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New spectral multiplicities for ergodic actions

by

Anton V. Solomko (Kharkov)

Abstract. Let G be a locally compact second countable Abelian group. Given a mea-
sure preserving action T of G on a standard probability space (X,µ), let M(T ) denote
the set of essential values of the spectral multiplicity function of the Koopman represen-
tation UT of G defined in L2(X,µ) 	 C by UT (g)f := f ◦ T−g. If G is either a discrete
countable Abelian group or Rn, n ≥ 1, it is shown that the sets of the form {p, q, pq},
{p, q, r, pq, pr, qr, pqr} etc. or any multiplicative (and additive) subsemigroup of N are
realizable asM(T ) for a weakly mixing G-action T .

0. Introduction. Let G be a locally compact second countable Abelian
group and let T = (Tg)g∈G be a measure preserving action of G on a standard
probability space (X,B, µ). Denote by UT the induced Koopman unitary
representation of G in L2

0(X,µ) := L2(X,µ)	 C given by

UT (g)f := f ◦ T−g.
By the spectral theorem, there is a probability measure σ on the dual group
Ĝ called a measure of maximal spectral type of UT and a measurable field of
Hilbert spaces Ĝ 3 ω 7→ Hω such that

L2
0(X,µ) =

�⊕

Ĝ

Hω dσ(ω) and UT (g) =
�⊕

Ĝ

ω(g)Iω dσ(ω), g ∈ G,

where Iω is the identity operator on Hω [Nai]. The map mT : Ĝ 3 ω 7→
dimHω ∈ N ∪ {∞} is called the spectral multiplicity function of UT . Let
M(T ) stand for the set of essential values of mT . We are interested in the
following spectral multiplicity problem:

(Pr) Which subsets E ⊂ N are realizable as M(T ) for an ergodic (or
weakly mixing) G-action T?

This problem was studied by a number of authors (see the recent survey
[Da1] and the references therein) mainly in the case G = Z. It is known, in
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particular, that a subset E ⊂ N is realizable in each of the following cases:

• 1 ∈ E ([KwL] for G = Z, [DL] for G = R),
• 2 ∈ E ([KaL] for G = Z, [DL] for G = R),
• E = {p} for arbitrary p ∈ N ([Ag], [Ry], [Da2] for G = Z, [DS] for Rn

and an arbitrary discrete countable Abelian group),
• E = n · F for arbitrary F 3 1 and n > 1 ([Da2] for G = Z).

Our aim is to obtain some new spectral multiplicities that first appeared
in [Ry] for G = Z. Given E,F ⊂ N, let E � F := E ∪ F ∪ EF (1). In this
notation, {p} � {q} = {p, q, pq}, {p} � {q} � {r} = {p, q, r, pq, pr, qr, pqr} etc.

Theorem 0.1. Let G be either a discrete countable Abelian group or
Rm with m ≥ 1. Given a (finite or infinite) sequence of positive integers
p1, p2, . . ., there exists a weakly mixing probability measure preserving G-
action T such thatM(T ) = {p1} � {p2} � · · · .

Since any multiplicative subsemigroup of N can be represented in the
form {p1} � {p2} � · · · , we obtain the following

Corollary 0.2. Any multiplicative (and hence any additive) subsemi-
group E of N is realizable asM(T ) for a weakly mixing G-action T .

To prove Theorem 0.1 we adapt the idea from [Ry]. The required action
is the product T1 × T2 × · · · , where Ti is a weakly mixing G-action with
homogeneous spectrum of multiplicity pi. The existence of such actions was
proved in [DS] via a ‘generic’ argument originating in [Ag]. To ‘control’ the
spectral multiplicities of Cartesian products of such actions we furnish Ti
with certain asymptotical operator properties using both ‘generic’ arguments
and the (C,F )-technique.

In Section 1 we list some basic definitions and facts that will be used
to prove the main theorem. Subsection 1.1 contains the detailed proofs of
some results on spectral multiplicities for unitary representations. In Sub-
section 1.3 we briefly outline the (C,F )-construction of measure preserving
actions which is an algebraic counterpart of the classical geometric ‘cutting-
and-stacking’ technique, and in 1.4 we recall the definition and some basic
properties of the Poisson suspension, which allows us to obtain finite measure
preserving actions from infinite measure preserving ones. Both techniques are
used to explicitly construct rigid actions in Lemmata 2.3 and 3.2. In Sec-
tion 2 we prove Theorem 0.1 in the case of G = Rm. In general, the proof
goes along the lines developed in [Ry]. To prove Theorem 0.1 for an arbitrary
discrete countable Abelian group we need some modification of this scheme.
This is done in Section 3. Though both proofs can be given in the spirit of

(1) Given E,F ⊂ N, we denote by EF their algebraic product {ef | e ∈ E, f ∈ F}.
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Section 3, the constraints in Section 3 seem to be artificial and this is the
main reason why we consider separately the two cases for G.

1. Preliminaries

1.1. Unitary representations. Denote by U(H) the group of unitary
operators on a separable Hilbert space H. We endow U(H) with the (Polish)
strong operator topology (which on U(H) is also the weak operator topol-
ogy). Given a locally compact second countable group Γ , we furnish the
product space U(H)Γ with the (Polish) topology of uniform convergence on
compact subsets in Γ . Denote by UΓ (H) ⊂ U(H)Γ the subset of all unitary
representations of Γ in H. Obviously, UΓ (H) is closed in U(H)Γ and hence
Polish in the induced topology. Let B(H) stand for the set of all bounded lin-
ear operators on H endowed with the weak operator topology. By a unitary
polynomial on Γ we mean a mapping P : UΓ (H)→ B(H) of the form

P (U) = α1U(g1) + · · ·+ αnU(gn), αi ∈ C, gi ∈ Γ, U ∈ UΓ (H).
We now list some lemmata that will be needed when proving the main the-
orem.

Lemma 1.1. Given a unitary polynomial P : UΓ (H) → B(H) and a se-
quence (gn)

∞
n=1 in Γ , the set

P := {U ∈ UΓ (H) | P (U) is a limit point of {U(gn)}n∈N}
is a Gδ subset in UΓ (H).

Proof. Let d stand for a metric compatible with the weak topology on
B(H). Then

P =
∞⋂
m=1

∞⋂
N=1

∞⋃
n=N

{U ∈ UΓ (H) | d(P (U), U(gn)) < 1/m}.

