## Powers of $m$-isometries

## by <br> Teresa Bermúdez, Carlos Díaz Mendoza and Antonio Martinón (La Laguna)


#### Abstract

A bounded linear operator $T$ on a Banach space $X$ is called an $(m, p)$ isometry for a positive integer $m$ and a real number $p \geq 1$ if, for any vector $x \in X$, $$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{p}=0
$$

We prove that any power of an $(m, p)$-isometry is also an $(m, p)$-isometry. In general the converse is not true. However, we prove that if $T^{r}$ and $T^{r+1}$ are $(m, p)$-isometries for a positive integer $r$, then $T$ is an $(m, p)$-isometry. More precisely, if $T^{r}$ is an $(m, p)$ isometry and $T^{s}$ is an $(l, p)$-isometry, then $T^{t}$ is an $(h, p)$-isometry, where $t=\operatorname{gcd}(r, s)$ and $h=\min (m, l)$.


1. Introduction. The $m$-isometric operators on a Hilbert space $H$ have been introduced in [A]. Given a positive integer $m$, a (bounded linear) operator $T$ on $H$ is called an m-isometry if

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} T^{* k} T^{k}=0 \tag{1.1}
\end{equation*}
$$

where $T^{*}$ denotes the adjoint operator of $T$. A detailed study of $m$-isometries was developed by J. Agler and M. Stankus [AS1]-AS3]. Those operators have been considered by many authors, for example in [At], BMM, [BJ], [FH1, [FH2], $\mathrm{GR},[\mathrm{H}, \mathrm{PL},[\mathrm{PR}$ and $[\mathrm{R}$.

A simple manipulation proves that (1.1) is equivalent to

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{2}=0 \quad \text { for all } x \in H . \tag{1.2}
\end{equation*}
$$

It is clear that the notions of 1 -isometry and isometry coincide. Moreover, any $m$-isometry is also an $(m+1)$-isometry.

[^0]Sid Ahmed [S] has used (1.2) as the definition of an $m$-isometric operator $T$ on a Banach space $X$. However, Bayart [B] has observed that the exponent 2 that appears in the norm does not play a particular role and considered $(m, p)$-isometries with $p \geq 1$ a real number, which are defined in the following way ( $X$ always denotes a Banach space and $L(X)$ the algebra of all bounded linear operators on $X$ ).

Definition 1.1. Let $T \in L(X), m$ a positive integer and $p \geq 1$ a real number. We say that $T$ is an $(m, p)$-isometry if, for any $x \in X$,

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{p}=0 \tag{1.3}
\end{equation*}
$$

$T$ is called an $m$-isometry if it is an ( $m, p$ )-isometry for some $p \geq 1$.
Recently, Hoffmann et al. HMS took off the restriction $p \geq 1$ and defined $(m, p)$-isometries for all $p>0$. They studied when an $(m, p)$-isometry is an $(\mu, q)$-isometry for some pair $(\mu, q)$. In particular, for any positive real number $p$ they gave an example of an operator $T$ that is a $(2, p)$-isometry, but is not a $(2, q)$-isometry for any $q$ different from $p$ HMS, Example 1.2]. In general, for a fixed positive integer $m$, there is no relation between being an $(m, p)$-isometry and an $(m, 2)$-isometry with $p \neq 2$.

Patel [ P , Theorem 2.1] proved that any power of a (2,2)-isometry is again a $(2,2)$-isometry. In this paper we improve the above property. Indeed, we answer the following natural problems.
(1) Is the class of $m$-isometries stable under powers?
(2) Find sufficient conditions that guarantee that operators which have some powers in the class of $m$-isometries are in the same class.
It is a simple observation that if $T^{r}$ and $T^{r+1}$ are isometries for some positive integer $r$, then $T$ is an isometry: indeed, $\|x\|=\left\|T^{r+1} x\right\|=\left\|T^{r} T x\right\|=$ $\|T x\|$ for every $x \in X$.

In the study of $m$-isometries we will use recursive equations. This technique was used by V. Müller in the study of $m$-contractions [M]. This is our main tool in proving these two theorems:
(1) If $T \in L(X)$ is an $(m, p)$-isometry, then any power $T^{r}$ is also an $(m, p)$-isometry (Theorem 3.1).
(2) If $T^{r}$ is an $(m, p)$-isometry and $T^{s}$ is an $(l, p)$-isometry, then $T^{t}$ is an $(h, p)$-isometry, where $t$ is the greatest common divisor of $r$ and $s$, and $h$ is the minimum of $m$ and $l$ (Theorem 3.6). In particular, if $T^{r}$ and $T^{r+1}$ are $(m, p)$-isometries, then so is $T$ (Corollary 3.7).
2. Preliminaires. We first recall certain facts about recursive equations.

