New spectral multiplicities for ergodic actions

by
Anton V. Solomko (Kharkov)

Abstract

Let G be a locally compact second countable Abelian group. Given a measure preserving action T of G on a standard probability space (X, μ), let $\mathcal{M}(T)$ denote the set of essential values of the spectral multiplicity function of the Koopman representation U_{T} of G defined in $L^{2}(X, \mu) \ominus \mathbb{C}$ by $U_{T}(g) f:=f \circ T_{-g}$. If G is either a discrete countable Abelian group or $\mathbb{R}^{n}, n \geq 1$, it is shown that the sets of the form $\{p, q, p q\}$, $\{p, q, r, p q, p r, q r, p q r\}$ etc. or any multiplicative (and additive) subsemigroup of \mathbb{N} are realizable as $\mathcal{M}(T)$ for a weakly mixing G-action T.

0. Introduction. Let G be a locally compact second countable Abelian group and let $T=\left(T_{g}\right)_{g \in G}$ be a measure preserving action of G on a standard probability space (X, \mathfrak{B}, μ). Denote by U_{T} the induced Koopman unitary representation of G in $L_{0}^{2}(X, \mu):=L^{2}(X, \mu) \ominus \mathbb{C}$ given by

$$
U_{T}(g) f:=f \circ T_{-g} .
$$

By the spectral theorem, there is a probability measure σ on the dual group \widehat{G} called a measure of maximal spectral type of U_{T} and a measurable field of Hilbert spaces $\widehat{G} \ni \omega \mapsto \mathcal{H}_{\omega}$ such that

$$
L_{0}^{2}(X, \mu)=\int_{\widehat{G}}^{\oplus} \mathcal{H}_{\omega} d \sigma(\omega) \quad \text { and } \quad U_{T}(g)=\int_{\widehat{G}}^{\oplus} \omega(g) I_{\omega} d \sigma(\omega), \quad g \in G
$$

where I_{ω} is the identity operator on \mathcal{H}_{ω} Nai]. The map $m_{T}: \widehat{G} \ni \omega \mapsto$ $\operatorname{dim} \mathcal{H}_{\omega} \in \mathbb{N} \cup\{\infty\}$ is called the spectral multiplicity function of U_{T}. Let $\mathcal{M}(T)$ stand for the set of essential values of m_{T}. We are interested in the following spectral multiplicity problem:
$(\mathbf{P r})$ Which subsets $E \subset \mathbb{N}$ are realizable as $\mathcal{M}(T)$ for an ergodic (or weakly mixing) G-action T ?
This problem was studied by a number of authors (see the recent survey [Da1] and the references therein) mainly in the case $G=\mathbb{Z}$. It is known, in

[^0]particular, that a subset $E \subset \mathbb{N}$ is realizable in each of the following cases:

- $1 \in E(\boxed{\mathrm{KwL}}$ for $G=\mathbb{Z}, \mathrm{DL}$ for $G=\mathbb{R})$,
- $2 \in E($ KaL for $G=\mathbb{Z}, \mathrm{DL}$ for $G=\mathbb{R})$,
- $E=\{p\}$ for arbitrary $p \in \mathbb{N}([\mathrm{Ag}], \mathrm{Ry}]$, Da2] for $G=\mathbb{Z}$, DS for \mathbb{R}^{n} and an arbitrary discrete countable Abelian group),
- $E=n \cdot F$ for arbitrary $F \ni 1$ and $n>1([\boxed{\mathrm{Da} 2}]$ for $G=\mathbb{Z})$.

Our aim is to obtain some new spectral multiplicities that first appeared in Ry for $G=\mathbb{Z}$. Given $E, F \subset \mathbb{N}$, let $E \diamond F:=E \cup F \cup E F\left({ }^{1}\right)$ In this notation, $\{p\} \diamond\{q\}=\{p, q, p q\},\{p\} \diamond\{q\} \diamond\{r\}=\{p, q, r, p q, p r, q r, p q r\}$ etc.

TheOrem 0.1. Let G be either a discrete countable Abelian group or \mathbb{R}^{m} with $m \geq 1$. Given a (finite or infinite) sequence of positive integers p_{1}, p_{2}, \ldots, there exists a weakly mixing probability measure preserving G action T such that $\mathcal{M}(T)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\} \diamond \cdots$.

Since any multiplicative subsemigroup of \mathbb{N} can be represented in the form $\left\{p_{1}\right\} \diamond\left\{p_{2}\right\} \diamond \cdots$, we obtain the following

Corollary 0.2. Any multiplicative (and hence any additive) subsemigroup E of \mathbb{N} is realizable as $\mathcal{M}(T)$ for a weakly mixing G-action T.

To prove Theorem 0.1 we adapt the idea from Ry. The required action is the product $T_{1} \times T_{2} \times \cdots$, where T_{i} is a weakly mixing G-action with homogeneous spectrum of multiplicity p_{i}. The existence of such actions was proved in DS via a 'generic' argument originating in Ag . To 'control' the spectral multiplicities of Cartesian products of such actions we furnish T_{i} with certain asymptotical operator properties using both 'generic' arguments and the (C, F)-technique.

In Section 1 we list some basic definitions and facts that will be used to prove the main theorem. Subsection 1.1 contains the detailed proofs of some results on spectral multiplicities for unitary representations. In Subsection 1.3 we briefly outline the (C, F)-construction of measure preserving actions which is an algebraic counterpart of the classical geometric 'cutting-and-stacking' technique, and in 1.4 we recall the definition and some basic properties of the Poisson suspension, which allows us to obtain finite measure preserving actions from infinite measure preserving ones. Both techniques are used to explicitly construct rigid actions in Lemmata 2.3 and 3.2. In Section 2 we prove Theorem 0.1 in the case of $G=\mathbb{R}^{m}$. In general, the proof goes along the lines developed in $[\mathrm{Ry} \mid$. To prove Theorem 0.1 for an arbitrary discrete countable Abelian group we need some modification of this scheme. This is done in Section 3. Though both proofs can be given in the spirit of

[^1]Section 3, the constraints in Section 3 seem to be artificial and this is the main reason why we consider separately the two cases for G.

1. Preliminaries

1.1. Unitary representations. Denote by $\mathcal{U}(\mathcal{H})$ the group of unitary operators on a separable Hilbert space \mathcal{H}. We endow $\mathcal{U}(\mathcal{H})$ with the (Polish) strong operator topology (which on $\mathcal{U}(\mathcal{H})$ is also the weak operator topology). Given a locally compact second countable group Γ, we furnish the product space $\mathcal{U}(\mathcal{H})^{\Gamma}$ with the (Polish) topology of uniform convergence on compact subsets in Γ. Denote by $\mathcal{U}_{\Gamma}(\mathcal{H}) \subset \mathcal{U}(\mathcal{H})^{\Gamma}$ the subset of all unitary representations of Γ in \mathcal{H}. Obviously, $\mathcal{U}_{\Gamma}(\mathcal{H})$ is closed in $\mathcal{U}(\mathcal{H})^{\Gamma}$ and hence Polish in the induced topology. Let $\mathcal{B}(\mathcal{H})$ stand for the set of all bounded linear operators on \mathcal{H} endowed with the weak operator topology. By a unitary polynomial on Γ we mean a mapping $P: \mathcal{U}_{\Gamma}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ of the form

$$
P(U)=\alpha_{1} U\left(g_{1}\right)+\cdots+\alpha_{n} U\left(g_{n}\right), \quad \alpha_{i} \in \mathbb{C}, g_{i} \in \Gamma, U \in \mathcal{U}_{\Gamma}(\mathcal{H})
$$

We now list some lemmata that will be needed when proving the main theorem.

LEmma 1.1. Given a unitary polynomial $P: \mathcal{U}_{\Gamma}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ and a sequence $\left(g_{n}\right)_{n=1}^{\infty}$ in Γ, the set

$$
\mathcal{P}:=\left\{U \in U_{\Gamma}(\mathcal{H}) \mid P(U) \text { is a limit point of }\left\{U\left(g_{n}\right)\right\}_{n \in \mathbb{N}}\right\}
$$

is a G_{δ} subset in $U_{\Gamma}(\mathcal{H})$.
Proof. Let d stand for a metric compatible with the weak topology on $\mathcal{B}(\mathcal{H})$. Then

$$
\mathcal{P}=\bigcap_{m=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty}\left\{U \in U_{\Gamma}(\mathcal{H}) \mid d\left(P(U), U\left(g_{n}\right)\right)<1 / m\right\}
$$

Obviously, the sets $\left\{U \in U_{\Gamma}(\mathcal{H}) \mid d\left(P(U), U\left(g_{n}\right)\right)<1 / m\right\}$ are open in $U_{\Gamma}(\mathcal{H})$.

Recall that two unitary representations $U, V \in \mathcal{U}_{G}(\mathcal{H})$ of an Abelian group G are called spectrally disjoint if their measures of maximal spectral type, σ_{U} and σ_{V}, are mutually singular: $\sigma_{U} \perp \sigma_{V}$. We denote by $\mathcal{M}(U)$ the essential image of the spectral multiplicity function of U. It is clear that if U and V are spectrally disjoint then $\mathcal{M}(U \oplus V)=\mathcal{M}(U) \cup \mathcal{M}(V)$. Lemma 1.2 gives us a useful sufficient condition of spectral disjointness.

Lemma 1.2. Let G be a locally compact second countable Abelian group. Let $U, V \in \mathcal{U}_{G}(\mathcal{H})$. If there is a sequence $\left(g_{n}\right)_{n=1}^{\infty} \subset G$ such that

$$
U\left(g_{n}\right) \rightarrow I \text { and } V\left(g_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

then U and V are spectrally disjoint.