Obviously, the sets {U ∈ UΓ (H) | d(P (U), U(gn)) < 1/m} are open in
UΓ (H).

Recall that two unitary representations U, V ∈ UG(H) of an Abelian
group G are called spectrally disjoint if their measures of maximal spectral
type, σU and σV , are mutually singular: σU ⊥ σV . We denote byM(U) the
essential image of the spectral multiplicity function of U . It is clear that if U
and V are spectrally disjoint thenM(U ⊕V ) =M(U)∪M(V ). Lemma 1.2
gives us a useful sufficient condition of spectral disjointness.

Lemma 1.2. Let G be a locally compact second countable Abelian group.
Let U, V ∈ UG(H). If there is a sequence (gn)

∞
n=1 ⊂ G such that

U(gn)→ I and V (gn)→ 0 as n→∞,
then U and V are spectrally disjoint.
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Proof. Let σU and σV be the measures of maximal spectral type of U
and V respectively. By the spectral theorem,

H =
�⊕

Ĝ

H(1)
ω dσU (ω), U(g) =

�⊕

Ĝ

ω(g)Iω dσU (ω),

H =
�⊕

Ĝ

H(2)
ω dσV (ω), V (g) =

�⊕

Ĝ

ω(g)Iω dσV (ω).

Suppose σU is equivalent to σV on some subset A ⊂ Ĝ with σU (A) > 0.
Take any 0 6= f ∈ H with supp f ⊂ A. Then on the one hand,�

Ĝ

〈ω(gn)f(ω), f(ω)〉 dσU (ω) = 〈U(gn)f, f〉 → ‖f‖2 6= 0.

On the other hand,
�

Ĝ

〈ω(gn)f(ω), f(ω)〉 dσU (ω)

=
�

Ĝ

〈ω(gn)f(ω), f(ω)〉
dσU
dσV

(ω) dσV (ω) =

〈
V (gn)f,

dσU
dσV

f

〉
→ 0.

This contradiction proves that σU ⊥ σV .

Given U, V ∈ UG(H), by their tensor product we mean the unitary rep-
resentation U ⊗ V of G in H ⊗ H defined by (U ⊗ V )(g) := U(g) ⊗ V (g).
If σU and σV are measures of maximal spectral type of U and V , then the
convolution σU ∗ σV is a measure of maximal spectral type of U ⊗ V . Let

σU × σV =
�

Ĝ

σω d(σU ∗ σV )(ω)

stand for the disintegration of σU × σV with respect to the projection map
Ĝ× Ĝ 3 (ω1, ω2) 7→ ω1ω2 ∈ Ĝ. Then the map Ĝ 3 ω 7→ dim(L2(Ĝ× Ĝ, σω))
is the multiplicity function of U ⊗ V .

The following lemma, which is an obvious generalization of [Ry, Lemma
3.1], allows us to ‘control’ the spectral multiplicities of tensor products. Re-
call that a unitary representation U ∈ UG(H) has simple spectrum (that is,
M(U) = {1}) if and only if there is ϕ ∈ H (called a cyclic vector for U)
such that the smallest closed subspace Hϕ of H containing all the vectors
U(g)ϕ, g ∈ G, is the entire H. Then Hϕ is called the cyclic subspace of ϕ.

Lemma 1.3. Let G be a locally compact second countable Abelian group
and let U, V ∈ UG(H). Suppose there exists a sequence (gn)

∞
n=1 ⊂ G and

subsequences (gnk(i))
∞
k=1, i ∈ J , such that

(a) U(gn)→ I as n→∞,
(b) V (gnk(i))→ V (di) as k →∞ for each i ∈ J ,
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where {di}i∈J ⊂ G is an at most countable subset such that 〈di〉i∈J (2) is
dense in G. Then

(1) if U and V have simple spectrum, so does U ⊗ V ,
(2) M(U ⊗ V ) =M(U)M(V ).

Proof. (1) Let ϕ and ψ be cyclic vectors for U and V respectively. We
claim that ϕ ⊗ ψ is a cyclic vector for U ⊗ V . Indeed, the cyclic subspace
Hϕ⊗ψ of ϕ ⊗ ψ is weakly closed (3), invariant under U(g) ⊗ V (g) for each
g ∈ G and contains all the vectors U(g)ϕ⊗ V (g)ψ, g ∈ G. Hence by (a) and
(b) it contains all the weak limits

ϕ⊗ V (di)ψ = lim
k→∞

U(gk(i))ϕ⊗ V (gk(i))ψ,

ϕ⊗ V (di + dj)ψ = lim
k→∞

U(gk(j))ϕ⊗ V (gk(j))V (di)ψ, etc.

The space Hϕ⊗ψ contains therefore all the vectors ϕ ⊗ V (d)ψ, d ∈ 〈di〉i∈J .
Since Hϕ⊗ψ is invariant under U(g)⊗V (g) for each g ∈ G it contains all the
vectors U(g)ϕ ⊗ V (d + g)ψ, g ∈ G, d ∈ 〈di〉i∈J , which form a total system
in H⊗H. Hence U ⊗ V has simple spectrum.

(2) Let
U =

⊕
p∈M(U)

pU (p) and V =
⊕

q∈M(V )

qV (q),

where U (p), p ∈ M(U), and V (q), q ∈ M(V ), are spectrally disjoint and
have simple spectrum. In other words,

⊕
p U

(p) and
⊕

q V
(q) have simple

spectrum. Then for U ⊗ V we have the following decomposition:

U ⊗ V =
⊕

p∈M(U)
q∈M(V )

pq(U (p) ⊗ V (q)).

As already shown in (1),
⊕

p,q U
(p) ⊗ V (q) =

⊕
p U

(p) ⊗
⊕

q V
(q) has simple

spectrum. This means that U (p)⊗V (q), (p, q) ∈M(U)×M(V ), are spectrally
disjoint and have simple spectrum. HenceM(U ⊗ V ) =M(U)M(V ).

Following [Ry], we will say that U and V are strongly disjoint if the map
(Ĝ × Ĝ, σU × σV ) 3 (ω1, ω2) 7→ ω1ω2 ∈ (Ĝ, σU ∗ σV ) is one-to-one mod 0.
If U and V have simple spectrum then they are strongly disjoint if and
only if U ⊗ V has simple spectrum, and hance for any two strongly disjoint
unitary representations U and V we have M(U ⊗ V ) = M(U)M(V ). In
fact, Lemma 1.3 gives a sufficient condition of strong disjointness for unitary
representations.

