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The continuity of pseudo-differential operators
on weighted local Hardy spaces

by

MING-Y1 LEE, CHIN-CHENG LIN and YING-CHIEH LIN (Chung-Li)

Abstract. We first show that a linear operator which is bounded on L2, with w € A4;
can be extended to a bounded operator on the weighted local Hardy space hi, if and only
if this operator is uniformly bounded on all hl-atoms. As an application, we show that
every pseudo-differential operator of order zero has a bounded extension to hl,.

1. Introduction. Pseudo-differential operators are generalizations of
differential operators and singular integrals. They are formally defined by

(1) Tf(x) = | o, f (e dg,
RTL
where “~ 7 denotes the Fourier transform, and o, the symbol of T', is a

complex-valued function defined on R xR™. Symbols are classified according
to their size and the size of their derivatives. The standard symbol class of
order m € Z, denoted by S™, consists of the C°°(R™ x R™) functions o that
satisfy the differential inequalities

105020 (2,6)| < Ca (1 + ¢yl

for all multi-indices « and (. If 0 € S™, then the operator defined by (1) is
called a pseudo-differential operator of order m.
Pseudo-differential operators given by (1) can be rewritten as

Tf(x)= | K(z,2—y)f(y)dy,
R®
where
K(z,z) = S o(z, €)e?™ = de.
R
In other words, for fixed x, K (x, -) is the inverse Fourier transform of o(z, ).
If o € S° then one can show that |8§8§‘K(m,y)] < Ay ply| 71181 for all
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a, B, and y # 0. By the singular integral theory, T' can be extended to a
bounded operator on LP(R"), 1 < p < oo (cf. [S, p. 250]). For the weighted
case, Miller [M] showed that

THEOREM A. Suppose 1 < p < oco. Every pseudo-differential operator
of order 0 has a bounded extension to LY,(R™) if and only if w € A,.

In 1979, Goldberg [G] introduced the local Hardy spaces h! and showed
that every pseudo-differential operator of order 0 is bounded on A'. In
this article, we study the boundedness of pseudo-differential operators act-
ing on weighted local Hardy spaces hl, where w € Aj. To obtain the

hl-boundedness of a linear operator, we reduce the problem to the L}-
boundedness of this linear operator acting on all hl-atoms.

THEOREM 1. Let w € Ay. For a linear operator P bounded on L2 (R"),
P can be estended to a bounded operator on hl(R™) if and only if there
exists an absolute constant C' such that

|Pallpy < C for any (Rl . 2)-atom a.

We apply Theorem 1 to extend Goldberg’s result to the weighted case
as follows.

THEOREM 2. Let w € Ay. Fvery pseudo-differential operator of order 0
has a bounded extension to hl (R™).

Throughout the article, we will use C' to denote a positive constant
which is independent of main parameters and not necessarily the same at
each occurrence. By writing A ~ B, we mean that there exists a constant
C > 1such that 1/C < A/B <C.

2. Weighted local Hardy spaces. We recall the definition and proper-
ties of A, weights. For 1 < p < oo, a locally integrable nonnegative function
w on R" is said to belong to A, if there exists C' > 0 such that

1 1 pl
( S w(z) d:13> < S w(z)~ /P d:v) <C Vhbal BCR"
Bl 5, 1B 5
For the case p = 1, we have w € Ay if

1
_ < : n
‘B’;w(:c)dx_(}’eise%lfw(x) V ball BCR

For E C R", we use w(E) to denote the weighted measure |, w(z) dz, which
satisfies the doubling condition. More specifically, we have

LEMMA B ([GR, p. 396]). Letw € A,, p > 1. Then, for any ball B(x,r)

and A > 1,
w(B(z, Ar)) < CA"Pw(B(z,T)),

where C' does not depend on B(xz,r) or on \.
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Lemma C ([GR, p. 412]). Let w € A,, p > 1. Then, for all v > 0 and
zo € R”, there exists a constant C' > 0 independent of r such that

S _wiw) de < Cr="P S w(z) dx.
|z — 0|

lx—zo|>T |z—zo|<T

The theory of local Hardy spaces was established by Goldberg [G] and
extended to the weighted case by Bui [Bu]. We now recall the theory of
weighted local Hardy spaces. Let ¢ and 1 be functions in S(R™), the Schwartz
space of rapidly decreasing smooth functions, satisfying (., ¢(x) dz =1 and
§gn ¥(z) dz=0. Also, let I'(z) denote the cone {(y,t) : |z —y| <t, 0<t<1}.
For t > 0 and = € R", set ¢¢(z) =t "¢(z/t). For f € S'(R™), we define the
local versions of the radial maximal function ff, the nontangential maximal
function f*, and the Lusin integral function S(f) by

fr@) = sup lpe= f(x)l, )= sup |gi* fy)l,
0<t<1 (y,t)el ()

~ 1/2
5@ = § s s )

I(z)

Let w € Aj. The weighted local Hardy space hl (R™) consists of those
tempered distributions f € S'(R") for which f* € L. (R") with 1fllny, =
||J?+HL110. The space hL(R") can also be characterized by f* € L. (R™) or
S(f) € Ly,(R™), and [|f*|[ry =~ [f ]Iy, = 1Sy, (cf [Bu]).

