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Sharp embedding results for
spaces of smooth functions with power weights

by

Martin Meyries (Karlsruhe) and Mark Veraar (Delft)

Abstract. We consider function spaces of Besov, Triebel–Lizorkin, Bessel-potential
and Sobolev type on Rd, equipped with power weights w(x) = |x|γ , γ > −d. We prove
two-weight Sobolev embeddings for these spaces. Moreover, we precisely characterize for
which parameters the embeddings hold. The proofs are presented in such a way that they
also hold for vector-valued functions.

1. Introduction. Weighted spaces of smooth functions play an impor-
tant role in the context of partial differential equations (PDEs). They are
widely used, for instance, to treat PDEs with degenerate coefficients or do-
mains with a nonsmooth geometry (see e.g. [4, 22, 26, 42]). For evolution
equations, power weights in time play an important role in obtaining results
for rough initial data (see [11, 20, 25, 31]). In addition, here one is naturally
confronted with vector-valued spaces. Our work is motivated by this and will
be applied in a forthcoming paper to study weighted spaces with boundary
values.

For general literature on weighted function spaces we refer to [8, 16,
22, 26, 30, 32, 41, 42] and references therein. Also vector-valued function
spaces are intensively studied (see [2, 3, 36, 37, 38, 43, 45] and references
therein). Less is known on vector-valued function spaces with weights (see
[4, 28] and references therein). Some difficulties come from the fact that in
the vector-valued case the identities W 1,p = H1,p and Lp = F 0

p,2 hold only
under further geometric assumptions on the underlying Banach space (see
below).

In this paper we characterize continuous embeddings of Sobolev type for
vector-valued function spaces with weights of the form w(x) = |x|γ with
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γ > −d, where d is the dimension of the underlying Euclidian space. We
consider several classes of spaces: Besov spaces, Triebel–Lizorkin spaces,
Bessel-potential spaces and Sobolev spaces. In the embeddings which we
study we put (possibly different) weights w0(x) = |x|γ0 and w1(x) = |x|γ1
on each of the function spaces.

These embeddings and their optimality are well-known in the unweighted
case (see e.g. [37, 39, 41]). For scalar-valued Besov spaces with general
weights from Muckenhoupt’s A∞-class (see Section 2) the embeddings were
characterized in [18]. In the latter work also the compact embeddings for
scalar Triebel–Lizorkin spaces are characterized. Sufficient conditions for
scalar-valued Triebel–Lizorkin spaces in the case of one fixed weight w for
both spaces are considered in [8]. Results for Sobolev spaces are obtained
e.g. in [22, 26]. A different setting is studied [32], which we discuss in Remark
1.9 below.

The approach of [18] to the scalar Besov space case is based on discretiza-
tion in terms of wavelet bases and on weighted embeddings of [23]. In the
special case of power weights we can give elementary Fourier-analytic proofs
for the necessary and sufficient conditions. These apply also in the general
vector-valued case, and so we do not have to impose any restriction on the
underlying Banach space throughout.

For a further discussion, let us describe the results in detail. Throughout,
let X be a Banach space. For p ∈ (1,∞] and q ∈ [1,∞], let Bs

p,q(Rd, w;X)
denote the Besov space with weight w(x) = |x|γ , where γ > −d (see Section
3.1). The following two-weight characterization of Sobolev type embeddings
for these spaces is the first main result of our paper.

Theorem 1.1. Let X be a Banach space, 1 < p0, p1 ≤ ∞, q0, q1 ∈ [1,∞],
s0, s1 ∈ R, and w0(x) = |x|γ0, w1(x) = |x|γ1 with γ0, γ1 > −d. The following
assertions are equivalent:

(1) One has the continuous embedding

(1.1) Bs0
p0,q0(Rd, w0;X) ↪→ Bs1

p1,q1(Rd, w1;X).

(2) The parameters satisfy one of the following conditions:

γ0 = γ1, p0 = p1 and either s0 > s1 or s0 = s1 and q0 ≤ q1;(1.2)

γ1
p1
≤ γ0
p0
,
d+ γ1
p1

<
d+ γ0
p0

and s0 −
d+ γ0
p0

> s1 −
d+ γ1
p1

;(1.3)

γ1
p1
≤ γ0
p0
,
d+ γ1
p1

<
d+ γ0
p0

, q0 ≤ q1 and s0 −
d+ γ0
p0

= s1 −
d+ γ1
p1

.(1.4)

For p ∈ (1,∞), q ∈ [1,∞] and w as above, let F sp,q(Rd, w;X) denote the
weighted Triebel–Lizorkin space (see Section 3.1). The following characteri-
zation is our second main result. Unlike in Theorem 1.1, the characterization
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is given only for 1 < p0 ≤ p1 < ∞ (see, however, Proposition 1.6 below).
Important in this result is that q0 ≤ q1 is not required in the sharp case
s0 − (d+ γ0)/p0 = s1 − (d+ γ1)/p1 as for Besov spaces.

Theorem 1.2. Let X be a Banach space, 1 < p0 ≤ p1 < ∞, q0, q1 ∈
[1,∞], s0, s1 ∈ R, and w0(x) = |x|γ0, w1(x) = |x|γ1 with γ0, γ1 > −d. The
following assertions are equivalent:

(1) One has the continuous embedding

(1.5) F s0p0,q0(Rd, w0;X) ↪→ F s1p1,q1(Rd, w1;X).

(2) The parameters satisfy either (1.2) or

(1.6)
γ1
p1
≤ γ0
p0
,
d+ γ1
p1

<
d+ γ0
p0

and s0 −
d+ γ0
p0

≥ s1 −
d+ γ1
p1

.

Remark 1.3.

(i) The scalar version X = C of Theorem 1.1 with general weights
w0, w1 from Muckenhoupt’s A∞-class is proved in [18, Section 2].
For w0 = w1 ∈ A∞ satisfying infx∈Rd w(B(x, t)) ≥ tε with ε > 0,
the implication (2)⇒(1) of Theorem 1.2 can be found in [8, Theorem
2.6] in the scalar case. In our setting, this corresponds to the case
γ0 = γ1 ≥ 0.

(ii) In the unweighted case, i.e., γ0 = γ1 = 0, results such as Theo-
rems 1.1 and 1.2 are well-known and go back to works of Jawerth,
Nikol’skĭı, Peetre and Triebel (see [41, Section 2.7.1] for a historical
overview). A detailed account on these embeddings in the vector-
valued setting can be found in [37].

(iii) Theorem 1.1 gives embeddings for p0 > p1, which is only possible
in the presence of weights. In Proposition 1.6 we obtain a partial
result also for Triebel–Lizorkin spaces in this case.

(iv) In Theorems 1.1 and 1.2, suppose that p0 < p1. Then the condition
(d+ γ1)/p1 < (d+ γ0)/p0 in (1.3), (1.4) and (1.6) is redundant.
Similarly, if p0 > p1 then γ1/p1 ≤ γ0/p0 is redundant.

(v) It follows from p0 ≤ p1 and γ1/p1 ≤ γ0/p0 that γ0 = γ1 < 0 is
excluded. In this case one only has the trivial embeddings (i.e., the
embeddings under the assumption (1.2)).

(vi) It is a well-known fact that Sobolev embeddings for Triebel–Lizorkin
spaces are independent of the microscopic parameters q0, q1 (see
[8, 37, 41]).

Our proof of the sufficiency of the relations stated in Theorem 1.1 is
based on a direct two-weight extension of an inequality of Plancherel–Pólya–
Nikol’skĭı type (see Proposition 4.1, and [41, Section 1.3] for an overview).
For γ0, γ1 ≥ 0 this inequality is obtained by extending the proof of the one-



260 M. Meyries and M. Veraar

weight version of [8] to the present situation. For negative weight exponents
we use the weighted Young inequalities from [9, 19]. The necessity of these
conditions follows from suitable scaling arguments (see Propositions 4.7 and
4.9). Observe that Lp(Rd, | · |γ) scales to the power −(d+ γ)/p, which ex-
plains the importance of this number. Moreover, the relation γ1/p1 ≤ γ0/p0
is in particular sufficient to apply the results of [9, 19].

Theorem 1.2 is derived from Theorem 1.1 using a weighted version of
a Gagliardo–Nirenberg type inequality for F -spaces (see Proposition 5.1).
Here we follow the presentation of [37].

As a consequence of Theorem 1.2 we characterize embeddings for Bessel-
potential and Sobolev spaces. For p ∈ (1,∞) and w(x) = |x|γ , where γ ∈
(−d, d(p−1)), let Hs,p(Rd, w;X) denote the weighted Bessel-potential space
with s ∈ R, and let Wm,p(Rd, w;X) denote the weighted Sobolev space with
m ∈ N0 (see Section 3.2).

Corollary 1.4. Let X be a Banach space, 1 < p0 ≤ p1 <∞, s0, s1 ∈ R,
and w0(x) = |x|γ0, w1(x) = |x|γ1 with γ0 ∈ (−d, d(p0 − 1)), γ1 ∈
(−d, d(p1 − 1)). The following assertions are equivalent:

(1) One has the continuous embedding

Hs0,p0(Rd, w0;X) ↪→ Hs1,p1(Rd, w1;X).

(2) The parameters satisfy

(1.7)
γ1
p1
≤ γ0
p0

and s0 −
d+ γ0
p0

≥ s1 −
d+ γ1
p1

.

Corollary 1.5. Let X be a Banach space, 1 < p0 ≤ p1 < ∞, s0, s1 ∈
N0, and w0(x) = |x|γ0, w1(x) = |x|γ1 with γ0 ∈ (−d, d(p0 − 1)), γ1 ∈
(−d, d(p1 − 1)). The following assertions are equivalent:

(1) One has the continuous embedding

W s0,p0(Rd, w0;X) ↪→W s1,p1(Rd, w1;X).

(2) The parameters satisfy (1.7).

The necessity of (1.7) for the embeddings in Corollaries 1.4 and 1.5 is
actually valid for all γ0, γ1 > −d, as a consequence of Proposition 4.7. The
restrictions in the sufficiency part mean that w0 ∈ Ap0 and w1 ∈ Ap1 , where
Ap denotes Muckenhoupt’s class (see Section 2).

In the general vector-valued case, H- and integer W -spaces are not con-
tained in the B- and F -scale, respectively. We have

(1.8) Hs,p(Rd;X) = F sp,2(Rd;X) for some s ∈ R, p ∈ (1,∞)

if and only if X is isomorphic to a Hilbert space (see [17] and [37, Remark 7]).
Moreover,
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(1.9) H1,p(Rd;X) = W 1,p(Rd;X) for some p ∈ (1,∞)

characterizes the UMD property of X (see [1, 27, 45] for details).
We obtain the sufficient conditions in the above corollaries from embed-

dings of the type

(1.10) F sp,1(Rd, w;X) ↪→ Hs,p(Rd, w;X) ↪→ F sp,∞(Rd, w;X),

which are valid for all Banach spaces X and Ap-weights w (see Proposition
3.12), and the independence of the Sobolev embeddings for the F -spaces
from the microscopic parameters. For the latter embedding in (1.10) we
show in Remark 3.13 that it is necessary that w satisfies a local Ap-condition,
which results in γ0 < d(p0 − 1). Then γ1 < d(p1 − 1) is a consequence of
γ1/p1 ≤ γ0/p0 and p0 ≤ p1. This explains our restrictions on the weight
exponents to the Ap-case. In view of Theorems 1.1 and 1.2, and the results
in [32] (see Remark 1.9 below), we do not expect these restrictions to be
necessary.

The result of Theorem 1.1 for Besov spaces and 1 < p1 < p0 < ∞
cannot be extended to F -, H- and W -spaces in the usual way. We prove the
following in this case.

Proposition 1.6. Let X be a Banach space, 1 < p1 < p0 < ∞,
s0, s1 ∈ R and γ0 ∈ (−d, d(p0−1)), γ1 ∈ (−d, d(p1−1)), and let w0(x) = |x|γ0
and w1(x) = |x|γ1. The following assertions are equivalent:

(1) One has the continuous embedding

Hs0,p0(Rd, w0;X) ↪→ Hs1,p1(Rd, w1;X).