(2) Given a subset A ⊂ G, we denote by 〈A〉 the smallest subgroup of G containing A.
(3) Since any (strongly) closed convex set is weakly closed.
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1.2. Group actions. Let Γ be a locally compact second countable
group. Given a standard non-atomic probability space (X,B, µ), denote by
Aut(X,µ) the group of invertible µ-preserving transformations of X. By an
action T of Γ we mean a continuous group homomorphism T : Γ 3 g 7→ Tg ∈
Aut(X,µ). Denote by AΓ ⊂ Aut(X,µ)Γ the subset of all measure preserving
actions of Γ on (X,B, µ). Recall that UT denotes the Koopman representa-
tion of Γ associated with T ∈ AΓ . We endow AΓ with the weakest topology
which makes the mapping

AΓ 3 T 7→ UT ∈ UΓ (L2
0(X,µ)).

continuous. Then AΓ is Polish. It is easy to verify that a sequence T (n)

of Γ -actions converges to T if and only if supg∈K µ(T
(n)
g A4 TgA) → 0 as

n → ∞ for each compact K ⊂ Γ and A ∈ B. There is a natural action of
Aut(X,µ) on AΓ by conjugation:

(R · T )g = RTgR
−1 for R ∈ Aut(X,µ), T ∈ AΓ , g ∈ Γ ,

and this action is obviously continuous.
If µ(X) =∞ we define the Polish space AΓ (X,µ) of all infinite measure

preserving Γ -actions in a similar way. Notice that for µ infinite the Koopman
representation associated with T ∈ AΓ (X,µ) is considered in the entire space
L2(X,µ).

1.3. (C,F )-construction. We now briefly outline the (C,F )-construc-
tion of measure preserving actions for locally compact groups. For details
see [Da3] and the references therein.

Let Γ be a unimodular locally compact second countable amenable group.
Fix a (σ-finite) left Haar measure λ on it. Given two subsets E,F ⊂ Γ , we
denote by EF their algebraic product, i.e. EF = {ef | e ∈ E, f ∈ F}. The
set {e−1 | e ∈ E} is denoted by E−1. If E is a singleton, say E = {e}, then
we will write eF for EF .

To define a (C,F )-action of Γ we need two sequences (Fn)∞n=0 and (Cn)
∞
n=1

of subsets in Γ such that the following conditions are satisfied:

(Fn)
∞
n=0 is a Følner sequence in Γ ,(1.1)

Cn is finite and #Cn > 1,(1.2)
FnCn+1 ⊂ Fn+1,(1.3)
Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1.(1.4)

We equip Fn with the measure (#C1 · · ·#Cn)−1λ�Fn and endow Cn with
the equidistributed probability measure. Let Xn := Fn ×

∏
k>nCk stand for

the product of measure spaces. Define an embedding Xn → Xn+1 by setting

(fn, cn+1, cn+2, . . .) 7→ (fncn+1, cn+2, . . .).
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It is easy to see that it is measure preserving. Then X1 ⊂ X2 ⊂ · · · . Let
X :=

⋃∞
n=0Xn denote the inductive limit of this sequence of measure spaces

and let B and µ denote the corresponding Borel σ-algebra and measure
on X. Then X is a standard Borel space and µ is a σ-finite measure on it.
It is finite if

(1.5)
∞∏
n=1

λ(Fn+1)

λ(Fn)#Cn+1
<∞,

and infinite if

(1.6)
∞∏
n=1

λ(Fn+1)

λ(Fn)#Cn+1
=∞.

If (1.5) is satisfied then we choose (i.e., normalize) λ in such a way that
µ(X) = 1. Given a Borel subset A ⊂ Fn, we put

[A]n := {x ∈ X | x = (fn, cn+1, cn+2, . . .) ∈ Xn and fn ∈ A}

and call this set an n-cylinder. It is clear that the σ-algebra B is generated
by the family of all cylinders.

To construct a µ-preserving action of Γ on (X,B, µ), fix a filtration
K1 ⊂ K2 ⊂ · · · of Γ by compact subsets. Thus

⋃∞
m=1Km = Γ . Given

n,m ∈ N, we set

L(n)
m :=

( ⋂
k∈Km

(k−1Fn) ∩ Fn
)
×
∏
k>n

Ck ⊂ Xn,

R(n)
m :=

( ⋂
k∈Km

(kFn) ∩ Fn
)
×
∏
k>n

Ck ⊂ Xn.

It is easy to verify that L(n)
m+1 ⊂ L

(n)
m ⊂ L

(n+1)
m and R(n)

m+1 ⊂ R
(n)
m ⊂ R

(n+1)
m .

We define a Borel mapping Km × L(n)
m 3 (g, x) 7→ T

(n)
m,gx ∈ R(n)

m by setting
for x = (fn, cn+1, cn+2, . . .),

T (n)
m,g(fn, cn+1, cn+2, . . .) := (gfn, cn+1, cn+2, . . .).

Now let Lm :=
⋃∞
n=1 L

(n)
m and Rm :=

⋃∞
n=1R

(n)
m . Then a Borel one-to-

one mapping Tm,g : Km × Lm 3 (g, x) 7→ Tm,gx ∈ Rm is well defined by
Tm,g�L

(n)
m = T

(n)
m,g for g ∈ Km and n ≥ 1. It is easy to see that Lm ⊃ Lm+1,

Rm ⊃ Rm+1 and Tm,g�Lm+1 = Tm+1,g for all m. It follows from (1.1) that
µ(Lm) = µ(Rm) = 1 for allm ∈ N. Finally we set X̂ :=

⋂∞
m=1 Lm∩

⋂∞
m=1Rm

and define a Borel mapping T : Γ × X̂ 3 (g, x) 7→ Tgx ∈ X̂ by setting
Tgx := Tm,gx for some (and hence any) m such that g ∈ Km. It is clear that
µ(X̂) = 1. Thus T = (Tg)g∈Γ is a free Borel measure preserving action of Γ
on a conull subset of the standard Borel space (X,B, µ). It is easy to verify
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that T does not depend on the choice of the filtration (Km)
∞
m=1. The action

T is called the (C,F )-action of Γ associated with (Cn+1, Fn)n≥0.
We now recall some basic properties of (X,B, µ, T ). Given Borel subsets

A,B ⊂ Fn, we have

[A ∩B]n = [A]n ∩ [B]n, [A ∪B]n = [A]n ∪ [B]n,

[A]n = [ACn+1]n+1 =
⊔

c∈Cn+1

[Ac]n+1,

Tg[A]n = [gA]n if gA ⊂ Fn.
Each (C,F )-action is of rank one. Note also that the (C,F )-construction re-
spects Cartesian products. Namely, the product of (C,F )-actions (T (i)

g )g∈Gi

associated with (C
(i)
n , F

(i)
n )n, i = 1, 2, is the (C,F )-action of G1 × G2 asso-

ciated with (C
(1)
n × C(2)

n , F
(1)
n × F (2)

n )n.