Proof. Let σ_{U} and σ_{V} be the measures of maximal spectral type of U and V respectively. By the spectral theorem,

$$
\begin{array}{ll}
\mathcal{H}=\int_{\widehat{G}}^{\oplus} \mathcal{H}_{\omega}^{(1)} d \sigma_{U}(\omega), & U(g)=\int_{\widehat{G}}^{\oplus} \omega(g) I_{\omega} d \sigma_{U}(\omega), \\
\mathcal{H}=\int_{\widehat{G}}^{\oplus} \mathcal{H}_{\omega}^{(2)} d \sigma_{V}(\omega), & V(g)=\int_{\widehat{G}}^{\oplus} \omega(g) I_{\omega} d \sigma_{V}(\omega) .
\end{array}
$$

Suppose σ_{U} is equivalent to σ_{V} on some subset $A \subset \widehat{G}$ with $\sigma_{U}(A)>0$. Take any $0 \neq f \in \mathcal{H}$ with $\operatorname{supp} f \subset A$. Then on the one hand,

$$
\int_{\widehat{G}}\left\langle\omega\left(g_{n}\right) f(\omega), f(\omega)\right\rangle d \sigma_{U}(\omega)=\left\langle U\left(g_{n}\right) f, f\right\rangle \rightarrow\|f\|^{2} \neq 0
$$

On the other hand,

$$
\begin{aligned}
& \int_{\widehat{G}}\left\langle\omega\left(g_{n}\right) f(\omega), f(\omega)\right\rangle d \sigma_{U}(\omega) \\
& \quad=\int_{\widehat{G}}\left\langle\omega\left(g_{n}\right) f(\omega), f(\omega)\right\rangle \frac{d \sigma_{U}}{d \sigma_{V}}(\omega) d \sigma_{V}(\omega)=\left\langle V\left(g_{n}\right) f, \frac{d \sigma_{U}}{d \sigma_{V}} f\right\rangle \rightarrow 0 .
\end{aligned}
$$

This contradiction proves that $\sigma_{U} \perp \sigma_{V}$.
Given $U, V \in \mathcal{U}_{G}(\mathcal{H})$, by their tensor product we mean the unitary representation $U \otimes V$ of G in $\mathcal{H} \otimes \mathcal{H}$ defined by $(U \otimes V)(g):=U(g) \otimes V(g)$. If σ_{U} and σ_{V} are measures of maximal spectral type of U and V, then the convolution $\sigma_{U} * \sigma_{V}$ is a measure of maximal spectral type of $U \otimes V$. Let

$$
\sigma_{U} \times \sigma_{V}=\int_{\widehat{G}} \sigma_{\omega} d\left(\sigma_{U} * \sigma_{V}\right)(\omega)
$$

stand for the disintegration of $\sigma_{U} \times \sigma_{V}$ with respect to the projection map $\widehat{G} \times \widehat{G} \ni\left(\omega_{1}, \omega_{2}\right) \mapsto \omega_{1} \omega_{2} \in \widehat{G}$. Then the map $\widehat{G} \ni \omega \mapsto \operatorname{dim}\left(L^{2}\left(\widehat{G} \times \widehat{G}, \sigma_{\omega}\right)\right)$ is the multiplicity function of $U \otimes V$.

The following lemma, which is an obvious generalization of $\overline{R y}$, Lemma 3.1], allows us to 'control' the spectral multiplicities of tensor products. Recall that a unitary representation $U \in \mathcal{U}_{G}(\mathcal{H})$ has simple spectrum (that is, $\mathcal{M}(U)=\{1\})$ if and only if there is $\varphi \in \mathcal{H}$ (called a cyclic vector for U) such that the smallest closed subspace \mathcal{H}_{φ} of \mathcal{H} containing all the vectors $U(g) \varphi, g \in G$, is the entire \mathcal{H}. Then \mathcal{H}_{φ} is called the cyclic subspace of φ.

Lemma 1.3. Let G be a locally compact second countable Abelian group and let $U, V \in \mathcal{U}_{G}(\mathcal{H})$. Suppose there exists a sequence $\left(g_{n}\right)_{n=1}^{\infty} \subset G$ and subsequences $\left(g_{n_{k}(i)}\right)_{k=1}^{\infty}, i \in J$, such that
(a) $U\left(g_{n}\right) \rightarrow I$ as $n \rightarrow \infty$,
(b) $V\left(g_{n_{k}(i)}\right) \rightarrow V\left(d_{i}\right)$ as $k \rightarrow \infty$ for each $i \in J$,
where $\left\{d_{i}\right\}_{i \in J} \subset G$ is an at most countable subset such that $\left\langle d_{i}\right\rangle_{i \in J}{\left({ }^{2}\right)}^{2}$ is dense in G. Then
(1) if U and V have simple spectrum, so does $U \otimes V$,
(2) $\mathcal{M}(U \otimes V)=\mathcal{M}(U) \mathcal{M}(V)$.

Proof. (1) Let φ and ψ be cyclic vectors for U and V respectively. We claim that $\varphi \otimes \psi$ is a cyclic vector for $U \otimes V$. Indeed, the cyclic subspace $\mathcal{H}_{\varphi \otimes \psi}$ of $\varphi \otimes \psi$ is weakly closed $\left({ }^{3}\right)$, invariant under $U(g) \otimes V(g)$ for each $g \in G$ and contains all the vectors $U(g) \varphi \otimes V(g) \psi, g \in G$. Hence by (a) and (b) it contains all the weak limits

$$
\begin{aligned}
\varphi \otimes V\left(d_{i}\right) \psi & =\lim _{k \rightarrow \infty} U\left(g_{k}(i)\right) \varphi \otimes V\left(g_{k}(i)\right) \psi \\
\varphi \otimes V\left(d_{i}+d_{j}\right) \psi & =\lim _{k \rightarrow \infty} U\left(g_{k}(j)\right) \varphi \otimes V\left(g_{k}(j)\right) V\left(d_{i}\right) \psi, \quad \text { etc. }
\end{aligned}
$$

The space $\mathcal{H}_{\varphi \otimes \psi}$ contains therefore all the vectors $\varphi \otimes V(d) \psi, d \in\left\langle d_{i}\right\rangle_{i \in J}$. Since $\mathcal{H}_{\varphi \otimes \psi}$ is invariant under $U(g) \otimes V(g)$ for each $g \in G$ it contains all the vectors $U(g) \varphi \otimes V(d+g) \psi, g \in G, d \in\left\langle d_{i}\right\rangle_{i \in J}$, which form a total system in $\mathcal{H} \otimes \mathcal{H}$. Hence $U \otimes V$ has simple spectrum.
(2) Let

$$
U=\bigoplus_{p \in \mathcal{M}(U)} p U^{(p)} \quad \text { and } \quad V=\bigoplus_{q \in \mathcal{M}(V)} q V^{(q)}
$$

where $U^{(p)}, p \in \mathcal{M}(U)$, and $V^{(q)}, q \in \mathcal{M}(V)$, are spectrally disjoint and have simple spectrum. In other words, $\bigoplus_{p} U^{(p)}$ and $\bigoplus_{q} V^{(q)}$ have simple spectrum. Then for $U \otimes V$ we have the following decomposition:

$$
U \otimes V=\bigoplus_{\substack{p \in \mathcal{M}(U) \\ q \in \mathcal{M}(V)}} p q\left(U^{(p)} \otimes V^{(q)}\right)
$$

As already shown in $(1), \bigoplus_{p, q} U^{(p)} \otimes V^{(q)}=\bigoplus_{p} U^{(p)} \otimes \bigoplus_{q} V^{(q)}$ has simple spectrum. This means that $U^{(p)} \otimes V^{(q)},(p, q) \in \mathcal{M}(U) \times \mathcal{M}(V)$, are spectrally disjoint and have simple spectrum. Hence $\mathcal{M}(U \otimes V)=\mathcal{M}(U) \mathcal{M}(V)$.

Following Ry , we will say that U and V are strongly disjoint if the map $\left(\widehat{G} \times \widehat{G}, \sigma_{U} \times \sigma_{V}\right) \ni\left(\omega_{1}, \omega_{2}\right) \mapsto \omega_{1} \omega_{2} \in\left(\widehat{G}, \sigma_{U} * \sigma_{V}\right)$ is one-to-one $\bmod 0$. If U and V have simple spectrum then they are strongly disjoint if and only if $U \otimes V$ has simple spectrum, and hance for any two strongly disjoint unitary representations U and V we have $\mathcal{M}(U \otimes V)=\mathcal{M}(U) \mathcal{M}(V)$. In fact, Lemma 1.3 gives a sufficient condition of strong disjointness for unitary representations.

[^2]1.2. Group actions. Let Γ be a locally compact second countable group. Given a standard non-atomic probability space (X, \mathfrak{B}, μ), denote by Aut (X, μ) the group of invertible μ-preserving transformations of X. By an action T of Γ we mean a continuous group homomorphism $T: \Gamma \ni g \mapsto T_{g} \in$ $\operatorname{Aut}(X, \mu)$. Denote by $\mathcal{A}_{\Gamma} \subset \operatorname{Aut}(X, \mu)^{\Gamma}$ the subset of all measure preserving actions of Γ on (X, \mathfrak{B}, μ). Recall that U_{T} denotes the Koopman representation of Γ associated with $T \in \mathcal{A}_{\Gamma}$. We endow \mathcal{A}_{Γ} with the weakest topology which makes the mapping
$$
\mathcal{A}_{\Gamma} \ni T \mapsto U_{T} \in \mathcal{U}_{\Gamma}\left(L_{0}^{2}(X, \mu)\right)
$$
continuous. Then \mathcal{A}_{Γ} is Polish. It is easy to verify that a sequence $T^{(n)}$ of Γ-actions converges to T if and only if $\sup _{g \in K} \mu\left(T_{g}^{(n)} A \triangle T_{g} A\right) \rightarrow 0$ as $n \rightarrow \infty$ for each compact $K \subset \Gamma$ and $A \in \mathfrak{B}$. There is a natural action of Aut (X, μ) on \mathcal{A}_{Γ} by conjugation:
$$
(R \cdot T)_{g}=R T_{g} R^{-1} \quad \text { for } R \in \operatorname{Aut}(X, \mu), T \in \mathcal{A}_{\Gamma}, g \in \Gamma
$$
and this action is obviously continuous.
If $\mu(X)=\infty$ we define the Polish space $\mathcal{A}_{\Gamma}(X, \mu)$ of all infinite measure preserving Γ-actions in a similar way. Notice that for μ infinite the Koopman representation associated with $T \in \mathcal{A}_{\Gamma}(X, \mu)$ is considered in the entire space $L^{2}(X, \mu)$.
1.3. (C, F)-construction. We now briefly outline the (C, F)-construction of measure preserving actions for locally compact groups. For details see [Da3] and the references therein.

