right\|_{\text {nuc }}=\left\|M_{\mathcal{V} \circ \mathcal{U}}\right\|_{\text {nuc }}$, and therefore $\sum_{n=1}^{\infty}\left\|V_{n} \circ U_{n}\right\|_{\text {nuc }} \leq \pi_{2}\left(M_{\mathcal{V}}\right)$, i.e.

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|V_{i} \circ U_{i}\right\|_{\mathrm{nuc}} \leq \pi_{2}\left(M_{\mathcal{V}}\right) \quad \text { for } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

By Lemma 2, all V_{n} are 2-summing and $\sup _{\pi_{2}\left(U_{n}\right) \leq 1}\left\|V_{n} \circ U_{n}\right\|_{\text {nuc }}=\pi_{2}\left(V_{n}\right)$ for every $n \in \mathbb{N}$. Taking in (1) the supremum, first over $\pi_{2}\left(U_{1}\right) \leq 1$, then over $\pi_{2}\left(U_{2}\right) \leq 1, \ldots, \pi_{2}\left(U_{n}\right) \leq 1$, we get $\sum_{i=1}^{n} \pi_{2}\left(V_{i}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)$ for $n \in \mathbb{N}$, i.e. $\sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)$.
$(i i) \Rightarrow(i)$ follows from a general result of [9, Theorem 6.2.3, p. 91].
Another proof of $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is the following. Write $a_{n}=\sqrt{\pi_{2}\left(V_{n}\right)}$ and note that, by hypothesis, $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{2}$, thus $M_{a \mathcal{J}}: l_{2}(\mathcal{Y}) \rightarrow l_{1}(\mathcal{Y})$ is bounded linear. Define

$$
T: l_{2}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y}), \quad T(x)=\left(\frac{1}{a_{n}} V_{n}(x)\right)_{n \in \mathbb{N}}
$$

(we use $0 / 0=0$). By simple calculations, $M_{\mathcal{V}}$ has the factorization $M_{\mathcal{V}}$: $l_{2}(\mathcal{X}) \xrightarrow{T} l_{2}(\mathcal{Y}) \xrightarrow{M_{a \mathcal{J}}} l_{1}(\mathcal{Y})$. Since all V_{n} are 2 -summing and by hypothesis

$$
\sum_{n=1}^{\infty}\left[\pi_{2}\left(\frac{1}{a_{n}} V_{n}\right)\right]^{2}=\sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right)<\infty
$$

from Nahoum's theorem (see [7, Lemme, p. 5], 16, Lemma 23, p. 274]), T is 2-summing and $\pi_{2}(T) \leq \sqrt{\sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right)}$. By the ideal property of the class of 2-summing operators, $M_{\mathcal{V}}=M_{a \mathcal{J}} \circ T$ is 2-summing.

The next result was shown in [13, Corollary 4]. We give a different proof.
Theorem 5. Let $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{2}$.

Moreover, $\left[\pi_{2}\left(M_{\mathcal{V}}\right)\right]^{2}=\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}$.

Proof. (i) \Rightarrow (ii). Let $\mathcal{Z}=\left(Z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces. Let $U_{n}: Z_{n} \rightarrow X_{n}$ be 2-summing with $\pi_{2}\left(U_{n}\right) \leq 1$ for all $n \in \mathbb{N}$ and set $\mathcal{U}=\left(U_{n}\right)_{n \in \mathbb{N}}$. From the nontrivial part of Theorem 3, $M_{\mathcal{U}}: l_{1}(\mathcal{Z}) \rightarrow l_{2}(\mathcal{X})$ is 2-summing and $\pi_{2}\left(M_{\mathcal{U}}\right) \leq 1$. Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{2}$. Then $M_{a \mathcal{J}}: l_{2}(\mathcal{Y}) \rightarrow$ $l_{1}(\mathcal{Y})$ is bounded linear and $\left\|M_{a \mathcal{J}}\right\|=\|a\|_{2}$. By Grothendieck's composition theorem,

$$
M_{a \mathcal{V} \circ \mathcal{U}}=M_{a \mathcal{J}} \circ M_{\mathcal{V}} \circ M_{\mathcal{U}}: l_{1}(\mathcal{Z}) \rightarrow l_{1}(\mathcal{Y})
$$

is nuclear and

$$
\left\|M_{a \mathcal{V} \circ \mathcal{U}}\right\|_{\text {nuc }} \leq \pi_{2}\left(M_{\mathcal{V}}\right) \pi_{2}\left(M_{\mathcal{U}}\right)\left\|M_{a \mathcal{J}}\right\| \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}
$$