1.4. Poisson suspension. Let (X,B) be a standard Borel space and
let µ be an infinite σ-finite non-atomic measure on X. Fix an increasing
sequence of Borel subsets X1 ⊂ X2 ⊂ · · · with

⋃∞
i=1Xi = X and µ(Xi) <∞

for each i. A Borel subset is called bounded if it is contained in some Xi.
Let X̃i denote the space of finite measures on Xi. For each bounded subset
A ⊂ Xi, let NA stand for the map

X̃i 3 ω 7→ ω(A) ∈ R.

Denote by B̃i the smallest σ-algebra on X̃i in which all the maps NA, A ∈
B ∩ Xi, are measurable. It is well known that (X̃i, B̃i) is a standard Borel
space. Denote by (X̃, B̃) the projective limit of the sequence

(X̃1, B̃1)← (X̃2, B̃2)← · · · ,

where the arrows denote the (Borel) natural restriction maps. Then (X̃, B̃) is
a standard Borel space. To put it in another way, X̃ is the space of measures
on X which are σ-finite along (Xi)i>0. Then there is a unique probability
measure µ̃ on (X̃, B̃) such that

(1) NA maps µ̃ to the Poisson distribution with parameter µ(A), i.e.

µ̃({ω | NA(ω) = j}) = µ(A)j exp(−µ(A))
j!

for all bounded A ⊂ X and integer j ≥ 0 and
(2) if A and B are disjoint bounded subsets of X then the random vari-

ables NA and NB on (X̃, B̃, µ̃) are independent.

Let G be a locally compact second countable group and let T be a µ-
preserving action of G on X such that Tg preserves the subclass of bounded
subsets for each g ∈ G. Then T induces a µ̃-preserving action T̃ of G on X̃ by
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the formula T̃gω := ω◦T−g. We recall that the dynamical system (X̃, B̃, µ̃, T̃ )
is called the Poisson suspension of (X,B, µ, T ) (see [CFS], [Roy] for the case
G = Z).

The well known Fock representation of L2(X̃, µ̃) gives an isomorphism

L2(X̃, µ̃) '
∞⊕
n=0

L2(X,µ)�n,

where L2(X,µ)�n is the nth symmetric tensor power of L2(X,µ), with
L2(X,µ)�0 = C. The Koopman representation U

T̃
⊕ P0 (considered on

L2(X̃, µ̃)) is unitarily equivalent to the exponential of UT :

U
T̃
⊕ P0 ' expUT =

∞⊕
n=0

U�nT ,

where P0 is the orthogonal projection on C ⊂ L2(X̃, µ̃) and U�nT is the
nth symmetric tensor power of UT [Ne]. Recall that since µ is infinite, we
consider UT in the entire space L2(X,µ). It follows, in particular, that the
mapping AΓ (X,µ) 3 T 7→ T̃ ∈ AΓ (X̃, µ̃) is continuous. T̃ is rigid (for the
sequence gn) if and only if T is rigid (for gn). If T has no invariant subsets
of finite positive measure then T̃ is weakly mixing [Roy].

2. Rm-actions. In this section we prove Theorem 0.1 in the case when
G = Rm.

For given p > 1, let A : Zp → Zp denote the ‘cyclic’ group automorphism

A(x1, x2, . . . , xp) = (xp, x1, . . . , xp−1).

Following [DS], denote by Γ the semidirect product (4)

Γ := G× Zp oA Z(p)
with multiplication law

(g, x, n)(h, y, k) := (g + h, x+Any, n+ k)

for g, h ∈ G, x, y ∈ Zp, n, k ∈ Z(p). We will identify G with the subgroup
{(g, 0, 0) | g ∈ G} ⊂ Γ . Let EΓ ⊂ AΓ stand for the subset of all free ergodic
Γ -actions. Then EΓ is a Gδ subset in AΓ and hence it is Polish space with
the induced topology [DS]. To prove Theorem 0.1 we will use a ‘generic’
argument and the following facts will be needed.

Lemma 2.1 ([DS, Theorem 2.8]). For a generic action T ∈ EΓ the action
T �G is weakly mixing andM(T �G) = {p}.

Lemma 2.2 ([DS, Lemma 2.4]). The Aut(X,µ)-orbit of any action T ∈EΓ
is dense in EΓ .

(4) By Z(p) we denote a cyclic group of order p, i.e. Z(p) = Z/pZ = {0, 1, . . . , p− 1}.
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We will apply Lemma 2.2 to show that the set of Γ -actions with certain
properties is dense in EΓ . However to apply this lemma we will need at
least one action in this set. This single action is constructed explicitly in
Lemma 2.3.

Lemma 2.3. For any sequence (gk)
∞
k=1 ⊂ G with gk →∞, there exists a

(C,F )-action T ∈ EΓ such that UT (gkn)→ I for some subsequence (gkn)
∞
n=1.

Proof. To construct the (C,F )-action we shall determine a sequence
(Cn+1, Fn)

∞
n=0. This will be done inductively. Let Fn = F ′n × F ′′n and Cn =

C ′n × C ′′n, where F ′n, C ′n ⊂ G, F ′′n , C ′′n ⊂ Zp o Z(p).
First, we claim that the sets F ′n, C ′n ⊂ G = Rm and a subsequence

(gkn)
∞
n=1 can be chosen in such a way that

lim
n→∞

#(C ′n ∩ (C ′n − gkn))
#C ′n

= 1.

To show this select a subsequence (gkn)
∞
n=1 such that gkn/|gkn | converges

(to some point of the unit sphere) as n → ∞. From now on we will write
gn instead of gkn for short. Let gn = (g

(1)
n , . . . , g

(m)
n ) ∈ Rm. Without loss of

generality we may assume that g(i)n > 0, i = 1, . . . ,m, and g
(1)
n → ∞. In

the other cases the proof is similar. Fix a sequence of positive numbers αn
with

∑∞
n=1 αn < ∞. By replacing (gn)

∞
n=1 with a subsequence if necessary,

we may assume that
g
(1)
n+1

g
(1)
n

>
1

αn
+ 1.