(2) One has the continuous embedding

F s0p0,2(R
d, w0;X) ↪→ F s1p1,2(R

d, w1;X).

(3) The parameters satisfy

(1.11)
d+ γ1
p1

<
d+ γ0
p0

and s0 −
d+ γ0
p0

> s1 −
d+ γ1
p1

.

Note that the above result shows that there is no embedding in the
important sharp case s0−(d+ γ0)/p0 = s1−(d+ γ1)/p1. Surprisingly, this is
different for Besov spaces (see Theorem 1.1). The same holds if H-spaces are
replaced by W -spaces since in the scalar case Wm,p(Rd, w) = Hm,p(Rd, w)
whenever m ∈ N and w ∈ Ap (see the proof of Corollary 5.5).

Remark 1.7. Let p0 > p1, w0(x) = |x|γ0 and w1(x) = |x|γ1 with
γ0, γ1 > −d. It would be interesting to characterize for which parameters one
has F s0p0,q0(Rd, w0) ↪→ F s1p1,q1(Rd, w1). Proposition 1.6 only contains a partial
answer to this, because of the restrictions on γ0, γ1, q0, q1.

Remark 1.8. Let Js = (1 − ∆)s/2 be the Bessel potential. Corollary
1.4 gives a characterization of the boundedness of J−s0 : Lp0(Rd, w0) →
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Lp1(Rd, w1) for certain power weights w0 and w1 for p0 ≤ p1 and all s0 ≥ 0.
The equivalent condition of [33] can be difficult to check. Moreover, in Propo-
sition 1.6 we provide a characterization of the boundedness of J−s0 for power
weights w0 and w1 for p1 < p0 and all s0 ≥ 0. It seems that the problem for
J−s with p1 < p0 has not been considered before.

In [35] necessary and sufficient conditions on w0, w1, p0, p1, s0 can be
found for the boundedness of the Riesz potential I−s0 = (−∆)−s0/2 for
p0 ≤ p1 and 0 ≤ s0 < d. The case p1 < p0 has been considered in [44].

Together with elementary embeddings, Theorems 1.1 and 1.2 provide
certain embeddings between B- and F -spaces. These can be strengthened
to so-called Jawerth–Franke embeddings (see Theorem 6.4). Here we restrict
to the case of Ap-weights (see Remark 6.6 for a discussion). We also use the
above results to show embeddings of weighted B-, F -, H- and W -spaces into
(unweighted) spaces of continuous functions (see Proposition 7.4). Again we
can follow the presentation of [37]. For the case of a single weight w ∈ A∞, in
the scalar-valued case the Jawerth–Franke embeddings are shown in [8, 18].

Remark 1.9. Recently, in [32] the classical Caffarelli–Kohn–Nirenberg
inequalities (see [10]) have been extended to general power weights. It is
characterized when

(1.12) W 1,p0,q(Rd \ {0}, w0, w) ↪→ Lp1(Rd, w1),

where W 1,p0,q(Rd \ {0}, w0, w) is the space of functions f : Rd \ {0} → R
which are locally integrable and satisfy

‖f‖Lp0 (w0) + ‖∇f‖Lq(w) <∞.
Here it is assumed that w0(x) = |x|γ0 , w(x) = |x|γ and w1(x) = |x|γ1 with
γ0, γ, γ1 ∈ R and p0, q, p1 ∈ [1,∞). Our results can be compared to the ones
in [32] only in a very special case, namely for γ0 = γ ∈ (−d, d(p0 − 1)),
γ1 ∈ (−d, d(p1 − 1)), q = p0, p1 <∞, s0 = 1 and s1 = 0. In this special case
the equivalence of (1.12) with the condition on the parameters γ0, γ1, p0, p1
in [32] coincides with ours (see Corollary 1.5 if p0 ≤ p1 and Proposition 1.6
if p0 > p1).

On the other hand, one of the main and novel points in the results
in [32] is that the power weights are not necessarily of A∞-type and two
different powers weights w0, w and exponents p0, q in the Sobolev space are
considered.

Remark 1.10. It would be interesting to extend the above results (e.g.
Theorems 1.1, 1.2, etc.) to homogeneous Besov, Triebel–Lizorkin, Bessel-
potential and Sobolev spaces. Some parts are easy to extend. In particular,
Proposition 4.1 below can be applied in the homogeneous setting as well.
The identity s0 − (d+ γ0)/p0 = s1 − (d+ γ1)/p1 plays a crucial role.
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Outline. In Section 2 we consider preliminaries for the treatment of
weighted function spaces, such as maximal inequalities and multiplier the-
orems. These are used in Section 3 to derive basic properties of the vector-
valued spaces. In Section 4 we prove the characterization for Besov spaces,
and in Section 5 the case of F -, H- and W spaces is treated. In Section 6
we show embeddings of Jawerth–Franke type, and in Section 7 embeddings
into unweighted function spaces.

Notation. Positive constants are denoted by C, and may vary from line
to line. If X,Y are Banach spaces, we write X = Y if they coincide as sets
and have equivalent norms. For p ∈ [1,∞], the standard sequence spaces are
denoted by `p.

2. Preliminaries. Here we collect the tools from harmonic analysis
that are needed in the treatment of the weighted function spaces in the next
section.

2.1. Weights. A function w : Rd → [0,∞) is called a weight if w is
locally integrable and if {w = 0} has Lebesgue measure zero. For p ∈ [1,∞)
we denote by Ap the Muckenhoupt class of weights, and A∞ =

⋃
1≤p<∞Ap.

In case p ∈ (1,∞) we have w ∈ Ap if

sup
Q cubes inRd

(
1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)−1/(p−1) dx

)p−1
<∞.

We refer to [13], [15, Chapter 9] and [40, Chapter V] for the general prop-
erties of these classes.

Example 2.1. Let w be a power weight, i.e., w(x) = |x|γ with γ ∈ R.
Then for p ∈ (1,∞) we have (see [15, Example 9.1.7])

w ∈ Ap if and only if γ ∈ (−d, d(p− 1)).

Let (X, ‖ · ‖) be a Banach space. For a strongly measurable function
f : Rd → X and p ∈ [1,∞) let

‖f‖Lp(Rd,w;X) :=
( �

Rd
‖f(x)‖pw(x) dx

)1/p
.

For p ∈ [1,∞) we consider the Banach space

Lp(Rd, w;X) := {f strongly measurable : ‖f‖Lp(Rd,w;X) <∞},

and further set L∞(Rd, w;X) := L∞(Rd;X).
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2.2. Maximal functions. For f ∈ L1
loc(Rd;X), let the Hardy–Little-

wood maximal function Mf be defined by

(Mf)(x) = sup
r>0

1

|B(x, r)|

�

B(x,r)

‖f(y)‖ dy, x ∈ Rd,

where B(x, r) = {z ∈ Rd : |z − x| < r}. For any weight w : Rd → R+ and
p ∈ (1,∞), the maximal function M is bounded on Lp(Rd, w) if and only
if w ∈ Ap (see [40, Theorem V.3.1] and [15, Theorem 9.1.9]). The following
weighted vector-valued version of the Fefferman–Stein maximal inequality
holds as well.

Proposition 2.2. Let X be a Banach space, p ∈ (1,∞), q ∈ (1,∞]
and w ∈ Ap. Then there exists a constant Cp,q,w such that for all (fk)k≥0 ⊆
Lp(Rd, w;X) one has

‖(Mfk)k≥0‖Lp(Rd,w;`q) ≤ Cp,q,w‖(fk)k≥0‖Lp(Rd,w;`q(X)).

Proof. For q =∞ one uses the fact that

(2.1) ‖Mfk(x)‖`∞(X) ≤M‖fk(x)‖`∞(X), x ∈ Rd, k ≥ 0,

and applies the boundedness of M on Lp(Rd, w) to the function f(x) =
‖fk(x)‖`∞(X). If 1 < q < ∞ and X = R, the result can be found in [5,
Theorem 3.1] and [21]. The vector-valued case can be obtained from the
scalar case by applying it to (‖fk‖)k≥0 ⊆ Lp(Rd, w).

For a given function ϕ : Rd → C and t > 0, we define the function
ϕt : Rd → C by

ϕt(x) := tnϕ(tx)

The following lemma is well-known to experts.

Lemma 2.3. Let X be a Banach space, p ∈ (1,∞) and w ∈ Ap. For
ϕ ∈ L1(Rd), define ψ : Rd → R by

ψ(x) := sup{|ϕ(y)| : |y| ≥ |x|}.
If ψ ∈ L1(Rd), then there is a constant Cp,w such that for f ∈ Lp(Rd, w;X)
one has ∥∥∥ sup

t>0
‖ϕt ∗ f‖

∥∥∥
Lp(Rd,w)

≤ Cp,w‖ψ‖L1(Rd)‖f‖Lp(Rd,w;X).

Moreover, for q ∈ (1,∞] there is a constant Cp,q,w such that for all (tk)k≥0
⊆ R+ and (fk)k≥0 ⊆ Lp(Rd, w; `q(X)),

‖(ϕtk ∗ fk)k≥0‖Lp(Rd,w;`q(X)) ≤ Cp,q,w‖ψ‖L1(Rd)‖(fk)k≥0‖Lp(Rd,w;`q(X)).

A partial converse of the lemma holds as well: if for a positive radial
decreasing function ϕ 6= 0 one has ‖ϕt ∗ f‖Lp(Rd,w) ≤ C‖f‖Lp(Rd,w) with a
constant C independent of f and t > 0, then w ∈ Ap (see [40, p. 198]).
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Proof of Lemma 2.3. Let g(x) = ‖f(x)‖. By definition of ψ and [14,
Theorem 2.1.10], for x ∈ Rd and t > 0 one has

‖ϕt ∗ f(x)‖ ≤
�

Rd
|ϕt(y)| ‖f(x− y)‖ dy ≤

�

Rd
ψt(y) g(x− y) dy(2.2)

≤ ‖ψt‖L1(Rd)Mg(x) = ‖ψ‖L1(Rd)Mg(x).

Now the first asserted inequality follows from the boundedness of M on
Lp(Rd, w). Further, for all q ∈ (1,∞] inequality (2.2) implies that

‖(ϕtk ∗ fk(x))k≥0‖`q(X) ≤ ‖ψ‖L1(Rd)‖(Mfk(x))k≥0‖`q(X), x ∈ Rd.
Thus the second assertion for q ∈ (1,∞) follows from Proposition 2.2.
The case q = ∞ is a consequence of (2.1) and the boundedness of M on
Lp(Rd, w).

2.3. A multiplier theorem. LetX be a Banach space, and let S (Rd;X)
be the space of X-valued Schwartz functions. We write S (Rd) in the scalar
case X = C. The Fourier transform of a function f ∈ S (Rd;X) is given by

Ff(ξ) = f̂(ξ) =
1

(2π)d/2

�

Rd
f(x)e−ix·ξ dx, ξ ∈ Rd.

Recall that F is a continuous isomorphism on S (Rd;X). A linear map f :
S (Rd)→ X is called an X-valued tempered distribution if for all φ ∈ S (Rd)
there are a constant C and k,N ∈ N such that

‖f(φ)‖ ≤ C sup
x∈Rd

sup
|α|≤N

(1 + |x|)k|Dαφ(x)|.

The space of all X-valued tempered distributions is denoted by S ′(Rd;X).
Standard operators (Fourier transform, convolution, etc.) on S ′(Rd;X) can
be defined as in the scalar case (cf. [1, Section III.4]).

The following result is an extension of [41, Theorem 1.6.3] and [43, for-
mula 15.3(iv)] to the weighted vector-valued setting. For a compact set
K ⊆ Rd, let LpK(Rd, w) be the space of functions f ∈ Lp(Rd, w) with

supp(f̂) ⊆ K in the sense of distributions.

