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2-summing multiplication operators

by

Dumitru Popa (Constanţa)

Abstract. Let 1 ≤ p <∞, X = (Xn)n∈N be a sequence of Banach spaces and lp(X )
the coresponding vector valued sequence space. Let X = (Xn)n∈N, Y = (Yn)n∈N be two
sequences of Banach spaces, V = (Vn)n∈N, Vn : Xn → Yn, a sequence of bounded linear
operators and 1 ≤ p, q <∞. We define the multiplication operator MV : lp(X )→ lq(Y) by
MV((xn)n∈N) := (Vn(xn))n∈N. We give necessary and sufficient conditions for MV to be
2-summing when (p, q) is one of the couples (1, 2), (2, 1), (2, 2), (1, 1), (p, 1), (p, 2), (2, p),
(1, p), (p, q); in the last case 1 < p < 2, 1 < q <∞.

Introduction and notation. The concept of absolutely summing op-
erator is fundamental in operator theory as the reader can see in the books
[2, 3, 9, 11, 15, 16]. The main purpose of this paper is to give necessary and
sufficient conditions for the multiplication operator between vector valued
sequence spaces to be 2-summing.

Let us fix some notations and terminology. Let 1 ≤ p < ∞ and X =
(Xn)n∈N be a sequence of Banach spaces. We write lp(X ) to denote the Ba-
nach space of all sequences (xn)n∈N with xn ∈ Xn for all n∈N,

∑∞
n=1 ‖xn‖

p
Xn

< ∞, endowed with the norm ‖(xn)n∈N‖lp(X ) := (
∑∞

n=1 ‖xn‖
p
Xn

)1/p (see
[16]). We consider the canonical mappings σk : Xk → lp(X ) and pk : lp(X )
→ Xk defined by

σk(x) = (0, . . . , 0, x︸︷︷︸
kth

, 0, . . .), pk((xn)n∈N) = xk,

where k is a natural number.

Let X = (Xn)n∈N, Y = (Yn)n∈N be two sequences of Banach spaces,
V = (Vn)n∈N, Vn : Xn → Yn, a sequence of bounded linear operators, and
let 1 ≤ p, q <∞. We define the multiplication operator MV : lp(X )→ lq(Y)
by

MV((xn)n∈N) := (Vn(xn))n∈N.
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As in the scalar case (see [1, p. 218]), we can prove that MV is well
defined if and only if it is bounded linear if and only if (‖Vn‖)n∈N ∈ l∞, for
p ≤ q, respectively (‖Vn‖)n∈N ∈ ls for q < p, where 1/q = 1/p+ 1/s.

Given the importance of this issue, a lot of work has been done in order
to give necessary and sufficient conditions for some natural operators to be
absolutely summing.

For example, L. Schwartz [14] gave necessary and sufficient conditions for
some multiplication operators from ls to lt to be p-summing, and D. J. H. Gar-
ling [4, Theorem 9] gave an almost complete description of the summing
properties for multiplication operators from ls to lt. Also, E. D. Gluskin,
S. V. Kislyakov and O. I. Reinov [5, Lemma I] studied the same problem in
a more general context.

In this paper we give necessary and sufficient conditions for MV to be
2-summing when (p, q) is one of the couples (1, 2), (2, 1), (2, 2), (1, 1), (p, 1),
(p, 2), (2, p), (1, p), (p, q); in the last case 1 < p < 2, 1 < q <∞.

As it turns out (see Theorems 3–8, 10–17), we have a full extension of
the scalar case shown by D. J. H. Garling [4, Theorem 9]. However, there
is one notable exception: in case (p, 1), p > 2, we need natural cotype 2
assumptions to obtain necessary and sufficient conditions for MV to be s-
summing, 1 ≤ s ≤ 2 resp. 1 ≤ s <∞ (Theorem 9).

Let 1 ≤ p <∞, X a normed space and (xk)
n
k=1 ⊂ X. We write

wp((xk)
n
k=1) := sup

‖x∗‖≤1

( n∑
k=1

|x∗(xk)|p
)1/p

.

Let 1 ≤ p < ∞ and X, Y be Banach spaces. A bounded linear operator
T : X → Y is p-summing if there is a constant C ≥ 0 such that for every
(xk)1≤k≤n ⊂ X, ( n∑

k=1

‖T (xk)‖p
)1/p

≤ Cwp((xk)nk=1).

The p-summing norm of T is πp(T ) = inf{C | C as above} (see [2, 3, 9,
11, 15, 16]). We denote by Πp(X,Y ) the class of all p-summing operators
T : X → Y .

One of the main ingredients in the proofs is the famous Grothendieck
composition theorem which asserts that the composition of two 2-summing
operators is nuclear (see [3, Theorem 5.31], [9, Theorem 17.6.4]).

For sequences X = (Xn)n∈N, Y = (Yn)n∈N, Z = (Zn)n∈N of Banach
spaces, and sequences V = (Vn)n∈N, U = (Un)n∈N, Vn : Xn → Yn, Un :
Yn → Zn, of bounded linear operators, we define U ◦ V := (Un ◦ Vn)n∈N.

For sequences X = (Xn)n∈N, Y = (Yn)n∈N of Banach spaces, a sequence
V = (Vn)n∈N, Vn : Xn → Yn, of bounded linear operators and a sequence
a = (an)n∈N of scalars, we define aV := (anVn)n∈N.
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If X = (Xn)n∈N is a sequence of Banach spaces we define J := (IXn)n∈N,
where IXn : Xn → Xn is the identity operator on Xn.

Note that if 1 ≤ p, q < ∞ and a is a sequence of scalars such that
Ma : lp → lq is well defined, then MaJ : lp(X ) → lq(X ) is also well defined
and ‖MaJ : lp(X )→ lq(X )‖ = ‖Ma : lp → lq‖.

Also if 1 ≤ p, q, r < ∞ are such that MV : lp(X ) → lq(Y) and Ma :
lq → lr (resp. Ma : lr → lp) are well defined, then MaV : lp(X ) → lr(Y)
(resp. MaV : lr(X ) → lq(Y)) is well defined and MaJ ◦MV = MaV (resp.
MV ◦MaJ = MaV).

If V : X → Y is 2-summing, we define sgnV : X → Y by

(sgnV )(x) :=
V (x)

π2(V )
for V 6= 0, x ∈ X; sgn 0 := 0.

Note that sgnV is 2-summing, π2(sgnV ) ≤ 1 and π2(V ) sgnV = V .

If V = (Vn)n∈N and all Vn : Xn → Yn are 2-summing, we define sgnV =
(sgnVn)n∈N.

If 1 < p <∞ we denote by p∗ the conjugate of p, i.e. 1/p+ 1/p∗ = 1.