We will construct C ′n and F ′n inductively. Choose C ′1 and F ′0 arbitrarily.
Now suppose that we already have C ′n−1 and F ′n−1 = (−a(1)n−1, a

(1)
n−1)× · · · ×

(−a(m)
n−1, a

(m)
n−1), where a

(i)
n−1 > 0 and a(1)n−1 = g

(1)
n /2. Our purpose is to define

C ′n and F ′n. Set

hn :=

⌊
g
(1)
n+1 − g

(1)
n

2g
(1)
n

⌋
>

1

αn
− 1

2
.

In particular, (2hn+1)g
(1)
n < g

(1)
n+1 < (2hn+1)g

(1)
n +2g

(1)
n and 2hn+1 > 2/αn.

Select integers w(2)
n , . . . , w

(m)
n > 0 in such a way that

hng
(i)
n

a
(1)
n−1(2w

(i)
n + 1)

< αn.

We set

An := {(0, 2l(2)a(2)n−1, . . . , 2l
(m)a

(m)
n−1) | l

(i) ∈ Z, −w(i)
n ≤ l(i) ≤ w(i)

n } ⊂ Rm,

C ′n :=

hn⊔
k=−hn

(An + kgn).
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Let also a(1)n := g
(1)
n+1/2 and a

(i)
n := (2w

(i)
n + 1)a

(i)
n−1 + hng

(i)
n , i = 2, . . . ,m.

Set F ′n := (−a(1)n , a
(1)
n )× · · · × (−a(m)

n , a
(m)
n ). Then, by construction,

λ(F ′n)

λ(F ′n−1)#C
′
n

=
g
(1)
n+1

g
(1)
n (2hn + 1)

m∏
i=2

2a
(i)
n

2a
(i)
n−1(2w

(i)
n + 1)

<

(
1 +

2

2hn + 1

) m∏
i=2

(
1 +

hng
(i)
n

2w
(i)
n + 1

)
< (1 + αn)

m.

Thus the conditions (1.1)–(1.5) hold for (F ′n, C
′
n)n. It also follows from the

definition of C ′n that

#(C ′n ∩ (C ′n − gn))
#C ′n

=
2hn

2hn + 1
→ 1.

Secondly, let C ′′n and F ′′n be any subsets of ZpoZ(p) satisfying (1.1)–(1.5).
For instance, set

F ′′n := {−(3n − 1)/2, . . . , (3n − 1)/2}p × Z(p) ⊂ Zp o Z(p),
C ′′n := {−3n−1, 0, 3n−1}p × {0} ⊂ Zp o Z(p).

Let T be the (C,F )-action associated with (Cn, Fn)n = (C ′n × C ′′n,
F ′n × F ′′n )n. As was mentioned in Section 1.3, T is then the product of the
two (C,F )-actions T (1) = (T

(1)
g )g∈G and T (2) = (T

(2)
z )z∈ZpoZ(p) associated

with (C ′n, F
′
n)n and (C ′′n, F

′′
n )n respectively. Since gn ∈ G, we have

lim
n→∞

#(Cn ∩ g−1n Cn)

#Cn
= 1.

We claim that limn→∞ µ(TgnA 4 A) = 0 for any A ∈ B. It suffices to
consider the cylinders [A]n, A ⊂ Fn. Fix ε > 0 and select n such that

(2.1)
#(Cn \ g−1n Cn)

#Cn
< ε.

Let A ⊂ Fn−1. Notice that gn commutes with all the elements of Γ . Thus

[A]n−1 =
⊔
c∈Cn

[Ac]n = A1 t
⊔

c∈Cn∩gnCn

[Ac]n = A2 t
⊔

c∈Cn∩g−1
n Cn

[Ac]n,

where A1 :=
⊔
c∈Cn\gnCn

[Ac]n, A2 :=
⊔
c∈Cn\g−1

n Cn
[Ac]n and µ(Ai) < ε

by (2.1). On the other hand,

Tgn [A]n−1 = TgnA2 t
⊔

c∈Cn∩g−1
n Cn

Tgn [Ac]n = TgnA2 t
⊔

c∈Cn∩g−1
n Cn

[gnAc]n

= TgnA2 t
⊔

c∈Cn∩gnCn

[Ac]n.
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Hence Tgn [A]n−1 4 [A]n−1 ⊂ A1 ∪ TgnA2 and µ(Tgn [A]n−1 4 [A]n−1) < 2ε.
The claim is proven. It follows that UT (gn)→ I as n→∞.

Since any (C,F )-action is free and ergodic, T ∈ EΓ .

As was mentioned above, to prove the main result we will apply the Baire
category theorem, so the following lemma will be useful.

Lemma 2.4. Given a sequence gn → ∞ in G, the following subsets are
residual in EΓ :

I := {T ∈ EΓ | I is a limit point of {UT (gn)}∞n=1},
O := {T ∈ EΓ | 0 is a limit point of {UT (gn)}∞n=1}.

Proof. It follows from Lemma 1.1 that I and O are both Gδ in EΓ . Notice
also that they are both Aut(X,µ)-invariant. Therefore in view of Lemma 2.2
it remains to show that they each contain at least one free ergodic action.
The set I is non-empty by Lemma 2.3. Consider the action of Γ on itself
by translations. This action preserves the (σ-finite, infinite) Haar measure.
The corresponding Poisson suspension of this action (see Section 1.4) is a
probability preserving free Γ -action and it belongs to O (see [OW]).

Lemma 2.5 will be the main ingredient in the proof of Theorem 0.1. In
general, its proof goes along the lines developed in [Ry] for Z-actions.

Lemma 2.5. Given a rigid weakly mixing S ∈ AG and p > 0, there exists
a weakly mixing T ∈ AG such that S×T is rigid, weakly mixing and satisfies
M(S × T ) =M(S) � {p}.

Moreover, if (rn)∞n=1 and (gn)
∞
n=1 are sequences in G such that US(rn)→I

and US(gn)→ 0, then US×T (r′n)→ I and US×T (g′n)→ 0 as n→∞ for some
subsequences (r′n)

∞
k=1 and (g′n)

∞
k=1.