Again, from [9, Proposition 5.5.1, pp. 236-237], or [12, Theorem 2],

$$
\sum_{n=1}^{\infty}\left\|a_{n} V_{n} \circ U_{n}\right\|_{\mathrm{nuc}}=\left\|M_{a \vee \circ u}\right\|_{\mathrm{nuc}}
$$

thus

$$
\sum_{n=1}^{\infty}\left\|a_{n} V_{n} \circ U_{n}\right\|_{\text {nuc }} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}
$$

i.e.

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|a_{i} V_{i} \circ U_{i}\right\|_{\text {nuc }} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2} \quad \text { for } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

By Lemma 2, each V_{n} is 2-summing and $\sup _{\pi_{2}\left(U_{n}\right) \leq 1}\left\|V_{n} \circ U_{n}\right\|_{\text {nuc }}=\pi_{2}\left(V_{n}\right)$ for all $n \in \mathbb{N}$. Taking in (1) the supremum, first over $\pi_{2}\left(U_{1}\right) \leq 1$, then over $\pi_{2}\left(U_{2}\right) \leq 1, \ldots, \pi_{2}\left(U_{n}\right) \leq 1$, we get $\sum_{i=1}^{n}\left|a_{i}\right| \pi_{2}\left(V_{i}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}$ for $n \in \mathbb{N}$, i.e.

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}
$$

We deduce that $\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}<\infty$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2}=\sup _{\|a\|_{2} \leq 1} \sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

$(i i) \Rightarrow(\mathrm{i})$. This follows from Nahoum's theorem.
Theorem 6. Let $M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$. The following assertions are equivalent:
(i) M_{V} is 2 -summing.
(ii) All V_{n} are 2 -summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{2}$.

Moreover, $\left[\pi_{2}\left(M_{\mathcal{V}}\right)\right]^{2}=\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}$.

Proof. (i) \Rightarrow (ii). Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{2}$. Then by (i), $M_{a \mathcal{V}}=M_{\mathcal{V}} \circ M_{a \mathcal{J}}$: $l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is 2 -summing and $\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}$. From the nontrivial part of Theorem 4, all $a_{n} V_{n}$ are 2 -summing and $\sum_{n=1}^{\infty} \pi_{2}\left(a_{n} V_{n}\right)=$ $\pi_{2}\left(M_{a \mathcal{V}}\right)$. Then

$$
\sum_{n=1}^{\infty} \pi_{2}\left(a_{n} V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}
$$

Thus all V_{n} are 2-summing (take $a=e_{n}, n \in \mathbb{N}$) and for each $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ $\in l_{2}$,

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}
$$

Then, as is well known, $\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}<\infty$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2}=\sup _{\|a\|_{2} \leq 1} \sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Let us define $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{2}$ and observe that $M_{\mathcal{V}}$ has the factorization

$$
M_{\mathcal{V}}: l_{1}(\mathcal{X}) \xrightarrow{M_{\mathrm{sgn} \mathcal{V}}} l_{2}(\mathcal{Y}) \xrightarrow{M_{a \mathcal{J}}} l_{1}(\mathcal{Y}) .
$$

Note that by (ii) and the nontrivial part of Theorem 3, $M_{\operatorname{sgn} \mathcal{V}}$ is 2-summing and $\pi_{2}\left(M_{\operatorname{sgn} \mathcal{V}}\right) \leq 1$. Also by (ii), $M_{a \mathcal{J}}$ is a bounded linear operator with $\left\|M_{a \mathcal{J}}\right\|=\|a\|_{2}$. Thus $M_{\mathcal{V}}$ is 2-summing and $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\|a\|_{2}$, proving (i).

The case $(p, 1)$
Theorem 7. Let $1<p<2$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{s}$, where $1 / s=1 / p^{*}+1 / 2$. Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{s}\right)^{1 / s}$.