Proposition 2.4. Let X be a Banach space, p ∈ [1,∞), q ∈ [1,∞],
r ∈ (0,min{p, q}) and w ∈ Ap/r. Let K0,K1, . . . ⊆ Rd be compact sets with
θn = diam(Kn) > 0 for all n. Then there is a constant Cp,q,r,w such that for
all (mn)n≥0 ⊆ L∞(Rd) and (fn)n≥0 ⊆ LpKn(Rd, w;X) one has

‖(F−1[mnf̂n])n≥0‖Lp(Rd,w;`q(X))

≤ Cp,q,d,r,w sup
k≥0
‖(1 + | · |d/r)F−1[mk(θk·)]‖L1(Rd)‖(fn)n≥0‖Lp(Rd,w;`q(X))

≤ Cp,q,d,r,w,λ sup
k≥0
‖mk(θk ·)‖Hλ,2(Rd)‖(fn)n≥0‖Lp(Rd,w;`q(X)),

where λ > d/2 + d/r.
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By considering only m1 6= 0 and f1 6= 0, one obtains a multiplier theorem
on LpK1

(Rd).
Proof. This can be proved as in [41, Theorem 1.6.3] (see also [43, Section

15.3]). Indeed, using Proposition 2.2 one can extend [41, Theorem 1.6.2] to
the vector-valued setting with weights in Ap/r. Now the argument in [41,
Theorem 1.6.3] can be repeated to obtain the result.

3. Definitions and properties of weighted function spaces. In this
section we define and investigate the basic properties of function spaces with
general A∞-weights. The definitions extend those of [8] to the vector-valued
setting. In [34] it is shown that one actually only needs a local version of
this condition, called Aloc

∞ , to obtain reasonable spaces. Since we are mainly
interested in power weights w(x) = |x|γ , for which one easily sees that
w ∈ A∞ if and only if w ∈ Aloc

∞ , we restrict ourselves to the A∞-case.
The arguments employed for the basic properties of the spaces are well-

known and completely analogous to the unweighted, scalar-valued case (see
e.g. [37, 41]). We thus refrain from giving too many details and rather refer
to the literature at most of the points.

3.1. Besov and Triebel–Lizorkin spaces

Definition 3.1. Let ϕ ∈ S (Rd) be such that

(3.1) 0 ≤ ϕ̂(ξ) ≤ 1, ξ ∈ Rd, ϕ̂(ξ) = 1 if |ξ| ≤ 1, ϕ̂(ξ) = 0 if |ξ| ≥ 3/2.

Let ϕ̂0 = ϕ̂, ϕ̂1(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ) and

ϕ̂k(ξ) = ϕ̂1(2
−k+1ξ) = ϕ̂(2−kξ)− ϕ̂(2−k+1ξ), ξ ∈ Rd, k ≥ 1.

Let Φ be the set of all sequences (ϕn)n≥0 constructed in the above way from
a function ϕ that satisfies (3.1).

For ϕ as in the definition and f ∈ S ′(Rd;X) one sets

Skf := ϕk ∗ f = F−1[ϕ̂kf̂ ],

which belongs to C∞(Rd;X) ∩ S ′(Rd;X) (see [36, Remark 4.3.3]). Since∑
k≥0 ϕ̂k(ξ) = 1 for all ξ ∈ Rd, we have

∑
k≥0 Skf = f in the sense of

distributions.

Definition 3.2. Let X be a Banach space, p, q ∈ [1,∞], s ∈ R and
w ∈ A∞. The Besov space Bs

p,q(Rd, w;X) is defined as the space of all

f ∈ S ′(Rd;X) for which

‖f‖Bsp,q(Rd,w;X) := ‖(2ksSkf)k≥0‖`q(Lp(Rd,w;X)) <∞.

Moreover, if s ∈ R+ \ N, then we set

W s,p(Rd, w;X) := Bs
p,p(Rd, w;X).
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Definition 3.3. Let X be a Banach space, p ∈ [1,∞), q ∈ [1,∞], s ∈ R
and w ∈ A∞. The Triebel–Lizorkin space F sp,q(Rd, w;X) is defined as the

space of all f ∈ S ′(Rd;X) for which

‖f‖F sp,q(Rd,w;X) := ‖(2ksSkf)k≥0‖Lp(Rd,w;`q(X)) <∞.

If w ≡ 1, we write Bs
p,q(Rd;X) for Bs

p,q(Rd, w;X) and F sp,q(Rd;X) for

F sp,q(Rd, w;X). As in the scalar case, one can show that these are Banach
spaces. Note that

‖f‖Bsp,q(Rd,w;X) =
(∑
k≥0

2ks‖Skf‖qLp(Rd,w;X)

)1/q
,

‖f‖F sp,q(Rd,w;X) =
∥∥∥(∑

k≥0
2ks‖Skf‖q

)1/q∥∥∥
Lp(Rd,w)

,

with the usual modifications for q =∞.
The following is a consequence of Proposition 2.4.

Proposition 3.4 (Independence from ϕ). Let X be a Banach space and
w ∈ A∞.

(1) For all s ∈ R and p, q ∈ [1,∞], the space Bs
p,q(Rd, w;X) is inde-

pendent of the choice (ϕn)n≥0 ∈ Φ. Any (ψn)n≥0 ∈ Φ leads to an
equivalent norm in Bs

p,q(Rd, w;X).

(2) For all s ∈ R, p ∈ [1,∞) and q ∈ [1,∞], the space F sp,q(Rd, w;X) is
independent of the choice (ϕn)n≥0 ∈ Φ. Any (ψn)n≥0 ∈ Φ leads to
an equivalent norm in F sp,q(Rd, w;X).

Proof. Choose r ∈ (0,min{p, q}) such that w ∈ Ap/r. Then one can
apply Proposition 2.4 in the same way as in the unweighted case in [41,
Section 2.3.2] and [43, Section 15.5].

Remark 3.5.

(i) At a technical point in the proofs, w ∈ A∞ is required to have
the boundedness of the Hardy–Littlewood maximal function and of
the Fefferman–Stein maximal function in some Lr-space and some
Lr(`q)-space with r ∈ (1,∞), respectively.

(ii) Definition 3.3 can be extended to p =∞ and q ∈ [1,∞], but Propo-
sition 3.4 is not true in this setting (see [41, Remark 2.3.1/4]).

(iii) Rychkov [34] considers scalar B- and F -spaces with more general
weights of class Aloc

∞ , i.e., satisfying only a local A∞ condition.

3.2. Sobolev and Bessel-potential spaces

Definition 3.6. Let X be a Banach space, m ∈ N, p ∈ [1,∞], and let
w be a weight. The Sobolev space Wm,p(Rd, w;X) is defined as the space of
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functions f ∈ Lp(Rd;w,X) for which Dαf , taken in the distributional sense,
is in Lp(Rd, w;X) for all multiindices α with |α| ≤ m. Let

‖f‖Wm,p(Rd,w;X) :=
∑
|α|≤m

‖Dαf‖Lp(Rd,w;X).

For s ∈ R and f ∈ S ′(Rd;X), the Bessel potential Jsf ∈ S ′(Rd;X) is
defined by

Jsf := F−1[(1 + | · |2)s/2f̂ ].

Obviously, Js1Js2 = Js1+s2 for s1, s2 ∈ R, and J0 is the identity mapping on
S ′(Rd;X).

Definition 3.7. Let X be a Banach space, s ∈ R, p ∈ [1,∞), and let
w be a weight. The Bessel-potential space Hs,p(Rd, w;X) is defined as the
space of all f ∈ S ′(Rd;X) for which Jsf ∈ Lp(Rd, w;X). Let

‖f‖Hs,p(Rd,w;X) := ‖Jsf‖Lp(Rd,w;X).

It is immediate from the definition that

(3.2) Jσ : Hs,p(Rd, w;X)→ Hs−σ,p(Rd, w;X) isomorphically.

Moreover, W 0,p(Rd, w;X) = H0,p(Rd, w;X) = Lp(Rd, w;X). Certain em-
beddings and identities between these spaces and Triebel–Lizorkin spaces
hold under geometric assumptions on X (see (1.8) and (1.9)).

3.3. Density, lifting property, equivalent norms. The elementary
properties of the A∞-weighted spaces are the same as in the unweighted
case. Proposition 2.4 allows us to carry over the proofs of [41, Section 2.3]
and [43, Section 15] to the weighted setting.

Lemma 3.8. Let X be a Banach space, p ∈ (1,∞), q ∈ [1,∞), s ∈ R.
Let w ∈ A∞. The set S (Rd;X) is dense in Bs

p,q(Rd, w;X), F sp,q(Rd, w;X)

and Hs,p(Rd, w;X).

Proof. Let us consider F sp,q(Rd, w;X). Using Proposition 2.4, the same
arguments as in Step 5 of the proof of [41, Theorem 2.3.3] show that fN =∑N

k=0 Skf converges to f in F sp,q(Rd, w;X) as N → ∞. Still following [41],

let η ∈ S (Rd) with η(0) = 1 and supp(η̂) ⊆ B(0, 1). Since Fη(δ · ) =
δ−dη̂(δ−1 · ), the support of F (η(δ · )fN ) is for all δ ∈ (0, 1) contained in
a ball that only depends on N . Applying again Proposition 2.4, we deduce
that there is C > 0, independent of δ, such that

‖fN − η(δ · )fN‖F sp,q(Rd,w;X) ≤ C‖fN − η(δ · )fN‖Lp(Rd,w;X),

and the right-hand side tends to zero as δ → 0. Since η(δ · )fN ∈ S (Rd;X),
the assertion for the Triebel–Lizorkin spaces follows. Similiar arguments
show the assertion for the Besov spaces.
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For the density of S (Rd) in Lp(Rd, w) see [15, Exercise 9.4.1]. The in-
variance of S (Rd;X) under the Bessel potential Js gives the density in
Hs,p(Rd, w;X).

Proposition 3.9. Let X be a Banach space, p ∈ [1,∞), q ∈ [1,∞],
s ∈ R and w ∈ A∞. Then for all σ ∈ R,

Jσ : Bs
p,q(Rd, w;X)→ Bs−σ

p,q (Rd, w;X) isomorphically,(3.3)

Jσ : F sp,q(Rd, w;X)→ F s−σp,q (Rd, w;X) isomorphically.(3.4)

Proof. Choose r ∈ (0,min{p, q}) such that w ∈ Ap/r. Using Proposition
2.4, the same proof as in the unweighted case gives the assertions (see [41,
Theorem 2.3.8]).

Proposition 3.10. Let X be a Banach space, p ∈ [1,∞), q ∈ [1,∞],
s ∈ R and w ∈ A∞. Then for all k ∈ N,

(3.5) ∑
|α|≤k

‖Dαf‖Bs−kp,q (Rd,w;X) defines an equivalent norm on Bs
p,q(Rd, w;X)

and

(3.6) ∑
|α|≤k

‖Dαf‖F s−kp,q (Rd,w;X) defines an equivalent norm on F sp,q(Rd, w;X).

Proof. In the unweighted scalar case, these results are shown in [41,
Theorem 2.3.8]. The proofs are essentially based on a multiplier theorem
of Mikhlin–Hörmander type in Besov and Triebel–Lizorkin spaces; see [41,
Theorem 2.3.7] for the scalar and [43, Section 15.6] for the vector-valued
case. Using Proposition 2.4, the proof given in [43, Section 15.6] carries over
to the weighted setting, for all w ∈ A∞.

3.4. Elementary embeddings. The elementary embedding properties
and their proofs for the above vector-valued function spaces are the same as
in the unweighted case (see [41, Section 2.3.2]):

Proposition 3.11. Let X be a Banach space and w ∈ A∞.

(1) For all 1 ≤ q0 ≤ q1 ≤ ∞ and s ∈ R,

Bs
p,q0(Rd, w;X) ↪→ Bs

p,q1(Rd, w;X), p ∈ [1,∞],

F sp,q0(Rd, w;X) ↪→ F sp,q1(Rd, w;X), p ∈ [1,∞).

(2) For all q0, q1 ∈ [1,∞], s ∈ R and ε > 0,

Bs+ε
p,q0 (Rd, w;X) ↪→ Bs

p,q1(Rd, w;X), p ∈ [1,∞],
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F s+εp,q0 (Rd, w;X) ↪→ F sp,q1(Rd, w;X), p ∈ [1,∞).

For all q ∈ [1,∞], s ∈ R and p ∈ [1,∞),

Bs
p,min{p,q}(R

d, w;X) ↪→ F sp,q(Rd, w;X) ↪→ Bs
p,max{p,q}(R

d, w;X).