Proof. Fix sequences (rn)∞n=1 and (gn)
∞
n=1 in G such that

US(rn)→ I and US(gn)→ 0.(2.2)

Let also 〈d1, . . . , d2m〉 be dense in G. Let Γ := G × Zp oA Z(p) stand for
the auxiliary non-Abelian group defined above. We claim that for a generic
T̃ ∈ EΓ , the G-action T := T̃ �G has the following properties:

(1) T is weakly mixing,
(2) M(T ) = {p},
(3) 0, I and UT (d1), . . . , UT (d2m) are limit points of the set {UT (rn)}n∈N,
(4) 0 and I are limit points of {UT (gn)}n∈N.

The properties (1)–(2) are generic by Lemma 2.1. Since UT (d) is a limit
point of {UT (rn)}∞n=1 if and only if I is a limit point of {UT (rn − d)}∞n=1,
Lemma 2.4 implies (3)–(4) for a generic T̃ ∈ EΓ . Hence there is an action
satisfying all of these conditions.
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Now let us show that T is the required action. Lemma 1.3, in view of
(2.2) and (3), implies that M(US ⊗ UT ) = pM(US). Since the Koopman
representation is considered on the space L2(X,µ)	C, we have the decom-
position

(2.3) US×T = (1⊗ UT )⊕ (US ⊗ UT )⊕ (US ⊗ 1),

where 1 denotes the identity operator on C. If 1⊗ UT , US ⊗ UT , US ⊗ 1 are
pairwise spectrally disjoint then

M(S × T ) = {p} ∪ pM(S) ∪M(S) =M(S) � {p}.
Apply (3) and (4) and fix a subsequence (r′′n)∞n=1 of (rn)∞n=1 and a subsequence
(g′′n)

∞
n=1 of (gn)∞n=1 such that UT (r′′n) → 0 and UT (g′′n) → I as n → ∞. The

spectral disjointness for each pair of terms in (2.3) follows from Lemma 1.2,
since

(US ⊗ 1)(r′′n)→ I, (US ⊗ UT )(r′′n)→ 0,

(1⊗ UT )(g′′n)→ I, (US ⊗ UT )(g′′n)→ 0,

(1⊗ UT )(g′′n)→ I, (US ⊗ 1)(g′′n)→ 0.

It is clear that S × T is weakly mixing. By (3) and (4) there are subse-
quences (r′n)∞n=1 and (g′n)

∞
n=1 of (rn)∞n=1 and (gn)

∞
n=1 such that UT (r′n) → I

and UT (g′n)→ 0. Hence US×T (r′n)→ I and US×T (g′n)→ 0.

Proof of Theorem 0.1 for G = Rm. Consider the auxiliary group Γ1 :=

G×Zp1oZ(p1) defined above. Let T̃1 ∈ EΓ1 be such that T1 := T̃1�G is weakly
mixing,M(T1) = {p1} and UT1(rn,1) → I, UT1(gn,1) → 0 as n → ∞, where
(rn,1)

∞
n=1, (gn,1)∞n=1 are some sequences in G. Since all these properties are

generic for the actions from EΓ1 by Lemmata 2.1 and 2.4, there is an action
T̃1 possessing all of them.

Now we apply Lemma 2.5 and choose a weakly mixing T2 ∈ AG such
that M(T1 × T2) = {p1} � {p2} and UT1×T2(rn,2) → I, UT1×T2(gn,2) → 0
as n→∞, where (rn,2)

∞
n=1 and (gn,2)

∞
n=1 are subsequences of (rn,1)∞n=1 and

(gn,1)
∞
n=1 respectively.

By induction, given a weakly mixing G-action T1 × · · · × Tk−1 with

M(T1 × · · · × Tk−1) = {p1} � · · · � {pk−1},
UT1×···×Tk−1

(rn,k−1)→ I, UT1×···×Tk−1
(gn,k−1)→ 0,

by Lemma 2.5 there exists a weakly mixing Tk ∈ AG such that

M(T1 × · · · × Tk) = {p1} � · · · � {pk},(2.4)
UT1×···×Tk(rn,k)→ I, UT1×···×Tk(gn,k)→ 0,(2.5)

where (rn,k)
∞
n=1 and (gn,k)

∞
n=1 are suitable subsequences of (rn,k−1)∞n=1 and

(gn,k−1)
∞
n=1 respectively. This proves the theorem if the sequence p1, p2, . . . is

finite. Otherwise we obtain an infinite sequence of weakly mixing G-actions
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Tk satisfying (2.4)–(2.5). It is clear that the product T := T1 × T2 × · · · is
weakly mixing andM(T ) = {p1} � {p2} � · · · .

The following simple lemma (stated in [DL] without proof) shows how
to extend the result of Theorem 0.1 from R to any torsion free discrete
countable Abelian group (Corollary 2.7).

Lemma 2.6. Let G and H be locally compact second countable Abelian
groups and let ϕ : G → H be a continuous one-to-one homomorphism with
ϕ(G) = H. Given an H-action T = (Th)h∈H , the composition T ◦ ϕ =
(Tϕ(g))g∈G is a G-action withM(T ◦ ϕ) =M(T ).

Proof. Let σ be a measure of maximal spectral type andm : Ĥ→N∪{∞}
be the spectral multiplicity function of UT :

(2.6) L2
0(X,µ) =

�⊕

Ĥ

Hχ dσ(χ) and UT (h)f(χ) = χ(h)f(χ), h ∈ H,

for each f : Ĥ 3 χ 7→ f(χ) ∈ Hχ with
	
Ĥ
‖f(χ)‖2 dσ(χ) < ∞, dimHχ =

m(χ). Let ϕ̂ : Ĥ → Ĝ stand for the homomorphism dual to ϕ and σ̂ := σ◦ϕ̂−1
be the image of σ under ϕ̂. Clearly, σ̂(ϕ̂(Ĥ)) = 1. Let σ =

	
Ĝ
σω dσ̂(ω) denote

the disintegration of σ relative to ϕ̂. Then we derive from (2.6) that

L2
0(X,µ) =

�⊕

Ĝ

H′ω dσ̂(ω) =
�⊕

ϕ̂(Ĥ)

H′ω dσ̂(ω),

where H′ω :=
	⊕
Ĥ
Hχ dσω(χ). Let l(ω) := dimH′ω, ω ∈ Ĝ. Then

l(ω) =

{∑
σω(χ)>0m(χ) if σω is purely atomic,

∞ otherwise.
Since ϕ(G) = H, ϕ̂ is one-to-one and hence H′ϕ̂(χ) = Hχ for any χ ∈ Ĥ.

