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Abstract. A bounded linear operator T on a Banach space X is called an (m, p)-
isometry for a positive integer m and a real number p ≥ 1 if, for any vector x ∈ X,

m∑
k=0

(−1)k
(
m

k

)
‖T kx‖p = 0.

We prove that any power of an (m, p)-isometry is also an (m, p)-isometry. In general
the converse is not true. However, we prove that if T r and T r+1 are (m, p)-isometries
for a positive integer r, then T is an (m, p)-isometry. More precisely, if T r is an (m, p)-
isometry and T s is an (l, p)-isometry, then T t is an (h, p)-isometry, where t = gcd(r, s)
and h = min(m, l).

1. Introduction. The m-isometric operators on a Hilbert space H have
been introduced in [A]. Given a positive integer m, a (bounded linear) op-
erator T on H is called an m-isometry if

(1.1)
m∑
k=0

(−1)k
(
m

k

)
T ∗kT k = 0,

where T ∗ denotes the adjoint operator of T . A detailed study of m-isometries
was developed by J. Agler and M. Stankus [AS1]–[AS3]. Those operators
have been considered by many authors, for example in [At], [BMM], [BJ],
[FH1], [FH2], [GR], [H], [PL], [PR] and [R].

A simple manipulation proves that (1.1) is equivalent to

(1.2)
m∑
k=0

(−1)k
(
m

k

)
‖T kx‖2 = 0 for all x ∈ H.

It is clear that the notions of 1-isometry and isometry coincide. Moreover,
any m-isometry is also an (m+ 1)-isometry.
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Sid Ahmed [S] has used (1.2) as the definition of an m-isometric operator
T on a Banach space X. However, Bayart [B] has observed that the exponent
2 that appears in the norm does not play a particular role and considered
(m, p)-isometries with p ≥ 1 a real number, which are defined in the following
way (X always denotes a Banach space and L(X) the algebra of all bounded
linear operators on X).

Definition 1.1. Let T ∈ L(X), m a positive integer and p ≥ 1 a real
number. We say that T is an (m, p)-isometry if, for any x ∈ X,

(1.3)
m∑
k=0

(−1)k
(
m

k

)
‖T kx‖p = 0.

T is called an m-isometry if it is an (m, p)-isometry for some p ≥ 1.

Recently, Hoffmann et al. [HMS] took off the restriction p ≥ 1 and defined
(m, p)-isometries for all p > 0. They studied when an (m, p)-isometry is
an (µ, q)-isometry for some pair (µ, q). In particular, for any positive real
number p they gave an example of an operator T that is a (2, p)-isometry,
but is not a (2, q)-isometry for any q different from p [HMS, Example 1.2].
In general, for a fixed positive integer m, there is no relation between being
an (m, p)-isometry and an (m, 2)-isometry with p 6= 2.

Patel [P, Theorem 2.1] proved that any power of a (2, 2)-isometry is again
a (2, 2)-isometry. In this paper we improve the above property. Indeed, we
answer the following natural problems.

(1) Is the class of m-isometries stable under powers?
(2) Find sufficient conditions that guarantee that operators which have

some powers in the class of m-isometries are in the same class.

It is a simple observation that if T r and T r+1 are isometries for some pos-
itive integer r, then T is an isometry: indeed, ‖x‖ = ‖T r+1x‖ = ‖T rTx‖ =
‖Tx‖ for every x ∈ X.

In the study of m-isometries we will use recursive equations. This tech-
nique was used by V. Müller in the study of m-contractions [M]. This is our
main tool in proving these two theorems:

(1) If T ∈ L(X) is an (m, p)-isometry, then any power T r is also an
(m, p)-isometry (Theorem 3.1).

(2) If T r is an (m, p)-isometry and T s is an (l, p)-isometry, then T t is an
(h, p)-isometry, where t is the greatest common divisor of r and s,
and h is the minimum of m and l (Theorem 3.6). In particular, if T r

and T r+1 are (m, p)-isometries, then so is T (Corollary 3.7).

