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Segal algebras, approximate identities
and norm irregularity in C0(X,A)

by

Jussi Mattas (Oulu)

Abstract. We study three closely related concepts in the context of the Banach al-
gebra C0(X,A). We show that, to a certain extent, Segal extensions, norm irregularity
and the existence of approximate identities in C0(X,A) can be deduced from the corre-
sponding features of A and vice versa. Extensive use is made of the multiplier norm and
the tensor product representation of C0(X,A).

1. Introduction. The structure of an algebra of continuous functions
on a locally compact space X with values in a Banach algebra A is well deter-
mined by the algebra A. For example, the ideal structure of the function al-
gebra, and thus, in the commutative case, the Gelfand representation, can be
directly related to that of A (see e.g. [10, 20, 1, 17]). Furthermore, properties
such as spectral synthesis [14] and Arens regularity [22] carry over from A.

In this work we study Segal algebras, norm irregularity and approximate
identities in the algebra C0(X,A) of continuous functions of X into A which
vanish at infinity, and show that all these can be described in terms of the
corresponding structures and properties of A. The first two of these concepts
have not, to our knowledge, been studied in this context before. Concerning
approximate identities, we obtain generalizations of earlier results (see [18,
15] as well as [13, Section I.8]).

Segal algebras were first introduced in the context of group algebras by
Reiter (cf. [21]), and were later given an abstract definition by Burnham [9].
In the literature it has been customary to assume that Segal algebras have
an approximate identity. The discussion has recently been generalized to a
much wider class of algebras, which possess a bounded approximate identity
only with respect to the multiplier norm (see Arhippainen and Kauppi [6] for
the commutative case, and Kauppi and Mathieu [16] for the noncommutative
case). Furthermore, though A may not have an approximate identity, it is
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possible to construct the largest ideal of A which has one. This ideal is called
the approximate ideal of A in [6, 16].

This approach leads us to the study of a class of algebras called norm ir-
regular Banach algebras [5], for which the multiplier norm is strictly weaker
than the original norm and possible approximate identities are necessarily
unbounded. It turns out that the concepts of Segal algebra and norm irreg-
ular algebra are equivalent (see [6, 16], also Corollary 3.5 in this article).
Representing the situation in terms of norm irregular algebras has the ad-
vantage that the larger algebra (in which A is a Segal algebra) does not
have to be specified. The multiplier norm also provides us with a convenient
computational tool.

In Section 2, after basic definitions, we deal with norm irregularity. In
Section 3 we discuss Segal algebras and establish the connection to norm ir-
regular algebras. Section 4 is devoted to the study of approximate identities.
We conclude the article by constructing the approximate ideal of C0(X,A).

2. Norm irregularity. In this section we present some basic definitions
and discuss norm irregularity in the function algebra C0(X,A). We will
describe the multiplier norm on C0(X,A) and show that C0(X,A) is norm
irregular if and only if A is.

Throughout this paper, let X be a locally compact Hausdorff space and
let A be a Banach algebra with norm ‖ · ‖. The algebra A is not assumed to
be unital or commutative. A function f : X → A is said to vanish at infinity
if for each ε > 0 there is a compact set K ⊆ X such that ‖f(t)‖ < ε for
all t ∈ X \K. The set C0(X,A) of continuous functions of X into A which
vanish at infinity is a Banach algebra when equipped with pointwise defined
algebraic operations and the supremum norm,

‖f‖∞ := sup
t∈X
‖f(t)‖ (f ∈ C0(X,A)).

As a special case, C0(X) := C0(X,C). The algebra C0(X,A) is unital if and
only if X is compact and A is unital.

The algebra C0(X,A) is isometrically isomorphic to the injective tensor
product C0(X) ⊗̌ A [19, Proposition 1.10.22]. Elementary tensors in the
algebra C0(X) ⊗̌A are viewed as functions of X into A via the identification
(φ ⊗ a)(t) := φ(t)a, where φ ∈ C0(X), a ∈ A and t ∈ X. The linear span
of the elementary tensors is dense in C0(X,A), i.e. for all f ∈ C0(X,A) and
ε > 0 we can find n ∈ N and φj ∈ C0(X), aj ∈ A, j = 1, . . . , n, such that∥∥∥f − n∑

j=1

φj ⊗ aj
∥∥∥
∞
< ε.