For $T \in L(X)$ and $x \in X$, denote $a_{k}:=\left\|T^{k} x\right\|^{p}$ for $k=0,1, \ldots$ The equation (1.3) then reads

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{k}=0 \tag{2.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{k+n}=0 \tag{2.2}
\end{equation*}
$$

for all $n \geq 0$.
Notice that (2.2) is a recursive equation. Let us introduce some classical results to solve this type of equations. We are interested in the sequences $\left(y_{n}\right)_{n \geq 0}$ which satisfy the recursive equation

$$
\begin{equation*}
y_{n+m}+\gamma_{m-1} y_{n+m-1}+\gamma_{m-2} y_{n+m-2}+\cdots+\gamma_{1} y_{n+1}+\gamma_{0} y_{n}=0 \tag{2.3}
\end{equation*}
$$

for certain $m \geq 1$ and any $n \geq 0, \gamma_{i}$ being complex numbers $(0 \leq i \leq k-1)$. The characteristic polynomial of (2.3) is given by

$$
q(z)=z^{m}+\gamma_{m-1} z^{m-1}+\gamma_{m-2} z^{m-2}+\cdots+\gamma_{1} z+\gamma_{0}
$$

which can be written in the form

$$
\begin{equation*}
q(z)=\left(z-z_{1}\right)^{m_{1}} \cdots\left(z-z_{r}\right)^{m_{r}} \tag{2.4}
\end{equation*}
$$

where $m_{1}+\cdots+m_{r}=m$ and $z_{i} \neq z_{j}$ for $i \neq j$. It is well known (see for example [KP, Theorem 3.7] and [Ag, p. 104]) that the set of all complex sequences which satisfy 2.3 is a vector subspace of the space $\mathbb{C}^{\mathbb{N}}$ of all complex sequences, it has dimension $m$ and a basis formed by the sequences

$$
\begin{align*}
& \left(z_{1}^{n}\right)_{n \geq 0},\left(n z_{1}^{n}\right)_{n \geq 0},\left(n^{2} z_{1}^{n}\right)_{n \geq 0}, \ldots,\left(n^{m_{1}-1} z_{1}^{n}\right)_{n \geq 0} \\
& \left(z_{2}^{n}\right)_{n \geq 0},\left(n z_{2}^{n}\right)_{n \geq 0},\left(n^{2} z_{2}^{n}\right)_{n \geq 0}, \ldots,\left(n^{m_{2}-1} z_{2}^{n}\right)_{n \geq 0}  \tag{2.5}\\
& \ldots \\
& \left(z_{r}^{n}\right)_{n \geq 0},\left(n z_{r}^{n}\right)_{n \geq 0},\left(n^{2} z_{r}^{n}\right)_{n \geq 0}, \ldots,\left(n^{m_{r}-1} z_{r}^{n}\right)_{n \geq 0}
\end{align*}
$$

There exists an identification between the recursive equation (2.3), the characteristic polynomial 2.4 , the subspace of sequences which satisfy the recursive equation and its basis (2.5).
3. Main results. It is clear that if $T$ is an isometry, then so is $T^{r}$. Patel [P, Theorem 2.1] proved that any power of a $(2,2)$-isometry is again a (2,2)-isometry. The next result shows that any power of an $(m, p)$-isometry is an $(m, p)$-isometry.

Theorem 3.1. Let $X$ be a Banach space, $T \in L(X)$, $m$ be a positive integer and $p \geq 1$ a real number. If $T$ is an $(m, p)$-isometry, then so is any power $T^{r}$.