Proof. (i) \Rightarrow (ii). Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{s^{*}}$. From $1 / p=1 / 2+1 / s^{*}, M_{a \mathcal{J}}$: $l_{2}(\mathcal{X}) \rightarrow l_{p}(\mathcal{X})$ is bounded linear and so, by (i), $M_{a \mathcal{V}}=M_{\mathcal{V}} \circ M_{a \mathcal{J}}: l_{2}(\mathcal{X}) \rightarrow$ $l_{1}(\mathcal{Y})$ is 2-summing and $\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{s^{*}}$. From the nontrivial part of Theorem 4, all $a_{n} V_{n}$ are 2-summing and $\sum_{n=1}^{\infty} \pi_{2}\left(a_{n} V_{n}\right)=\pi_{2}\left(M_{a \mathcal{V}}\right)$. Thus all V_{n} are 2 -summing and for each $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{s^{*}}$,

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{s^{*}}
$$

As is well known, it follows that $\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{s}<\infty$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{s}\right)^{1 / s}=\sup _{\|a\|_{s^{*} \leq 1}} \sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

(ii) $\Rightarrow(\mathrm{i})$. Define $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{s}$. From the equality $1 / s=1 / p^{*}+$ $1 / 2$, we get the factorization

$$
M_{\mathcal{V}}: l_{p}(\mathcal{X}) \xrightarrow{M_{c \mathcal{J}}} l_{1}(\mathcal{X}) \xrightarrow{M_{\operatorname{sgn}} \mathcal{V}} l_{2}(\mathcal{Y}) \xrightarrow{M_{b \mathcal{J}}} l_{1}(\mathcal{Y})
$$

where $c_{n}=\left[\pi_{2}\left(V_{n}\right)\right]^{s / p^{*}}, b_{n}=\left[\pi_{2}\left(V_{n}\right)\right]^{s / 2}$; note that $b c(\operatorname{sgn} \mathcal{V})=\mathcal{V}$. By (ii) and the nontrivial part of Theorem 3, $M_{\operatorname{sgn} \mathcal{V}}$ is 2 -summing, $\pi_{2}\left(M_{\operatorname{sgn} \mathcal{V}}\right) \leq 1$, and by (ii), $M_{b \mathcal{J}}$ is bounded linear with $\left\|M_{b \mathcal{J}}\right\|=\|b\|_{2}$, and $M_{c \mathcal{J}}$ is bounded linear with $\left\|M_{c \mathcal{J}}\right\|=\|c\|_{p^{*}}$. Thus $M_{\mathcal{V}}$ is 2-summing, $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\|b\|_{2}\|c\|_{p^{*}}=$ $\|a\|_{s}$, proving (i).

Theorem 8. Let $2<p<\infty$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{1}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right)$.
Proof. (i) $\Rightarrow(\mathrm{ii})$. From $p>2, J: l_{2}(\mathcal{X}) \hookrightarrow l_{p}(\mathcal{X})$ and since $M_{\mathcal{V}}$ is 2-summing, $M_{\mathcal{V}} \circ J: l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is 2 -summing with $\pi_{2}\left(M_{\mathcal{V}} \circ J\right) \leq$ $\pi_{2}\left(M_{\mathcal{V}}\right)$. By the nontrivial part of Theorem4 we get (ii) and $\sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right)=$ $\pi_{2}\left(M_{\mathcal{V}} \circ J\right)$.
(ii) $\Rightarrow(\mathrm{i})$. By (ii) and [9, Theorem 6.2.3, p. 91], $M_{\mathcal{V}}$ is 2-summing and $\pi_{2}\left(M_{\mathcal{V}}\right) \leq \sum_{n=1}^{\infty} \pi_{2}\left(V_{n}\right)$

The next result requires some natural cotype 2 assumptions.
Theorem 9. Let $2<p<\infty$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$.
(a) Suppose that all X_{n} have cotype 2 with $C_{2}(\mathcal{X}):=\sup _{n \in \mathbb{N}} C_{2}\left(X_{n}\right)$ $<\infty$ and let $1 \leq s \leq 2$. The following assertions are equivalent:
(i) M_{V} is s-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{1}$.
(iii) $M_{\mathcal{V}}$ is 1-summing.
(b) Suppose that all X_{n}, Y_{n} have cotype 2 with $C_{2}(\mathcal{X}):=\sup _{n \in \mathbb{N}} C_{2}\left(X_{n}\right)$ $<\infty, C_{2}(\mathcal{Y}):=\sup _{n \in \mathbb{N}} C_{2}\left(Y_{n}\right)<\infty$, and let $1 \leq s<\infty$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is s-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{1}$.
(iii) $M_{\mathcal{V}}$ is 1-summing.