H-spaces are related to B- and F -spaces as follows.

Proposition 3.12. Let X be a Banach space, s ∈ R, p ∈ (1,∞), and
w ∈ Ap. Then

Bs
p,1(Rd, w;X) ↪→ Hs,p(Rd, w;X) ↪→ Bs

p,∞(Rd, w;X),(3.7)

F sp,1(Rd, w;X) ↪→ Hs,p(Rd, w;X) ↪→ F sp,∞(Rd, w;X).(3.8)

Moreover, if m ∈ N, then

Bm
p,1(Rd, w;X) ↪→Wm,p(Rd, w;X) ↪→ Bm

p,∞(Rd, w;X),(3.9)

Fmp,1(Rd, w;X) ↪→Wm,p(Rd, w;X) ↪→ Fmp,∞(Rd, w;X).(3.10)

Proof. Using Propositions 3.9 and 3.10, it suffices to consider the cases
s = m = 0. But then (3.9) and (3.10) are the same as (3.7) and (3.8).
Further, (3.7) follows from (3.8) and Proposition 3.11. To prove (3.8), we
extend the argument in [38, Proposition 2].

For f ∈ S (Rd;X) we have f =
∑

n≥0 Snf almost everywhere on Rd.
Therefore

‖f‖X ≤
∑
n≥0
‖Snf‖X ,

and the first part of (3.8) follows by taking Lp(Rd, w)-norms and appealing
to Lemma 3.8.

Next let f ∈ Lp(Rd, w;X). By the definition of Sn and ϕn for each
x ∈ Rd, one has

‖Snf(x)‖X ≤
�

Rd
|ϕn(y)| ‖f(x− y)‖X dy

≤ 2 sup
n≥0

�

Rd
|2ndϕ0(2

ny)| ‖f(x− y)‖X dy.

Let ψ : Rd → R+ be defined by ψ(y) = sup{ϕ0(z) : |z| ≥ |y|}. It follows
from Lemma 2.3 that

‖f‖F 0
p,∞(Rd,w;X) =

∥∥∥ sup
n≥0
‖Snf‖X

∥∥∥
Lp(Rd,w)

≤ 2‖ψ‖L1(Rd)Cp,w‖f‖Lp(Rd,w;X),

which proves the second part of (3.8).

Remark 3.13. The proof shows that the embeddings on the left-hand
sides in the above proposition are also true for p = 1 and w ∈ A∞. For the
embeddings on the right-hand side this is different:
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For p ∈ (1,∞), let Aloc
p be the class of weights defined in [34], i.e.,

w ∈ Aloc
p if

sup
|Q|≤1

1

|Q|p
( �

Q

w dx
)( �

Q

w′ dx
)p−1

<∞,

where the supremum is taken over all cubes Q in Rd with sides parallel to
the coordinate axes. For weights of the form w(x) = |x|γ one can check that
w ∈ Aloc

p if and only if w ∈ Ap. Now we claim that

(3.11) Lp(Rd, w) ↪→ F 0
p,∞(Rd, w)

if and only if w ∈ Aloc
p .

Proof. If w ∈ Aloc
p , then (3.11) follows from Lp(Rd, w) = F 0

p,2(Rd, w) (see

[34, p. 178]) and the embedding `2 ↪→ `∞.

Conversely, assume that (3.11) holds for a weight w. Let (ϕj)j≥0 ∈ Φ.
Using the continuity of ϕ1 and ϕ1(0) > 0, we can find c > 0 and N ∈ N such
that Re(ϕ(x)) ≥ c for all |x| ≤ d2−N+2. Let Q be a cube with |Q| ≤ 2−Nd.
Let f : Rd → R be a function which satisfies f ≥ 0 on Q and f = 0 on
Rd \ Q. Let j ∈ N be such that 2−(j+N)d ≤ |Q| < 2−(j+N−1)d. Denoting
by `(Q) the maximal axis length of Q, we have `(Q) < 2−(j+N−1). Now for
every x ∈ Q,

|ϕj+1 ∗ f(x)| = 2jd
∣∣∣ �
Q

ϕ1(2
j(x− y))f(y) dy

∣∣∣ ≥ 2jdc
�

Q

f(y) dy ≥ C

|Q|

�

Q

f(y) dy,

where we used the fact that

|2j(x− y)| ≤ 2j2d`(Q) < d2−N+2 for all x, y ∈ Q.

Let λ = C
|Q|

	
Q f(y) dy. The above estimate and (3.11) yield

�

Q

w(x) dx ≤ λ−p
�

Q

|ϕj+1 ∗ f(x)|pw(x) dx ≤ Cλ−p‖f‖p
Lp(Rd,w).

Rewriting this gives( �

Q

w(x) dx
)( �

Q

f(y) dy
)p
≤ C|Q|p

�

Q

|f(x)|pw(x) dx.

As in [24, equation (3.12)] (basically by taking f = 1Qw
′) this implies(

1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w′ dy

)p−1
≤ C.

Since the definition of Aloc
p is independent of the upper bound for the cube

size (see [34, Remark 1.5]) we obtain w ∈ Aloc
p .
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4. Embeddings for Besov spaces—proof of Theorem 1.1. From
now on we specialize to power weights, i.e., w(x) = |x|γ with γ > −d.
We first consider sufficient conditions for the embedding, and in the next
subsection show their optimality.

4.1. Sufficient conditions. In this subsection we prove the sufficiency
part for the embedding for Besov spaces, i.e. Theorem 1.1(2)⇒(1). The main
ingredient of the proof is the following two-weight version of an inequality of
Plancherel–Pólya–Nikol’skĭı type. As already mentioned in the introduction,
a completely different proof for the scalar version of Theorem 1.1 is given
in [18].

Proposition 4.1. Let X be a Banach space and let 1 < p0, p1 ≤ ∞. Let
γ0, γ1 > −d and w0(x) = |x|γ0 and w1(x) = |x|γ1. Suppose

(4.1)
γ1
p1
≤ γ0
p0

and
d+ γ1
p1

<
d+ γ0
p0

.

Let f : Rd → X be a function with supp(f̂) ⊆ {x ∈ Rd : |x| < t}, where t > 0
is fixed. Then for any multiindex α there is a constant Cα, independent of
f and t, such that

(4.2) ‖Dαf‖Lp1 (Rd,w1;X) ≤ Cαt|α|+δ‖f‖Lp0 (Rd,w0;X),

where δ = (d+ γ0)/p0 − (d+ γ1)/p1 > 0.

Remark 4.2.

(i) Suppose that (4.2) holds true for α = 0 and all f as in the propo-
sition. Then it follows from the proof of Theorem 1.1 given below
that the embedding (1.1) for Besov spaces holds true (with suit-
ably chosen s0, s1). By the necessary conditions for this embedding
obtained in Propositions 4.7 and 4.9 below, we conclude that (4.2)
holds true if and only if either p0 = p1 and γ0 = γ1 or (4.1) are
satisfied.

(ii) The case where w0 = w1 is an A∞-weight with the property that
infx∈Rd w(B(x, t)) ≥ tε with ε > 0 is considered in [8, Lemma 2.5].
A part of the argument in [8, Lemma 2.5] will be repeated in (4.4)
below, because the details are needed again at a later point.

(iii) It would be interesting to find a two-weight characterization for
(4.2) for general weights w0 and w1 in the case of t = 1 or more
general t. There might be a connection to [18, Proposition 2.1].

(iv) Certain weighted versions of inequalities of Nikol’skĭı type can also
be found in [41, Sections 1.3.4 and 6.2.3]. However, the power weights
we consider are not covered by those results.

(v) It follows from the proof below that for γ0, γ1 ≥ 0, Proposition 4.1
holds for all p0, p1 ∈ (0,∞) which satisfy (4.1).
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For the proof of the proposition we make use of the following weighted
version of Young’s inequality (see [19, Theorem 3.4, (3.7)] or [9, Theorem
2.2(ii)]). The proof is based on the Stein–Weiss result on fractional integra-
tion (see [6] for a short proof).

Lemma 4.3. Let 1 < q ≤ r <∞ and a, b, c ∈ R be such that

1

r
=

1

q
− 1 +

a+ b+ c

d
, b+ c ≥ 0,

0 < a < d, b < d

(
1− 1

q

)
, c <

d

r
.

Then there is a constant C such that for all measurable functions f and g,

(4.3) ‖x 7→ f ∗ g(x)|x|−c‖Lr(Rd)
≤ C‖x 7→ f(x)|x|a‖L∞(Rd)‖x 7→ g(x)|x|b‖Lq(Rd).

Remark 4.4. In [9, Theorem 2.1] several necessary conditions for
weighted Young’s inequalities are obtained. In our situation we obtain an-
other necessary condition which also appears in the sufficient conditions for
(4.3) in [9, condition (14)]. In fact, it follows from the proof below that if
(4.3) holds for some b and c with b + c < 0, then one obtains (1.1) with
γ1/p1 > γ0/p0. This is impossible according to Theorem 1.1. Therefore,
b+ c ≥ 0 from Lemma 4.3 is also necessary for (4.3). With some additional
arguments one can derive the same necessary condition if the L∞-norm in
(4.3) is replaced by an Lr-norm. In a similar way one can see that a < d
from Lemma 4.3 is necessary for (4.3).

The next lemma is stated without proof in [8, condition (Bp)]. We include
a proof for convenience.

Lemma 4.5. Let p ∈ (1,∞) and w ∈ Ap. Then there is a constant C
such that for all x ∈ Rd,

�

Rd
w(y)(1 + |x− y|)−dp dy ≤ C

�

B(x,1)

w(y) dy.

Proof. If we let gx(z) = 1B(x,1)(z) and s0 = |x−y|+1, then its maximal
function Mgx satisfies

(Mgx)(y) = sup
s>0

|B(y, s) ∩B(x, 1)|
|B(y, s)|

≥ |B(y, s0) ∩B(x, 1)|
|B(y, s0)|

=
|B(x, 1)|
|B(y, s0)|

= s−d0 = (|x− y|+ 1)−d.
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Therefore, since w ∈ Ap, we see that
�

Rd
w(y)(1 + |x− y|)−dp dy ≤ ‖Mgx‖pLp(Rd,w)

≤ C‖gx‖pLp(Rd,w) = C
�

B(x,1)

w(y) dy.

Proof of Proposition 4.1. By a scaling argument it suffices to consider
the case t = 1. Let B1 = {x ∈ Rd : |x| < 1}. For α 6= 0, the same arguments
as in the proof of [41, Proposition 1.3.2] show that

‖Dαf‖Lp1 (Rd,w1;X) ≤ Cα‖f‖Lp1 (Rd,w1;X)

for all p1 ∈ (1,∞] and γ1 > −d. We may thus restrict to the case α = 0.

The proof of (4.2) for α = 0 is split into several cases of which some
are overlapping. In Case 1 we treat p1 = ∞, in Cases 2–6 we consider
p0 ≤ p1 <∞, and in Case 7 we derive the estimate for p0 > p1.

Case 1: p0 < ∞ and p1 = ∞. Then γ0 ≥ 0 by assumption, and (4.2)
is independent of γ1 due to L∞(Rd, w1;X) = L∞(Rd;X). We follow the
arguments given in [8, Lemma 2.5]. First assume that f ∈ L∞(Rd;X). Let
η ∈ S (Rd) be such that supp(η̂) ⊆ B2 and η̂ = 1 on B1. Then one has
f = f ∗ η. Let q ∈ (0, 1) be so small that γ0/(r − 1) < d, where r = p0/q.

Then w′0 = w
−1/(r−1)
0 ∈ Ar′ . For any x ∈ Rd, Hölder’s inequality with

1/r + 1/r′ = 1 yields

‖f(x)‖ ≤
�

Rd
‖f(y)‖ |η(x− y)| dy(4.4)

≤ ‖f‖1−q
L∞(Rd;X)

�

Rd
(‖f(y)‖ |y|γ0/p0)q|y|−qγ0/p0 |η(x− y)| dy

≤ ‖f‖1−q
L∞(Rd;X)

‖f‖q
Lp0 (Rd,w0;X)

( �

Rd
w′0(y)|η(x− y)|r′ dy

)1/r′
.