Proof. Fix $x \in X$ and denote $a_{n}:=\left\|T^{n} x\right\|^{p}$ for $n=0,1, \ldots$ Then the sequence $\left(a_{n}\right)_{n \geq 0}$ satisfies

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{k+n}=0 \tag{3.1}
\end{equation*}
$$

for every $n \geq 0$. The characteristic polynomial associated with 3.1 is $q_{1}(z)=(z-1)^{m}$, hence $\left(a_{n}\right)_{n \geq 0}$ is a linear combination of the sequences $(1)_{n \geq 0},(n)_{n \geq 0},\left(n^{2}\right)_{n \geq 0}, \ldots,\left(n^{m-1}\right)_{n \geq 0}$. Consequently, given a positive integer $r,\left(a_{n}\right)_{n \geq 0}$ is also a linear combination of the sequences

$$
\begin{align*}
& (1)_{n \geq 0},(n)_{n \geq 0},\left(n^{2}\right)_{n \geq 0}, \ldots,\left(n^{m-1}\right)_{n \geq 0}, \\
& \left(x_{2}^{n}\right)_{n \geq 0},\left(n x_{2}^{n}\right)_{n \geq 0},\left(n^{2} x_{2}^{n}\right)_{n \geq 0}, \ldots,\left(n^{m-1} x_{2}^{n}\right)_{n \geq 0},  \tag{3.2}\\
& \left(x_{r}^{n}\right)_{n \geq 0},\left(n x_{r}^{n}\right)_{n \geq 0},\left(n^{2} x_{r}^{n}\right)_{n \geq 0}, \ldots, \ldots,\left(n^{m-1} x_{r}^{n}\right)_{n \geq 0},
\end{align*}
$$

where $x_{1}:=1, x_{2}, \ldots, x_{r}$ are the $r$-roots of unity. Hence the sequence $\left(a_{n}\right)_{n \geq 0}$ satisfies the equation

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{k r+n}=0 \tag{3.3}
\end{equation*}
$$

for any $n \geq 0$. Since $x \in X$ is arbitrary, we conclude that $T^{r}$ is an $(m, p)$ isometry.

REMARK 3.2. Related to the previous result we have the following problem. Given an operator $T \in L(X)$ that is an $m$-isometry, determine the class of functions $f$ such that the operator $f(T) \in L(X)$ is also an $m$-isometry. It is known that the spectrum of an $m$-isometry is the closed unit disc or a closed subset of its boundary ([AS1, Lemma 1.21] \& [B, Proposition 2.3]). So, the eligible functions must leave invariant the unit disc and its boundary. In particular:
(1) If $f(z)=z^{r}$, then the result is true by Theorem 3.1.
(2) If $f(z)=e^{i t} z^{r}$ for some real $t$, then the result is true by $\left\|e^{i t} T^{k} x\right\|=$ $\left\|T^{k} x\right\|$ and Theorem 3.1.
(3) If $f(z)=(2 z-1) /(2-z)$ and $T$ is an isometry, then $f(T)$ is not always an isometry. Indeed, consider

$$
f(z)=\frac{2 z-1}{2-z}=-2+\sum_{n=0}^{\infty} \frac{3}{2^{n+1}} z^{n}
$$

and $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$ defined on $\ell_{p}(\mathbb{N})$ such that $p \geq 1$ with $p \neq 2$. Then $\left\|f(T)\left(e_{1}+e_{2}\right)\right\|^{p} \neq\left\|e_{1}+e_{2}\right\|^{p}$.
In general the converse of Theorem 3.1 is false.

Example 3.3. Let $S_{w}$ be the unilateral weighted forward shift on $\ell_{2}(\mathbb{N})$ with weight sequence $\left(w_{n}\right)$ given by $w_{2 n+1}:=\frac{1}{2}$ and $w_{2 n}:=2$ for all $n>0$, that is,

$$
S_{w}\left(x_{1}, x_{2}, \ldots\right)=\left(0, \frac{1}{2} x_{1}, 2 x_{2}, \frac{1}{2} x_{3}, 2 x_{4}, \ldots\right)
$$

Then $\left\|S_{w}^{2}\left(x_{1}, x_{2}, \ldots\right)\right\|=\left\|\left(x_{1}, x_{2}, \ldots\right)\right\|$, so $S_{w}^{2}$ is an isometry, but $S_{w}$ is not.
Lemma 3.4 ([BMN, Remark 3.9]). Let $S_{w}$ be the unilateral weighted forward shift operator on $\ell_{2}(\mathbb{N})$ with weight sequence $w=\left(w_{n}\right)_{n \geq 1} \in \ell_{\infty}(\mathbb{N})$. Then $S_{w}$ is a $(2,2)$-isometry if and only if

$$
\left|w_{n}\right|^{2}=\frac{n\left|w_{1}\right|^{2}-(n-1)}{(n-1)\left|w_{1}\right|^{2}-(n-2)}>0
$$

for $n \geq 1$. Observe that

$$
\frac{n\left|w_{1}\right|^{2}-(n-1)}{(n-1)\left|w_{1}\right|^{2}-(n-2)}>0 \Leftrightarrow\left|w_{1}\right| \geq 1
$$