The notations and terminology used along the paper are standard in
Banach space theory, as for instance in [2, 3, 9, 11, 15, 16].

The results

The cases (1, 2), (2, 1), (2, 2), (1, 1). Our first result, the case (1, 2) (see
Theorem 3) was shown by E. D. Gluskin, S. V. Kislyakov and O. I. Reinov
[5, Lemma I 3 p. 87, proof on p. 98]. For completeness we include its proof.
Recall (see [2]) that if X and Y are Banach spaces, then X⊗εY denotes their
injective tensor product, i.e. the algebraic tensor product X ⊗ Y endowed
with the injective cross-norm

ε(u) = sup
‖x∗‖≤1, ‖y∗‖≤1

|〈u, x∗ ⊗ y∗〉|, u ∈ X ⊗ Y.

By X ⊗̂ε Y we denote the completion of X ⊗ε Y .

If 1 ≤ p < ∞, n is a natural number, lnp := Kn (K = R or C), endowed

with the norm ‖ξ‖p = (
∑n

k=1 |ξk|p)1/p for ξ = (ξ1, . . . , ξn), and for every k =
1, . . . , n, pk : lnp → K denotes the canonical projection, pk((ξ1, . . . , ξn)) = ξk.

Similarly, if (Xk)
n
k=1 are Banach spaces, we define lnp ((Xk)

n
k=1) as the

cartesian product
∏n
k=1Xk endowed with the norm ‖x‖ = (

∑n
k=1 ‖xk‖p)1/p

for x = (x1, . . . , xn). When X1 = · · · = Xn = X we write lnp (X).

Let n be a natural number, Jn : ln1 ↪→ ln2 the canonical inclusion, i.e.
Jn(ξ) = ξ, and let T : Z → W be a bounded linear operator. We define
Jn ⊗ T : ln1 ⊗ε Z → ln2 (W ) in the usual way, i.e.

(Jn ⊗ T )(ξ ⊗ z) :=
(
p1(Jn(ξ))T (z), . . . , pn(Jn(ξ))T (z)

)
for ξ ∈ ln1 , z ∈ Z
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and

(Jn ⊗ T )(u) :=
k∑
j=1

(Jn ⊗ T )(ξj ⊗ zj) for u =
k∑
j=1

ξj ⊗ zj ∈ ln1 ⊗ε Z.

Proposition 1. Let T : Z → W be a bounded linear operator. Then
Jn ⊗ T : ln1 ⊗ε Z → ln2 (W ) is a bounded linear operator, ‖Jn⊗T‖ ≤

√
n ‖T‖

and hence, by density, Jn ⊗ T : ln1 ⊗̂ε Z → ln2 (W ) is also a bounded linear
operator.

Proof. Let u =
∑k

j=1 ξj ⊗ zj ∈ ln1 ⊗ε Z. We have

(Jn ⊗ T )(u) =
k∑
j=1

(Jn ⊗ T )(ξj ⊗ zj)

=
k∑
j=1

(
p1(Jn(ξj))T (zj), . . . , pn(Jn(ξj))T (zj)

)
=
(
T
( k∑
j=1

p1(Jn(ξj))zj

)
, . . . , T

( k∑
j=1

pn(Jn(ξj))zj

))
and thus

(1) ‖(Jn ⊗ T )(u)‖2ln2 (W ) =

n∑
i=1

∥∥∥T( k∑
j=1

pi(Jn(ξj))zj

)∥∥∥2.
For every i = 1, . . . , n and w∗ ∈W ∗ we have∣∣∣〈T (

k∑
j=1

pi(Jn(ξj))zj), w
∗
〉∣∣∣ =

∣∣∣ k∑
j=1

(pi ◦ Jn)(ξj)〈zj , T ∗w∗〉
∣∣∣

≤ ‖T ∗w∗‖ sup
‖y∗‖≤1, ‖z∗‖≤1

∣∣∣ k∑
j=1

〈ξj , y∗〉〈zj , z∗〉
∣∣∣ = ‖T ∗w∗‖ε(u),

so ∥∥∥T( k∑
j=1

pi(Jn(ξj))zj

)∥∥∥ ≤ ‖T ∗‖ε(u) = ‖T‖ε(u).

Together with (1) we get

(2) ‖(Jn ⊗ T )(u)‖ln2 (W ) ≤
√
n ‖T‖ε(u).

Hence Jn ⊗ T is well defined. Since it is linear, from (2) we deduce that it
is a bounded linear operator and ‖Jn ⊗ T‖ ≤

√
n‖T‖. Since ln1 ⊗̂ε Z is the

completion of ln1 ⊗ε Z, Jn ⊗ T can be extended by continuity to ln1 ⊗̂ε Z.
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Lemma 1. Let X and Y be Banach spaces and 1 ≤ p <∞. Then

wp((ui)
n
i=1;X ⊗ε Y ) = sup

‖x∗‖≤1, ‖y∗‖≤1

( n∑
i=1

|〈ui, x∗ ⊗ y∗〉|p
)1/p

for (ui)
n
i=1 ⊂ X ⊗ε Y .

Proof. We have (see [10, Lemma 1.14, p. 40]),

wp((ui)
n
i=1;X ⊗ε Y ) = sup

‖λ‖p∗≤1

ε
( n∑
i=1

λiui

)
= sup
‖λ‖p∗≤1

sup
‖x∗‖≤1, ‖y∗‖≤1

∣∣∣〈 n∑
i=1

λiui, x
∗ ⊗ y∗

〉∣∣∣
= sup
‖x∗‖≤1, ‖y∗‖≤1

sup
‖λ‖p∗≤1

∣∣∣ n∑
i=1

λi〈ui, x∗ ⊗ y∗〉
∣∣∣

= sup
‖x∗‖≤1, ‖y∗‖≤1

( n∑
i=1

|〈ui, x∗ ⊗ y∗〉|p
)1/p

.

Theorem 1. If T : Z →W is 2-summing, then so is Jn ⊗ T : ln1 ⊗̂εZ →
ln2 (W ) and π2(Jn ⊗ T ) ≤ π2(T ).