Let Γ be a unimodular locally compact second countable amenable group. Fix a (σ-finite) left Haar measure λ on it. Given two subsets $E, F \subset \Gamma$, we denote by $E F$ their algebraic product, i.e. $E F=\{e f \mid e \in E, f \in F\}$. The set $\left\{e^{-1} \mid e \in E\right\}$ is denoted by E^{-1}. If E is a singleton, say $E=\{e\}$, then we will write $e F$ for $E F$.

To define a (C, F)-action of Γ we need two sequences $\left(F_{n}\right)_{n=0}^{\infty}$ and $\left(C_{n}\right)_{n=1}^{\infty}$ of subsets in Γ such that the following conditions are satisfied:

$$
\begin{align*}
& \left(F_{n}\right)_{n=0}^{\infty} \text { is a Følner sequence in } \Gamma, \tag{1.1}\\
& C_{n} \text { is finite and } \# C_{n}>1, \tag{1.2}\\
& F_{n} C_{n+1} \subset F_{n+1}, \tag{1.3}\\
& F_{n} c \cap F_{n} c^{\prime}=\emptyset \text { for all } c \neq c^{\prime} \in C_{n+1} \tag{1.4}
\end{align*}
$$

We equip F_{n} with the measure $\left(\# C_{1} \cdots \# C_{n}\right)^{-1} \lambda \upharpoonright F_{n}$ and endow C_{n} with the equidistributed probability measure. Let $X_{n}:=F_{n} \times \prod_{k>n} C_{k}$ stand for the product of measure spaces. Define an embedding $X_{n} \rightarrow X_{n+1}$ by setting

$$
\left(f_{n}, c_{n+1}, c_{n+2}, \ldots\right) \mapsto\left(f_{n} c_{n+1}, c_{n+2}, \ldots\right)
$$

It is easy to see that it is measure preserving. Then $X_{1} \subset X_{2} \subset \cdots$. Let $X:=\bigcup_{n=0}^{\infty} X_{n}$ denote the inductive limit of this sequence of measure spaces and let \mathfrak{B} and μ denote the corresponding Borel σ-algebra and measure on X. Then X is a standard Borel space and μ is a σ-finite measure on it. It is finite if

$$
\begin{equation*}
\prod_{n=1}^{\infty} \frac{\lambda\left(F_{n+1}\right)}{\lambda\left(F_{n}\right) \# C_{n+1}}<\infty \tag{1.5}
\end{equation*}
$$

and infinite if

$$
\begin{equation*}
\prod_{n=1}^{\infty} \frac{\lambda\left(F_{n+1}\right)}{\lambda\left(F_{n}\right) \# C_{n+1}}=\infty \tag{1.6}
\end{equation*}
$$

If (1.5) is satisfied then we choose (i.e., normalize) λ in such a way that $\mu(X)=1$. Given a Borel subset $A \subset F_{n}$, we put

$$
[A]_{n}:=\left\{x \in X \mid x=\left(f_{n}, c_{n+1}, c_{n+2}, \ldots\right) \in X_{n} \text { and } f_{n} \in A\right\}
$$

and call this set an n-cylinder. It is clear that the σ-algebra \mathfrak{B} is generated by the family of all cylinders.

To construct a μ-preserving action of Γ on (X, \mathfrak{B}, μ), fix a filtration $K_{1} \subset K_{2} \subset \cdots$ of Γ by compact subsets. Thus $\bigcup_{m=1}^{\infty} K_{m}=\Gamma$. Given $n, m \in \mathbb{N}$, we set

$$
\begin{aligned}
L_{m}^{(n)} & :=\left(\bigcap_{k \in K_{m}}\left(k^{-1} F_{n}\right) \cap F_{n}\right) \times \prod_{k>n} C_{k} \subset X_{n} \\
R_{m}^{(n)} & :=\left(\bigcap_{k \in K_{m}}\left(k F_{n}\right) \cap F_{n}\right) \times \prod_{k>n} C_{k} \subset X_{n} .
\end{aligned}
$$

It is easy to verify that $L_{m+1}^{(n)} \subset L_{m}^{(n)} \subset L_{m}^{(n+1)}$ and $R_{m+1}^{(n)} \subset R_{m}^{(n)} \subset R_{m}^{(n+1)}$. We define a Borel mapping $K_{m} \times L_{m}^{(n)} \ni(g, x) \mapsto T_{m, g}^{(n)} x \in R_{m}^{(n)}$ by setting for $x=\left(f_{n}, c_{n+1}, c_{n+2}, \ldots\right)$,

$$
T_{m, g}^{(n)}\left(f_{n}, c_{n+1}, c_{n+2}, \ldots\right):=\left(g f_{n}, c_{n+1}, c_{n+2}, \ldots\right)
$$

Now let $L_{m}:=\bigcup_{n=1}^{\infty} L_{m}^{(n)}$ and $R_{m}:=\bigcup_{n=1}^{\infty} R_{m}^{(n)}$. Then a Borel one-toone mapping $T_{m, g}: K_{m} \times L_{m} \ni(g, x) \mapsto T_{m, g} x \in R_{m}$ is well defined by $T_{m, g} \upharpoonright L_{m}^{(n)}=T_{m, g}^{(n)}$ for $g \in K_{m}$ and $n \geq 1$. It is easy to see that $L_{m} \supset L_{m+1}$, $R_{m} \supset R_{m+1}$ and $T_{m, g} \upharpoonright L_{m+1}=T_{m+1, g}$ for all m. It follows from (1.1) that $\mu\left(L_{m}\right)=\mu\left(R_{m}\right)=1$ for all $m \in \mathbb{N}$. Finally we set $\widehat{X}:=\bigcap_{m=1}^{\infty} L_{m} \cap \bigcap_{m=1}^{\infty} R_{m}$ and define a Borel mapping $T: \Gamma \times \widehat{X} \ni(g, x) \mapsto T_{g} x \in \widehat{X}$ by setting $T_{g} x:=T_{m, g} x$ for some (and hence any) m such that $g \in K_{m}$. It is clear that $\mu(\widehat{X})=1$. Thus $T=\left(T_{g}\right)_{g \in \Gamma}$ is a free Borel measure preserving action of Γ on a conull subset of the standard Borel space (X, \mathfrak{B}, μ). It is easy to verify
that T does not depend on the choice of the filtration $\left(K_{m}\right)_{m=1}^{\infty}$. The action T is called the (C, F)-action of Γ associated with $\left(C_{n+1}, F_{n}\right)_{n \geq 0}$.

We now recall some basic properties of $(X, \mathfrak{B}, \mu, T)$. Given Borel subsets $A, B \subset F_{n}$, we have

$$
\begin{aligned}
& {[A \cap B]_{n}=[A]_{n} \cap[B]_{n}, \quad[A \cup B]_{n}=[A]_{n} \cup[B]_{n}} \\
& {[A]_{n}=\left[A C_{n+1}\right]_{n+1}=\bigsqcup_{c \in C_{n+1}}[A c]_{n+1}} \\
& T_{g}[A]_{n}=[g A]_{n} \quad \text { if } g A \subset F_{n}
\end{aligned}
$$

Each (C, F)-action is of rank one. Note also that the (C, F)-construction respects Cartesian products. Namely, the product of (C, F)-actions $\left(T_{g}^{(i)}\right)_{g \in G_{i}}$ associated with $\left(C_{n}^{(i)}, F_{n}^{(i)}\right)_{n}, i=1,2$, is the (C, F)-action of $G_{1} \times G_{2}$ associated with $\left(C_{n}^{(1)} \times C_{n}^{(2)}, F_{n}^{(1)} \times F_{n}^{(2)}\right)_{n}$.
1.4. Poisson suspension. Let (X, \mathcal{B}) be a standard Borel space and let μ be an infinite σ-finite non-atomic measure on X. Fix an increasing sequence of Borel subsets $X_{1} \subset X_{2} \subset \cdots$ with $\bigcup_{i=1}^{\infty} X_{i}=X$ and $\mu\left(X_{i}\right)<\infty$ for each i. A Borel subset is called bounded if it is contained in some X_{i}. Let \widetilde{X}_{i} denote the space of finite measures on X_{i}. For each bounded subset $A \subset X_{i}$, let N_{A} stand for the map

$$
\widetilde{X}_{i} \ni \omega \mapsto \omega(A) \in \mathbb{R}
$$

Denote by $\widetilde{\mathcal{B}}_{i}$ the smallest σ-algebra on \widetilde{X}_{i} in which all the maps $N_{A}, A \in$ $\mathcal{B} \cap X_{i}$, are measurable. It is well known that $\left(\widetilde{X}_{i}, \widetilde{\mathcal{B}}_{i}\right)$ is a standard Borel space. Denote by $(\widetilde{X}, \widetilde{\mathcal{B}})$ the projective limit of the sequence

$$
\left(\widetilde{X}_{1}, \widetilde{\mathcal{B}}_{1}\right) \leftarrow\left(\widetilde{X}_{2}, \widetilde{\mathcal{B}}_{2}\right) \leftarrow \cdots
$$

where the arrows denote the (Borel) natural restriction maps. Then $(\widetilde{X}, \widetilde{\mathcal{B}})$ is a standard Borel space. To put it in another way, \tilde{X} is the space of measures on X which are σ-finite along $\left(X_{i}\right)_{i>0}$. Then there is a unique probability measure $\widetilde{\mu}$ on $(\widetilde{X}, \widetilde{\mathcal{B}})$ such that
(1) N_{A} maps $\widetilde{\mu}$ to the Poisson distribution with parameter $\mu(A)$, i.e.

$$
\widetilde{\mu}\left(\left\{\omega \mid N_{A}(\omega)=j\right\}\right)=\frac{\mu(A)^{j} \exp (-\mu(A))}{j!}
$$

for all bounded $A \subset X$ and integer $j \geq 0$ and
(2) if A and B are disjoint bounded subsets of X then the random variables N_{A} and N_{B} on $(\widetilde{X}, \widetilde{\mathcal{B}}, \widetilde{\mu})$ are independent.
Let G be a locally compact second countable group and let T be a μ preserving action of G on X such that T_{g} preserves the subclass of bounded subsets for each $g \in G$. Then T induces a $\widetilde{\mu}$-preserving action \widetilde{T} of G on \widetilde{X} by
the formula $\widetilde{T}_{g} \omega:=\omega \circ T_{-g}$. We recall that the dynamical system $(\widetilde{X}, \widetilde{\mathcal{B}}, \widetilde{\mu}, \widetilde{T})$ is called the Poisson suspension of (X, \mathcal{B}, μ, T) (see [CFS, Roy] for the case $G=\mathbb{Z})$.