Example 3.5. The converse of Theorem 3.1 is not true for the class of unilateral weighted shifts. Set $w_{2}:=w_{2 n+1}:=4$ and $w_{2 n+2}:=\left(\frac{3 n+4}{6 n+2}\right)^{2}$ for all $n \geq 1$. By Lemma 3.4, $S_{w}^{2}$ is a $(2,2)$-isometry but $S_{w}$ is not.

However, if we impose that two suitable different powers of $T$ are $m$ isometries, then $T$ is $m$-isometry.

Theorem 3.6. Let $X$ be a Banach space and $T \in L(X)$. Let $r, s, m, l$ be positive integers and $p \geq 1$ a real number. If $T^{r}$ is an $(m, p)$-isometry and $T^{s}$ is an (l,p)-isometry, then $T^{t}$ is an ( $h, p$ )-isometry, where $t$ is the greatest common divisor of $r$ and $s$, and $h$ is the minimum of $m$ and $l$.

Proof. Fix $x \in X$ and denote $a_{n}:=\left\|T^{n} x\right\|^{p}$ for $n=0,1, \ldots$ As $T^{r}$ is an $m$-isometry, the sequence $\left(a_{n}\right)_{n \geq 0}$ satisfies the recursive equation

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} a_{r k+n}=0 \tag{3.4}
\end{equation*}
$$

for all $n \geq 0$. This equation has characteristic polynomial $q(z):=q_{r}(z)^{m}:=$ $\left(z^{r}-1\right)^{m}$. Let $V_{r}^{m}$ be the subspace of $\mathbb{C}^{\mathbb{N}}$ formed by all complex sequences which satisfy (3.4). Then $\operatorname{dim} V_{r}^{m}=m r$ and a basis $B_{r}$ of $V_{r}^{m}$ is formed by the sequences $\left(n^{i} x_{j}^{n}\right)_{n \geq 0}$, where $0 \leq i \leq m-1,1 \leq j \leq r$ and $x_{j}$ are the roots of $q_{r}(z)=z^{r}-1$.

Analogously, as $T^{s}$ is an $l$-isometry, the sequence $\left(a_{n}\right)_{n \geq 0}$ also satisfies

$$
\begin{equation*}
\sum_{k=0}^{l}\binom{l}{k}(-1)^{k} a_{s k+n}=0 \tag{3.5}
\end{equation*}
$$

for all $n \geq 0$. Now the set of all sequences which satisfy 3.5 is a vector subspace $V_{s}^{l}$ of $\mathbb{C}^{\mathbb{N}}, \operatorname{dim} V_{s}^{l}=s l$ and a basis $B_{s}$ of $V_{s}^{l}$ is formed by the
sequences $\left(n^{i} y_{j}^{n}\right)_{n \geq 0}$, where $0 \leq i \leq l-1,1 \leq j \leq s$ and $y_{j}$ are the roots of $q_{s}(z):=z^{s}-1$; moreover, $p(z):=q_{s}(z)^{l}=\left(z^{s}-1\right)^{l}$ is the characteristic polynomial of (3.5).

Using the factorization $z^{n}-1=(z-1) q(z)$ for a polynomial $q(z)$, we obtain $q_{r}(z)=q_{t}(z) q_{1}(z)$ and $q_{s}(z)=q_{t}(z) q_{2}(z)$ for some polynomials $q_{1}(z)$ and $q_{2}(z)$, where $t=\operatorname{gcd}(r, s)$.

Therefore the sequences which satisfy both (3.4) and (3.5) are those in the subspace $V_{r}^{m} \cap V_{s}^{l}$, whose characteristic polynomial is $\operatorname{gcd}\left(q_{r}(z)^{m}, q_{s}(z)^{l}\right)$ $=q_{t}(z)^{h}$, where $t=\operatorname{gcd}(r, s)$ and $h=\min (m, l)$. As $x$ is arbitrary, $T^{t}$ is an $(h, p)$-isometry.