2. Preliminaires. We first recall certain facts about recursive equa-
tions.
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For T ∈ L(X) and x ∈ X, denote ak := ‖T kx‖p for k = 0, 1, . . . . The
equation (1.3) then reads

(2.1)
m∑
k=0

(−1)k
(
m

k

)
ak = 0,

or equivalently

(2.2)

m∑
k=0

(−1)k
(
m

k

)
ak+n = 0

for all n ≥ 0.
Notice that (2.2) is a recursive equation. Let us introduce some classical

results to solve this type of equations. We are interested in the sequences
(yn)n≥0 which satisfy the recursive equation

(2.3) yn+m + γm−1yn+m−1 + γm−2yn+m−2 + · · ·+ γ1yn+1 + γ0yn = 0

for certain m ≥ 1 and any n ≥ 0, γi being complex numbers (0 ≤ i ≤ k−1).
The characteristic polynomial of (2.3) is given by

q(z) = zm + γm−1z
m−1 + γm−2z

m−2 + · · ·+ γ1z + γ0,

which can be written in the form

(2.4) q(z) = (z − z1)m1 · · · (z − zr)mr ,

where m1 + · · · + mr = m and zi 6= zj for i 6= j. It is well known (see for
example [KP, Theorem 3.7] and [Ag, p. 104]) that the set of all complex
sequences which satisfy (2.3) is a vector subspace of the space CN of all
complex sequences, it has dimension m and a basis formed by the sequences

(2.5)

(zn1 )n≥0, (nz
n
1 )n≥0, (n

2zn1 )n≥0, . . . , (n
m1−1zn1 )n≥0,

(zn2 )n≥0, (nz
n
2 )n≥0, (n

2zn2 )n≥0, . . . , (n
m2−1zn2 )n≥0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(znr )n≥0, (nz
n
r )n≥0, (n

2znr )n≥0, . . . , (n
mr−1znr )n≥0.

There exists an identification between the recursive equation (2.3), the char-
acteristic polynomial (2.4), the subspace of sequences which satisfy the re-
cursive equation and its basis (2.5).

3. Main results. It is clear that if T is an isometry, then so is T r.
Patel [P, Theorem 2.1] proved that any power of a (2, 2)-isometry is again a
(2,2)-isometry. The next result shows that any power of an (m, p)-isometry
is an (m, p)-isometry.

Theorem 3.1. Let X be a Banach space, T ∈ L(X), m be a positive
integer and p ≥ 1 a real number. If T is an (m, p)-isometry, then so is any
power T r.
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Proof. Fix x ∈ X and denote an := ‖Tnx‖p for n = 0, 1, . . . . Then the
sequence (an)n≥0 satisfies

(3.1)
m∑
k=0

(−1)k
(
m

k

)
ak+n = 0

for every n ≥ 0. The characteristic polynomial associated with (3.1) is
q1(z) = (z − 1)m, hence (an)n≥0 is a linear combination of the sequences
(1)n≥0, (n)n≥0, (n

2)n≥0, . . . , (n
m−1)n≥0. Consequently, given a positive inte-

ger r, (an)n≥0 is also a linear combination of the sequences

(3.2)

(1)n≥0, (n)n≥0, (n
2)n≥0, . . . , (n

m−1)n≥0,

(xn2 )n≥0, (nx
n
2 )n≥0, (n

2xn2 )n≥0, . . . , (n
m−1xn2 )n≥0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(xnr )n≥0, (nx
n
r )n≥0, (n

2xnr )n≥0, . . . , . . . , (n
m−1xnr )n≥0,

where x1 := 1, x2, . . . , xr are the r-roots of unity. Hence the sequence (an)n≥0
satisfies the equation

(3.3)
m∑
k=0

(−1)k
(
m

k

)
akr+n = 0

for any n ≥ 0. Since x ∈ X is arbitrary, we conclude that T r is an (m, p)-
isometry.

Remark 3.2. Related to the previous result we have the following prob-
lem. Given an operator T ∈ L(X) that is an m-isometry, determine the class
of functions f such that the operator f(T ) ∈ L(X) is also an m-isometry.
It is known that the spectrum of an m-isometry is the closed unit disc or a
closed subset of its boundary ([AS1, Lemma 1.21] & [B, Proposition 2.3]).
So, the eligible functions must leave invariant the unit disc and its boundary.
In particular:

(1) If f(z) = zr, then the result is true by Theorem 3.1.
(2) If f(z) = eitzr for some real t, then the result is true by ‖eitT kx‖ =
‖T kx‖ and Theorem 3.1.

(3) If f(z) = (2z − 1)/(2− z) and T is an isometry, then f(T ) is not
always an isometry. Indeed, consider

f(z) =
2z − 1

2− z
= −2 +

∞∑
n=0

3

2n+1
zn

and T (x1, x2, . . .) = (0, x1, x2, . . .) defined on `p(N) such that p ≥ 1
with p 6= 2. Then ‖f(T )(e1 + e2)‖p 6= ‖e1 + e2‖p.

In general the converse of Theorem 3.1 is false.
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Example 3.3. Let Sw be the unilateral weighted forward shift on `2(N)
with weight sequence (wn) given by w2n+1 := 1

2 and w2n := 2 for all n > 0,
that is,

Sw(x1, x2, . . .) =
(
0, 12x1, 2x2,

1
2x3, 2x4, . . .