The well known Fock representation of $L^{2}(\widetilde{X}, \widetilde{\mu})$ gives an isomorphism

$$
L^{2}(\widetilde{X}, \widetilde{\mu}) \simeq \bigoplus_{n=0}^{\infty} L^{2}(X, \mu)^{\odot n}
$$

where $L^{2}(X, \mu)^{\odot n}$ is the nth symmetric tensor power of $L^{2}(X, \mu)$, with $L^{2}(X, \mu)^{\oplus 0}=\mathbb{C}$. The Koopman representation $U_{\widetilde{T}} \oplus P_{0}$ (considered on $\left.L^{2}(\widetilde{X}, \widetilde{\mu})\right)$ is unitarily equivalent to the exponential of U_{T} :

$$
U_{\widetilde{T}} \oplus P_{0} \simeq \exp U_{T}=\bigoplus_{n=0}^{\infty} U_{T}^{\odot n},
$$

where P_{0} is the orthogonal projection on $\mathbb{C} \subset L^{2}(\widetilde{X}, \widetilde{\mu})$ and $U_{T}^{\odot n}$ is the nth symmetric tensor power of U_{T} [Ne]. Recall that since μ is infinite, we consider U_{T} in the entire space $L^{2}(X, \mu)$. It follows, in particular, that the mapping $\mathcal{A}_{\Gamma}(X, \mu) \ni T \mapsto \widetilde{T} \in \mathcal{A}_{\Gamma}(\widetilde{X}, \widetilde{\mu})$ is continuous. \widetilde{T} is rigid (for the sequence g_{n}) if and only if T is rigid (for g_{n}). If T has no invariant subsets of finite positive measure then \widetilde{T} is weakly mixing Roy.
2. \mathbb{R}^{m}-actions. In this section we prove Theorem 0.1 in the case when $G=\mathbb{R}^{m}$.

For given $p>1$, let $A: \mathbb{Z}^{p} \rightarrow \mathbb{Z}^{p}$ denote the 'cyclic' group automorphism

$$
A\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left(x_{p}, x_{1}, \ldots, x_{p-1}\right) .
$$

Following [DS], denote by Γ the semidirect product (${ }^{4}$)

$$
\Gamma:=G \times \mathbb{Z}^{p} \rtimes_{A} \mathbb{Z}(p)
$$

with multiplication law

$$
(g, x, n)(h, y, k):=\left(g+h, x+A^{n} y, n+k\right)
$$

for $g, h \in G, x, y \in \mathbb{Z}^{p}, n, k \in \mathbb{Z}(p)$. We will identify G with the subgroup $\{(g, 0,0) \mid g \in G\} \subset \Gamma$. Let $\mathcal{E}_{\Gamma} \subset \mathcal{A}_{\Gamma}$ stand for the subset of all free ergodic Γ-actions. Then \mathcal{E}_{Γ} is a G_{δ} subset in \mathcal{A}_{Γ} and hence it is Polish space with the induced topology [DS. To prove Theorem 0.1 we will use a 'generic' argument and the following facts will be needed.

Lemma 2.1 ([DS, Theorem 2.8]). For a generic action $T \in \mathcal{E}_{\Gamma}$ the action $T \upharpoonright G$ is weakly mixing and $\mathcal{M}(T \upharpoonright G)=\{p\}$.

Lemma 2.2 ($\left(\boxed{\mathrm{DS}}\right.$, Lemma 2.4]). The $\operatorname{Aut}(X, \mu)$-orbit of any action $T \in \mathcal{E}_{\Gamma}$ is dense in \mathcal{E}_{Γ}.
$\left(^{4}\right)$ By $\mathbb{Z}(p)$ we denote a cyclic group of order p, i.e. $\mathbb{Z}(p)=\mathbb{Z} / p \mathbb{Z}=\{0,1, \ldots, p-1\}$.

We will apply Lemma 2.2 to show that the set of Γ-actions with certain properties is dense in \mathcal{E}_{Γ}. However to apply this lemma we will need at least one action in this set. This single action is constructed explicitly in Lemma 2.3.

Lemma 2.3. For any sequence $\left(g_{k}\right)_{k=1}^{\infty} \subset G$ with $g_{k} \rightarrow \infty$, there exists a (C, F)-action $T \in \mathcal{E}_{\Gamma}$ such that $U_{T}\left(g_{k_{n}}\right) \rightarrow I$ for some subsequence $\left(g_{k_{n}}\right)_{n=1}^{\infty}$.

Proof. To construct the (C, F)-action we shall determine a sequence $\left(C_{n+1}, F_{n}\right)_{n=0}^{\infty}$. This will be done inductively. Let $F_{n}=F_{n}^{\prime} \times F_{n}^{\prime \prime}$ and $C_{n}=$ $C_{n}^{\prime} \times C_{n}^{\prime \prime}$, where $F_{n}^{\prime}, C_{n}^{\prime} \subset G, F_{n}^{\prime \prime}, C_{n}^{\prime \prime} \subset \mathbb{Z}^{p} \rtimes \mathbb{Z}(p)$.

First, we claim that the sets $F_{n}^{\prime}, C_{n}^{\prime} \subset G=\mathbb{R}^{m}$ and a subsequence $\left(g_{k_{n}}\right)_{n=1}^{\infty}$ can be chosen in such a way that

$$
\lim _{n \rightarrow \infty} \frac{\#\left(C_{n}^{\prime} \cap\left(C_{n}^{\prime}-g_{k_{n}}\right)\right)}{\# C_{n}^{\prime}}=1
$$

To show this select a subsequence $\left(g_{k_{n}}\right)_{n=1}^{\infty}$ such that $g_{k_{n}} /\left|g_{k_{n}}\right|$ converges (to some point of the unit sphere) as $n \rightarrow \infty$. From now on we will write g_{n} instead of $g_{k_{n}}$ for short. Let $g_{n}=\left(g_{n}^{(1)}, \ldots, g_{n}^{(m)}\right) \in \mathbb{R}^{m}$. Without loss of generality we may assume that $g_{n}^{(i)}>0, i=1, \ldots, m$, and $g_{n}^{(1)} \rightarrow \infty$. In the other cases the proof is similar. Fix a sequence of positive numbers α_{n} with $\sum_{n=1}^{\infty} \alpha_{n}<\infty$. By replacing $\left(g_{n}\right)_{n=1}^{\infty}$ with a subsequence if necessary, we may assume that

$$
\frac{g_{n+1}^{(1)}}{g_{n}^{(1)}}>\frac{1}{\alpha_{n}}+1
$$

We will construct C_{n}^{\prime} and F_{n}^{\prime} inductively. Choose C_{1}^{\prime} and F_{0}^{\prime} arbitrarily. Now suppose that we already have C_{n-1}^{\prime} and $F_{n-1}^{\prime}=\left(-a_{n-1}^{(1)}, a_{n-1}^{(1)}\right) \times \cdots \times$ $\left(-a_{n-1}^{(m)}, a_{n-1}^{(m)}\right)$, where $a_{n-1}^{(i)}>0$ and $a_{n-1}^{(1)}=g_{n}^{(1)} / 2$. Our purpose is to define C_{n}^{\prime} and F_{n}^{\prime}. Set

$$
h_{n}:=\left\lfloor\frac{g_{n+1}^{(1)}-g_{n}^{(1)}}{2 g_{n}^{(1)}}\right\rfloor>\frac{1}{\alpha_{n}}-\frac{1}{2} .
$$

In particular, $\left(2 h_{n}+1\right) g_{n}^{(1)}<g_{n+1}^{(1)}<\left(2 h_{n}+1\right) g_{n}^{(1)}+2 g_{n}^{(1)}$ and $2 h_{n}+1>2 / \alpha_{n}$. Select integers $w_{n}^{(2)}, \ldots, w_{n}^{(m)}>0$ in such a way that

$$
\frac{h_{n} g_{n}^{(i)}}{a_{n-1}^{(1)}\left(2 w_{n}^{(i)}+1\right)}<\alpha_{n} .
$$

We set

$$
\begin{aligned}
A_{n} & :=\left\{\left(0,2 l^{(2)} a_{n-1}^{(2)}, \ldots, 2 l^{(m)} a_{n-1}^{(m)}\right) \mid l^{(i)} \in \mathbb{Z},-w_{n}^{(i)} \leq l^{(i)} \leq w_{n}^{(i)}\right\} \subset \mathbb{R}^{m}, \\
C_{n}^{\prime} & :=\bigsqcup_{k=-h_{n}}^{h_{n}}\left(A_{n}+k g_{n}\right) .
\end{aligned}
$$

Let also $a_{n}^{(1)}:=g_{n+1}^{(1)} / 2$ and $a_{n}^{(i)}:=\left(2 w_{n}^{(i)}+1\right) a_{n-1}^{(i)}+h_{n} g_{n}^{(i)}, i=2, \ldots, m$. Set $F_{n}^{\prime}:=\left(-a_{n}^{(1)}, a_{n}^{(1)}\right) \times \cdots \times\left(-a_{n}^{(m)}, a_{n}^{(m)}\right)$. Then, by construction,

$$
\begin{aligned}
\frac{\lambda\left(F_{n}^{\prime}\right)}{\lambda\left(F_{n-1}^{\prime}\right) \# C_{n}^{\prime}} & =\frac{g_{n+1}^{(1)}}{g_{n}^{(1)}\left(2 h_{n}+1\right)} \prod_{i=2}^{m} \frac{2 a_{n}^{(i)}}{2 a_{n-1}^{(i)}\left(2 w_{n}^{(i)}+1\right)} \\
& <\left(1+\frac{2}{2 h_{n}+1}\right) \prod_{i=2}^{m}\left(1+\frac{h_{n} g_{n}^{(i)}}{2 w_{n}^{(i)}+1}\right)<\left(1+\alpha_{n}\right)^{m}
\end{aligned}
$$

Thus the conditions $1.1-1.5$ hold for $\left(F_{n}^{\prime}, C_{n}^{\prime}\right)_{n}$. It also follows from the definition of C_{n}^{\prime} that

$$
\frac{\#\left(C_{n}^{\prime} \cap\left(C_{n}^{\prime}-g_{n}\right)\right)}{\# C_{n}^{\prime}}=\frac{2 h_{n}}{2 h_{n}+1} \rightarrow 1
$$