In particular, l(ϕ̂(χ)) = m(χ) for χ ∈ Ĥ. It follows from (2.6) that for any
ω = ϕ̂(χ) ∈ Ĝ,

UT◦ϕ(g)f(ω) = UT (ϕ(g))f(ϕ̂(χ)) = UT (ϕ(g))(f ◦ ϕ̂)(χ)
= χ(ϕ(g))(f ◦ ϕ̂)(χ) = (ϕ̂(χ))(g)f(ϕ̂(χ)) = ω(g)f(ω).

This means that σ̂ is a measure of maximal spectral type and l is the spectral
multiplicity function of UT◦ϕ. HenceM(T ◦ ϕ) =M(T ).

Corollary 2.7. Let G be a torsion free discrete countable Abelian group.
Given a sequence of positive integers p1, p2, . . . , there exists a weakly mixing
probability preserving G-action S such thatM(S) = {p1} � {p2} � · · · .

Proof. For G = Z see [Ry] or Section 3. Suppose G 6= Z. In view of
Lemma 2.6 it suffices to show that there is an embedding ϕ : G → R such
that ϕ(G) = R. Indeed, G can be embedded into QN (see [HR]). In turn,
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the last group obviously embeds into R. It remains to note that if an infinite
subgroup of R is not isomorphic to Z then it is dense in R.

By Theorem 0.1 for G = R, there is a weakly mixing R-action T such
thatM(T ) = {p1}�{p2}� · · · . Then by Lemma 2.6 the composition T ◦ϕ =
(Tϕ(g))g∈G is a weakly mixing G-action with M(T ◦ ϕ) = M(T ) = {p1} �
{p2} � · · · .

3. Discrete countable Abelian group actions. In this section we
prove Theorem 0.1 in the case when G is an infinite discrete countable
Abelian group.

As in the previous section, given a countable discrete Abelian group J
and p > 1, we denote by Γ the semidirect product G × Jp oA Z(p), where
A : Jp → Jp is the same (as in Section2) ‘cyclic’ group automorphism. From
now on we will identify G with the corresponding subgroup in Γ .

Lemma 3.1 ([DS, Theorem 1.7]). Given G and p > 1, there is J such
that for a generic action T from AΓ the action T �G is weakly mixing and
M(T �G) = {p}.

Notice that we can choose J to be either Z or Z(q)⊕N, q > 1 [DS, Sec-
tion 1].

Let (gn)
∞
n=1 be a sequence in G. We will say that (gn)

∞
n=1 is good if

gn →∞ and one of the following is satisfied:

(1) there is g0 ∈ G such that gn ∈ 〈g0〉 for each n (it follows that g0 has
infinite order),

(2) each gn is of finite order and the orders of gn are unbounded,
(3) the orders of gn are bounded from above and gn are independent (5).

It is clear that G always contains a good sequence. Notice also that any
subsequence of a good sequence is good. We need this notion to be able to
apply the (C,F )-construction in the proof of Lemma 3.2, which is the analog
of Lemma 2.3.

Lemma 3.2. Let (gk)∞k=1 be a good sequence in G. For any d ∈ G there
exists a free action S ∈ AΓ such that US(gkn)→ US(d) for some subsequence
(gkn)

∞
n=1 of (gk)∞k=1.

Proof. Fix d ∈ G. First, we claim that there is an infinite measure pre-
serving action T of Γ and subsequence (gkn)∞n=1 such that UT (gkn)→ US(d).
Recall that for µ infinite, we consider UT in the entire space L2(X,µ). We
will construct T as T = T (1) × T (2), where T (1) and T (2) are (C,F )-actions
of G and Jp o Z(p) respectively.

(5) That is, the subgroups 〈gn〉 are independent.
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To construct T (1) we will select subsets Cn, Fn ⊂ G and a subsequence
(gkn)

∞
n=1 of (gk)∞k=1 in such a way that

(3.1) lim
n→∞

#(Cn ∩ (Cn − (gkn − d)))
#Cn

= 1.

Then, arguing as in the proof of Lemma 2.3, the reader can easily deduce
that

lim
n→∞

µ(Tgkn−dA4A) = 0

for any A ∈ B, and hence UT (gkn − d)→ I as n→∞.
Thus our aim is to select Cn, Fn and kn satisfying (1.1)–(1.4), (1.6) and

(3.1). This will be done inductively. Fix an increasing sequence of positive
integers hn. Suppose that we already have Fn−1 and kn−1. To satisfy (3.1) we
want Cn to be an arithmetic progression with common difference gkn−d long
enough. We also need Cn to be independent of Fn−1. Consider separately
three possible cases for (gk)∞k=1.

(i) There is g0 ∈ G such that gk = mkg0, mk ∈ Z, k ∈ N. Without loss
of generality we may assume that mk > 0 and mk+1 > mk, k ∈ N. Then let
kn := max{k | gk ∈ Fn−1 − Fn−1} + 1. Clearly, lgkn /∈ Fn−1 − Fn−1 for any
l > 0 and hence l(gkn − d) + Fn−1 ∩ l′(gkn − d) + Fn−1 = ∅ for l 6= l′.

(ii) Each gk is of finite order and the orders are unbounded. Without loss
of generality we may assume that #{k | ord gk < N} < ∞ for each N > 0.
Given 0 6= f ∈ Fn−1 − Fn−1 and 0 < l ≤ hn, let D

f
n,l := {k > kn−1 |

l(gk − d) = f}. We claim that each Df
n,l is finite. Indeed, if l(gk − d) = f for

some k then for any k′ with ord gk′ > l ord gk we have ord(gk − gk′) > l and
hence l(gk′ − d) 6= l(gk − d) = f . Since there are only finitely many k′ with
ord gk′ ≤ l ord gk, the setDf

n,l is finite and we can choose kn > kn−1 such that
kn /∈ Df

n,l for 0 6= f ∈ Fn−1 − Fn−1, 0 < l ≤ hn. Then lgkn /∈ Fn−1 − Fn−1,
0 < l ≤ hn. In particular, l(gkn − d) + Fn−1 ∩ l′(gkn − d) + Fn−1 = ∅ for
0 ≤ l < l′ ≤ hn.