Proof. Our proof is modelled on the well known proof that the injective
tensor product of two p-summing operators is p-summing (see [6, Theorem

3.2], [10, Theorem 1.3.11, p. 51]). Let u =
∑k

j=1 ξj ⊗ zj ∈ ln1 ⊗ε Z. We have
shown in Proposition 1 that

‖(Jn ⊗ T )(u)‖2ln2 (W ) =
n∑
i=1

∥∥∥T( k∑
j=1

pi(Jn(ξj))zj

)∥∥∥2.
Since T is 2-summing, by Pietsch’s domination theorem (see [2, 3, 9, 11,
15, 16]), ‖T (z)‖2 ≤ [π2(T )]2

	
Ω |〈z, z

∗〉|2 dµ(z∗) for z ∈ Z and some Borel
probability measure µ on Ω = BZ∗ . We have

∥∥∥T( k∑
j=1

pi(Jn(ξj))zj

)∥∥∥2 ≤ [π2(T )]2
�

Ω

∣∣∣〈 k∑
j=1

pi(Jn(ξj))zj , z
∗
〉∣∣∣2dµ(z∗)

= [π2(T )]2
�

Ω

∣∣∣ k∑
j=1

pi(Jn(ξj))〈zj , z∗〉
∣∣∣2dµ(z∗).
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Since

n∑
i=1

∣∣∣ k∑
j=1

pi(Jn(ξj))〈zj , z∗〉
∣∣∣2 =

n∑
i=1

∣∣∣pi( k∑
j=1

〈zj , z∗〉Jn(ξj)
)∣∣∣2

=
∥∥∥ k∑
j=1

〈zj , z∗〉Jn(ξj)
∥∥∥2
ln2

=
∥∥∥Jn( k∑

j=1

〈zj , z∗〉ξj
)∥∥∥2

ln2

we have

‖(Jn ⊗ T )(u)‖2ln2 (W ) ≤ [π2(T )]2
�

Ω

∥∥∥Jn( k∑
j=1

〈zj , z∗〉ξj
)∥∥∥2

ln2

dµ(z∗).

Since Jn : ln1 ↪→ ln2 is 2-summing with π2(Jn) = 1, again by Pietsch’s domi-
nation theorem,

‖Jn(ξ)‖2ln2 ≤
�

Ψ

|〈ξ, y∗〉|2dν(y∗) for ξ ∈ ln1

and some Borel probability measure ν on Ψ = B(ln1 )
∗ . Then

∥∥∥Jn( k∑
j=1

〈zj , z∗〉ξj
)∥∥∥2

ln2

≤
�

Ψ

∣∣∣〈 k∑
j=1

〈zj , z∗〉ξj , y∗
〉∣∣∣2 dν(y∗)

=
�

Ψ

∣∣∣ k∑
j=1

〈ξj , y∗〉〈zj , z∗〉
∣∣∣2 dν(y∗) =

�

Ψ

|〈u, y∗ ⊗ z∗〉|2 dν(y∗)

and hence

(1) ‖(Jn ⊗ T )(u)‖2ln2 (W ) ≤ [π2(T )]2
�

Ω

�

Ψ

|〈u, y∗ ⊗ z∗〉|2dν(y∗)dµ(z∗).

Let (uk)1≤k≤m ⊂ ln1 ⊗ε Z. From (1) and Lemma 1 we deduce

(2)

m∑
k=1

‖(Jn ⊗ T )(uk)‖2ln2 (W ) ≤ [π2(T )]2 sup
‖x∗‖≤1,‖y∗‖≤1

( m∑
k=1

|〈uk, x∗ ⊗ y∗〉|2
)

= [π2(T )]2[w2((uk)
n
k=1; l

n
1 ⊗ε Z)]2.

By the density of ln1 ⊗ε Z in ln1 ⊗̂εZ, from (2) we deduce that for every
(uk)1≤k≤m ⊂ ln1 ⊗̂ε Z, we have( m∑

k=1

‖(Jn ⊗ T )(uk)‖2ln2 (W )

)1/2
≤ π2(T )w2((uk)

n
k=1; l

n
1 ⊗̂ε Z),

i.e. Jn ⊗ T is 2-summing and π2(Jn ⊗ T ) ≤ π2(T ).

Recall (see [3, p. 45], or [9, p. 234]) that if X is a Banach space, then
iX : X → C(BX∗) is the operator defined by iX(x)(x∗) = x∗(x).
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Theorem 2 (Gluskin–Kislyakov–Reinov). Let Tk : Xk → Yk be 2-
summing operators with π2(Tk) ≤ 1 for every k = 1, . . . , n and let MT :
ln1 ((Xk)

n
k=1)→ ln2 ((Yk)

n
k=1) be the multiplication operator

MT (x1, . . . , xn) = (T1(x1), . . . , Tn(xn)).

Then MT is 2-summing and π2(MT ) ≤ 1.

Proof. Let

Tk : Xk

iXk−−→ C(BX∗k )
Jk
↪→ L2(µk)

Ak−−→ Yk

be a Pietsch factorization of Tk with ‖Ak‖ = π2(Tk) (see [3, Corollary 2.16,
p. 48], [9, Proposition 17.3.7, p. 234]). Let Ω =

∏n
k=1BX∗k and µ =

∏n
k=1 µk.

We define S : ln1 ((Xk)
n
k=1)→ C(Ω) by

[S(x1, . . . , xn)](x∗1, . . . , x
∗
n) =

n∑
k=1

x∗k(xk)

and denote, as usual, by J : C(Ω) ↪→ L2(µ) the canonical inclusion, J(f)

=
̂̂
f . Let us define also Vk : L2(µ)→ Yk by

Vk(
̂̂
f) = Ak(f̂ ◦ σk),

where σk : BX∗k →
∏n
k=1BX∗k is the canonical injection. Here we denote

by
̂̂
f (resp. f̂ ◦ σk) the equivalence class of f (resp. f ◦ σk) in L2(µ) (resp.

L2(µk)). We will prove that T := J ◦S : ln1 ((Xk)
n
k=1)→ L2(µ) is 2-summing,

π2(T ) ≤ 1 and every Tk has the factorization

Tk : Xk
σk−→ ln1 ((Xk)

n
k=1)

S→ C(Ω)
J
↪→ L2(µ)

Vk−→ Yk.

First, let us show that S is bounded linear. Let x = (x1, . . . , xn) ∈
ln1 ((Xk)

n
k=1). Then, obviously,S(x) is a continuous function onΩ=

∏n
k=1BX∗k ,

i.e. S(x) ∈ C(Ω). For every (x∗1, . . . , x
∗
n) ∈ Ω we have

|S(x)(x∗1, . . . , x
∗
n)| ≤

n∑
k=1

|x∗k(xk)| ≤
n∑
k=1

‖xk‖ = ‖x‖ln1 ((Xk)
n
k=1)

,

i.e.

‖S(x)‖C(Ω) = sup
(x∗1,...,x

∗
n)∈Ω

|S(x)(x∗1, . . . , x
∗
n)| ≤ ‖x‖ln1 ((Xk)

n
k=1)

.