Secondly, let $C_{n}^{\prime \prime}$ and $F_{n}^{\prime \prime}$ be any subsets of $\mathbb{Z}^{p} \rtimes \mathbb{Z}(p)$ satisfying 1.1 -1.5 . For instance, set

$$
\begin{aligned}
& F_{n}^{\prime \prime}:=\left\{-\left(3^{n}-1\right) / 2, \ldots,\left(3^{n}-1\right) / 2\right\}^{p} \times \mathbb{Z}(p) \subset \mathbb{Z}^{p} \rtimes \mathbb{Z}(p), \\
& C_{n}^{\prime \prime}:=\left\{-3^{n-1}, 0,3^{n-1}\right\}^{p} \times\{0\} \subset \mathbb{Z}^{p} \rtimes \mathbb{Z}(p)
\end{aligned}
$$

Let T be the (C, F)-action associated with $\left(C_{n}, F_{n}\right)_{n}=\left(C_{n}^{\prime} \times C_{n}^{\prime \prime}\right.$, $\left.F_{n}^{\prime} \times F_{n}^{\prime \prime}\right)_{n}$. As was mentioned in Section $1.3 . T$ is then the product of the two (C, F)-actions $T^{(1)}=\left(T_{g}^{(1)}\right)_{g \in G}$ and $T^{(2)}=\left(T_{z}^{(2)}\right)_{z \in \mathbb{Z}^{p} \rtimes \mathbb{Z}(p)}$ associated with $\left(C_{n}^{\prime}, F_{n}^{\prime}\right)_{n}$ and $\left(C_{n}^{\prime \prime}, F_{n}^{\prime \prime}\right)_{n}$ respectively. Since $g_{n} \in G$, we have

$$
\lim _{n \rightarrow \infty} \frac{\#\left(C_{n} \cap g_{n}^{-1} C_{n}\right)}{\# C_{n}}=1
$$

We claim that $\lim _{n \rightarrow \infty} \mu\left(T_{g_{n}} A \triangle A\right)=0$ for any $A \in \mathfrak{B}$. It suffices to consider the cylinders $[A]_{n}, A \subset F_{n}$. Fix $\varepsilon>0$ and select n such that

$$
\begin{equation*}
\frac{\#\left(C_{n} \backslash g_{n}^{-1} C_{n}\right)}{\# C_{n}}<\varepsilon \tag{2.1}
\end{equation*}
$$

Let $A \subset F_{n-1}$. Notice that g_{n} commutes with all the elements of Γ. Thus

$$
[A]_{n-1}=\bigsqcup_{c \in C_{n}}[A c]_{n}=A_{1} \sqcup \bigsqcup_{c \in C_{n} \cap g_{n} C_{n}}[A c]_{n}=A_{2} \sqcup \bigsqcup_{c \in C_{n} \cap g_{n}^{-1} C_{n}}[A c]_{n}
$$

where $A_{1}:=\bigsqcup_{c \in C_{n} \backslash g_{n} C_{n}}[A c]_{n}, A_{2}:=\bigsqcup_{c \in C_{n} \backslash g_{n}^{-1} C_{n}}[A c]_{n}$ and $\mu\left(A_{i}\right)<\varepsilon$ by 2.1. On the other hand,

$$
\begin{aligned}
T_{g_{n}}[A]_{n-1} & =T_{g_{n}} A_{2} \sqcup \bigsqcup_{c \in C_{n} \cap g_{n}^{-1} C_{n}} T_{g_{n}}[A c]_{n}=T_{g_{n}} A_{2} \sqcup \bigsqcup_{c \in C_{n} \cap g_{n}^{-1} C_{n}}\left[g_{n} A c\right]_{n} \\
& =T_{g_{n}} A_{2} \sqcup \bigsqcup_{c \in C_{n} \cap g_{n} C_{n}}[A c]_{n} .
\end{aligned}
$$

Hence $T_{g_{n}}[A]_{n-1} \triangle[A]_{n-1} \subset A_{1} \cup T_{g_{n}} A_{2}$ and $\mu\left(T_{g_{n}}[A]_{n-1} \triangle[A]_{n-1}\right)<2 \varepsilon$. The claim is proven. It follows that $U_{T}\left(g_{n}\right) \rightarrow I$ as $n \rightarrow \infty$.

Since any (C, F)-action is free and ergodic, $T \in \mathcal{E}_{\Gamma}$.
As was mentioned above, to prove the main result we will apply the Baire category theorem, so the following lemma will be useful.

Lemma 2.4. Given a sequence $g_{n} \rightarrow \infty$ in G, the following subsets are residual in \mathcal{E}_{Γ} :

$$
\begin{aligned}
\mathcal{I} & :=\left\{T \in \mathcal{E}_{\Gamma} \mid I \text { is a limit point of }\left\{U_{T}\left(g_{n}\right)\right\}_{n=1}^{\infty}\right\} \\
\mathcal{O} & :=\left\{T \in \mathcal{E}_{\Gamma} \mid 0 \text { is a limit point of }\left\{U_{T}\left(g_{n}\right)\right\}_{n=1}^{\infty}\right\}
\end{aligned}
$$

Proof. It follows from Lemma 1.1 that \mathcal{I} and \mathcal{O} are both G_{δ} in \mathcal{E}_{Γ}. Notice also that they are both $\operatorname{Aut}(X, \mu)$-invariant. Therefore in view of Lemma 2.2 it remains to show that they each contain at least one free ergodic action. The set \mathcal{I} is non-empty by Lemma 2.3 . Consider the action of Γ on itself by translations. This action preserves the (σ-finite, infinite) Haar measure. The corresponding Poisson suspension of this action (see Section 1.4) is a probability preserving free Γ-action and it belongs to \mathcal{O} (see [OW]).

Lemma 2.5 will be the main ingredient in the proof of Theorem 0.1. In general, its proof goes along the lines developed in Ry for \mathbb{Z}-actions.

LEmma 2.5. Given a rigid weakly mixing $S \in \mathcal{A}_{G}$ and $p>0$, there exists a weakly mixing $T \in \mathcal{A}_{G}$ such that $S \times T$ is rigid, weakly mixing and satisfies $\mathcal{M}(S \times T)=\mathcal{M}(S) \diamond\{p\}$.

Moreover, if $\left(r_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ are sequences in G such that $U_{S}\left(r_{n}\right) \rightarrow I$ and $U_{S}\left(g_{n}\right) \rightarrow 0$, then $U_{S \times T}\left(r_{n}^{\prime}\right) \rightarrow I$ and $U_{S \times T}\left(g_{n}^{\prime}\right) \rightarrow 0$ as $n \rightarrow \infty$ for some subsequences $\left(r_{n}^{\prime}\right)_{k=1}^{\infty}$ and $\left(g_{n}^{\prime}\right)_{k=1}^{\infty}$.

Proof. Fix sequences $\left(r_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ in G such that

$$
\begin{equation*}
U_{S}\left(r_{n}\right) \rightarrow I \quad \text { and } \quad U_{S}\left(g_{n}\right) \rightarrow 0 \tag{2.2}
\end{equation*}
$$

Let also $\left\langle d_{1}, \ldots, d_{2 m}\right\rangle$ be dense in G. Let $\Gamma:=G \times \mathbb{Z}^{p} \rtimes_{A} \mathbb{Z}(p)$ stand for the auxiliary non-Abelian group defined above. We claim that for a generic $\widetilde{T} \in \mathcal{E}_{\Gamma}$, the G-action $T:=\widetilde{T} \upharpoonright G$ has the following properties:
(1) T is weakly mixing,
(2) $\mathcal{M}(T)=\{p\}$,
(3) $0, I$ and $U_{T}\left(d_{1}\right), \ldots, U_{T}\left(d_{2 m}\right)$ are limit points of the set $\left\{U_{T}\left(r_{n}\right)\right\}_{n \in \mathbb{N}}$,
(4) 0 and I are limit points of $\left\{U_{T}\left(g_{n}\right)\right\}_{n \in \mathbb{N}}$.

The properties (1)-(2) are generic by Lemma 2.1. Since $U_{T}(d)$ is a limit point of $\left\{U_{T}\left(r_{n}\right)\right\}_{n=1}^{\infty}$ if and only if I is a limit point of $\left\{U_{T}\left(r_{n}-d\right)\right\}_{n=1}^{\infty}$, Lemma 2.4 implies (3)-(4) for a generic $\widetilde{T} \in \mathcal{E}_{\Gamma}$. Hence there is an action satisfying all of these conditions.

Now let us show that T is the required action. Lemma 1.3 , in view of (2.2) and (3), implies that $\mathcal{M}\left(U_{S} \otimes U_{T}\right)=p \mathcal{M}\left(U_{S}\right)$. Since the Koopman representation is considered on the space $L^{2}(X, \mu) \ominus \mathbb{C}$, we have the decomposition

$$
\begin{equation*}
U_{S \times T}=\left(1 \otimes U_{T}\right) \oplus\left(U_{S} \otimes U_{T}\right) \oplus\left(U_{S} \otimes 1\right), \tag{2.3}
\end{equation*}
$$

where 1 denotes the identity operator on \mathbb{C}. If $1 \otimes U_{T}, U_{S} \otimes U_{T}, U_{S} \otimes 1$ are pairwise spectrally disjoint then

$$
\mathcal{M}(S \times T)=\{p\} \cup p \mathcal{M}(S) \cup \mathcal{M}(S)=\mathcal{M}(S) \diamond\{p\}
$$

Apply (3) and (4) and fix a subsequence $\left(r_{n}^{\prime \prime}\right)_{n=1}^{\infty}$ of $\left(r_{n}\right)_{n=1}^{\infty}$ and a subsequence $\left(g_{n}^{\prime \prime}\right)_{n=1}^{\infty}$ of $\left(g_{n}\right)_{n=1}^{\infty}$ such that $U_{T}\left(r_{n}^{\prime \prime}\right) \rightarrow 0$ and $U_{T}\left(g_{n}^{\prime \prime}\right) \rightarrow I$ as $n \rightarrow \infty$. The spectral disjointness for each pair of terms in (2.3) follows from Lemma 1.2 , since

$$
\begin{array}{rrr}
\left(U_{S} \otimes 1\right)\left(r_{n}^{\prime \prime}\right) \rightarrow I, & \left(U_{S} \otimes U_{T}\right)\left(r_{n}^{\prime \prime}\right) \rightarrow 0, \\
\left(1 \otimes U_{T}\right)\left(g_{n}^{\prime \prime}\right) \rightarrow I, & \left(U_{S} \otimes U_{T}\right)\left(g_{n}^{\prime \prime}\right) \rightarrow 0, \\
\left(1 \otimes U_{T}\right)\left(g_{n}^{\prime \prime}\right) \rightarrow I, & \left(U_{S} \otimes 1\right)\left(g_{n}^{\prime \prime}\right) \rightarrow 0 .
\end{array}
$$

It is clear that $S \times T$ is weakly mixing. By (3) and (4) there are subsequences $\left(r_{n}^{\prime}\right)_{n=1}^{\infty}$ and $\left(g_{n}^{\prime}\right)_{n=1}^{\infty}$ of $\left(r_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ such that $U_{T}\left(r_{n}^{\prime}\right) \rightarrow I$ and $U_{T}\left(g_{n}^{\prime}\right) \rightarrow 0$. Hence $U_{S \times T}\left(r_{n}^{\prime}\right) \rightarrow I$ and $U_{S \times T}\left(g_{n}^{\prime}\right) \rightarrow 0$.