Proof. (a) (i) \Rightarrow (ii). Since $1 \leq s \leq 2$, by (i), $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is 2 -summing. From Theorem 8 we get (ii).
(ii) \Rightarrow (iii). Since X_{n} has cotype $2, \Pi_{1}\left(X_{n}, \cdot\right)=\Pi_{2}\left(X_{n}, \cdot\right)$ and there exists a universal constant $c>0$ such that

$$
\pi_{2}(\cdot) \leq \pi_{1}(\cdot) \leq c C_{2}\left(X_{n}\right) \sqrt{1+\log C_{2}\left(X_{n}\right)} \pi_{2}(\cdot)
$$

(see [15, Corollary 10.18(i), p. 71]). Then, by hypothesis,

$$
\pi_{2}(\cdot) \leq \pi_{1}(\cdot) \leq c C_{2}(\mathcal{X}) \sqrt{1+\log C_{2}(\mathcal{X})} \pi_{2}(\cdot)
$$

Since by (ii), $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{1}$, we deduce $\left(\pi_{1}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{1}$ and by 9, Theorem 6.2.3, p. 91], $M_{\mathcal{V}}$ is 1-summing.
$($ iii $) \Rightarrow(\mathrm{i})$ is well known.
(b) $(\mathrm{i}) \Rightarrow(\mathrm{ii})$. From $p>2, J: l_{2}(\mathcal{X}) \hookrightarrow l_{p}(\mathcal{X})$, and because $M_{\mathcal{V}}$ is s summing, $M_{\mathcal{V}} \circ J: l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is s-summing. Since, by hypothesis, $\sup _{n \in \mathbb{N}} C_{2}\left(X_{n}\right)<\infty$ and $\sup _{n \in \mathbb{N}} C_{2}\left(Y_{n}\right)<\infty$, it follows that $l_{2}(\mathcal{X})$ and $l_{1}(\mathcal{Y})$ both have cotype 2 (see [16, Exercise 18, p. 109]). Then, by the coincidence theorem (see [3, Corollary 11.16, p. 224]), $M_{\mathcal{V}} \circ J: l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is 2 -summing and thus by the nontrivial part of Theorem 4 we get (ii).

The implication (ii) \Rightarrow (iii) was shown in (a), and (iii) \Rightarrow (i) is well known.
The case $(p, 2)$
Theorem 10. Let $1<p<2$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p^{*}}$. Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{p^{*}}\right)^{1 / p^{*}}$.

Proof. (i) \Rightarrow (ii). Define r by $1 / p=1 / 2+1 / r$. For $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{2}$, $M_{a \mathcal{J}}: l_{2}(\mathcal{Y}) \rightarrow l_{1}(\mathcal{Y})$ is bounded linear and, by (i), $M_{a \mathcal{V}}=M_{a \mathcal{J}} \circ M_{\mathcal{V}}:$ $l_{p}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is 2-summing and $\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}$. From Theorem 7 , all $a_{n} V_{n}$ are 2 -summing, $\left(\pi_{2}\left(a_{n} V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{r^{*}}$ and

$$
\pi_{2}\left(M_{a \mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(a_{n} V_{n}\right)\right]^{r^{*}}\right)^{1 / r^{*}}
$$

It follows that all V_{n} are 2-summing and for each $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{2}$ we have

$$
\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{r^{*}}\left[\pi_{2}\left(V_{n}\right)\right]^{r^{*}}\right)^{1 / r^{*}} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{2}
$$

Since $1 / r^{*}=1 / 2+1 / p^{*}$, we deduce $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p^{*}}$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{p^{*}}\right)^{1 / p^{*}}=\sup _{\|a\|_{2} \leq 1}\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{r^{*}}\left[\pi_{2}\left(V_{n}\right)\right]^{r^{*}}\right)^{1 / r^{*}} \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

proving (i).
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. We consider $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p^{*}}$ and we note that $M_{\mathcal{V}}$ has the factorization $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \xrightarrow{M_{a \mathcal{J}}} l_{1}(\mathcal{X}) \xrightarrow{M_{\mathrm{sgn}} \mathcal{V}} l_{2}(\mathcal{Y})$. From (ii) and the nontrivial part of Theorem 3 we get (i).

