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Hankel forms

by

Henry Helson (Berkeley, CA)

Abstract. It is an open question whether Nehari’s theorem on the circle group has
an analogue on the infinite-dimensional torus. In this note it is shown that if the analogue
holds, then some interesting inequalities follow for certain trigonometric polynomials on
the torus. We think these inequalities are false but are not able to prove that.

A Hankel form on the infinite-dimensional torus T∞ is a form

(1) 〈a, b〉 =
∞∑

j,k=1

ρjkajbk

where a, b are square-summable, and the kernel (ρn) (n = 1, 2, . . .) depends
on only one index, so that jk in (1) is a product of integers. In order for the
form to be defined in `2, ρ should be square-summable; then it is bounded if
there is a constant A such that

(2) |〈a, b〉| ≤ A‖a‖2‖b‖2
for all finitely supported sequences a, b. The smallest such A is the bound of
the form.

T∞ is the infinite-dimensional torus: the group of sequences

(3) x = (eix1 , eix2 , . . .),

each xj real, with multiplication in each component.
Denote by Γ the group of all sequences r = (n1, n2, . . .) of integers ter-

minating in 0’s, with addition in each component. Γ is dual to T∞ in the
pairing

(4) (x, r) = exp i
∑

njxj .
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Γ is isomorphic to a subgroup of the real line by the mapping

(5) γ(r) =
∑

nj log pj ,

where p1 = 2, p2 = 3, . . . are the prime integers. We identify r with the
rational number

(6)
∏

p
nj

j

so this subgroup consists of all numbers log r where r is a positive rational,
with addition as the group operation. This presentation of Γ is related to
Dirichlet series, and is the one we shall use.

We use the normalized Haar measure dσ to define the Lebesgue spaces
on T∞. A function f summable on T∞ has Fourier coefficients f̂(log r),
where r ranges over the positive rational numbers. H1 is the subspace of
L1 of all f such that f̂(log r) = 0 unless r is a positive integer. By HN we
shall mean the space of trigonometric polynomials whose frequencies lie in
the set (log 1, . . . , logN).

Let φ be a bounded function on T∞. Then the kernel ρn = φ̂(log n) gives
a Hankel form with bound ‖φ‖∞; the verification is straightforward. A the-
orem of Nehari asserts, on the integer group, that every bounded Hankel
form (one with a kernel of the form ρj+k) arises from a bounded function
φ on the circle, and furthermore that φ can be chosen so that ‖φ‖∞ equals
the bound of the form. On tori of finitely many dimensions the first part
of Nehari’s theorem continues to hold [4]: every Hankel form arises from a
bounded function, but the statement about bounds fails. The problem is
whether every Hankel form on T∞ comes from a bounded function. The
question was raised explicitly in [2]. A positive answer was given for certain
forms, those of Hilbert–Schmidt type, in [3].

We suppose that the answer in general is negative, but cannot prove that.
The results of this paper show that a simple and plausible statement about
trigonometric polynomials in HN would establish this conclusion. If our
plausible statement should be false, we would have a good result about H1.
The author will not be able to finish this work and so presents what he can
here.

We assume what we think is false and explore the consequences.

Hypothesis. Every bounded Hankel form comes from a bounded func-
tion.

Under the Hypothesis, there is a positive number A such that every form
with bound k is realized by a bounded function with uniform norm at most
kA. The proof is of a familiar kind. The symbol A will be reserved for this
constant. The norm of a Hankel kernel ρ as a bilinear form will be ‖ρ‖.
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Our first objective is to describe a class of Hankel forms that are not of
Hilbert–Schmidt type.

Let A be the family of non-negative functions ρ on [0,∞) such that
ρ(x)x−1/2 decreases to 0. It is easy to show for such ρ that

(7)
∞∑
n=1

ρ(jn)n−1/2 ≤
∞�

0

ρ(jx)x−1/2 dx (j = 1, 2, . . .).

Each function ρ determines a kernel: ρn = ρ(n), n ≥ 1. The inequality
leads to an estimate for the bound of the corresponding Hankel form (if the
integrals in (7) are finite) by means of this result of Schur (which applies to
forms that are not necessarily of Hankel type):

Schur’s Theorem. Let (ρj,k) be the kernel of a form, with each ρj,k
non-negative. Suppose there is a positive sequence p and positive constants
c, d such that

(8)

∞∑
k=1

ρj,kp(k) ≤ cp(j) (j = 1, 2, . . .) and

∞∑
j=1

ρj,kp(j) ≤ dp(k) (k = 1, 2, . . .).

Then the form is bounded with bound at most (cd)1/2.

This theorem is Problem 37 of [1].
For Hankel forms, c and d are equal, there is only one condition, and the

bound is c.
Take p(n) = n−1/2. For each j and ρ in A

(9)
∞∑
k=1

ρjkk
−1/2 ≤

∞�

0

ρ(jx)x−1/2dx = j−1/2
∞�

0

ρ(x)x−1/2 dx.