Furthermore, ‖φ⊗ a‖∞ = ‖φ‖∞‖a‖, φ ∈ C0(X), a ∈ A.
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We define the multiplier seminorm ‖ · ‖M on A by

‖a‖M := sup
b∈A, ‖b‖≤1

{‖ab‖, ‖ba‖} (a ∈ A).

Evidently ‖a‖M ≤ ‖a‖ and max{‖ab‖, ‖ba‖} ≤ ‖a‖M‖b‖ for all a, b ∈ A.
Furthermore, ‖ · ‖M is a norm on A if and only if the annihilator ideal of A,
defined by

ann(A) := {a ∈ A : ab = ba = 0 for all b ∈ A},

equals {0}.
In this paper we will assume that ann(A) = {0}. We call ‖ · ‖M the

multiplier norm on A.

The algebra C0(X,A) also satisfies ann(C0(X,A)) = {0}, so (‖ · ‖∞)M is
a norm on C0(X,A). By the following proposition, the multiplier norm on
C0(X,A) is determined by that on A. We adopt the notation

‖f‖(M)
∞ := sup

t∈X
‖f(t)‖M (f ∈ C0(X,A)).

Proposition 2.1. The multiplier norm on C0(X,A) satisfies

(‖f‖∞)M = ‖f‖(M)
∞ for all f ∈ C0(X,A).

Proof. Let f, g ∈ C0(X,A), ‖g‖∞ ≤ 1. Since

‖fg‖∞ = sup
t∈X
‖f(t)g(t)‖ ≤ sup

t∈X
‖f(t)‖M‖g(t)‖ ≤ ‖f‖(M)

∞ ‖g‖∞ ≤ ‖f‖(M)
∞ ,

and similarly ‖gf‖∞ ≤ ‖f‖(M)
∞ , we have (‖f‖∞)M ≤ ‖f‖(M)

∞ .

On the other hand, taking {φα}α∈Λ to be a family of functions in C0(X)
with ‖φα‖∞ ≤ 1 for all α ∈ Λ and supα∈Λ |φα(t)| = 1 for all t ∈ X, we have

(‖f‖∞)M ≥ sup
α∈Λ, ‖a‖≤1

‖f(φα ⊗ a)‖∞ = sup
α∈Λ, ‖a‖≤1

(
sup
t∈X
‖f(t)φα(t)a‖

)
= sup

t∈X

(
sup
α∈Λ
|φα(t)| sup

‖a‖≤1
‖f(t)a‖

)
= sup

t∈X
sup
‖a‖≤1

‖f(t)a‖.

Similarly we show that

(‖f‖∞)M ≥ sup
t∈X

sup
‖a‖≤1

‖af(t)‖,

and thus

(‖f‖∞)M ≥ sup
t∈X
‖f(t)‖M = ‖f‖(M)

∞ .

Although the multiplier norm ‖ · ‖M is majorized by ‖ · ‖, the norms ‖ · ‖
and ‖ · ‖M need not be equivalent. To investigate this further, we make the
following definition, introduced in [5, 8].
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Definition 2.2. The Banach algebra A is called

(i) norm regular if the norms ‖ · ‖M and ‖ · ‖ coincide on A;
(ii) weakly norm regular if the norms ‖·‖M and ‖·‖ are equivalent on A;

(iii) norm irregular if the norm ‖ · ‖M is strictly weaker than ‖ · ‖ on A.

As a computational tool to describe the equivalence of the stated norms,
we introduce the following constant, the modulus of regularity of A (see [2]):

r(‖ · ‖) := sup
a∈A, ‖a‖M≤1

‖a‖.

The algebra A is weakly norm regular if and only if r(‖ · ‖) is finite. More
precisely, if r(‖ · ‖) <∞, then ‖a‖M ≤ ‖a‖ ≤ r(‖ · ‖)‖a‖M for all a ∈ A.

Remark 2.3. If A has a unit element, denoted by e, then A is (weakly)
norm regular and r(‖ · ‖) = ‖e‖. This shows that the adjunction of a unit
element does not preserve norm irregularity. See also Remark 3.6 for another
aspect of this issue.

We will now give some examples of norm irregular Banach algebras.