TheOrem 11. Let $2<p<\infty$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2 -summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{2}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2}$.
Proof. (i) \Rightarrow (ii). Since $p>2, l_{2}(\mathcal{X}) \hookrightarrow l_{p}(\mathcal{X})$ and by (i), $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow$ $l_{2}(\mathcal{Y})$ is 2 -summing. By the nontrivial part of Theorem 5 we get (ii).
(ii) \Rightarrow (i) follows from Nahoum's theorem.

The case $(2, p)$
Theorem 12. Let $1<p<2$ and $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2 -summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{p}\right)^{1 / p}$.
Proof. (i) \Rightarrow (ii). Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{p^{*}}$. Since $M_{\mathcal{V}}$ is 2-summing, $M_{a \mathcal{V}}=$ $M_{a \mathcal{J}} \circ M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{Y})$ is 2-summing and $\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{p^{*}}$. From the nontrivial part of Theorem 4 , all $a_{n} V_{n}$ are 2-summing, and $\sum_{n=1}^{\infty} \pi_{2}\left(a_{n} V_{n}\right)$ $=\pi_{2}\left(M_{a \mathcal{V}}\right)$. Thus all V_{n} are 2-summing and for each $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{p^{*}}$,

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{p^{*}}
$$

As is well known, $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p}$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{p}\right)^{1 / p}=\sup _{\|a\|_{p^{*}} \leq 1} \sum_{n=1}^{\infty}\left|a_{n}\right| \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

(ii) \Rightarrow (i). We consider $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p}$ and define r by $1 / p=$ $1 / 2+1 / r$. Set $b_{n}=\left[\pi_{2}\left(V_{n}\right)\right]^{p / 2}, c_{n}=\left[\pi_{2}\left(V_{n}\right)\right]^{p / r}$. Then $b=\left(b_{n}\right)_{n \in \mathbb{N}} \in l_{2}, c=$ $\left(c_{n}\right)_{n \in \mathbb{N}} \in l_{r}$ and since $b c(\operatorname{sgn} \mathcal{V})=\mathcal{V}$ we find that $M_{\mathcal{V}}$ has the factorization

$$
M_{\mathcal{V}}: l_{2}(\mathcal{X}) \xrightarrow{M_{b \operatorname{sgn}} \mathcal{V}} l_{2}(\mathcal{Y}) \xrightarrow{M_{c \mathcal{J}}} l_{p}(\mathcal{Y}) .
$$

By (ii) and Nahoum's theorem, $M_{b \operatorname{sgn} \mathcal{V}}$ is 2-summing, $\pi_{2}\left(M_{b \operatorname{sgn} \mathcal{V}}\right) \leq\|b\|_{2}$, and by (ii), $M_{c \mathcal{J}}$ is bounded linear with $\left\|M_{c \mathcal{J}}\right\|=\|c\|_{r}$. Thus $M_{\mathcal{V}}$ is 2summing and $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\|b\|_{2}\|c\|_{r}=\|a\|_{p}$, proving (i).

Theorem 13. Let $2<p<\infty$ and $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{2}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2}$.

Proof. (i) \Rightarrow (ii). Since $M_{\mathcal{V}}$ is 2-summing, from Theorem 3 in [13], all $M_{\mathcal{V}} \circ \sigma_{n}$ are 2-summing, and

$$
\sum_{n=1}^{\infty}\left[\pi_{2}\left(M_{\mathcal{V}} \circ \sigma_{n}\right)\right]^{2}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left[\pi_{2}\left(M_{\mathcal{V}} \circ \sigma_{n}\right)\right]^{2} \leq\left[\pi_{2}\left(M_{\mathcal{V}}\right)\right]^{2}
$$

Since $M_{\mathcal{V}} \circ \sigma_{n}=\sigma_{n} \circ V_{n}$ we deduce that all V_{n} are 2-summing, $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}}$ $\in l_{2}$ and $\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2} \leq \pi_{2}\left(M_{\mathcal{V}}\right)$.
(ii) \Rightarrow (i). From (ii) and Nahoum's theorem, $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{2}(\mathcal{Y})$ is 2summing with $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2}$ and thus $M_{\mathcal{V}}: l_{2}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$ is 2 -summing since $l_{2}(\mathcal{Y}) \hookrightarrow l_{p}(\mathcal{Y}), p \geq 2$.