Now since η is a Schwartz function, there is a constant C such that |η(y)|r′ ≤
C(1 + |y|)−dr′ for all y ∈ Rd. Therefore, it follows from Lemma 4.5 and
−γ/(r − 1) > −d that for all x ∈ Rd we have( �

Rd
w′0(y)|η(x− y)|r′ dy

)1/r′
≤ C

�

B(x,1)

w′0(y) dy

= C
�

B(x,1)

|y|−γ0/(r−1) dy ≤ Cp0,γ0,d.

Combining this with (4.4) we obtain

(4.5) ‖f‖L∞(Rd;X) ≤ C‖f‖Lp0 (Rd,w0;X).
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If f /∈ L∞(Rd;X), then as in [8] we take a function φ ∈ S (Rd) with

φ(0) = 1 and supp(φ̂) ⊆ B1. Since f is smooth, we have φ(r ·)f ∈ L∞(Rd;X)
for all r > 0. For x ∈ Rd, the embedding (4.5) and the dominated conver-
gence theorem imply that

‖f(x)‖ = lim
r→0
‖φ(rx)f(x)‖ ≤ C lim

r→0
‖φ(r · )f‖Lp0 (Rd,w0;X)

= C‖f‖Lp0 (Rd,w0;X).

Case 2: p0 ≤ p1 < ∞ and γ := γ0 = γ1 ≥ 0. Let w(x) = |x|γ . We
can assume p0 < p1, since the other case is trivial. By Case 1 we know that
f ∈ L∞(Rd;X), and from (4.5) we obtain

‖f‖Lp1 (Rd,w;X) ≤ ‖f‖
1−p0/p1
L∞(Rd;X)

‖f‖p0/p1
Lp0 (Rd,w;X)

≤ C‖f‖Lp0 (Rd,w;X).

Case 3: p0 ≤ p1 <∞ and 0 ≤ γ1 < γ0. First consider the integral over
Rd \B1. Since |x|γ1 ≤ |x|γ0 for |x| ≥ 1, one has

‖f‖Lp1 (Rd\B1,w1;X) ≤ ‖f‖Lp1 (Rd\B1,w0;X) ≤ ‖f‖Lp1 (Rd,w0;X)

≤ C‖f‖Lp0 (Rd,w0;X),

where in the last step we applied Case 2. For the integral over B1, let p =
p1γ0/γ1 > p1. We apply Hölder’s inequality with γ1/γ0 + 1/r = 1, to obtain

‖f‖Lp1 (B1,w1;X) ≤ ‖f‖Lp(Rd,w0;X)|B1|1/p1r ≤ C‖f‖Lp0 (Rd,w0;X),

where in the last step we used Case 2.

Case 4: p0 ≤ p1 <∞ and 0 ≤ γ0 < γ1. Then necessarily p0 < p1. First
consider the integral over B1. Since γ1 > γ0, we have

‖f‖Lp1 (B1,w1;X) ≤ ‖f‖Lp1 (B1,w0;X) ≤ ‖f‖Lp1 (Rd,w0;X) ≤ C‖f‖Lp0 (Rd,w0;X),

where in the last step we applied Case 2. Next consider Rd \B1. We have

(4.6) ‖f‖Lp1 (Rd\B1,w1;X)

=
( �

Rd\B1

‖f(x)‖p0 |x|γ0‖f(x)‖p1−p0 |x|γ1−γ0 dx
)1/p1

≤ ‖f‖p0/p1
Lp0 (Rd,w0;X)

(
sup

x∈Rd\B1

‖f(x)‖|x|(γ1−γ0)/(p1−p0)
)1−p0/p1

.

Now fix x ∈ Rd with |x| ≥ 1. Since f ∈ L∞(Rd;X), inequality (4.4) implies

‖f(x)‖ ≤ C‖f‖Lp0 (Rd,w0;X)

( �

Rd
w′(y)|η(x− y)|r′ dy

)1/(r′q)
,

where r = p0/q as in Case 1 and w′(y) = |y|−γ0/(r−1). By Lemma 4.5, for
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|x| ≥ 1 one can estimate�

Rd
w′(y)|η(x− y)|r′ dy ≤ C

�

B(x,1)

w′(y) dy ≤ C|x|−γ0/(r−1),

and thus (r − 1)r′q = p0 yields

(4.7) ‖f(x)‖ ≤ C‖f‖Lp0 (Rd,w0;X)|x|−γ0/p0 , x ∈ Rd \B1.

Substituting (4.7) into (4.6), we obtain

‖f‖Lp1 (Rd\B1,w1;X) ≤ C‖f‖Lp0 (Rd,w0;X) sup
x∈Rd\B1

|x|−γ0/p0+(γ1−γ0)/(p1−p0)

≤ C‖f‖Lp0 (Rd,w0;X),

where the last estimate is a consequence of |x| ≥ 1 and γ1/p1 ≤ γ0/p0.
Case 5: p0 ≤ p1 < ∞, −d < γ0 < d(p0 − 1) and −d < γ1. Then

γ1 < d(p1 − 1) by assumption. Let η ∈ S (Rd) be as in Case 1. For all
x ∈ Rd we then have

‖f(x)‖ ≤ g ∗ |η|(x)

where g(x) = ‖f(x)‖. Set

r = p1, q = p0, a = d− d+ γ0
p0

+
d+ γ1
p1

, b =
γ0
p0
, c = −γ1

p1
.

We claim the conditions of Lemma 4.3 hold. Indeed, note that b + c ≥ 0
is equivalent to γ1/p1 ≤ γ0/p0, a > 0 follows from −γ0 > −d(p0 − 1) and
γ1 > −d, and a < d follows from −(d+ γ0)/p0 + (d+ γ0)/p0 < 0. The
estimate b < d(1 − 1/q) is equivalent to γ0 < d(p0 − 1), and c < d/r is
equivalent to γ1 > −d. Therefore, Lemma 4.3 yields

‖f‖Lp1 (Rd,w1;X) ≤
∥∥g ∗ |η|∥∥

Lp1 (Rd,w1)

≤ C‖x 7→ |x|aη(x)‖L∞(Rd)‖g‖Lp0 (Rd,w0) = C‖f‖Lp0 (Rd,w0;X).

Case 6: p0 ≤ p1 < ∞, d(p0 − 1) ≤ γ0 and −d < γ1 < 0. Take an
arbitrary γ ∈ (0, d(p0 − 1)), and set w(x) = |x|γ . Then γ1/p1 ≤ 0 < γ/p0 <
γ0/p0. Therefore, by Cases 5 and 3 we have

‖f‖Lp1 (Rd,w1;X) ≤ C‖f‖Lp0 (Rd,w;X) ≤ C‖f‖Lp0 (Rd,w0;X).

Case 7: p1 < p0 < ∞ and γ0, γ1 > −d. For ε > 0 we use Hölder’s
inequality with respect to the finite measure |x|−d−εdx on Rd \B1, to obtain

‖f‖Lp1 (Rd\B1,w1) =
( �

Rd\B1

‖f(x)‖p1 |x|γ1+d+ε|x|−d−ε dx
)1/p1

≤ C
( �

Rd\B1

‖f(x)‖p0 |x|
p0
p1

(γ1+d+ε)−d−ε dx
)1/p0

.
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The assumption (γ1 + d)/p1 < (γ0 + d)/p0 implies that (p0/p1)(γ1+d+ε)−
d− ε ≤ γ0 for sufficiently small ε. Hence

‖f‖Lp1 (Rd\B1,w1) ≤ C‖f‖Lp0 (Rd,w0).

To estimate the weighted Lp1-norms over B1, for ε > 0 we use Hölder’s
inequality with respect to the finite measure |x|−d+εdx on B1, which gives

‖f‖Lp1 (B1,w1;X) =
( �

B1

‖f(x)‖p1 |x|γ1+d−ε|x|−d+ε dx
)1/p1

≤ C
( �

B1

‖f(x)‖p0 |x|γ̃0 dx
)1/p0

≤ C‖f‖Lp0 (Rd,w̃0;X).

In the last line we have set w̃0(x) = |x|γ̃0 with γ̃0 := (p0/p1)(γ1+d−ε)−d+ε.
Observe that if ε is sufficiently small, then the assumptions γ1 + d > 0 and
(d+ γ1)/p1 < (d+ γ0)/p0 imply −d < γ̃0 and γ̃0/p0 < γ0/p0, respectively.
Therefore, by Cases 2–6 we obtain

‖f‖Lp0 (Rd,w̃0;X) ≤ ‖f‖Lp0 (Rd,w0;X).

Combining these estimates yields (4.2).

Proof of Theorem 1.1(2)⇒(1). If (1.2) holds, then the embedding (1.1)
follows from Proposition 3.11. Moreover, if (1.4) implies (1.1), then (1.1)
also follows from (1.3) by Proposition 3.11.

Assume that (1.4) holds. For (1.1) it suffices to consider the case q :=

q0 = q1. Let δ = (γ0 + d)/p0 − (γ1 + d)/p1. Since Ŝnf = ϕ̂nf̂ is supported
in {x ∈ Rd : |x| < 3 · 2n−1}, Proposition 4.1 gives

‖Snf‖Lp1 (Rd,w1;X) ≤ C2δn‖Snf‖Lp0 (Rd,w0;X), n ≥ 0.

Therefore, using s1 + δ = s0, we find that

‖f‖Bs1p1,q(Rd,w1;X) =
∥∥(2s1n‖Snf‖Lp1 (Rd,w1;X))n≥0

∥∥
`q

≤ C
∥∥(2s0n‖Snf‖Lp0 (Rd,w0;X))n≥0

∥∥
`q

= C‖f‖Bs0p0,q(Rd,w0;X).

4.2. Necessary conditions. In this subsection we prove Theorem
1.1(1)⇒(2). We start with an elementary lemma.

Lemma 4.6. Let p ∈ [1,∞] and w(x) = |x|γ with γ > −d. Let (ϕn)n≥0 ∈
Φ and j ∈ {−1, 0, 1}. Then there is a constant Cϕ,p,γ,j such that for every
n ≥ 2,

‖ϕn ∗ ϕn+j‖Lp(Rd,w) = Cϕ,p,γ,j2
nd2−n(d+γ)/p.

Proof. Since ϕ̂n = ϕ̂1(2
−n+1 · ), this follows from a straightforward sub-

stitution argument.

We give necessary conditions for an embedding for general p0 and p1.
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Proposition 4.7. Let 1 < p0, p1 ≤ ∞ and s0, s1 ∈ R. Let further
w0(x) = |x|γ0 and w1(x) = |x|γ1 with γ0, γ1 > −d. Suppose

(4.8) Bs0
p0,1

(Rd, w0) ↪→ Bs1
p1,∞(Rd, w1).

Then

(4.9) s0 −
d+ γ0
p0

≥ s1 −
d+ γ1
p1

,
γ1 + d

p1
≤ γ0 + d

p0
and

γ1
p1
≤ γ0
p0
.

Proof. Let (ϕn)n≥0 ∈ Φ. By (4.8), for every n ≥ 0 one has

‖ϕn‖Bs1p1,∞(Rd,w1)
≤ C‖ϕn‖Bs0p0,1(Rd,w0)

.

By the assumption on the support of (ϕ̂n)n≥0 one gets

2ns1‖ϕn ∗ ϕn‖Lp1 (Rd,w1) ≤ C2ns0
1∑

j=−1
‖ϕn ∗ ϕn+j‖Lp0 (Rd,w0), n ≥ 0.

Using Lemma 4.6, this implies that there is a constant C̃ such that

2ns12nd2−n(d+γ1)/p1 ≤ C̃2ns02nd2−n(d+γ0)/p0 .

Letting n tend to infinity gives s1 − (d+ γ1)/p1 ≤ s0 − (d+ γ0)/p0.