Since S is linear, it is bounded linear with ‖S‖ ≤ 1. By measure-theoretical
considerations (we omit the details), Vk are well defined, bounded linear
with ‖Vk‖ ≤ ‖Ak‖ for k = 1, . . . , n. Since the canonical inclusion J :
C(Ω) ↪→ L2(µ) is 2-summing with π2(J) = 1, it follows that T := J ◦ S :
ln1 ((Xk)

n
k=1)→ L2(µ) is 2-summing with π2(T ) ≤ 1.

Let us verify the factorization of every Tk.
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Let xk ∈ Xk and denote (S ◦ σk)(xk) =: fk ∈ C(Ω). Then

fk(x
∗
1, . . . , x

∗
n) = [S(0, . . . , 0, xk, 0, . . . , 0)](x∗1, . . . , x

∗
n) = x∗k(xk).

Also fk ◦ σk : BX∗k → K is defined by

(fk ◦ σk)(x∗k) = fk(0, . . . , 0, x
∗
k, 0, . . . , 0) = x∗k(xk) = iXk

(xk)(x
∗
k),

i.e. fk ◦ σk = iXk
(xk) ∈ C(BX∗k ). We have

(Vk ◦ J ◦ S ◦ σk)(xk) = Vk(J(fk)) = Vk(
̂̂
fk) = Ak(f̂k ◦ σk)

= Ak(Jk(fk ◦ σk)) since fk ◦ σk ∈ C(BX∗k )

= (Ak ◦ Jk)(iXk
(xk)) = (Ak ◦ Jk ◦ iXk

)(xk)

= Tk(xk),

the last equality holding by the Pietsch factorization of Tk.

Now since T : ln1 ((Xk)
n
k=1) =: Z → W := L2(µ) is 2-summing, Theo-

rem 1 implies that Jn ⊗ T : ln1 ⊗̂ε ln1 ((Xk)
n
k=1) → ln2 (L2(µ)) is 2-summing

and π2(Jn ⊗ T ) ≤ π2(T ) ≤ 1. We show that

MT : ln1 ((Xk)
n
k=1)

U→ ln1 ⊗̂ε ln1 ((Xk)
n
k=1)

Jn⊗T−−−→ ln2 (L2(µ))
MV−−→ ln2 ((Yk)

n
k=1)

is a factorization of MT , where

U(x) =

n∑
k=1

ek ⊗ σk(xk) for x = (x1, . . . , xn).

Indeed, for x = (x1, . . . , xn) ∈ ln1 ((Xk)
n
k=1) we have

((Jn ⊗ T ) ◦ U)(x1, . . . , xn) = (Jn ⊗ T )
( n∑
k=1

ek ⊗ σk(xk)
)

=

n∑
k=1

(Jn ⊗ T )(ek ⊗ σk(xk)) = (T (σ1(x1)), . . . , T (σn(xn)))

since for k = 1, . . . , n,

(Jn ⊗ T )(ek ⊗ σk(xk))
= (p1(ek)T (σk(xk)), . . . , pk(ek)T (σk(xk)), . . . , pn(ek)T (σk(xk)))

= (0, . . . , 0, T (σk(xk)), 0, . . . , 0).

Then, using the equality Vk ◦ T ◦ σk = Tk for k = 1, . . . , n, it follows that

(MV ◦ (Jn ⊗ T ) ◦ U)(x1, . . . , xn) = MV (T (σ1(x1)), . . . , T (σn(xn)))

= (V1(T (σ1(x1))), . . . , Vn(T (σn(xn))))

= (T1(x1), . . . , Tn(xn)) = MT (x1, . . . , xn).
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Moreover

‖MV ‖ ≤ sup
1≤k≤n

‖Vk‖ ≤ sup
1≤k≤n

‖Ak‖ = sup
1≤k≤n

π2(Tk) ≤ 1.

Let us show that U is bounded linear. Let x = (x1, . . . , xn) ∈ ln1 ((Xk)
n
k=1).

Let x∗ = (λ1, . . . , λn) ∈ (ln1 )∗ = ln∞ and ψ ∈ (ln1 ((Xk)
n
k=1))

∗. Then

|〈U(x), x∗ ⊗ ψ〉| =
∣∣∣ n∑
k=1

x∗(ek)ψ(σk(xk))
∣∣∣

≤
n∑
k=1

|λk| |ψ(σk(xk))| ≤ ‖x∗‖
n∑
k=1

‖ψ‖ ‖σk(xk)‖

≤ ‖x∗‖ ‖ψ‖
n∑
k=1

‖xk‖ = ‖x∗‖ ‖ψ‖ ‖x‖.

We deduce ε(U(x)) ≤ ‖x‖ and since U is linear, it is bounded linear with
‖U‖ ≤ 1. By the ideal property, MT is 2-summing and π2(MT ) ≤
‖MV ‖π2(Jn ⊗ T )‖U‖ ≤ π2(T ) ≤ 1.

Theorem 3. Let MV : l1(X ) → l2(Y). The following assertions are
equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l∞.

Moreover, π2(MV) = supn∈N π2(Vn).

Proof. (i)⇒(ii). Note that Vn : Xn
σn−→ l1(X )

MV−−→ l2(Y)
pn−→ Yn is

a factorization of Vn. From the ideal property, all Vn are 2-summing and
π2(Vn) ≤ π2(MV) for n ∈ N, which yields (ii).

(ii)⇒(i). Write L = supn∈N π2(Vn). If L = 0, then all Vn are 0, and MV =
0, π2(MV) = 0. Suppose L > 0. Let n ∈ N and for k = 1, . . . , n consider
Tk : Xk → Yk defined by Tk = Vk/L. Note that Tk is 2-summing with
π2(Tk) ≤ 1 for every k = 1, . . . , n. Then, by Theorem 2, the multiplication
operator

M(T1,...,Tn) : ln1 ((Xk)
n
k=1)→ ln2 ((Yk)

n
k=1),

(x1, . . . , xn) 7→ (T1(x1), . . . , Tn(xn)),

is 2-summing and π2(M(T1,...,Tn)) ≤ 1.

Consider the diagram

l1(X )
An−−→ ln1 ((Xk)

n
k=1)

M(T1,...,Tn)−−−−−−−→ ln2 ((Yk)
n
k=1)

Bn−−→ l2(Y),

where An(x1, . . . , xn, . . .) = (x1, . . . , xn), Bn(y1, . . . , yn) = (y1, . . . , yn, 0, . . .).
Then Sn := Bn ◦M(T1,...,Tn) ◦ An : l1(X )→ l2(Y) with Sn(x1, . . . , xn, . . .) =
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(T1(x1), . . . , Tn(xn), 0, . . .) is 2-summing and

π2(Sn) ≤ π2(M(T1,...,Tn))‖Bn‖ ‖An‖ ≤ 1.