The case $(1, p)$
Theorem 14. Let $1<p<2$ and $M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2 -summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{r}$, where $1 / p=1 / 2+1 / r$. Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{r}\right)^{1 / r}$.

Proof. (i) \Rightarrow (ii). Let $b=\left(b_{n}\right)_{n \in \mathbb{N}} \in l_{2}$. Then $M_{b \mathcal{J}}: l_{2}(\mathcal{X}) \rightarrow l_{1}(\mathcal{X})$ is bounded linear, thus by (i), $M_{b \mathcal{V}}=M_{\mathcal{V}} \circ M_{b \mathcal{J}}: l_{2}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$ is 2-summing and $\pi_{2}\left(M_{b \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|b\|_{2}$. From the nontrivial part of Theorem 12, all $b_{n} V_{n}$ are 2 -summing, $\left(\pi_{2}\left(b_{n} V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p}$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(b_{n} V_{n}\right)\right]^{p}\right)^{1 / p}=\pi_{2}\left(M_{b \nu}\right) .
$$

Then all V_{n} are 2-summing and

$$
\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{p}\left[\pi_{2}\left(V_{n}\right)\right]^{p}\right)^{1 / p} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|b\|_{2} .
$$

As is well known, this implies that $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{r}$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{r}\right)^{1 / r}=\sup _{\|b\|_{2} \leq 1}\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{p}\left[\pi_{2}\left(V_{n}\right)\right]^{p}\right)^{1 / p} \leq \pi_{2}\left(M_{\mathcal{V}}\right) .
$$

(ii) \Rightarrow (i). We consider $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{r}$ and we note that

$$
M_{\mathcal{V}}: l_{1}(\mathcal{X}) \xrightarrow{M_{\mathrm{sgn}} \mathcal{V}} l_{2}(\mathcal{Y}) \xrightarrow{M_{a \mathcal{J}}} l_{p}(\mathcal{Y})
$$

is a factorization of $M_{\mathcal{V}}$. From (ii) and the nontrivial part of Theorem 3, $M_{\mathrm{sgn}} \mathcal{V}$ is 2 -summing, $\pi_{2}\left(M_{\mathrm{sgn}} \mathcal{V}\right) \leq 1$ and thus $M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$ is 2 -summing with $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\|a\|_{r}$, i.e. (i) holds.

Theorem 15. Let $2 \leq p<\infty$ and $M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$. The following assertions are equivalent:
(i) M_{V} is 2 -summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{\infty}$.

Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\sup _{n \in \mathbb{N}} \pi_{2}\left(V_{n}\right)$.
Proof. (i) \Rightarrow (ii). Note that $V_{n}: X_{n} \xrightarrow{\sigma_{n}} l_{1}(\mathcal{X}) \xrightarrow{M_{\mathcal{V}}} l_{p}(\mathcal{Y}) \xrightarrow{p_{n}} Y_{n}$ is a factorization of V_{n}. From the ideal property, all V_{n} are 2 -summing and $\pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)$ for $n \in \mathbb{N}$, i.e. (ii) holds.
(ii) \Rightarrow (i). From (ii) and the nontrivial part of Theorem $3, M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow$ $l_{2}(\mathcal{Y})$ is 2 -summing with $\sup _{n \in \mathbb{N}} \pi_{2}\left(V_{n}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)$, and since $J: l_{2}(\mathcal{Y}) \hookrightarrow$ $l_{p}(\mathcal{Y})(2 \leq p<\infty), M_{\mathcal{V}}: l_{1}(\mathcal{X}) \rightarrow l_{p}(\mathcal{Y})$ is 2-summing with $\sup _{n \in \mathbb{N}} \pi_{2}\left(V_{n}\right) \leq$ $\pi_{2}\left(M_{\mathcal{V}}\right)$.

The case $(p, q), 1<p<2$ and $1<q<\infty$. The next case is analogous to the case shown by L. Schwartz in [14, Théorème XXVI, 3.5, p. 15]; see also [4, Theorem 1(iii)].