We next show that γ1/p1 ≤ γ0/p0. Let f ∈ S (Rd) be such that f̂ has
support in {x ∈ Rd : |x| < 1}. Let λ ≥ 1 and e1 = (1, 0, . . . , 0). Then

supp(F (f(· − λe1))) = supp(f̂). By (4.8) one has

‖f(· − λe1)‖Bs1p1,∞(Rd,w1)
≤ C‖f(· − λe1)‖Bs0p0,1(Rd,w0)

,

and as before this yields

‖f(· − λe1)‖Lp1 (Rd,w1) ≤ C‖f(· − λe1)‖Lp0 (Rd,w0).(4.10)

Let p ∈ (1,∞], γ > −d and w(x) = |x|γ . We claim that there are constants
c, C > 0, depending on p, γ, d, f , such that for all λ ≥ 1 one has

(4.11) cλγ/p ≤ ‖f(· − λe1)‖Lp(Rd,w) ≤ C(1 + λγ)1/p.

From (4.10) and (4.11) it would follow that for all λ ≥ 1 we have cλγ1/p1 ≤
C(1 + λγ0)1/p0 . Letting λ tend to infinity then gives γ1/p1 ≤ γ0/p0.

Estimate (4.11) is trivial for p =∞. To prove (4.11) for p <∞, we first
consider the case γ ≥ 0. We estimate

‖f(· − λe1)‖pLp(Rd,w) =
�

Rd
|f(x− λe1)|p|x|γ dx =

�

Rd
|f(x)|p|x+ λe1|γ dx

≤ Cγ
�

Rd
|f(x)|p(|x|γ + λγ) dx = Cp,γ,d,f (1 + λγ).
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On the other hand,

‖f(· − λe1)‖pLp(Rd,w) =
�

Rd
|f(x)|p|x+ λe1|γ dx ≥

�

[0,1]d

|f(x)|p|x+ λe1|γ dx

≥
�

[0,1]d

|f(x)|pλγ dx = Cd,p,fλ
γ .

Next we consider the case γ < 0. Since f ∈ S (Rd), there is a C such that
one has |f(x)|p ≤ C(1 + |x|)−dp for x ∈ Rd. By Lemma 4.5 we can estimate

‖f(· − λe1)‖pLp(Rd,w) ≤ C
�

Rd
(1 + |x|)−dp|x+ λe1|γ dx

= C
�

Rd
(1 + |y − λe1|)−dp|y|γ dx

≤ C
�

B(λe1,1)

|y|γ dy ≤ C(1 + λ)γ

for λ ≥ 1. For the lower estimate we have

‖f(· − λe1)‖pLp(Rd,w) ≥
�

[0,1]d

|f(x)|p|x+ λe1|γ dx

≥
�

[0,1]d

|f(x)|p(1 + λ)γ dx ≥ Cd,p,f,γλγ .

This completes the proof of (4.11) and therefore the proof of γ1/p1 ≤ γ0/p0.
Next let ϕ be as in Definition 3.1 and for each t > 0 define ft : Rd → C

by ft(x) := tnϕ(tx). By (4.8) one has ‖ft‖Bs1p1,∞(Rd,w1)
≤ C‖ft‖Bs0p0,1(Rd,w0)

.

Taking t > 0 small enough shows that

‖ft‖Lp1 (Rd,w1) ≤ C‖ft‖Lp0 (Rd,w0).

Rescaling gives

t−(γ1+d)/p1‖ϕ‖Lp1 (Rd,w1) ≤ Ct
−(γ0+d)/p0‖ϕ‖Lp0 (Rd,w0).

Letting t ↓ 0 implies that (γ1 + d)/p1 ≤ (γ0 + d)/p0.

Remark 4.8. In the above proof, the assumption p0, p1 > 1 was only
employed to show γ1/p1 ≤ γ0/p0 in case γ0 < 0.

For p1 < p0 we can sharpen the necessary condition (4.9) for an embed-
ding.

Proposition 4.9. Let 1 < p1 < p0 < ∞ and s0, s1 ∈ R. Let further
w0(x) = |x|γ0 and w1(x) = |x|γ1 with γ0, γ1 > −d. Suppose

(4.12) Bs0
p0,1

(Rd, w0) ↪→ Bs1
p1,∞(Rd, w1).
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Then

(4.13) s0 −
d+ γ0
p0

≥ s1 −
d+ γ1
p1

and
γ1 + d

p1
<
γ0 + d

p0
.

Remark 4.10. Observe that γ1/p1 < γ0/p0 is already a consequence of
(γ1 + d)/p1 < (γ0 + d)/p0 and p1 < p0.

To prove the proposition, we need the following density result. Observe
that the proof heavily depends on the fact that the weight is of power type.

Lemma 4.11. Let p ∈ [1,∞), γ > −d and let w(x) = |x|γ. The set

FC∞c (Rd) := {f ∈ S (Rd) : f̂ has compact support}
is dense in Lp(Rd, w).

Proof. By Lemma 3.8, for the assertion it suffices to consider f ∈ S (Rd).
We construct a sequence (fn)n≥0 of functions in FC∞c (Rd) such that f =
limn→∞ fn in Lp(Rd, w). We proceed as in [29, Section 6], where a much
stronger result has been obtained for the one-dimensional setting. Let ζ ∈
S (Rd) be such that ζ̂(ξ) = 1 if |ξ| ≤ 1, and ζ̂(ξ) = 0 if |x| ≥ 2. Let
ζn = ndζ(nx) and fn = ζn ∗ f . Choose an integer k ≥ 0 so large that
−2kp+ γ < −d. Observe that

‖f − fn‖Lp(Rd,w) ≤ sup
x∈Rd

|(|x|2k + 1)(f(x)− fn(x))|
( �

Rd

|x|γ

(|x|2k + 1)p
dx

)1/p

≤ C sup
x∈Rd

|(|x|2k + 1)(f(x)− fn(x))|

≤ C‖[(−∆)k + 1](f̂ − f̂n)‖L1(Rd)

≤ C‖∆k(f̂ − f̂n)‖L1(Rd) + ‖(f̂ − f̂n)‖L1(Rd),

where we used F [(| · |2k + 1)(f − fn)] = ((−∆)k + 1)(f̂ − f̂n). It suffices to
show that for any multiindex a one has

lim
n→∞

‖Da(f̂ − f̂n)‖L1(Rd) = 0.

Note that Da[f̂ − f̂n] = Da[f̂(1 − ζ̂n)]. From the Leibniz rule we see that

Da(f̂− f̂n) consists of finitely many terms of the form Dbf̂ Dc(1− ζ̂n), where
b, c are multiindices. One has

‖Dc(1− ζ̂n)‖L1(Rd) ≤ ‖Dbf̂‖L∞(Rd)‖Dc(1− ζ̂n)‖L1(Rd),

which converges to zero as n tends to infinity, by the dominated convergence
theorem.

Proof of Proposition 4.9. In Proposition 4.7 we have already seen that

s0 −
d+ γ0
p0

≥ s1 −
d+ γ1
p1

and
γ1 + d

p1
≤ γ0 + d

p0
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Assume that (γ1 + d)/p1 = (γ0 + d)/p0. We show that this leads to a con-

tradiction. Let f ∈ Lp0(Rd;w0) be such that supp(f̂ ) ⊆ {ξ ∈ Rd : |ξ| ≤ 1}.
Then it follows from (4.12) that (4.2) holds with t = 1. By scaling we see

that for all f ∈ Lp0(Rd, w0) such that f̂ has compact support one has

(4.14) ‖f‖Lp1 (Rd,w1) ≤ C‖f‖Lp0 (Rd,w0).

From Lemma 4.11 we see that (4.14) extends to all f ∈ Lp0(Rd, w0). Now
define f : Rd → R by f(x) = |x|−d/p0 log(1/|x|)−1/p11[0,1/2](|x|). Then

using polar coordinates one easily checks that f ∈ Lp0(Rd, w0), but f /∈
Lp1(Rd, w1), which contradicts (4.14).

We can finish the proof of the necessary conditions for the embeddings
of Besov spaces.

Proof of Theorem 1.1(1)⇒(2). It suffices to consider X = C. It follows
from (1.1) and Proposition 3.11 that

Bs0
p0,1

(Rd, w0) ↪→ Bs1
p1,∞(Rd, w1).

From Proposition 4.7 we see that (4.9) holds. Now there are two possibilities:
either (i) (d+ γ1)/p1 < (d+ γ0)/p0, or (ii) (d+ γ1)/p1 = (d+ γ0)/p0.

Suppose that (i) holds. If s0− (d+ γ0)/p0 > s1− (d+ γ1)/p1, then (1.3)
follows. If s0 − (d+ γ0)/p0 = s1 − (d+ γ1)/p1, then to obtain (1.4) we have
to show that q0 ≤ q1. Let (ϕn)n≥0 be as in Definition 3.1. For a sequence

(aj) and N ∈ N, define the function f =
∑N

j=1 2−3j(d+s0−(d+γ0)/p0)ajϕ3j . We
have ϕn ∗ ϕ3j 6= 0 only for n = 3j + l with l ∈ {−1, 0, 1}, and by Lemma
4.6, ‖ϕ3j+l ∗ ϕ3j‖Lp(Rd,w) = C 23jd2−3j(d+γ)/p. It follows that

‖(aj)j≤N‖`q1 ≤ C‖(aj)j≤N‖`q0 ,

with a constant C independent of N and aj . But this is only possible for
q0 ≤ q1.

Now suppose that (ii) holds. Then γ1/p1 ≤ γ0/p0 yields p0 ≥ p1. If
p0 > p1, then Proposition 4.9 yields (d+ γ1)/p1 < (d+ γ0)/p0 and this
contradicts (ii). If p0 = p1, then γ0 = γ1 follows from (ii) and therefore,
s0 ≥ s1 by (4.9). If s0 = s1, then it follows as above that q0 ≤ q1. Hence
(1.2) is valid.

5. Embeddings for Triebel–Lizorkin spaces
—proof of Theorem 1.2

5.1. Sufficient conditions. In the proof of the sufficiency part of The-
orem 1.2 we employ ideas from [7] and [38]. One has the following Gagliardo–
Nirenberg type inequality for spaces with weights.
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Proposition 5.1. Let X be a Banach space, q, q0, q1 ∈ [1,∞] and θ ∈
(0, 1). Let p, p0, p1 ∈ (1,∞) and −∞ < s0 < s1 <∞ satisfy

1

p
=

1− θ
p0

+
θ

p1
and s = (1− θ)s0 + θs1.

Let further w,w0, w1 ∈ A∞ be such that w = w
(1−θ)p/p0
0 w

θp/p1
1 . Then there

exists a constant C such that for all f ∈ S ′(Rd;X),

‖f‖F sp,q(Rd,w;X) ≤ C‖f‖1−θF
s0
p0,q0

(Rd,w0;X)
‖f‖θ

F
s1
p1,q1

(Rd,w1;X)
.

In particular, one can take w = w0 = w1.

Proof. Due to [7, Lemma 3.7], for any sequence of scalars (aj)j≥0 one
has

‖(2sjaj)j≥0‖`q ≤ ‖(2s0jaj)j≥0‖1−θ`∞ ‖(2
s1jaj)j≥0‖θ`∞ .

Taking aj(x) = ‖Sjf(x)‖ with x ∈ Rd, one obtains

‖(2sjaj(x))j≥0‖p`qw(x)

≤ ‖(2s0jaj(x))j≥0‖(1−θ)p`∞ w0(x)(1−θ)p/p0‖(2s1jaj(x))j≥0‖θp`∞w1(x)θp/p1 .

Thus Hölder’s inequality gives

‖f‖F sp,q(Rd,w;X) ≤ C‖f‖1−θF
s0
p0,∞(Rd,w0;X)

‖f‖θ
F
s1
p1,∞(Rd,w1;X)

,

and the assertion follows from Proposition 3.11.

We turn to the proof of sufficiency.

Proof of Theorem 1.2(2)⇒(1). By the elementary embeddings of Propo-
sition 3.11, one can assume that s0 − (d+ γ0)/p0 = s1 − (d+ γ1)/p1 and
q1 = 1. The trivial cases in (2) are also covered Proposition 3.11. We thus
have to show that (1.3) implies the embedding (1.5).

Let θ0 ∈ [0, 1) be such that 1/p1−(1− θ0)/p0 = 0. Consider the function
g : (θ0, 1]→ R given by

g(θ) =
γ1/p1 − (1− θ)γ0/p0

1/p1 − (1− θ)/p0
.