Proof of Theorem 0.1 for $G=\mathbb{R}^{m}$. Consider the auxiliary group $\Gamma_{1}:=$ $G \times \mathbb{Z}^{p_{1}} \rtimes \mathbb{Z}\left(p_{1}\right)$ defined above. Let $\widetilde{T}_{1} \in \mathcal{E}_{\Gamma_{1}}$ be such that $T_{1}:=\widetilde{T}_{1} \upharpoonright G$ is weakly mixing, $\mathcal{M}\left(T_{1}\right)=\left\{p_{1}\right\}$ and $U_{T_{1}}\left(r_{n, 1}\right) \rightarrow I, U_{T_{1}}\left(g_{n, 1}\right) \rightarrow 0$ as $n \rightarrow \infty$, where $\left(r_{n, 1}\right)_{n=1}^{\infty},\left(g_{n, 1}\right)_{n=1}^{\infty}$ are some sequences in G. Since all these properties are generic for the actions from $\mathcal{E}_{\Gamma_{1}}$ by Lemmata 2.1 and [2.4 there is an action \widetilde{T}_{1} possessing all of them.

Now we apply Lemma 2.5 and choose a weakly mixing $T_{2} \in \mathcal{A}_{G}$ such that $\mathcal{M}\left(T_{1} \times T_{2}\right)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\}$ and $U_{T_{1} \times T_{2}}\left(r_{n, 2}\right) \rightarrow I, U_{T_{1} \times T_{2}}\left(g_{n, 2}\right) \rightarrow 0$ as $n \rightarrow \infty$, where $\left(r_{n, 2}\right)_{n=1}^{\infty}$ and $\left(g_{n, 2}\right)_{n=1}^{\infty}$ are subsequences of $\left(r_{n, 1}\right)_{n=1}^{\infty}$ and $\left(g_{n, 1}\right)_{n=1}^{\infty}$ respectively.

By induction, given a weakly mixing G-action $T_{1} \times \cdots \times T_{k-1}$ with

$$
\begin{gathered}
\mathcal{M}\left(T_{1} \times \cdots \times T_{k-1}\right)=\left\{p_{1}\right\} \diamond \cdots \diamond\left\{p_{k-1}\right\}, \\
U_{T_{1} \times \cdots \times T_{k-1}}\left(r_{n, k-1}\right) \rightarrow I, \quad U_{T_{1} \times \cdots \times T_{k-1}}\left(g_{n, k-1}\right) \rightarrow 0,
\end{gathered}
$$

by Lemma 2.5 there exists a weakly mixing $T_{k} \in \mathcal{A}_{G}$ such that

$$
\begin{gather*}
\mathcal{M}\left(T_{1} \times \cdots \times T_{k}\right)=\left\{p_{1}\right\} \diamond \cdots \diamond\left\{p_{k}\right\}, \tag{2.4}\\
U_{T_{1} \times \cdots \times T_{k}}\left(r_{n, k}\right) \rightarrow I, \quad U_{T_{1} \times \cdots \times T_{k}}\left(g_{n, k}\right) \rightarrow 0, \tag{2.5}
\end{gather*}
$$

where $\left(r_{n, k}\right)_{n=1}^{\infty}$ and $\left(g_{n, k}\right)_{n=1}^{\infty}$ are suitable subsequences of $\left(r_{n, k-1}\right)_{n=1}^{\infty}$ and $\left(g_{n, k-1}\right)_{n=1}^{\infty}$ respectively. This proves the theorem if the sequence p_{1}, p_{2}, \ldots is finite. Otherwise we obtain an infinite sequence of weakly mixing G-actions
T_{k} satisfying (2.4)-2.5). It is clear that the product $T:=T_{1} \times T_{2} \times \cdots$ is weakly mixing and $\mathcal{M}(T)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\} \diamond \cdots$.

The following simple lemma (stated in [DL] without proof) shows how to extend the result of Theorem 0.1 from \mathbb{R} to any torsion free discrete countable Abelian group (Corollary 2.7).

Lemma 2.6. Let G and H be locally compact second countable Abelian groups and let $\varphi: G \rightarrow H$ be a continuous one-to-one homomorphism with $\overline{\varphi(G)}=H$. Given an H-action $T=\left(T_{h}\right)_{h \in H}$, the composition $T \circ \varphi=$ $\left(T_{\varphi(g)}\right)_{g \in G}$ is a G-action with $\mathcal{M}(T \circ \varphi)=\mathcal{M}(T)$.

Proof. Let σ be a measure of maximal spectral type and $m: \widehat{H} \rightarrow \mathbb{N} \cup\{\infty\}$ be the spectral multiplicity function of U_{T} :

$$
\begin{equation*}
L_{0}^{2}(X, \mu)=\int_{\widehat{H}}^{\oplus} \mathcal{H}_{\chi} d \sigma(\chi) \quad \text { and } \quad U_{T}(h) f(\chi)=\chi(h) f(\chi), \quad h \in H \tag{2.6}
\end{equation*}
$$

for each $f: \widehat{H} \ni \chi \mapsto f(\chi) \in \mathcal{H}_{\chi}$ with $\int_{\widehat{H}}\|f(\chi)\|^{2} d \sigma(\chi)<\infty, \operatorname{dim} \mathcal{H}_{\chi}=$ $m(\chi)$. Let $\widehat{\varphi}: \widehat{H} \rightarrow \widehat{G}$ stand for the homomorphism dual to φ and $\widehat{\sigma}:=\sigma \circ \widehat{\varphi}^{-1}$ be the image of σ under $\widehat{\varphi}$. Clearly, $\widehat{\sigma}(\widehat{\varphi}(\widehat{H}))=1$. Let $\sigma=\int_{\widehat{G}} \sigma_{\omega} d \widehat{\sigma}(\omega)$ denote the disintegration of σ relative to $\hat{\varphi}$. Then we derive from 2.6 that

$$
L_{0}^{2}(X, \mu)=\int_{\widehat{G}}^{\oplus} \mathcal{H}_{\omega}^{\prime} d \widehat{\sigma}(\omega)=\int_{\widehat{\varphi}(\widehat{H})}^{\oplus} \mathcal{H}_{\omega}^{\prime} d \widehat{\sigma}(\omega)
$$

where $\mathcal{H}_{\omega}^{\prime}:=\int_{\widehat{H}}^{\oplus} \mathcal{H}_{\chi} d \sigma_{\omega}(\chi)$. Let $l(\omega):=\operatorname{dim} \mathcal{H}_{\omega}^{\prime}, \omega \in \widehat{G}$. Then

$$
l(\omega)= \begin{cases}\sum_{\sigma_{\omega}(\chi)>0} m(\chi) & \text { if } \sigma_{\omega} \text { is purely atomic } \\ \infty & \text { otherwise }\end{cases}
$$

Since $\overline{\varphi(G)}=H, \widehat{\varphi}$ is one-to-one and hence $\mathcal{H}_{\widehat{\varphi}(\chi)}^{\prime}=\mathcal{H}_{\chi}$ for any $\chi \in \widehat{H}$. In particular, $l(\widehat{\varphi}(\chi))=m(\chi)$ for $\chi \in \widehat{H}$. It follows from 2.6 that for any $\omega=\widehat{\varphi}(\chi) \in \widehat{G}$,

$$
\begin{aligned}
U_{T \circ \varphi}(g) f(\omega) & =U_{T}(\varphi(g)) f(\widehat{\varphi}(\chi))=U_{T}(\varphi(g))(f \circ \widehat{\varphi})(\chi) \\
& =\chi(\varphi(g))(f \circ \widehat{\varphi})(\chi)=(\widehat{\varphi}(\chi))(g) f(\widehat{\varphi}(\chi))=\omega(g) f(\omega)
\end{aligned}
$$

This means that $\widehat{\sigma}$ is a measure of maximal spectral type and l is the spectral multiplicity function of $U_{T \circ \varphi}$. Hence $\mathcal{M}(T \circ \varphi)=\mathcal{M}(T)$.

Corollary 2.7. Let G be a torsion free discrete countable Abelian group. Given a sequence of positive integers p_{1}, p_{2}, \ldots, there exists a weakly mixing probability preserving G-action S such that $\mathcal{M}(S)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\} \diamond \cdots$.

Proof. For $G=\mathbb{Z}$ see Ry or Section 3. Suppose $G \neq \mathbb{Z}$. In view of Lemma 2.6 it suffices to show that there is an embedding $\varphi: G \rightarrow \mathbb{R}$ such that $\overline{\varphi(G)}=\mathbb{R}$. Indeed, G can be embedded into $\mathbb{Q}^{\mathbb{N}}$ (see [HR]). In turn,
the last group obviously embeds into \mathbb{R}. It remains to note that if an infinite subgroup of \mathbb{R} is not isomorphic to \mathbb{Z} then it is dense in \mathbb{R}.