Theorem 16. Let $1<p<2,1<q<2$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2 -summing.
(ii) All V_{n} are 2 -summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{s}$, where $1 / s=1 / q-1 / p+$ $1 / 2$.
Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{s}\right)^{1 / s}$.
Proof. (i) \Rightarrow (ii). Define r by $1 / p=1 / 2+1 / r$ and note that $2<r<\infty$. Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{r}$. Since $M_{\mathcal{V}}$ is 2-summing, $M_{a \mathcal{V}}=M_{\mathcal{V}} \circ M_{a \mathcal{J}}: l_{2}(\mathcal{X}) \rightarrow$ $l_{q}(\mathcal{Y})$ is 2-summing and $\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{r}$. From the nontrivial part of Theorem 12, all $a_{n} V_{n}$ are 2-summing, and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(a_{n} V_{n}\right)\right]^{q}\right)^{1 / q}=\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{r}
$$

Thus V_{n} are 2-summing and for each $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{r}$,

$$
\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{q}\left[\pi_{2}\left(V_{n}\right)\right]^{q}\right)^{1 / q} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{r}
$$

Since $q<2<r$, as is well known, $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{s}$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{s}\right)^{1 / s}=\sup _{\|a\|_{r} \leq 1}\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{q}\left[\pi_{2}\left(V_{n}\right)\right]^{q}\right)^{1 / q} \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

where $1 / s=1 / q-1 / r$, i.e. $1 / s=1 / q-1 / p+1 / 2$.
(ii) \Rightarrow (i). We write $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{s}$. Since $1 / s=1 / q+1 / p^{*}-1 / 2$, define $1 / v=1 / q-1 / 2$ and note that $1 / s=1 / p^{*}+1 / v$. Now define $b_{n}=$ $\left[\pi_{2}\left(V_{n}\right)\right]^{s / p^{*}}, c_{n}=\left[\pi_{2}\left(V_{n}\right)\right]^{s / v}$. Then $b=\left(b_{n}\right)_{n \in \mathbb{N}} \in l_{p^{*}}, c=\left(c_{n}\right)_{n \in \mathbb{N}} \in l_{v}$,
$1 / q=1 / 2+1 / v$ and since $b c(\operatorname{sgn} \mathcal{V})=\mathcal{V}$, we get the factorization

$$
M_{\mathcal{V}}: l_{p}(\mathcal{X}) \xrightarrow{M_{b \mathcal{J}}} l_{1}(\mathcal{X}) \xrightarrow{M_{\mathrm{sgn}} \mathcal{V}} l_{2}(\mathcal{Y}) \xrightarrow{M_{c \mathcal{J}}} l_{q}(\mathcal{Y}) .
$$

By (ii) and the nontrivial part of Theorem 3, $M_{\operatorname{sgn} \mathcal{V}}$ is 2-summing with $\pi_{2}\left(M_{\operatorname{sgn} \mathcal{V}}\right) \leq 1$, and by (ii), $M_{b \mathcal{J}}$ is bounded linear with $\left\|M_{b \mathcal{J}}\right\|=\|b\|_{p^{*}}$, while $M_{c \mathcal{J}}$ is bounded linear with $\left\|M_{c \mathcal{J}}\right\|=\|c\|_{v}$. Thus $M_{\mathcal{V}}$ is 2-summing and $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\|b\|_{p^{*}}\|c\|_{v}=\|a\|_{u}$, i.e. (i) holds.

TheOrem 17. Let $1<p<2 \leq q<\infty$ and $M_{\mathcal{V}}: l_{p}(\mathcal{X}) \rightarrow l_{q}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is 2-summing.
(ii) All V_{n} are 2-summing and $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p^{*}}$. Moreover, $\pi_{2}\left(M_{\mathcal{V}}\right)=\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{p^{*}}\right)^{1 / p^{*}}$.

Proof. (i) \Rightarrow (ii). Define r by $1 / p=1 / 2+1 / r$ and note that $2<r<\infty$. Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{r}$. Since $M_{\mathcal{V}}$ is 2-summing, $M_{a \mathcal{V}}=M_{\mathcal{V}} \circ M_{a \mathcal{J}}: l_{2}(\mathcal{X}) \rightarrow$ $l_{q}(\mathcal{Y})$ is 2 -summing and $\pi_{2}\left(M_{a \mathcal{V}}\right) \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{r}$. From the nontrivial part of Theorem 13 , all $a_{n} V_{n}$ are 2 -summing and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(a_{n} V_{n}\right)\right]^{2}\right)^{1 / 2} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{r}
$$