)
.

Then ‖S2
w(x1, x2, . . .)‖ = ‖(x1, x2, . . .)‖, so S2

w is an isometry, but Sw is not.

Lemma 3.4 ([BMN, Remark 3.9]). Let Sw be the unilateral weighted
forward shift operator on `2(N) with weight sequence w = (wn)n≥1 ∈ `∞(N).
Then Sw is a (2, 2)-isometry if and only if

|wn|2 =
n|w1|2 − (n− 1)

(n− 1)|w1|2 − (n− 2)
> 0

for n ≥ 1. Observe that

n|w1|2 − (n− 1)

(n− 1)|w1|2 − (n− 2)
> 0 ⇔ |w1| ≥ 1.

Example 3.5. The converse of Theorem 3.1 is not true for the class of
unilateral weighted shifts. Set w2 := w2n+1 := 4 and w2n+2 :=

(
3n+4
6n+2

)2
for

all n ≥ 1. By Lemma 3.4, S2
w is a (2, 2)-isometry but Sw is not.

However, if we impose that two suitable different powers of T are m-
isometries, then T is m-isometry.

Theorem 3.6. Let X be a Banach space and T ∈ L(X). Let r, s,m, l be
positive integers and p ≥ 1 a real number. If T r is an (m, p)-isometry and
T s is an (l, p)-isometry, then T t is an (h, p)-isometry, where t is the greatest
common divisor of r and s, and h is the minimum of m and l.

Proof. Fix x ∈ X and denote an := ‖Tnx‖p for n = 0, 1, . . . . As T r is
an m-isometry, the sequence (an)n≥0 satisfies the recursive equation

(3.4)

m∑
k=0

(
m

k

)
(−1)kark+n = 0

for all n ≥ 0. This equation has characteristic polynomial q(z) := qr(z)
m :=

(zr − 1)m. Let V m
r be the subspace of CN formed by all complex sequences

which satisfy (3.4). Then dimV m
r = mr and a basis Br of V m

r is formed by
the sequences (nixnj )n≥0, where 0 ≤ i ≤ m − 1, 1 ≤ j ≤ r and xj are the
roots of qr(z) = zr − 1.

Analogously, as T s is an l-isometry, the sequence (an)n≥0 also satisfies

(3.5)

l∑
k=0

(
l

k

)
(−1)kask+n = 0

for all n ≥ 0. Now the set of all sequences which satisfy (3.5) is a vector
subspace V l

s of CN, dimV l
s = sl and a basis Bs of V l

s is formed by the
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sequences (niynj )n≥0, where 0 ≤ i ≤ l − 1, 1 ≤ j ≤ s and yj are the roots

of qs(z) := zs − 1; moreover, p(z) := qs(z)
l = (zs − 1)l is the characteristic

polynomial of (3.5).

Using the factorization zn − 1 = (z − 1)q(z) for a polynomial q(z), we
obtain qr(z) = qt(z)q1(z) and qs(z) = qt(z)q2(z) for some polynomials q1(z)
and q2(z), where t = gcd(r, s).

Therefore the sequences which satisfy both (3.4) and (3.5) are those in
the subspace V m

r ∩V l
s , whose characteristic polynomial is gcd(qr(z)

m, qs(z)
l)

= qt(z)
h, where t = gcd(r, s) and h = min(m, l). As x is arbitrary, T t is an

(h, p)-isometry.

In the following result we have some particular cases of Theorem 3.6.

Corollary 3.7. Let X be a Banach space and T ∈ L(X). Let r, s,m
positive integers and p ≥ 1 a real number.

(1) If T is an (m, p)-isometry and T s is an isometry, then T is an iso-
metry.

(2) If T r and T r+1 are (m, p)-isometries, then so is T .
(3) If T r is an (m, p)-isometry and T r+1 is an (n, p)-isometry with

m < n, then T is an (m, p)-isometry.

Corollary 3.8. Let X be a Banach space and T ∈ L(X). Let m be a
positive integer and p ≥ 1 a real number. If T is a proper (m, p)-isometry,
in the sense that it is not an (m− 1, p)-isometry, then any power of T is a
proper (m, p)-isometry.

Example 3.9. It is not difficult to prove that T :=
(
1 1
0 1

)
defined in C2

with the euclidean norm is a proper 3-isometry. Using Theorem 3.1 and
Corollary 3.8 we find that T k =

(
1 k
0 1

)
is a proper 3-isometry.
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