By Theorem 0.1 for $G=\mathbb{R}$, there is a weakly mixing \mathbb{R}-action T such that $\mathcal{M}(T)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\} \diamond \cdots$. Then by Lemma 2.6 the composition $T \circ \varphi=$ $\left(T_{\varphi(g)}\right)_{g \in G}$ is a weakly mixing G-action with $\mathcal{M}(T \circ \varphi)=\mathcal{M}(T)=\left\{p_{1}\right\} \diamond$ $\left\{p_{2}\right\} \diamond \cdots$.
3. Discrete countable Abelian group actions. In this section we prove Theorem 0.1 in the case when G is an infinite discrete countable Abelian group.

As in the previous section, given a countable discrete Abelian group J and $p>1$, we denote by Γ the semidirect product $G \times J^{p} \rtimes_{A} \mathbb{Z}(p)$, where $A: J^{p} \rightarrow J^{p}$ is the same (as in Section2) 'cyclic' group automorphism. From now on we will identify G with the corresponding subgroup in Γ.

Lemma 3.1 ([DS, Theorem 1.7]). Given G and $p>1$, there is J such that for a generic action T from \mathcal{A}_{Γ} the action $T \upharpoonright G$ is weakly mixing and $\mathcal{M}(T \upharpoonright G)=\{p\}$.

Notice that we can choose J to be either \mathbb{Z} or $\mathbb{Z}(q)^{\oplus \mathbb{N}}, q>1$ DS, Section 1].

Let $\left(g_{n}\right)_{n=1}^{\infty}$ be a sequence in G. We will say that $\left(g_{n}\right)_{n=1}^{\infty}$ is good if $g_{n} \rightarrow \infty$ and one of the following is satisfied:
(1) there is $g_{0} \in G$ such that $g_{n} \in\left\langle g_{0}\right\rangle$ for each n (it follows that g_{0} has infinite order),
(2) each g_{n} is of finite order and the orders of g_{n} are unbounded,
(3) the orders of g_{n} are bounded from above and g_{n} are independent $\left({ }^{5}\right)$. It is clear that G always contains a good sequence. Notice also that any subsequence of a good sequence is good. We need this notion to be able to apply the (C, F)-construction in the proof of Lemma 3.2 , which is the analog of Lemma 2.3.

Lemma 3.2. Let $\left(g_{k}\right)_{k=1}^{\infty}$ be a good sequence in G. For any $d \in G$ there exists a free action $S \in \mathcal{A}_{\Gamma}$ such that $U_{S}\left(g_{k_{n}}\right) \rightarrow U_{S}(d)$ for some subsequence $\left(g_{k_{n}}\right)_{n=1}^{\infty}$ of $\left(g_{k}\right)_{k=1}^{\infty}$.

Proof. Fix $d \in G$. First, we claim that there is an infinite measure preserving action T of Γ and subsequence $\left(g_{k_{n}}\right)_{n=1}^{\infty}$ such that $U_{T}\left(g_{k_{n}}\right) \rightarrow U_{S}(d)$. Recall that for μ infinite, we consider U_{T} in the entire space $L^{2}(X, \mu)$. We will construct T as $T=T^{(1)} \times T^{(2)}$, where $T^{(1)}$ and $T^{(2)}$ are (C, F)-actions of G and $J^{p} \rtimes \mathbb{Z}(p)$ respectively.

[^3]To construct $T^{(1)}$ we will select subsets $C_{n}, F_{n} \subset G$ and a subsequence $\left(g_{k_{n}}\right)_{n=1}^{\infty}$ of $\left(g_{k}\right)_{k=1}^{\infty}$ in such a way that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\#\left(C_{n} \cap\left(C_{n}-\left(g_{k_{n}}-d\right)\right)\right)}{\# C_{n}}=1 \tag{3.1}
\end{equation*}
$$

Then, arguing as in the proof of Lemma 2.3, the reader can easily deduce that

$$
\lim _{n \rightarrow \infty} \mu\left(T_{g_{k_{n}}-d} A \triangle A\right)=0
$$

for any $A \in \mathfrak{B}$, and hence $U_{T}\left(g_{k_{n}}-d\right) \rightarrow I$ as $n \rightarrow \infty$.
Thus our aim is to select C_{n}, F_{n} and k_{n} satisfying (1.1)-1.4), 1.6 and (3.1). This will be done inductively. Fix an increasing sequence of positive integers h_{n}. Suppose that we already have F_{n-1} and k_{n-1}. To satisfy (3.1) we want C_{n} to be an arithmetic progression with common difference $g_{k_{n}}-d$ long enough. We also need C_{n} to be independent of F_{n-1}. Consider separately three possible cases for $\left(g_{k}\right)_{k=1}^{\infty}$.
(i) There is $g_{0} \in G$ such that $g_{k}=m_{k} g_{0}, m_{k} \in \mathbb{Z}, k \in \mathbb{N}$. Without loss of generality we may assume that $m_{k}>0$ and $m_{k+1}>m_{k}, k \in \mathbb{N}$. Then let $k_{n}:=\max \left\{k \mid g_{k} \in F_{n-1}-F_{n-1}\right\}+1$. Clearly, $l g_{k_{n}} \notin F_{n-1}-F_{n-1}$ for any $l>0$ and hence $l\left(g_{k_{n}}-d\right)+F_{n-1} \cap l^{\prime}\left(g_{k_{n}}-d\right)+F_{n-1}=\emptyset$ for $l \neq l^{\prime}$.
(ii) Each g_{k} is of finite order and the orders are unbounded. Without loss of generality we may assume that $\#\left\{k \mid\right.$ ord $\left.g_{k}<N\right\}<\infty$ for each $N>0$. Given $0 \neq f \in F_{n-1}-F_{n-1}$ and $0<l \leq h_{n}$, let $D_{n, l}^{f}:=\left\{k>k_{n-1} \mid\right.$ $\left.l\left(g_{k}-d\right)=f\right\}$. We claim that each $D_{n, l}^{f}$ is finite. Indeed, if $l\left(g_{k}-d\right)=f$ for some k then for any k^{\prime} with ord $g_{k^{\prime}}>l$ ord g_{k} we have ord $\left(g_{k}-g_{k^{\prime}}\right)>l$ and hence $l\left(g_{k^{\prime}}-d\right) \neq l\left(g_{k}-d\right)=f$. Since there are only finitely many k^{\prime} with ord $g_{k^{\prime}} \leq l$ ord g_{k}, the set $D_{n, l}^{f}$ is finite and we can choose $k_{n}>k_{n-1}$ such that $k_{n} \notin D_{n, l}^{f}$ for $0 \neq f \in F_{n-1}-F_{n-1}, 0<l \leq h_{n}$. Then $l g_{k_{n}} \notin F_{n-1}-F_{n-1}$, $0<l \leq h_{n}$. In particular, $l\left(g_{k_{n}}-d\right)+F_{n-1} \cap l^{\prime}\left(g_{k_{n}}-d\right)+F_{n-1}=\emptyset$ for $0 \leq l<l^{\prime} \leq h_{n}$.
(iii) The orders of g_{k} are bounded from above and g_{k} are independent. In this case for any $0 \neq f \in F_{n-1}-F_{n-1}$ and $l>0$ there is at most one k with $l g_{k}=f$. Hence we can select $k_{n}>k_{n-1}$ in such a way that $l g_{k_{n}} \notin F_{n-1}-F_{n-1}$ whenever $l g_{k_{n}} \neq 0$.

In each of these three cases we set

$$
C_{n}:= \begin{cases}\left\{0,\left(g_{k_{n}}-d\right), 2\left(g_{k_{n}}-d\right), \ldots, h_{n}\left(g_{k_{n}}-d\right)\right\} & \text { if ord }\left(g_{k_{n}}-d\right)>h_{n} \\ \left\langle g_{k_{n}}-d\right\rangle & \text { otherwise }\end{cases}
$$

It follows that C_{n} and F_{n-1} are independent. Since

$$
\frac{\#\left(C_{n} \cap\left(C_{n}-\left(g_{k_{n}}-d\right)\right)\right)}{\# C_{n}} \leq \frac{h_{n}}{h_{n}+1}
$$

the C_{n} satisfy (3.1). Let $F_{n} \subset G$ be any subset satisfying (1.1), 1.4 and (1.6). Let $T^{(1)}$ be the (C, F)-action associated with $\left(C_{n}, F_{n}\right)_{n}$.
$T^{(2)}$ may be any (C, F)-action of $J^{p} \rtimes \mathbb{Z}(p)$. In view of the structure of J which is either \mathbb{Z} or $\mathbb{Z}(q)^{\oplus \mathbb{N}}, q>1$, such an action can be easily constructed. For instance, set

$$
\begin{aligned}
& F_{n}^{\prime}:=\left\{-\left(3^{n}-1\right) / 2, \ldots,\left(3^{n}-1\right) / 2\right\}^{p} \times \mathbb{Z}(p) \subset J^{p} \rtimes \mathbb{Z}(p) \\
& C_{n}^{\prime}:=\left\{-3^{n-1}, 0,3^{n-1}\right\}^{p} \times\{0\} \subset J^{p} \rtimes \mathbb{Z}(p)
\end{aligned}
$$

if $J=\mathbb{Z}$, and

$$
\begin{aligned}
& F_{n}^{\prime}:=(\underbrace{\mathbb{Z}(q) \oplus \cdots \oplus \mathbb{Z}(q)}_{n} \oplus\{0\} \oplus \cdots)^{p} \times \mathbb{Z}(p) \subset J^{p} \rtimes \mathbb{Z}(p), \\
& C_{n}^{\prime}:=(\underbrace{\{0\} \oplus \cdots \oplus\{0\}}_{n-1} \oplus \mathbb{Z}(p) \oplus\{0\} \oplus \cdots)^{p} \times\{0\} \subset J^{p} \rtimes \mathbb{Z}(p)
\end{aligned}
$$

if $J=\bigoplus_{n=1}^{\infty} \mathbb{Z}(q), q>1$. Clearly, $\left(C_{n}^{\prime}, F_{n}^{\prime}\right)_{n}$ satisfy $1.1-1.5$. Let $T^{(2)}$ be the (C, F)-action associated with $\left(C_{n}^{\prime}, F_{n}^{\prime}\right)_{n}$.

Then by construction $T=T^{(1)} \times T^{(2)}$ is an infinite measure preserving action of Γ such that $U_{T}\left(g_{k_{n}}\right) \rightarrow U_{S}(d)$ as $n \rightarrow \infty$.