(iii) The orders of gk are bounded from above and gk are independent. In
this case for any 0 6= f ∈ Fn−1−Fn−1 and l > 0 there is at most one k with
lgk = f . Hence we can select kn > kn−1 in such a way that lgkn /∈ Fn−1−Fn−1
whenever lgkn 6= 0.

In each of these three cases we set

Cn :=

{ {0, (gkn − d), 2(gkn − d), . . . , hn(gkn − d)} if ord(gkn − d) > hn,
〈gkn − d〉 otherwise.

It follows that Cn and Fn−1 are independent. Since
#(Cn ∩ (Cn − (gkn − d)))

#Cn
≤ hn
hn + 1

,
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the Cn satisfy (3.1). Let Fn ⊂ G be any subset satisfying (1.1), (1.4) and
(1.6). Let T (1) be the (C,F )-action associated with (Cn, Fn)n.

T (2) may be any (C,F )-action of JpoZ(p). In view of the structure of J
which is either Z or Z(q)⊕N, q > 1, such an action can be easily constructed.
For instance, set

F ′n := {−(3n − 1)/2, . . . , (3n − 1)/2}p × Z(p) ⊂ Jp o Z(p),

C ′n := {−3n−1, 0, 3n−1}p × {0} ⊂ Jp o Z(p),

if J = Z, and

F ′n := (Z(q)⊕ · · · ⊕ Z(q)︸ ︷︷ ︸
n

⊕{0} ⊕ · · · )p × Z(p) ⊂ Jp o Z(p),

C ′n := ({0} ⊕ · · · ⊕ {0}︸ ︷︷ ︸
n−1

⊕Z(p)⊕ {0} ⊕ · · · )p × {0} ⊂ Jp o Z(p)

if J =
⊕∞

n=1 Z(q), q > 1. Clearly, (C ′n, F ′n)n satisfy (1.1)–(1.5). Let T (2) be
the (C,F )-action associated with (C ′n, F

′
n)n.

Then by construction T = T (1) × T (2) is an infinite measure preserving
action of Γ such that UT (gkn)→ US(d) as n→∞.

Now let S := T̃ stand for the Poisson suspension of T (see Subsection 1.4).
Then S is a free probability measure preserving Γ -action. Since the mapping
AΓ (X,µ) 3 T 7→ T̃ ∈AΓ (X̃, µ̃) is continuous, US(gkn)→US(d) as n→∞.

Lemma 3.3. For any good sequence (gn)
∞
n=1 in G the following subsets

are residual in AΓ :

Id := {T ∈ AΓ | UT (d) is a limit point of {UT (gn)}∞n=1} for any d ∈ G,
O := {T ∈ AΓ | 0 is a limit point of {UT (gn)}∞n=1}.

Proof. O and Id, d ∈ G, are Gδ subsets in AΓ by Lemma 1.1. We note
that O and Id are Aut(X,µ)-invariant. By [FW, Claim 18] the Aut(X,µ)-
orbit of any free Γ -action is dense in AΓ . Therefore, it remains to show that
O and Id, d ∈ G, each contain at least one free action. Each Id is non-empty
by Lemma 3.2. Each Poisson Γ -action is free and belongs to O [OW].

Proof of Theorem 0.1 for G is a discrete countable Abelian group. Let
Γ1 := G × Jp11 o Z(p1) be the auxiliary group defined above for G and p1.
Fixing a good sequence in G and applying Lemmata 3.1 and 3.3 we deduce
that there is an action T̃1 ∈ AΓ1 such that T1 := T̃1�G is weakly mixing,
M(T1) = {p1} and UT1(rn,1)→ I, UT1(gn,1)→ 0, where (rn,1)

∞
n=1, (gn,1)∞n=1

are good sequences in G.
Now let Γ2 := G × Jp22 o Z(p2). By Lemmata 3.1 and 3.3 for a generic

T̃2 ∈ AΓ2 the restriction T2 := T̃2�G satisfies the following conditions:
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(1) T2 is weakly mixing,
(2) M(T2) = {p2},
(3) UT2(d) is a limit point of {UT2(rn,1)}∞n=1 for each d ∈ G,
(4) 0 is a limit point of {UT2(rn,1)}∞n=1,
(5) I and 0 are limit points of {UT2(gn,1)}∞n=1.

Thus T1×T2 is weakly mixing withM(T1×T2) = {p1}�{p2} by Lemma 1.3.
Moreover, in view of (3) and (5), there are subsequences (rn,2)

∞
n=1 and

(gn,2)
∞
n=1 of (rn,1)∞n=1 and (gn,1)

∞
n=1 such that UT1×T2(rn) → I, UT1×T2(gn)

→ 0 as n→∞.
Continuing, we obtain a sequence of weakly mixing G-actions Ti such

that M(T1 × · · · × Tk) = {p1} � · · · � {pk} for any k > 0. It follows that
T := T1 × T2 × · · · is weakly mixing withM(T ) = {p1} � {p2} � · · · .

4. Concluding remarks. The scheme of the proof also works for the
groups of the form Rm × G where G is a discrete countable Abelian group
and m > 0. For that we need to construct explicitly a ‘rigid’ Γ -action as in
Lemmata 2.3 and 3.2 for Γ =Rm×G×JpoZ(p). Indeed, in both lemmata the
required action was obtained as the product of two (C,F )-actions. Let us say
that an element g∈Γ is good if all but the first coordinate of g vanish. Then
the analogs of Lemmata 2.3 and 3.2 for sequences of good elements can be
easily proved by constructing separately two (C,F )-actions: an Rm-action as
in Lemma 2.3 and a G×JpoZ(p)-action as in Lemma 3.2. Moreover, one may
mimic the proof of Lemma 3.2 to extend it to any locally compact second
countable Abelian group. Then the main result is still true for the classes of
locally compact second countable Abelian groups considered in [DS].

Note that our realizations are weakly mixing but not mixing since they
are rigid. The question whether there are mixing realizations of the sets con-
sidered is still open. In fact, the set of mixing G-actions is meager in AG
endowed with the weak topology. Therefore the weak topology is not suit-
able to apply the Baire category argument. In contrast, Tikhonov introduced
another (stronger than the weak) topology on AZ with respect to which the
subset of mixing Z-actions is Polish [Ti1]. Using this topology he proved by
a ‘generic’ argument the existence of mixing transformations with homoge-
neous spectrum [Ti2]. It looks plausible that this approach may be useful to
find mixing realizations of the sets considered in the present paper.
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