As for weighted Hardy spaces, we also have the atomic decomposition
characterization of hl (R").

DEFINITION. A function a is called an (hl,q)-atom centered at xg, 1 <
q < oo, if

(i) the support of a is contained in a ball B(zg,r),

(i) llaf g, < w(B(xo,r))"/4 ",

(i) if » < 1, then (g, a(z) dz = 0.

The condition (ii) is interpreted as ||al|co < w(B(xg,r))_l if ¢ = oo.

THEOREM D ([Bu]). Let 1 < ¢ < 00 and w € A;1. A function f is in
hL(R™) if and only if there exists a sequence {a;} of (hl,q)-atoms and a
sequence {\;} of scalars with Y |\;| < oo such that f = " Xja; in LL,.
Furthermore,

[ fllny ~ inf {Z |Aj] :Z Ajaj is a decomposition of f into (h%v,q)—atoms}.

To prove Theorem 1, we need to construct an atomic decomposition of
elements in hL N L2, which converges in L2,
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THEOREM 3. Let w € Aj. For f € hL(R™) N L2 (R"™), there exist a
sequence {a;} of (hL,2)-atoms and a sequence {\;} of scalars satisfying

S| < Cllfllay such that f = Y A\jay in L2 (R").

The proof of Theorem 3 appeals to the following two lemmas about
the properties of H.(R"). The space H}(R™) consists of all f’s satisfying
S(f) € Ly,(R") with || f]| gy, = [[S(f)|z,, where

o0 1/2
s =(§ § sl )

0 |z—y|<t

We can characterize elements of H}(R") in terms of atoms. A real-valued
function a € L2 (R™), w € A, is called a w-(1,2,n)-atom if (i) a is supported
on a ball B, (i) [lal[zz < w(B)~Y2, and (iii) §gn a(z)z*dr = 0 for every
multi-index « with |a| < n.

LEMMA E ([Bu)). Let w € Ay and f € hL(R"). If ® is a function in
S(R™) such that {®(z)dz = 1 and {2°®(x)dz = 0 for all a # 0, then
f—®xfeHyR") and [|f — @ fllgy < Cllflln,-

LeEMMA F ([HLL)). Letw € As. For f € HL(R")N L2 (R"), there exist a
sequence {a;} of w-(1,2,n)-atoms and a sequence {\;} of scalars satisfying
YNl S Clfllgy, such that f =37 Niaji in L2 (R™).

Proof of Theorem 3. Let w € Ay, f € hl(R") N L2(R"), and & satisfy
the assumption of Lemma E. Then f — & * f € H]}. Since f € L2 implies
@ x f € L2 it follows from Lemma F that f —®* f = n;b; in L2, where
bj’s are w-(1,2,n)-atoms and ) [n;| < O f =P fll gy < O f||py - It is clear
that a w-(1,2,n)-atom is also an (hL,2)-atom.

Let {Q;} be the family of cubes whose vertices are the lattice points
n~1/27". Then

(i) diam(Q;) =1 for all j;

(i) U; @ = R™;

(iii) the cubes @Q;’s are nonoverlapping.

Let z; and Xaq, denote the center and the characteristic function of @),
respectively. Write

(P * f)Xo, = Ajaj,  where  Aj = w(B(z;, ))[[(P* flxg, lloo-

Then a;’s are (hL,2)-atoms and @ x f = >_ \ja; almost everywhere. Owing
to Lemma B and diam(Q;) =1,
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D Nl= ZW(B(ij: D)@+ f)xg, lloo

J
< CZ w(Q;)|[(@ * f )XQ Il oo fCZ S sup |® x f(y)|w(x)dx
i Qj ye Q
<C S sup  [@y x f(y)|w(x) de < C|flpy,-
R (y,t)€l'(x)
Since @ x f € L2, the series > \ja; converges to @ f in L2 u
Proof of Theorem 1. If P is bounded on Al then Theorem D gives
| Pallpy, < Cllallp, < C  for any (hl,2)-atom a.
Conversely, for w € Ay and f € hl, N L2, we have an atomic decomposi-
tion f =" Aja;in L2 and )" |\;] < C||fllny, by Theorem 3. Let ¥ € S(R™)
with {, ¢ (z) dz = 0. By the L2-boundedness of P,

o
Gix Pf =Y Mhyx Pa; in L2,
j=1
which implies that there exists a subsequence (we still use the same indices)
such that

oo
Y x Pf = Z Ajpy * Paj  almost everywhere.

j=1
Fatou’s lemma and Minkowski’s inequality yield
- dy dt\ "/
5a@) = (] loes PR )
I(x)
M 2 dydt\ /?
- Y
< l}\?ljgof< S ’Z)\jwt*Paj(y)‘ th)
I(z) =1
00 Qdydt 1/2 [ B
< SI( ] s PP AT ) =0 lS(Pa) @)
j=1 I'(z) J=1
Therefore,
| S(Pf)(a dx<2|>\|S (Pay)(x)w(x) dz
R?’L

< CZ IAjl - 1Pagllp < C|l fllny,
j=1
which gives the hl-boundedness of P on hl N L2. Theorem D implies that
hl NL2 is densein hl, so P can be extended to a bounded operator on hl. =
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3. Proof of Theorem 2. Let ¢ € S(R™) be a fixed nonnegative radial
decreasing function supported in the unit ball B(0,1) with {3, ¢(z)dz = 1.
For t > 0, define Ky by

Kt($7 Z) = S K(‘T — Y,z y)¢t(y) dy.
R

Goldberg |G, Lemma 6] obtained an estimate of K; as follows, which will
be used to prove Theorem 2.