Since Sn(x) → 1
LMV(x) for x ∈ l1(X ), from [2, Proposition 17.21, p. 220],

1
LMV is 2-summing and π2

(
1
LMV

)
≤ 1, i.e. MV is 2-summing and π2(MV)

≤ L.

The next result is a completion of Proposition 2.4 in [8] and will be
another important ingredient in the proofs.

Lemma 2. Let V : X → Y be a bounded linear operator. The following
assertions are equivalent:

(i) V is 2-summing.
(ii) For each Banach space Z and each 2-summing operator U : Z → X,

V ◦ U is integral.
(iii) For each Banach space Z and each 2-summing operator U : Z → X,

V ◦ U is nuclear.

Moreover,

sup
π2(U)≤1

‖V ◦ U‖int = sup
π2(U)≤1

‖V ◦ U‖nuc = π2(V ).

Proof. (i)⇒(iii). From Grothendieck’s theorem, V ◦ U is nuclear and
‖V ◦ U‖nuc ≤ π2(V )π2(U). Then

(1) sup
π2(U)≤1

‖V ◦ U‖nuc ≤ π2(V ).

(iii)⇒(ii). This follows from the well known result that each nuclear
operator is integral and ‖ · ‖int ≤ ‖ · ‖nuc (see [9, Proposition 6.7.3, p. 101]).
Hence

(2) sup
π2(U)≤1

‖V ◦ U‖int ≤ sup
π2(U)≤1

‖V ◦ U‖nuc.

(ii)⇔(i). This was shown in [8, Proposition 2.4] together with the equal-
ity

(3) sup
π2(U)≤1

‖V ◦ U‖int = π2(V ).

The equality from the statement follows from (1)–(3).

Theorem 4. Let MV : l2(X ) → l1(Y). The following assertions are
equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l1.

Moreover, π2(MV) =
∑∞

n=1 π2(Vn).
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Proof. (i)⇒(ii). Let Z = (Zn)n∈N be a sequence of Banach spaces, let
Un : Zn → Xn be 2-summing with π2(Un) ≤ 1 for all n ∈ N, and de-
note U = (Un)n∈N. From the nontrivial part of Theorem 3, MU : l1(Z) →
l2(X ) is 2-summing and π2(MU ) ≤ 1. By Grothendieck’s composition the-
orem, MV◦U = MV ◦ MU : l1(Z) → l1(Y) is nuclear and ‖MV◦U‖nuc ≤
π2(MV)π2(MU ) ≤ π2(MV).

But it is well known (see [9, Proposition 5.5.1, pp. 236–237] for the scalar
case, or [12, Theorem 2] for the vector case) that if T : Z → l1(Y), T (x) =
(Tn(x))n∈N, and T is nuclear, then all Tn are nuclear and

∑∞
n=1 ‖Tn‖nuc =

‖T‖nuc. In our situation,
∑∞

n=1 ‖Vn ◦ Un‖nuc = ‖MV◦U‖nuc, and therefore∑∞
n=1 ‖Vn ◦ Un‖nuc ≤ π2(MV), i.e.

(1)

n∑
i=1

‖Vi ◦ Ui‖nuc ≤ π2(MV) for n ∈ N.

By Lemma 2, all Vn are 2-summing and supπ2(Un)≤1 ‖Vn ◦ Un‖nuc = π2(Vn)
for every n ∈ N. Taking in (1) the supremum, first over π2(U1) ≤ 1, then
over π2(U2) ≤ 1, . . . , π2(Un) ≤ 1, we get

∑n
i=1 π2(Vi) ≤ π2(MV) for n ∈ N,

i.e.
∑∞

n=1 π2(Vn) ≤ π2(MV).

(ii)⇒(i) follows from a general result of [9, Theorem 6.2.3, p. 91].

Another proof of (ii)⇒(i) is the following. Write an =
√
π2(Vn) and note

that, by hypothesis, a = (an)n∈N ∈ l2, thus MaJ : l2(Y)→ l1(Y) is bounded
linear. Define

T : l2(X )→ l2(Y), T (x) =

(
1

an
Vn(x)

)
n∈N

,

(we use 0/0 = 0). By simple calculations, MV has the factorization MV :

l2(X )
T→ l2(Y)

MaJ−−−→ l1(Y). Since all Vn are 2-summing and by hypothesis

∞∑
n=1

[
π2

(
1

an
Vn

)]2
=

∞∑
n=1

π2(Vn) <∞,

from Nahoum’s theorem (see [7, Lemme, p. 5], [16, Lemma 23, p. 274]), T is
2-summing and π2(T ) ≤

√∑∞
n=1 π2(Vn). By the ideal property of the class

of 2-summing operators, MV = MaJ ◦ T is 2-summing.

The next result was shown in [13, Corollary 4]. We give a different proof.

Theorem 5. Let MV : l2(X ) → l2(Y). The following assertions are
equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l2.

Moreover, [π2(MV)]2 =
∑∞

n=1[π2(Vn)]2.
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Proof. (i)⇒(ii). Let Z = (Zn)n∈N be a sequence of Banach spaces. Let
Un : Zn → Xn be 2-summing with π2(Un) ≤ 1 for all n ∈ N and set
U = (Un)n∈N. From the nontrivial part of Theorem 3, MU : l1(Z) → l2(X )
is 2-summing and π2(MU ) ≤ 1. Let a = (an)n∈N ∈ l2. Then MaJ : l2(Y)→
l1(Y) is bounded linear and ‖MaJ ‖ = ‖a‖2. By Grothendieck’s composition
theorem,

MaV◦U = MaJ ◦MV ◦MU : l1(Z)→ l1(Y)

is nuclear and

‖MaV◦U‖nuc ≤ π2(MV)π2(MU )‖MaJ ‖ ≤ π2(MV)‖a‖2.

Again, from [9, Proposition 5.5.1, pp. 236–237], or [12, Theorem 2],

∞∑
n=1

‖anVn ◦ Un‖nuc = ‖MaV◦U‖nuc,

thus
∞∑
n=1

‖anVn ◦ Un‖nuc ≤ π2(MV)‖a‖2,

i.e.

(1)
n∑
i=1

‖aiVi ◦ Ui‖nuc ≤ π2(MV)‖a‖2 for n ∈ N.

By Lemma 2, each Vn is 2-summing and supπ2(Un)≤1 ‖Vn ◦ Un‖nuc = π2(Vn)
for all n ∈ N. Taking in (1) the supremum, first over π2(U1) ≤ 1, then
over π2(U2) ≤ 1, . . . , π2(Un) ≤ 1, we get

∑n
i=1 |ai|π2(Vi) ≤ π2(MV)‖a‖2 for

n ∈ N, i.e.
∞∑
n=1

|an|π2(Vn) ≤ π2(MV)‖a‖2.