In the following result we have some particular cases of Theorem 3.6.
Corollary 3.7. Let $X$ be a Banach space and $T \in L(X)$. Let $r, s, m$ positive integers and $p \geq 1$ a real number.
(1) If $T$ is an $(m, p)$-isometry and $T^{s}$ is an isometry, then $T$ is an isometry.
(2) If $T^{r}$ and $T^{r+1}$ are $(m, p)$-isometries, then so is $T$.
(3) If $T^{r}$ is an $(m, p)$-isometry and $T^{r+1}$ is an ( $n, p$ )-isometry with $m<n$, then $T$ is an $(m, p)$-isometry.
Corollary 3.8. Let $X$ be a Banach space and $T \in L(X)$. Let $m$ be a positive integer and $p \geq 1$ a real number. If $T$ is a proper $(m, p)$-isometry, in the sense that it is not an $(m-1, p)$-isometry, then any power of $T$ is a proper $(m, p)$-isometry.

EXAMPLE 3.9. It is not difficult to prove that $T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ defined in $\mathbb{C}^{2}$ with the euclidean norm is a proper 3-isometry. Using Theorem 3.1 and Corollary 3.8 we find that $T^{k}=\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right)$ is a proper 3 -isometry.

Acknowledgements. The authors are grateful to the referees for their comments which have improved the readability of the paper.

The first author is partially supported by a grant of Ministerio de Ciencia e Innovación, Spain, proyect no. MTM2011-26538. The second author is partially supported by grants of Ministerio de Ciencia e Innovación, Spain, proyect no. MTM2010-17951 and MTM2011-28781.

## References

[A] J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1990), 1-14.
[AS1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equations Operator Theory 21 (1995), 383-429.
[AS2] -, 一, m-isometric transformations of Hilbert space. II, ibid. 23 (1995), 1-48.
[AS3] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. III, ibid. 24 (1996), 379-421.
[Ag] R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications, Monographs Textbooks Pure Appl. Math. 155, Dekker, New York, 1992.
[At] A. Athavale, Some operator theoretic calculus for positive definite kernels, Proc. Amer. Math. Soc. 112 (1999), 701-708.
[B] F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), 2141-2147.
[BMM] T. Bermúdez, I. Marrero and A. Martinón, On the orbit of an m-isometry, Integral Equations Operator Theory 64 (2009), 487-494.
[BMN] T. Bermúdez, A. Martinón and E. Negrín, Weighted shift operators which are m-isometries, ibid. 68 (2010), 301-312.
[BJ] F. Botelho and J. Jamison, Isometric properties of elementary operators, Linear Algebra Appl. 432 (2010), 357-365.
[FH1] M. Faghih Ahmadi and K. Hedayatian, Hypercyclicity and supercyclicity of misometric operators, Rocky Mountain J. Math. 42 (2012), 15-24.
[FH2] -, 一, m-isometric weighted shifts and reflexivity of some operators, ibid., to appear.
[GR] J. Gleason and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integral Equations Operator Theory 56 (2006), 181-196.
[H] C. Hellings, Two-isometries on Pontryagin spaces, ibid. 61 (2008), 211-239.
[HMS] P. Hoffmann, M. Mackey and M. Searcoid, On the second parameter of an ( $m, p$ )isometry, ibid. 71 (2011), 389-405.
[KP] W. G. Kelley and A. C. Peterson, Difference Equations. An Introduction with Applications, Academic Press, 1991.
[M] V. Müller, Models for operators using weighted shifts, J. Operator Theory 20 (1988), 3-20.
[PL] S. Panayappan and S. K. Latha, Some isometric composition operators, Int. J. Contemp. Math. Sci. 5 (2010), 615-621.
[P] S. M. Patel, 2-isometric operators, Glas. Mat. 37 (57) (2002), 141-145.
[PR] L. J. Patton and M. E. Robbins, Composition operators that are m-isometries, Houston J. Math. 31 (2005), 255-266.
[R] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), 325-349.
[S] O. A. M. Sid Ahmed, m-isometric operators on Banach spaces, Asian-Eur. J. Math. 3 (2010), 1-19.

Teresa Bermúdez, Carlos Díaz Mendoza, Antonio Martinón
Departamento de Análisis Matemático
Universidad de La Laguna
38271 La Laguna (Tenerife), Spain
E-mail: tbermude@ull.es cjdiaz@ull.es
anmarce@ull.es


[^0]:    2010 Mathematics Subject Classification: Primary 47B99.
    Key words and phrases: isometry, ( $m, p$ )-isometry, recursive equation.