Thus V_{n} are 2-summing and for each $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{r}$,

$$
\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2} \leq \pi_{2}\left(M_{\mathcal{V}}\right)\|a\|_{r}
$$

Then, since $1 / 2=1 / r+1 / p^{*}$, we deduce $\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p^{*}}$ and

$$
\left(\sum_{n=1}^{\infty}\left[\pi_{2}\left(V_{n}\right)\right]^{p^{*}}\right)^{1 / p^{*}}=\sup _{\|a\|_{r} \leq 1}\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\left[\pi_{2}\left(V_{n}\right)\right]^{2}\right)^{1 / 2} \leq \pi_{2}\left(M_{\mathcal{V}}\right)
$$

(ii) \Rightarrow (i). Write $a=\left(\pi_{2}\left(V_{n}\right)\right)_{n \in \mathbb{N}} \in l_{p^{*}}$. Then $M_{\mathcal{V}}$ has the factorization

$$
M_{\mathcal{V}}: l_{p}(\mathcal{X}) \xrightarrow{M_{a \mathcal{J}}} l_{1}(\mathcal{X}) \xrightarrow{M_{\mathrm{sgn}} \mathcal{V}} l_{2}(\mathcal{Y}) \hookrightarrow l_{q}(\mathcal{Y}) .
$$

By (ii) and the nontrivial part of Theorem 3, $M_{\operatorname{sgn} \mathcal{V}}$ is 2-summing with $\pi_{2}\left(M_{\operatorname{sgn} \mathcal{V}}\right) \leq 1$, and by (ii), $M_{a \mathcal{J}}$ is bounded linear with $\left\|M_{a \mathcal{J}}\right\|=\|a\|_{p^{*}}$. Thus $M_{\mathcal{V}}$ is 2 -summing and $\pi_{2}\left(M_{\mathcal{V}}\right) \leq\|a\|_{p^{*}}$, i.e. (i) holds.

References

[1] C. Costara and D. Popa, Exercises in Functional Analysis, Kluwer Texts in Math. Sci. 26, Kluwer, Dordrecht, 2003.
[2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, 1993.
[3] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995.
[4] D. J. H. Garling, Diagonal mappings between sequence spaces, Studia Math. 51 (1974), 129-138.
[5] E. D. Gluskin, S. V. Kislyakov and O. I. Reinov, Tensor products of p-absolutely summing operators and right (I_{p}, N_{p}) multipliers, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova 92 (1979), 85-102.
[6] J. R. Holub, Tensor product mappings, Math. Ann. 188 (1970), 1-12.
[7] A. Nahoum, Applications radonifiantes dans l'espace des séries convergentes. I: Le théorème de Menchov, Séminaire Maurey-Schwartz 1972-1973, exp. 24, 6 pp., 1973; http://www.numdam.org.
[8] D. Pérez-García and I. Villanueva, A composition theorem for multiple summing operators, Monatsh. Math. 146 (2005), 257-261.
[9] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978, and North-Holland, 1980.
[10] A. Pietsch, Eigenvalues and s-Numbers, Geest \& Portig, Leipzig, 1987.
[11] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, Reg. Conf. Ser. Math. 60, Amer. Math. Soc., 1986.
[12] D. Popa, Nuclear multilinear operators with respect to a partition, Rend. Circ. Mat. Palermo 61 (2012), 307-319.
[13] D. Popa, 2-summing operators on $l_{2}(\mathcal{X})$, Bull. London Math. Soc., submitted.
[14] L. Schwartz, Les applications 0-radonifiantes dans les espaces de suites, in: Séminaire Laurent Schwartz (1969-1970), exp. 26, 19 pp., Centre de Math., École Polytech., Paris, 1970; http://www.numdam.org.
[15] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monogr. 38, Longman, Harlow, 1989.
[16] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, 1996.

Dumitru Popa

Department of Mathematics
Ovidius University of Constanţa
Bd. Mamaia 124
900527 Constanţa, Romania
E-mail: dpopa@univ-ovidius.ro

Received March 4, 2013
Revised version May 14, 2013

[^0]: 2010 Mathematics Subject Classification: Primary 47B10, 47L20; Secondary 46B45. Key words and phrases: p-summing, nuclear operators, operator ideals.