We deduce that
∑∞

n=1[π2(Vn)]2 <∞ and( ∞∑
n=1

[π2(Vn)]2
)1/2

= sup
‖a‖2≤1

∞∑
n=1

|an|π2(Vn) ≤ π2(MV).

(ii)⇒(i). This follows from Nahoum’s theorem.

Theorem 6. Let MV : l1(X ) → l1(Y). The following assertions are
equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l2.

Moreover, [π2(MV)]2 =
∑∞

n=1[π2(Vn)]2.
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Proof. (i)⇒(ii). Let a = (an)n∈N ∈ l2. Then by (i), MaV = MV ◦MaJ :
l2(X ) → l1(Y) is 2-summing and π2(MaV) ≤ π2(MV)‖a‖2. From the non-
trivial part of Theorem 4, all anVn are 2-summing and

∑∞
n=1 π2(anVn) =

π2(MaV). Then
∞∑
n=1

π2(anVn) ≤ π2(MV)‖a‖2.

Thus all Vn are 2-summing (take a = en, n ∈ N) and for each a = (an)n∈N
∈ l2,

∞∑
n=1

|an|π2(Vn) ≤ π2(MV)‖a‖2.

Then, as is well known,
∑∞

n=1[π2(Vn)]2 <∞ and( ∞∑
n=1

[π2(Vn)]2
)1/2

= sup
‖a‖2≤1

∞∑
n=1

|an|π2(Vn) ≤ π2(MV).

(ii)⇒(i). Let us define a = (π2(Vn))n∈N ∈ l2 and observe that MV has
the factorization

MV : l1(X )
MsgnV−−−−→ l2(Y)

MaJ−−−→ l1(Y).

Note that by (ii) and the nontrivial part of Theorem 3, MsgnV is 2-summing
and π2(MsgnV) ≤ 1. Also by (ii), MaJ is a bounded linear operator with
‖MaJ ‖ = ‖a‖2. Thus MV is 2-summing and π2(MV) ≤ ‖a‖2, proving (i).

The case (p, 1)

Theorem 7. Let 1 < p < 2 and MV : lp(X ) → l1(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ ls, where 1/s = 1/p∗+1/2.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]s)1/s.

Proof. (i)⇒(ii). Let a = (an)n∈N ∈ ls∗ . From 1/p = 1/2 + 1/s∗, MaJ :
l2(X )→ lp(X ) is bounded linear and so, by (i), MaV = MV ◦MaJ : l2(X )→
l1(Y) is 2-summing and π2(MaV) ≤ π2(MV)‖a‖s∗ . From the nontrivial part
of Theorem 4, all anVn are 2-summing and

∑∞
n=1 π2(anVn) = π2(MaV). Thus

all Vn are 2-summing and for each a = (an)n∈N ∈ ls∗ ,
∞∑
n=1

|an|π2(Vn) ≤ π2(MV)‖a‖s∗ .

As is well known, it follows that
∑∞

n=1[π2(Vn)]s <∞ and( ∞∑
n=1

[π2(Vn)]s
)1/s

= sup
‖a‖s∗≤1

∞∑
n=1

|an|π2(Vn) ≤ π2(MV).
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(ii)⇒(i). Define a = (π2(Vn))n∈N ∈ ls. From the equality 1/s = 1/p∗ +
1/2, we get the factorization

MV : lp(X )
McJ−−−→ l1(X )

MsgnV−−−−→ l2(Y)
MbJ−−−→ l1(Y)

where cn = [π2(Vn)]s/p
∗
, bn = [π2(Vn)]s/2; note that bc(sgnV) = V. By (ii)

and the nontrivial part of Theorem 3, MsgnV is 2-summing, π2(MsgnV) ≤ 1,
and by (ii), MbJ is bounded linear with ‖MbJ ‖ = ‖b‖2, and McJ is bounded
linear with ‖McJ ‖ = ‖c‖p∗ . Thus MV is 2-summing, π2(MV) ≤ ‖b‖2‖c‖p∗ =
‖a‖s, proving (i).

Theorem 8. Let 2 < p < ∞ and MV : lp(X ) → l1(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l1.

Moreover, π2(MV) =
∑∞

n=1 π2(Vn).

Proof. (i)⇒(ii). From p > 2, J : l2(X ) ↪→ lp(X ) and since MV is
2-summing, MV ◦ J : l2(X ) → l1(Y) is 2-summing with π2(MV ◦ J) ≤
π2(MV). By the nontrivial part of Theorem 4 we get (ii) and

∑∞
n=1 π2(Vn) =

π2(MV ◦ J).
(ii)⇒(i). By (ii) and [9, Theorem 6.2.3, p. 91], MV is 2-summing and

π2(MV) ≤
∑∞

n=1 π2(Vn).

The next result requires some natural cotype 2 assumptions.

Theorem 9. Let 2 < p <∞ and MV : lp(X )→ l1(Y).

(a) Suppose that all Xn have cotype 2 with C2(X ) := supn∈NC2(Xn)
<∞ and let 1 ≤ s ≤ 2. The following assertions are equivalent:

(i) MV is s-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l1.
(iii) MV is 1-summing.

(b) Suppose that all Xn, Yn have cotype 2 with C2(X ) := supn∈NC2(Xn)
< ∞, C2(Y) := supn∈NC2(Yn) < ∞, and let 1 ≤ s < ∞. The
following assertions are equivalent:

(i) MV is s-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l1.
(iii) MV is 1-summing.

Proof. (a) (i)⇒(ii). Since 1 ≤ s ≤ 2, by (i), MV : lp(X ) → l1(Y) is
2-summing. From Theorem 8 we get (ii).

(ii)⇒(iii). Since Xn has cotype 2, Π1(Xn, ·) = Π2(Xn, ·) and there exists
a universal constant c > 0 such that

π2(·) ≤ π1(·) ≤ cC2(Xn)
√

1 + logC2(Xn)π2(·)
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(see [15, Corollary 10.18(i), p. 71]). Then, by hypothesis,

π2(·) ≤ π1(·) ≤ cC2(X )
√

1 + logC2(X )π2(·).
Since by (ii), (π2(Vn))n∈N ∈ l1, we deduce (π1(Vn))n∈N ∈ l1 and by [9,
Theorem 6.2.3, p. 91], MV is 1-summing.

(iii)⇒(i) is well known.