Obviously, g is continuous, and limθ↑1 g(θ) = γ1. Since γ1 > −d we can
choose a θ ∈ (θ0, 1) such that γ := g(θ) > −d. Let v(x) = |x|γ , and let r
be defined by 1/p1 = (1− θ)/p0 + θ/r. Note that p0 ≤ p1 < ∞ implies r ∈
[p1,∞). Let further t be defined by t−(d+ γ)/r = s1−(d+ γ1)/p1. Observe

that t < s0, s1 = θt + (1 − θ)s0 and vp1θ/rw
(1−θ)p1/p0
0 = w1. Therefore, by

Proposition 5.1,

(5.1) ‖f‖F s1p1,1(Rd,w1;X) ≤ C‖f‖
1−θ
F
s0
p0,q0

(Rd,w0;X)
‖f‖θF tr,r(Rd,v;X).
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Now one can check that

γ1
p1
− γ

r
=

1− θ
θ

(γ0
p0
− γ1
p1

)
≥ 0.

From Proposition 3.11 and Theorem 1.1 (using r ≥ p1) one obtains

‖f‖F tr,r(Rd,v;X) = ‖f‖Btr,r(Rd,v;X) ≤ C‖f‖Bs1p1,p1 (Rd,w1;X) ≤ C‖f‖F s1p1,1(Rd,w1;X).

Substituting the latter estimate into (5.1), one deduces that

‖f‖F s1p1,1(Rd,w1;X) ≤ C‖f‖F s0p0,q0 (Rd,w0;X),

using the density of S (Rd;X) for q0 < ∞ and a standard Fatou argument
for q0 =∞.

5.2. Necessary conditions. The necessary conditions for F -spaces are
a direct consequence of the result for B-spaces.

Proof of Theorem 1.2(1)⇒(2). Assume (1). It suffices to consider X = C.
By Proposition 3.11 one has

Bs0
p0,1

(Rd, w0) ↪→ F s0p0,q0(Rd, w0) ↪→ F s1p1,q1(Rd, w1) ↪→ Bs1
p1,∞(Rd, w1).

Therefore, (2) follows from the Propositions 4.7 and 3.11.

Now we can prove the characterization for H- and W -spaces in the case
p0 ≤ p1.

Proof of Corollaries 1.4 and 1.5. These follow from Theorem 1.2 and
Proposition 3.12.

Remark 5.2. It is unclear to us whether Corollaries 1.4 and 1.5 hold
for all γ0, γ1 > −d. This is contained in [32] for s0 = 0, s1 = 0 in the case of
W -spaces.

In Proposition 1.6 we give a characterization for the embedding of H-
and F -spaces in case p1 < p0. Its proof will be based on the following result.

Proposition 5.3. Let 1 < p1 < p0 < ∞ and s0, s1 ∈ R. Let further
w0(x) = |x|γ0 and w1(x) = |x|γ1 with −d < γ0 < d(p0 − 1) and −d < γ1 <
d(p1 − 1). Suppose

(5.2) Hs0,p0(Rd, w0) ↪→ Hs1,p1(Rd, w1).

Then

(5.3)
γ1 + d

p1
<
γ0 + d

p0
and s0 −

d+ γ0
p0

> s1 −
d+ γ1
p1

.

Proof. It suffices to consider the case X = C and s1 = 0. Proposi-
tions 3.12, 4.7 and 4.9 imply that s0 − (d+ γ0)/p0 ≥ −(d+ γ1)/p1 and
(γ1 + d)/p1 < (γ0 + d)/p0. In particular, we have s0 > 0.
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We suppose that

s0 −
d+ γ0
p0

= −d+ γ1
p1

,
γ1 + d

p1
<
γ0 + d

p0
,

and show that this gives a contradiction. It follows from [40, Proposition
VI.4.4/2, Corollary V.4.2] that the operator (1−∆)s0/2(1 + (−∆)s0/2)−1 is
bounded on Lp0(Rd, w0). Thus for f ∈ S (Rd), the embedding (5.2) implies
that

‖f‖Lp1 (Rd,w1) ≤ C‖(1−∆)s0/2f‖Lp0 (Rd,w0)

≤ C‖f‖Lp0 (Rd,w0) + ‖(−∆)s0/2f‖Lp0 (Rd,w0).

By applying the above estimate to f(λ · ) for λ > 0, scaling shows that

‖f‖Lp1 (Rd,w1) ≤ Cλ
−s0‖f‖Lp0 (Rd,w0) + C‖(−∆)s0/2f‖Lp0 (Rd,w0).

Letting λ→∞ gives

(5.4) ‖f‖Lp1 (Rd,w1) ≤ C̃‖(−∆)s0/2f‖Lp0 (Rd,w0).

By density it follows that for all f ∈ S ′(Rd) for which (−∆)s0/2f ∈
Lp0(Rd, w0), estimate (5.4) holds.

Now define g : Rd → R as g(x) = |x|−a log(1/|x|)−b1[0,1/2](|x|), where

a = s0 +
γ1 + d

p1
=
γ0 + d

p0
, b = 1/p1.

One has g ∈ Lp0(Rd, w0). Indeed, using polar coordinates one sees that

‖g‖p0
Lp0 (Rd,w0)

= c

1/2�

0

rd−1r−ap0 log(1/r)−bp0 rγ0 dr

= c

1/2�

0

r−1 log(1/r)−p0/p1 dr <∞,

because p0/p1 > 1. Let f ∈ S ′(Rd) be defined by f = (−∆)−s0/2g. To show
that (5.4) cannot hold, and therefore to prove (5.3), it suffices to show that
f /∈ Lp1(Rd, w1). This will be checked for d ≥ 2 and d = 1 separately.

First assume d ≥ 2. One has the following representation of the Riesz
potential for radial symmetric functions v : Rd → R (see [12]):

(−∆)−s0/2v(x) = c

∞�

0

v(r)rs0−1Ij,k(ρ/r) dr.

Here j = d− s0, k = (d− 3)/2, ρ = |x|,

Ij,k(z) =

1�

−1

(1− t2)k

(1− 2zt+ z2)j/2
dt, z ≥ 0.
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The function Ij,k : [0,∞) → [0,∞) is continuous on [0,∞) \ {1} and its
singularity at 1 is well-understood (see [12, Lemma 4.2]). For ρ = |x| ≤ 1/2,
ρ 6= 0, we obtain

f(x) = (−∆)−s0/2g(x) = c

1/2�

0

rs0−a−1 log(1/r)−bIj,k(ρ/r) dr

≥ c log(2/ρ)−b
ρ�

ρ/2

rs0−a−1Ij,k(ρ/r) dr

= cρs0−a log(2/ρ)−b
1�

1/2

us0−a−1Ij,k(1/u) dr

≥ Cρs0−a log(2/ρ)−b.

It follows that

‖f‖p1
Lp1 (Rd,w1)

≥
�

|x|≤1/2

|f(x)|p1 |x|γ1 dx

≥ C
1/2�

0

ρd−1ρ(s0−a)p1 log(2/ρ)−bp1ργ1 dρ

= C

1/2�

0

ρ−1 log(2/ρ)−1 dρ =∞.

Hence f /∈ Lp1(Rd, w1).

If d = 1, then for x ∈ [0, 1/2] one has

f(x) = (−∆)−s0/2g(x) = c

1/2�

−1/2

|x− y|s0−1|y|−a log(1/|y|)−b dy

≥ log(2/x)−b
x�

x/2

|x− y|s0−1|y|−a dy = cxs0−a log(2/x)−b.

Now the proof can be finished as before.

We obtain the following consequences for F - and W -spaces.

Corollary 5.4. Let 1 < p1 < p0 < ∞ and s0, s1 ∈ R. Let further
w0(x) = |x|γ0 and w1(x) = |x|γ1 with −d < γ0 < d(p0 − 1) and −d < γ1 <
d(p1 − 1). Suppose that for some q0 ∈ [2,∞] and q1 ∈ [1, 2],

(5.5) F s0p0,q0(Rd, w0) ↪→ F s1p1,q1(Rd, w1).

Then (5.3) holds.
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Proof. By Proposition 3.9 and the results in [8, Section 4] we have

(5.6) F sipi,2(wi) = Hsi,pi(wi) for i = 1, 2.

Therefore, by Proposition 3.11, (5.5) implies (5.2). Now the result follows
from Proposition 5.3.

Corollary 5.5. Let 1 < p1 < p0 < ∞ and s0, s1 ∈ N0. Let further
w0(x) = |x|γ0 and w1(x) = |x|γ1 with −d < γ0 < d(p0 − 1) and −d < γ1 <
d(p1 − 1). Suppose

(5.7) W s0,p0(Rd, w0) ↪→W s1,p1(Rd, w1).

Then (5.3) holds.

Proof. Since Lpi(Rd, wi) = F 0
pi,2

(Rd, wi) by [34, Theorem 1.10], Propo-

sition 3.10 implies that W si,pi(Rd, wi) = F sipi,2(R
d, wi) for i = 1, 2. Now the

result follows from Corollary 5.4.

We end this section with the characterization of embeddings for H-spaces
in case p0 > p1.

Proof of Proposition 1.6. To prove (1)⇒(3) and (2)⇒(3), it suffices to
consider X = C. Note that because of (5.6) it suffices to prove (1)⇒(3),
since (1) and (2) coincide for X = C. Now, (3) follows from Proposition 5.3.

We prove the sufficiency part. Assume (3). By Theorem 1.1 it follows
that Bs0

p0,∞(Rd, w0;X) ↪→ Bt1
p1,∞(Rd, w1;X), where t1 is defined by s0 −

(γ0 + d)/p0 = t1 − (γ1 + d)/p1. Note that it follows from (3) that t1 > s1.
Therefore, combining the above embedding with Proposition 3.11 yields

Bs0
p0,∞(Rd, w0;X) ↪→ Bs1

p1,1
(Rd, w1;X).

Now (1) and (2) are a consequence of the Propositions 3.11 and 3.12.

6. Embeddings of Jawerth–Franke type. In this section we only
treat power weights of Ap-type. We first consider real interpolation of the
weighted function spaces.

Proposition 6.1. Let X be a Banach space, p ∈ (1,∞), q0, q1, q ∈
[1,∞], s0 6= s1 ∈ R. Then for θ ∈ [0, 1], s = (1− θ)s0 + θs1 and w ∈ Ap,

(Bs0
p,q0(Rd, w;X), Bs1

p,q1(Rd, w;X))θ,q = Bs
p,q(Rd, w;X),(6.1)

(F s0p,q0(Rd, w;X), F s1p,q1(Rd, w;X))θ,q = Bs
p,q(Rd, w;X),(6.2)

(Hs0,p(Rd, w;X), Hs1,p(Rd, w;X))θ,q = Bs
p,q(Rd, w;X),(6.3)

and if additionally s0, s1 ≥ 0 are integers, then

(W s0,p(Rd, w;X),W s1,p(Rd, w;X))θ,q = Bs
p,q(Rd, w;X).(6.4)
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Moreover, for p0, p1 ∈ (1,∞), s ∈ R, θ ∈ (0, 1), 1/p = (1− θ)/p0 + θ/p1,

q ∈ (1,∞], and w0 ∈ Ap0, w1 ∈ Ap1, w ∈ Ap with w1/p = w
(1−θ)/p0
0 w

θ/p1
1 ,

(F sp0,q(R
d, w0;X), F sp1,q(R

d, w1;X))θ,p = F sp,q(Rd, w;X),(6.5)

(F sp0,1(R
d, w0;X), F sp1,1(R

d, w1;X))θ,p ↪→ F sp,1(Rd, w;X).(6.6)

Proof. Since all the weights under consideration are of class Ap, the
proofs are straightforward generalizations of the unweighted case, as pre-
sented in [42, Section 2.4] and [37, Proposition 12], for instance.