LEMMA G. Suppose o € S°. Then, for all o, 3 € (NU {0})",

& B

= ,Z‘nﬂﬂl
where Cy, g s independent of t if 0 <t < 1.

sup
z€R™

Proof of Theorem 2. Let T be a pseudo-differential operator given by (1).
By Theorem A, T is bounded on L2. We will prove that there exists a con-
stant C' > 0 such that || Tal[,, < C for any (h,,, 2)-atom a. Then Theorem 2
follows from Theorem 1.

Let a be an (hl,2)-atom centered at xo with supp(a) C B(zg,7). De-

note by M the Hardy-Littlewood maximal operator, we have (Ta)™(x) <
M(Ta)(x). By Theorem A and Lemma B,

(2) | T @uw@)de< | MTa)()w()ds
B(zo,3r) B(z0,3r)
< w(B(xo,3r))"/?|M(Ta)| 2
< Cw(B(wo,7))"?|Tall s,
< Cw(B(zo,7))"?||a 2, < C.

To estimate SB(W 3T)C(ﬁ)+(x)w($) dx, we consider the case r < 1 first.
For x € B(xq,3r)¢, we use the fact that

¢ x (Ta)(x) = S Ki(x,xz — 2)a(z) dz.
B(zo,r)
Applying Taylor’s theorem to the function Ky(z,x — -) near g, we have
Ki(x,x — 2) = Ki(z, 2 — x0) + Ry i, 2),

where

Ry p(w,2) = Y [(i)am@;,z)] s (z — )

laj=1

and £ € R” is a point lying on the line segment from zg to z. Note that
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|z — &| = |z — x0]. Tt follows from Lemma G that

|z — o

(3)  |Rgulz,2)| <C for z € B(xzg,r) and 0 < t < 1.

‘.% _ x0|n+1
Using (3) and the moment condition of a, we get

@ ] @ @@
B(z0,3r)°

< S sup { S | K (z,x — 2) — Ky(x, . — 0)| |a(2)] dz}w(x) dx
B(zo,3r)° O<t<l B(zo,r)
0, 0,

z—x
<C S { S |m|—:n|2|+1 la(2)| dz}w(:c) dz
B(z0,3r)¢ ~ B(zo,r) 0

w(z) dx

< _— .

< CT( S \a:—:z:d"“)( S ]a(z)]dz)
B(z9,3r)° B(zo,r)

By Lemmas B and C,

S m < Cr*("Jrl)w(B(:cg,r)).

(5)
B(z0,3r)¢
Since w € Ag, Holder’s inequality gives

© | la=)la<( ] ya(z)|2w(z)dz)”2( S w(z)_ldz)m

B(zo,r) B(zo,r) B(zo,r)
< Crnw(B(xo,r))_l.
Inequalities (4)—(6) yield

S (Ta) (z)w(z)de < C  forr < 1.
B(xo,3r)¢

For the case » > 1, we split T' =T} + T3 by decomposing its kernel
K(z,2) = Ki(2,2) + Ka(a,2) = n(2)K (2, 2) + (1 = () K (. 2),

where n € C*°(R") is a radial function satisfying 0 < n(z) <1, n(z) =1 for
|z| < 2r,and n(z) = 0 for |z| > 4r. If we consider the corresponding symbols
o1 =N *o0 and o9 = (1 — 1) * o, where “~” denotes the inverse Fourier
transform, then T and 75 are pseudo-differential operators of order 0. We
note that supp(Tha) C B(zo,5r). Since ¢ is supported in B(0,1), by an
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argument similar to (2),

IThally, = | (Tia)T(@)w(z)dz < C.
B(zo,67)

For the estimate of SB(xO Sr)c(@a)*(aﬂ)w(m) dx, o9 € SO gives (cf. [S, p. 241])

|Ko(x, )| < Carlz|~ ™M) for z # 0 and M > 0.
Thus, for 0 < ¢t <1 and |z| > 2r,

Cu C
\(K2)t($,z)| < S mﬁbt(y) dy < 7|z]"+M’
i<t © Y

which implies, for x € B(xq, 3r)¢,

(Tya)*(z) = sup
o<t<1

S (Ko)i(x,x — 2z)a(z) dz
B(zo,r)
C
< W S la(z)| dz.

B(zo,r)

Inequality (6) and the same argument as for (5) lead to

| (@) @)w(@)de
B(z9,3r)¢

w(x) dz -M
<( 1 pEa)( ) wee)sortse oz
B(zo,3r)° B(zo,r)

Thus, the proof is complete. =
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