(b) (i)⇒(ii). From p > 2, J : l2(X ) ↪→ lp(X ), and because MV is s-
summing, MV ◦ J : l2(X ) → l1(Y) is s-summing. Since, by hypothesis,
supn∈NC2(Xn) < ∞ and supn∈NC2(Yn) < ∞, it follows that l2(X ) and
l1(Y) both have cotype 2 (see [16, Exercise 18, p. 109]). Then, by the coin-
cidence theorem (see [3, Corollary 11.16, p. 224]), MV ◦ J : l2(X ) → l1(Y)
is 2-summing and thus by the nontrivial part of Theorem 4 we get (ii).

The implication (ii)⇒(iii) was shown in (a), and (iii)⇒(i) is well known.

The case (p, 2)

Theorem 10. Let 1 < p < 2 and MV : lp(X ) → l2(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ lp∗.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]p
∗
)1/p

∗
.

Proof. (i)⇒(ii). Define r by 1/p = 1/2 + 1/r. For a = (an)n∈N ∈ l2,
MaJ : l2(Y) → l1(Y) is bounded linear and, by (i), MaV = MaJ ◦MV :
lp(X )→ l1(Y) is 2-summing and π2(MaV) ≤ π2(MV)‖a‖2. From Theorem 7,
all anVn are 2-summing, (π2(anVn))n∈N ∈ lr∗ and

π2(MaV) =
( ∞∑
n=1

[π2(anVn)]r
∗
)1/r∗

.

It follows that all Vn are 2-summing and for each a = (an)n∈N ∈ l2 we have( ∞∑
n=1

|an|r
∗
[π2(Vn)]r

∗
)1/r∗

≤ π2(MV)‖a‖2.

Since 1/r∗ = 1/2 + 1/p∗, we deduce (π2(Vn))n∈N ∈ lp∗ and( ∞∑
n=1

[π2(Vn)]p
∗
)1/p∗

= sup
‖a‖2≤1

( ∞∑
n=1

|an|r
∗
[π2(Vn)]r

∗
)1/r∗

≤ π2(MV),

proving (i).

(ii)⇒(i). We consider a = (π2(Vn))n∈N ∈ lp∗ and we note that MV has

the factorization MV : lp(X )
MaJ−−−→ l1(X )

MsgnV−−−−→ l2(Y). From (ii) and the
nontrivial part of Theorem 3 we get (i).
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Theorem 11. Let 2 < p < ∞ and MV : lp(X ) → l2(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l2.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]2)1/2.

Proof. (i)⇒(ii). Since p > 2, l2(X ) ↪→ lp(X ) and by (i), MV : l2(X ) →
l2(Y) is 2-summing. By the nontrivial part of Theorem 5 we get (ii).

(ii)⇒(i) follows from Nahoum’s theorem.

The case (2, p)

Theorem 12. Let 1 < p < 2 and MV : l2(X ) → lp(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ lp.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]p)1/p.

Proof. (i)⇒(ii). Let a = (an)n∈N ∈ lp∗ . Since MV is 2-summing, MaV =
MaJ ◦MV : l2(X )→ l1(Y) is 2-summing and π2(MaV) ≤ π2(MV)‖a‖p∗ . From
the nontrivial part of Theorem 4, all anVn are 2-summing, and

∑∞
n=1 π2(anVn)

= π2(MaV). Thus all Vn are 2-summing and for each a = (an)n∈N ∈ lp∗ ,
∞∑
n=1

|an|π2(Vn) ≤ π2(MV)‖a‖p∗ .

As is well known, (π2(Vn))n∈N ∈ lp and( ∞∑
n=1

[π2(Vn)]p
)1/p

= sup
‖a‖p∗≤1

∞∑
n=1

|an|π2(Vn) ≤ π2(MV).

(ii)⇒(i). We consider a = (π2(Vn))n∈N ∈ lp and define r by 1/p =
1/2+1/r. Set bn = [π2(Vn)]p/2, cn = [π2(Vn)]p/r. Then b = (bn)n∈N ∈ l2, c =
(cn)n∈N ∈ lr and since bc(sgnV) = V we find that MV has the factorization

MV : l2(X )
Mb sgnV−−−−−→ l2(Y)

McJ−−−→ lp(Y).

By (ii) and Nahoum’s theorem, Mb sgnV is 2-summing, π2(Mb sgnV) ≤ ‖b‖2,
and by (ii), McJ is bounded linear with ‖McJ ‖ = ‖c‖r. Thus MV is 2-
summing and π2(MV) ≤ ‖b‖2‖c‖r = ‖a‖p, proving (i).

Theorem 13. Let 2 < p < ∞ and MV : l2(X ) → lp(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l2.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]2)1/2.
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Proof. (i)⇒(ii). Since MV is 2-summing, from Theorem 3 in [13], all
MV ◦ σn are 2-summing, and

∞∑
n=1

[π2(MV ◦ σn)]2 <∞ and
∞∑
n=1

[π2(MV ◦ σn)]2 ≤ [π2(MV)]2.

Since MV ◦ σn = σn ◦ Vn we deduce that all Vn are 2-summing, (π2(Vn))n∈N
∈ l2 and (

∑∞
n=1[π2(Vn)]2)1/2 ≤ π2(MV).

(ii)⇒(i). From (ii) and Nahoum’s theorem, MV : l2(X ) → l2(Y) is 2-
summing with π2(MV) ≤ (

∑∞
n=1[π2(Vn)]2)1/2 and thus MV : l2(X )→ lp(Y)

is 2-summing since l2(Y) ↪→ lp(Y), p ≥ 2.

The case (1, p)

Theorem 14. Let 1 < p < 2 and MV : l1(X ) → lp(Y). The following
assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ lr, where 1/p = 1/2 + 1/r.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]r)1/r.

Proof. (i)⇒(ii). Let b = (bn)n∈N ∈ l2. Then MbJ : l2(X ) → l1(X ) is
bounded linear, thus by (i), MbV = MV ◦MbJ : l2(X )→ lp(Y) is 2-summing
and π2(MbV) ≤ π2(MV)‖b‖2. From the nontrivial part of Theorem 12, all
bnVn are 2-summing, (π2(bnVn))n∈N ∈ lp and( ∞∑

n=1

[π2(bnVn)]p
)1/p

= π2(MbV).

Then all Vn are 2-summing and( ∞∑
n=1

|bn|p[π2(Vn)]p
)1/p

≤ π2(MV)‖b‖2.

As is well known, this implies that (π2(Vn))n∈N ∈ lr and( ∞∑
n=1

[π2(Vn)]r
)1/r

= sup
‖b‖2≤1

( ∞∑
n=1

|bn|p[π2(Vn)]p
)1/p

≤ π2(MV).