Now let $S:=\widetilde{T}$ stand for the Poisson suspension of T (see Subsection 1.4). Then S is a free probability measure preserving Γ-action. Since the mapping $\mathcal{A}_{\Gamma}(X, \mu) \ni T \mapsto \widetilde{T} \in \mathcal{A}_{\Gamma}(\widetilde{X}, \widetilde{\mu})$ is continuous, $U_{S}\left(g_{k_{n}}\right) \rightarrow U_{S}(d)$ as $n \rightarrow \infty$.

Lemma 3.3. For any good sequence $\left(g_{n}\right)_{n=1}^{\infty}$ in G the following subsets are residual in \mathcal{A}_{Γ} :
$\mathcal{I}_{d}:=\left\{T \in \mathcal{A}_{\Gamma} \mid U_{T}(d)\right.$ is a limit point of $\left.\left\{U_{T}\left(g_{n}\right)\right\}_{n=1}^{\infty}\right\} \quad$ for any $d \in G$,
$\mathcal{O}:=\left\{T \in \mathcal{A}_{\Gamma} \mid 0\right.$ is a limit point of $\left.\left\{U_{T}\left(g_{n}\right)\right\}_{n=1}^{\infty}\right\}$.
Proof. \mathcal{O} and $\mathcal{I}_{d}, d \in G$, are G_{δ} subsets in \mathcal{A}_{Γ} by Lemma 1.1. We note that \mathcal{O} and \mathcal{I}_{d} are $\operatorname{Aut}(X, \mu)$-invariant. By [FW, Claim 18] the $\operatorname{Aut}(X, \mu)$ orbit of any free Γ-action is dense in \mathcal{A}_{Γ}. Therefore, it remains to show that \mathcal{O} and $\mathcal{I}_{d}, d \in G$, each contain at least one free action. Each \mathcal{I}_{d} is non-empty by Lemma 3.2. Each Poisson Γ-action is free and belongs to \mathcal{O} (OW].

Proof of Theorem 0.1 for G is a discrete countable Abelian group. Let $\Gamma_{1}:=G \times J_{1}^{p_{1}} \rtimes \mathbb{Z}\left(p_{1}\right)$ be the auxiliary group defined above for G and p_{1}. Fixing a good sequence in G and applying Lemmata 3.1 and 3.3 we deduce that there is an action $\widetilde{T}_{1} \in \mathcal{A}_{\Gamma_{1}}$ such that $T_{1}:=\widetilde{T}_{1} \upharpoonright G$ is weakly mixing, $\mathcal{M}\left(T_{1}\right)=\left\{p_{1}\right\}$ and $U_{T_{1}}\left(r_{n, 1}\right) \rightarrow I, U_{T_{1}}\left(g_{n, 1}\right) \rightarrow 0$, where $\left(r_{n, 1}\right)_{n=1}^{\infty},\left(g_{n, 1}\right)_{n=1}^{\infty}$ are good sequences in G.

Now let $\Gamma_{2}:=G \times J_{2}^{p_{2}} \rtimes \mathbb{Z}\left(p_{2}\right)$. By Lemmata 3.1 and 3.3 for a generic $\widetilde{T}_{2} \in \mathcal{A}_{\Gamma_{2}}$ the restriction $T_{2}:=\widetilde{T}_{2} \upharpoonright G$ satisfies the following conditions:
(1) T_{2} is weakly mixing,
(2) $\mathcal{M}\left(T_{2}\right)=\left\{p_{2}\right\}$,
(3) $U_{T_{2}}(d)$ is a limit point of $\left\{U_{T_{2}}\left(r_{n, 1}\right)\right\}_{n=1}^{\infty}$ for each $d \in G$,
(4) 0 is a limit point of $\left\{U_{T_{2}}\left(r_{n, 1}\right)\right\}_{n=1}^{\infty}$,
(5) I and 0 are limit points of $\left\{U_{T_{2}}\left(g_{n, 1}\right)\right\}_{n=1}^{\infty}$.

Thus $T_{1} \times T_{2}$ is weakly mixing with $\mathcal{M}\left(T_{1} \times T_{2}\right)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\}$ by Lemma 1.3 . Moreover, in view of (3) and (5), there are subsequences $\left(r_{n, 2}\right)_{n=1}^{\infty}$ and $\left(g_{n, 2}\right)_{n=1}^{\infty}$ of $\left(r_{n, 1}\right)_{n=1}^{\infty}$ and $\left(g_{n, 1}\right)_{n=1}^{\infty}$ such that $U_{T_{1} \times T_{2}}\left(r_{n}\right) \rightarrow I, U_{T_{1} \times T_{2}}\left(g_{n}\right)$ $\rightarrow 0$ as $n \rightarrow \infty$.

Continuing, we obtain a sequence of weakly mixing G-actions T_{i} such that $\mathcal{M}\left(T_{1} \times \cdots \times T_{k}\right)=\left\{p_{1}\right\} \diamond \cdots \diamond\left\{p_{k}\right\}$ for any $k>0$. It follows that $T:=T_{1} \times T_{2} \times \cdots$ is weakly mixing with $\mathcal{M}(T)=\left\{p_{1}\right\} \diamond\left\{p_{2}\right\} \diamond \cdots$.
4. Concluding remarks. The scheme of the proof also works for the groups of the form $\mathbb{R}^{m} \times G$ where G is a discrete countable Abelian group and $m>0$. For that we need to construct explicitly a 'rigid' Γ-action as in Lemmata 2.3 and 3.2 for $\Gamma=\mathbb{R}^{m} \times G \times J^{p} \rtimes \mathbb{Z}(p)$. Indeed, in both lemmata the required action was obtained as the product of two (C, F)-actions. Let us say that an element $g \in \Gamma$ is good if all but the first coordinate of g vanish. Then the analogs of Lemmata 2.3 and 3.2 for sequences of good elements can be easily proved by constructing separately two (C, F)-actions: an \mathbb{R}^{m}-action as in Lemma 2.3 and a $G \times J^{p} \rtimes \mathbb{Z}(p)$-action as in Lemma 3.2. Moreover, one may mimic the proof of Lemma 3.2 to extend it to any locally compact second countable Abelian group. Then the main result is still true for the classes of locally compact second countable Abelian groups considered in [DS.

Note that our realizations are weakly mixing but not mixing since they are rigid. The question whether there are mixing realizations of the sets considered is still open. In fact, the set of mixing G-actions is meager in \mathcal{A}_{G} endowed with the weak topology. Therefore the weak topology is not suitable to apply the Baire category argument. In contrast, Tikhonov introduced another (stronger than the weak) topology on $\mathcal{A}_{\mathbb{Z}}$ with respect to which the subset of mixing \mathbb{Z}-actions is Polish Ti1. Using this topology he proved by a 'generic' argument the existence of mixing transformations with homogeneous spectrum [Ti2]. It looks plausible that this approach may be useful to find mixing realizations of the sets considered in the present paper.

Acknowledgements. I would like to thank my advisor Alexandre Danilenko for introducing me to this subject and for numerous helpful discussions.

References

[Ag] O. N. Ageev, The homogeneous spectrum problem in ergodic theory, Invent. Math. 160 (2005), 417-446.
[CFS] I. P. Cornfeld, V. S. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, New York, 1982.
[Da1] A. I. Danilenko, A survey on spectral multiplicities of ergodic actions, Ergodic Theory Dynam. Systems, to appear.
[Da2] -, Explicit solution of Rokhlin's problem on homogeneous spectrum and applications, ibid. 26 (2006), 1467-1490.
[Da3] -, (C, F)-actions in ergodic theory, in: Geometry and Dynamics of Groups and Spaces, Progr. Math. 265, Birkhäuser, 2008, 325-351.
[DL] A. I. Danilenko and M. Lemańczyk, Spectral multiplicities for ergodic flows, Discrete Contin. Dynam. Systems, to appear.
[DS] A. I. Danilenko and A. V. Solomko, Ergodic Abelian actions with homogeneous spectrum, in: Contemp. Math. 532, Amer. Math. Soc., Providence, RI, 2010, 137148.
[Fr] K. Frączek, Cyclic space isomorphism of unitary operators, Studia Math. 124 (1997), 259-267.
[FW] M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. 6 (2004), 277-292.
[HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, New York, 1979.
[KaL] A. Katok and M. Lemańczyk, Some new cases of realization of spectral multiplicity function for ergodic transformations, Fund. Math. 206 (2009), 185-215.
[KwL] J. Kwiatkowski and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II, Studia Math. 116 (1995), 207-215.
[Nai] M. Naimark, Normed Rings, Noordhoff, Groningen, 1959.
[Ne] Yu. Neretin, Categories of Symmetries and Infinite Dimensional Groups, Oxford Univ. Press, 1996.
[OW] D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1-141.
[Roy] E. Roy, Poisson suspensions and infinite ergodic theory, Ergodic Theory Dynam. Systems 29 (2009), 667-683.
[Ry] V. V. Ryzhikov, Spectral multiplicities and asymptotic operator properties of actions with invariant measure, Sb. Math. 200 (2009), 1833-1845.
[Ti1] S. V. Tikhonov, A complete metric on the set of mixing transformations, ibid. 198 (2007), 575-596.
[Ti2] -, Mixing transformations with homogeneous spectrum, ibid. 202 (2011), 139160.

Anton V. Solomko
Institute for Low Temperature Physics \& Engineering
National Academy of Sciences of Ukraine
47 Lenin Ave.
Kharkov, 61164, Ukraine
E-mail: solomko.anton@gmail.com

[^0]: 2010 Mathematics Subject Classification: 37A15, 37A30.
 Key words and phrases: spectral multiplicity, ergodic action, (C, F)-construction, Poisson suspension.

[^1]: $\left({ }^{1}\right)$ Given $E, F \subset \mathbb{N}$, we denote by $E F$ their algebraic product $\{e f \mid e \in E, f \in F\}$.

[^2]: $\left.{ }^{(}{ }^{2}\right)$ Given a subset $A \subset G$, we denote by $\langle A\rangle$ the smallest subgroup of G containing A.
 $\left({ }^{3}\right)$ Since any (strongly) closed convex set is weakly closed.

[^3]: $\left({ }^{5}\right)$ That is, the subgroups $\left\langle g_{n}\right\rangle$ are independent.