By Schur’s theorem, if the integral is finite, then ρ defines a Hankel form
with bound at most equal to the integral on the right.

Under the Hypothesis there is a constant c such that for all f in H1, and
all positive integers N we have

(10) N−1/2
∣∣∣ N∑
n=1

f̂(log n)
∣∣∣ ≤ c‖f‖1.

Let ρ be a decreasing sequence of positive numbers such that

(11) B =
∞∑
n=1

ρnn
−1/2 <∞.

By Schur’s criterion, ρ defines a bounded Hankel form, and by our Hypoth-
esis, a linear functional in H1 with bound at most AB. That is, at least for
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trigonometric polynomials f in H1,

(12)
∣∣∣∑ ρnf̂(log n)

∣∣∣ ≤ AB‖f‖1.
Choose ρn = 1 for n = 1, . . . , N , and ρn = 0 otherwise. Then ρ defines a
form whose bound is at most 2N1/2, by (9), and (10) follows.

(We can replace f̂(log n) by its modulus in (10), but do not know a way
to use the fact.)

For each positive integer N let

(13) fN =
N∑
n=1

χ
log n

.

This trigonometric polynomial has norm N1/2 in H2, and its norm in H1

cannot be greater. By analogy with the Dirichlet kernel on the circle we
might expect its norm in H1 to be considerably smaller. The Hypothesis
would be shown false if we could show merely that ‖fN‖1 = o(N1/2) as
N increases, because (10) would be violated. We think this is true but we
have not found a proof. No much stronger result than o(N1/2) can hold on
account of this fact (which does not depend on the Hypothesis):

Theorem. ‖fN‖1 is asymptotically at least (N/2 logN)1/2.

We use the result in [3] that each f in H1 satisfies

(14)
( ∞∑
n=1

|f̂(log n)|2/d(n)
)1/2

≤ ‖f‖1,

where d(n) is the number of divisors of n. For fN , (14) becomes

(15)
( N∑
n=1

1/d(n)
)1/2

≤ ‖fN‖1.

If n is prime, d(n) = 2. There are about N/ logN primes smaller than N .
Counting just these terms of the sum in (15) gives our result. (Obviously
the theorem can be improved by counting more terms in the sum. The fN
are evidently very different from the Dirichlet kernel on the circle!)

The formula (14) has another interesting consequence. In the finite-
dimensional space HN the norms of L1 and L2 are of course equivalent;
we ask what is the norm of the identity operator acting from the first to
the second space? It must tend to infinity, because H1 and H2 are not the
same spaces. N1/2 is a trivial bound for the norm. But (14) shows that the
bound is O(N ε) for every positive ε as N increases, because d(n) is O(nε)
for every positive ε.

More generally, let Tp,q be the identity operator from HN in norm p to
itself in norm q. Really (10) states that ‖T1,∞‖ ≤ cN1/2. (The sum in (10) is
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simply f(0) if f belongs to HN .) Now it is easy to see that ‖T2,∞‖ = N1/2;
thus the Hypothesis implies that ‖T1,∞‖ has the same order as ‖T2,∞‖. This
seems unlikely, because ‖T1,2‖ at least tends to ∞ as N increases(although
slowly, as just shown). If the same function g can nearly realize ‖T1,2‖ and
‖T2,∞‖, then we find a contradiction. It seems likely that there is such a g,
because given ‖g‖1 = 1, ‖g‖2 and ‖g‖∞ are both large when |g| is as far from
being constant as possible in HN . Moreover fN looks like a good candidate.
But we cannot go further.

Appendix. Helson’s paper proposes a way to prove that the classi-
cal Nehari theorem on Hankel forms does not generalize to the infinite-
dimensional torus. The referee of the paper pointed out a suggestive variant
of Helson’s approach, to which this appendix is devoted. The appendix is
based on the referee’s comments but was prepared by Donald Sarason, who
assumed the responsibility for seeing the paper through to publication after
Helson became unable to do so. Unexplained notations are as in the paper.

Helson shows that, to disprove the infinite-dimensional Nehari theorem,
it suffices to prove that the estimate ‖fN‖1 = o(N1/2) fails, where

fN =
N∑
n=1

χ
log n

.

The referee introduces the functions

gN (t) =
N∑
n=1

nit (t ∈ R),

which are partial sums of the series for ζ on the line iR. Let

‖gN‖1 = lim
T→∞

1
T

T�

0

|gN (it)| dt.

It is not difficult to show that ‖fN‖1 = ‖gN‖1, so to complete Helson’s
program it suffices to prove that the estimate ‖gN‖1 = o(N1/2) fails. This
transforms the question from one in harmonic analysis to one in number the-
ory. Specialists in number theory will perhaps find the transformed question
attractive.
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