(ii)⇒(i). We consider a = (π2(Vn))n∈N ∈ lr and we note that

MV : l1(X )
MsgnV−−−−→ l2(Y)

MaJ−−−→ lp(Y)

is a factorization of MV . From (ii) and the nontrivial part of Theorem 3,
MsgnV is 2-summing, π2(MsgnV) ≤ 1 and thus MV : l1(X ) → lp(Y) is
2-summing with π2(MV) ≤ ‖a‖r, i.e. (i) holds.

Theorem 15. Let 2 ≤ p < ∞ and MV : l1(X ) → lp(Y). The following
assertions are equivalent:
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(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ l∞.

Moreover, π2(MV) = supn∈N π2(Vn).

Proof. (i)⇒(ii). Note that Vn : Xn
σn−→ l1(X )

MV−−→ lp(Y)
pn−→ Yn is

a factorization of Vn. From the ideal property, all Vn are 2-summing and
π2(Vn) ≤ π2(MV) for n ∈ N, i.e. (ii) holds.

(ii)⇒(i). From (ii) and the nontrivial part of Theorem 3, MV : l1(X )→
l2(Y) is 2-summing with supn∈N π2(Vn) ≤ π2(MV), and since J : l2(Y) ↪→
lp(Y) (2 ≤ p <∞), MV : l1(X )→ lp(Y) is 2-summing with supn∈N π2(Vn) ≤
π2(MV).

The case (p, q), 1 < p < 2 and 1 < q <∞. The next case is analogous
to the case shown by L. Schwartz in [14, Théorème XXVI, 3.5, p. 15]; see
also [4, Theorem 1(iii)].

Theorem 16. Let 1 < p < 2, 1 < q < 2 and MV : lp(X ) → lq(Y). The
following assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ ls, where 1/s = 1/q−1/p+

1/2.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]s)1/s.

Proof. (i)⇒(ii). Define r by 1/p = 1/2 + 1/r and note that 2 < r <∞.
Let a = (an)n∈N ∈ lr. Since MV is 2-summing, MaV = MV ◦MaJ : l2(X )→
lq(Y) is 2-summing and π2(MaV) ≤ π2(MV)‖a‖r. From the nontrivial part
of Theorem 12, all anVn are 2-summing, and( ∞∑

n=1

[π2(anVn)]q
)1/q

= π2(MaV) ≤ π2(MV)‖a‖r.

Thus Vn are 2-summing and for each a = (an)n∈N ∈ lr,( ∞∑
n=1

|an|q[π2(Vn)]q
)1/q

≤ π2(MV)‖a‖r.

Since q < 2 < r, as is well known, (π2(Vn))n∈N ∈ ls and( ∞∑
n=1

[π2(Vn)]s
)1/s

= sup
‖a‖r≤1

( ∞∑
n=1

|an|q[π2(Vn)]q
)1/q

≤ π2(MV),

where 1/s = 1/q − 1/r, i.e. 1/s = 1/q − 1/p+ 1/2.

(ii)⇒(i). We write a = (π2(Vn))n∈N ∈ ls. Since 1/s = 1/q + 1/p∗ − 1/2,
define 1/v = 1/q − 1/2 and note that 1/s = 1/p∗ + 1/v. Now define bn =
[π2(Vn)]s/p

∗
, cn = [π2(Vn)]s/v. Then b = (bn)n∈N ∈ lp∗ , c = (cn)n∈N ∈ lv,
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1/q = 1/2 + 1/v and since bc(sgnV) = V, we get the factorization

MV : lp(X )
MbJ−−−→ l1(X )

MsgnV−−−−→ l2(Y)
McJ−−−→ lq(Y).

By (ii) and the nontrivial part of Theorem 3, MsgnV is 2-summing with
π2(MsgnV) ≤ 1, and by (ii), MbJ is bounded linear with ‖MbJ ‖ = ‖b‖p∗ ,
while McJ is bounded linear with ‖McJ ‖ = ‖c‖v. Thus MV is 2-summing
and π2(MV) ≤ ‖b‖p∗‖c‖v = ‖a‖u, i.e. (i) holds.

Theorem 17. Let 1 < p < 2 ≤ q < ∞ and MV : lp(X ) → lq(Y). The
following assertions are equivalent:

(i) MV is 2-summing.
(ii) All Vn are 2-summing and (π2(Vn))n∈N ∈ lp∗.

Moreover, π2(MV) = (
∑∞

n=1[π2(Vn)]p
∗
)1/p

∗
.

Proof. (i)⇒(ii). Define r by 1/p = 1/2 + 1/r and note that 2 < r <∞.
Let a = (an)n∈N ∈ lr. Since MV is 2-summing, MaV = MV ◦MaJ : l2(X )→
lq(Y) is 2-summing and π2(MaV) ≤ π2(MV)‖a‖r. From the nontrivial part
of Theorem 13, all anVn are 2-summing and( ∞∑

n=1

[π2(anVn)]2
)1/2

≤ π2(MV)‖a‖r.

Thus Vn are 2-summing and for each a = (an)n∈N ∈ lr,( ∞∑
n=1

|an|2[π2(Vn)]2
)1/2

≤ π2(MV)‖a‖r.

Then, since 1/2 = 1/r + 1/p∗, we deduce (π2(Vn))n∈N ∈ lp∗ and( ∞∑
n=1

[π2(Vn)]p
∗
)1/p∗

= sup
‖a‖r≤1

( ∞∑
n=1

|an|2[π2(Vn)]2
)1/2

≤ π2(MV).

(ii)⇒(i). Write a = (π2(Vn))n∈N ∈ lp∗ . Then MV has the factorization

MV : lp(X )
MaJ−−−→ l1(X )

MsgnV−−−−→ l2(Y) ↪→ lq(Y).

By (ii) and the nontrivial part of Theorem 3, MsgnV is 2-summing with
π2(MsgnV) ≤ 1, and by (ii), MaJ is bounded linear with ‖MaJ ‖ = ‖a‖p∗ .
Thus MV is 2-summing and π2(MV) ≤ ‖a‖p∗ , i.e. (i) holds.
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[8] D. Pérez-Garćıa and I. Villanueva, A composition theorem for multiple summing
operators, Monatsh. Math. 146 (2005), 257–261.

[9] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978, and North-Hol-
land, 1980.

[10] A. Pietsch, Eigenvalues and s-Numbers, Geest & Portig, Leipzig, 1987.
[11] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, Reg.

Conf. Ser. Math. 60, Amer. Math. Soc., 1986.
[12] D. Popa, Nuclear multilinear operators with respect to a partition, Rend. Circ. Mat.

Palermo 61 (2012), 307–319.
[13] D. Popa, 2-summing operators on l2(X ), Bull. London Math. Soc., submitted.
[14] L. Schwartz, Les applications 0-radonifiantes dans les espaces de suites, in: Séminaire
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