We nevertheless provide the details for (6.5) and (6.6). By Proposition
3.9 it suffices to consider s = 0. Let (ϕn)n≥0 ∈ Φ. For p∗ ∈ (1,∞), q∗ ∈ [1,∞]
and w∗ ∈ Ap∗ it follows from the definitions that the map

S : F 0
p∗,q∗(R

d, w∗;X)→ Lp∗(Rd, w∗; `q∗(X)), Sf = (ϕn ∗ f)n≥0,

is continuous. If (ψn)n≥0 is as in the proof of Proposition 3.9, then Lemma
2.3 implies that

R : Lp∗(Rd, w∗; `q∗(X))→ F 0
p∗,q∗(R

d, w∗;X), R(gk)k≥0 =
∞∑
k=0

ψk ∗ gk,

is continuous for q ∈ (1,∞]. Now if p0, p1, p and w0, w1, w are as in (6.5) and
(6.6), then [42, Theorem 1.18.5] gives

(6.7) (Lp0(Rd, w0; `
q(X)), Lp1(Rd, w1; `

q(X)))θ,p = Lp(Rd, w; `q(X))

where q ∈ [1,∞]. Since R is a right-inverse for S, (6.5) is a consequence of
the well-known retraction-corectraction method (see [42, Theorem 1.2.4]).
Moreover, (6.7) implies that

S : (F 0
p0,1(R

d, w0;X), F 0
p1,1(R

d, w1;X))θ,p → Lp(Rd, w; `1(X))

is continuous as well. Thus (6.6) follows from

‖f‖F 0
p,1(Rd,w;X) = ‖Sf‖Lp(Rd,w;`1(X))(6.8)

≤ C‖f‖(F 0
p0,1

(Rd,w0;X),F 0
p1,1

(Rd,w1;X))θ,p
.

Employing Lemma 2.3 and interpolation theory for a class of weighted
`q-spaces (see [42, Theorem 1.18.2]), one can show (6.1) in a similar way.
Finally, the identities (6.2), (6.3) and (6.4) follow from the independence of
(6.1) from the microscopic parameters q0, q1 ∈ [1,∞], and from Propositions
3.11 and 3.12.

Remark 6.2. The operator S in the proof above is continuous for all
w ∈ A∞. It thus follows from (6.8) that the embeddings from the left to the
right in (6.5) and (6.6) are true for w ∈ A∞.
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Remark 6.3. In [8], interpolation results for scalar B- and F -spaces are
shown for a single weight w ∈ A∞. Even more general results and different
proofs are given in [34, Theorem 2.14].

After these preparations we can show embeddings of Jawerth–Franke
type, which is an improvement of the embeddings in (1.1) and (1.5). We
argue similarly to [37, Theorem 6].

Theorem 6.4. Let X be a Banach space, 1 < p0 < p1 <∞, s0, s1 ∈ R,
q ∈ [1,∞], and w0(x) = |x|γ0, w1(x) = |x|γ1 with γ0 ∈ (−d, d(p0 − 1)) and
γ1 ∈ (−d, d(p1 − 1)). Suppose

(6.9)
γ1
p1
≤ γ0
p0

and s0 −
d+ γ0
p0

≥ s1 −
d+ γ1
p1

.

Then

Bs0
p0,p1(Rd, w0;X) ↪→ F s1p1,q(R

d, w1;X),(6.10)

F s0p0,q(R
d, w0;X) ↪→ Bs1

p1,p0(Rd, w1;X).(6.11)

Proof. For (6.10), by Proposition 3.11 it suffices to consider the case
q = 1 and s0− (d+ γ)/p0 = s1− (d+ γ)/p1. Let r0, r1 ∈ (1,∞) be such that
p0 < r0 < p1 < r1, and let µ0 ∈ (−d, d(r0 − 1)) and µ1 ∈ (−d, d(r1 − 1))
satisfy µ0/r0 = µ1/r1 = γ1/p1. Let further θ ∈ (0, 1) and t0, t1 ∈ R be such
that

1

p1
=

1− θ
r0

+
θ

r1
, t0−

d+ γ0
p0

= s1−
d+ µ0
r0

, t1−
d+ γ0
p0

= s1−
d+ µ1
r1

.

Since (1− θ)t0 + θt1 = s0, we deduce from (6.1) that

Bs0
p0,p1(Rd, w0;X) = (F t0p0,1(R

d, w0;X), F t1p0,1(R
d, w0;X))θ,p1 .

Set v0(x) = |x|µ0 and v1(x) = |x|µ1 . Theorem 1.2 gives the embeddings

F t0p0,1(R
d, w0;X) ↪→ F s1r0,1(R

d, v0;X), F t1p0,1(R
d, w0;X) ↪→ F s1r1,1(R

d, v1;X),

due to the definition of t0, t1 and µ0/r0 = µ1/r1 = γ1/p1 ≤ γ0/p0. Therefore

Bs0
p0,p1(Rd, w0;X) ↪→ (F s1r0,1(R

d, v0;X), F s1r1,1(R
d, v1;X))θ,p1

↪→ F s1p1,1(R
d, w1;X),

where the latter embedding follows from (6.6), as 1/p1 = (1− θ)/r0 + θ/r1
and γ1/p1 = (1− θ)µ0/r0 + θµ1/r1.

To show (6.11), as above it suffices to consider q =∞ and s0−(d+ γ)/p0
= s1 − (d+ γ)/p1. Let r0, r1 ∈ (1,∞), θ ∈ (0, 1), µ0 ∈ (−d, d(r0 − 1)) and
µ1 ∈ (−d, d(r1 − 1)) be such that

r0 < p0 < r1 < p1,
1

p0
=

1− θ
r0

+
θ

r1
,

µ0
r0

=
µ1
r1

=
γ0
p0
.
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Setting again v0(x) = |x|µ0 and v1(x) = |x|µ1 , we find from (6.5) that

F s0p0,∞(Rd, w0;X) = (F s0r0,∞(Rd, v0;X), F s0r1,∞(Rd, v1;X))θ,p0 .

Let the numbers t0, t1 ∈ R be defined by

s0 −
d+ µ0
r0

= t0 −
d+ γ1
p1

, s0 −
d+ µ1
r1

= t1 −
d+ γ1
p1

.

Using γ1/p1 ≤ γ0/p0 = µ0/r0 = µ1/r1, Proposition 3.11 and Theorem 1.1
yield

F s0r0,∞(Rd, v0;X) ↪→ Bs0
r0,∞(Rd, v0;X) ↪→ Bt0

p1,∞(Rd, w1;X),

F s0r1,∞(Rd, v1;X) ↪→ Bs0
r1,∞(Rd, v1;X) ↪→ Bt1

p1,∞(Rd, w1;X).

We thus have

F s0p0,∞(Rd, w0;X) ↪→ (Bt0
p1,∞(Rd, w1;X), Bt1

p1,∞(Rd, w1;X))θ,p0

= Bs1
p1,p0(Rd, w1;X),

where the latter identity follows from (1− θ)t0 + θt1 = s1 and (6.1).

Remark 6.5. For w0 = w1 ∈ A∞, the scalar versions of (6.10) and
(6.11) are shown in [8, Theorem 2.6] and [18, Proposition 1.8].

Remark 6.6. In the scalar case, the interpolation identities (6.1) and
(6.2) are shown in [8] for w ∈ A∞. Inspecting the proof for (6.10), we see
that only the interpolation embedding (6.6) was used, which is also true for
w ∈ A∞ by Remark 6.2. Hence (6.9) implies (6.10) for all weight exponents
γ0, γ1 > −d.

Also for (6.11) we expect that the restrictions γ0 < d(p0 − 1) and γ1 <
d(p1 − 1) are not necessary. In case γ1/p1 < γ0/p0 one can give a more
direct proof which only makes use of (6.5) for a single weight. The scalar
version of (6.5) is shown in [8, Theorem 3.5]. Hence (6.9) implies (6.10) for
all γ0, γ1 > −d under these assumptions.

However, the sharp case γ1/p1 = γ0/p0 for (6.11) remains open. One
needs (6.5) also for A∞-weights, which seems to be an open problem (see [8,
Remark 3.4]).

7. Embeddings into Lp- and Hölder spaces. In this section we dis-
cuss conditions under which weighted spaces of smooth functions embed into
function spaces such as Lp-spaces and spaces of Hölder continuous functions.
The results are consequences of our main results.

Proposition 7.1. Let X be a Banach space, let 1 < p0, p1 ≤ ∞, q0 ∈
[1, p0]. Let w0(x) = |x|γ0 and w1(x) = |x|γ1 with γ0, γ1 > −d. Assume

s0 −
d+ γ0
p0

≥ −d+ γ1
p1

,
γ1
p1
≤ γ0
p0

and
d+ γ1
p1

<
d+ γ0
p0

.
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If p0 ≤ p1 or q0 = 1, then

Bs0
p0,q0(Rd, w0;X) ↪→ Lp1(Rd, w1;X),

Proposition 7.2. Let X be a Banach space, let 1 < p0 ≤ p1 < ∞,
q0 ∈ [1,∞]. Let w0(x) = |x|γ0 and w1(x) = |x|γ1 with γ0, γ1 > −d. If

s0 −
d+ γ0
p0

≥ −d+ γ1
p1

and
γ1
p1
≤ γ0
p0
,

then

F s0p0,q0(Rd, w0;X) ↪→ Lp1(Rd, w1;X),

Proof of Propositions 7.1 and 7.2. Let p0 ≤ p1. By Proposition 3.11
and q0 ≤ p0 one has the embedding Bs0

p0,q0(Rd, w0;X) ↪→ F s0p0,p0(Rd, w0;X).
Therefore, Proposition 7.1 follows from Proposition 7.2 in this case. The
embeddings

F s0p0,q0(Rd, w0;X) ↪→ F 0
p1,1(R

d, w1;X) ↪→ Lp1(Rd, w1;X)

are consequences of Theorem 1.2 and Proposition 3.12 (resp. Remark 3.13).
If p0 > p1 and q0 = 1, then by Theorem 1.1,

Bs0
p0,1

(Rd, w0;X) ↪→ B0
p1,1(R

d, w0;X) ↪→ Lp1(Rd, w1;X),

where the last embedding follows again from Proposition 3.12 (resp. Remark
3.13).

Remark 7.3. Many other results can be derived from Theorems 1.1 and
1.2. Moreover, employing Proposition 3.11, we see that a similar result to
Proposition 7.2 above holds for Hs0,p0(Rd, w0;X) and W s0,p0(Rd, w0;X) if
γ0 < d(p0 − 1).

For m ∈ N, let BUCm(Rd;X) denote the space of m-times differen-
tiable functions with bounded and uniformly continuous derivatives. For
s = [s] + s∗ with [s] ∈ N0 and s∗ ∈ (0, 1), let further BUCs(Rd;X) be the
subspace of BUC[s](Rd;X) consisting of functions with s∗-Hölder continuous
derivatives of order [s].

Proposition 7.4. Let X be a Banach space, let 1 < p0 <∞, q0 ∈ [1,∞]
and s0 ∈ R. Let w0(x) = |x|γ0 with γ0 ≥ 0. If s1 = s0 − (d+ γ0)/p0 > 0 is
not an integer, then

(7.1) Es0,p0(Rd, w0;X) ↪→ BUCs1(Rd;X),

where Es0,p0 ∈ {F s0p0,q0 , B
s0
p0,q0}. If m = s0 − (d+ γ0)/p0 ≥ 0 is an integer,

then

(7.2) Bs0
p0,1

(Rd, w0;X) ↪→ BUCm(Rd;X).

Assuming that 0 ≤ γ0 < d(p0 − 1), these embeddings are also valid for
Es0,p0 = Hs0,p0 and, if s0 ∈ N, for Es0,p0 = W s0,p0.
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Proof. To prove (7.1), by Propositions 3.11 and 3.12 it suffices to show
that

Bs0
p0,∞(Rd, w0;X) ↪→ BUCs1(Rd;X).

This embedding is a consequence of Theorem 1.1 and

Bs1
∞,∞(Rd, w0;X) = Bs1

∞,∞(Rd;X) = BUCs1(Rd;X),

where the latter identity can be proved as in the scalar case (see [41, Theorem
2.5.7]).

For (7.2), Theorem 1.1 yields

Bs0
p0,1

(Rd, w0;X) ↪→ Bm
∞,1(Rd;X).

We further have
Bm
∞,1(Rd;X) ↪→ BUCm(Rd;X),

due to Proposition 3.10 and (the proof of) [41, Theorem 2.5.7].
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