Example 2.4. (i) Let Y be a locally compact Hausdorff space and let
v : Y → R be an upper semicontinuous function such that inft∈Y v(t) > 0.
We call v a weight function on Y and define

Cvb (Y ) := {φ ∈ C(Y ) : vφ is bounded on Y },
Cv0 (Y ) := {φ ∈ C(Y ) : vφ vanishes at infinity on Y }.

Both Cvb (Y ) and Cv0 (Y ) are Banach algebras under pointwise defined oper-
ations and the weighted supremum norm

‖φ‖v := sup
t∈Y

v(t)|φ(t)| (φ ∈ Cvb (Y )).

If v is unbounded, Cvb (Y ) and Cv0 (Y ) are proper ideals of Cb(Y ) and C0(Y ),
respectively. Moreover, if v(tα)→∞ whenever (tα) is a net in X converging
to the point at infinity of X, then Cvb (Y ) is also a proper ideal of C0(Y ).

It can be shown that (‖φ‖v)M = ‖φ‖∞ for all φ ∈ Cvb (Y ), which implies
that both (Cvb (Y ), ‖ · ‖v) and (Cv0 (Y ), ‖ · ‖v) are norm irregular if and only if
v is unbounded. For a more complete discussion of these algebras, see [3, 4].

(ii) Let G be an infinite, compact topological group. The set Lp(G) of
equivalence classes of functions f : G→ C which satisfy

‖f‖p :=
( �

G

|f(t)|p dλ(t)
)1/p

<∞

is a Banach algebra with respect to pointwise linear operations, convolution
f ∗ g as multiplication, and norm given by ‖ · ‖p. Here 1 < p < ∞, and
λ is a Haar measure on G, normalized so that λ(G) = 1. The well-known
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inequality ‖f ∗ g‖p ≤ ‖f‖1‖g‖p entails that (‖f‖p)M ≤ ‖f‖1 (f, g ∈ Lp(G)),
from which it is easy to see that (Lp(G), ‖ · ‖p) is norm irregular.

The following proposition is the main result of this section.

Proposition 2.5. The equality r(‖ · ‖∞) = r(‖ · ‖) holds.

Proof. First of all, using Proposition 2.1,

r(‖ · ‖∞) = sup
(‖f‖∞)M≤1

‖f‖∞ = sup
‖f‖(M)
∞ ≤1

(
sup
t∈X
‖f(t)‖

)
≤ r(‖ · ‖) sup

‖f‖(M)
∞ ≤1

(
sup
t∈X
‖f(t)‖M

)
= r(‖ · ‖).

For the converse inequality, let a∈A, ‖a‖M ≤ 1, and φ∈C0(X), ‖φ‖∞=1.
We have ‖φ⊗ a‖∞ = ‖φ‖∞‖a‖ = ‖a‖ and, for all g ∈ C0(X,A), ‖g‖∞≤1,

‖g(φ⊗ a)‖∞ = sup
t∈X
|φ(t)| ‖g(t)a‖ ≤ sup

t∈X
|φ(t)| ‖a‖M ≤ 1.

Similarly, ‖(φ⊗ a)g‖∞ ≤ 1, so that (‖φ⊗ a‖∞)M ≤ 1. From this we deduce
that r(‖ · ‖∞) ≥ r(‖ · ‖).

As an immediate consequence of Proposition 2.5, we find that C0(X,A)
is (weakly) norm regular if and only if A is (weakly) norm regular.

Example 2.6. Let Cv0 (Y ) be the weighted function algebra introduced in
Example 2.4. By the example and Proposition 2.5, the algebra C0(X,C

v
0 (Y ))

is norm irregular if and only if v is unbounded. Also recall the identity
(‖φ‖v)M = sups∈Y |φ(s)| (φ ∈ Cv0 (Y )). Let f ∈ C0(X,C

v
0 (Y )). By Proposi-

tion 2.1,

(‖f‖∞)M = ‖f‖(M)
∞ = sup

t∈X
(‖f(t)‖v)M = sup

t∈X, s∈Y
|[f(t)](s)|.

We end this section by looking at the equivalence of the norms ‖ · ‖ and
‖ · ‖M in a more general setting.

Remark 2.7. Suppose that, instead of being a complete algebra norm,
‖ · ‖ is assumed to be a linear space norm which makes the multiplication
separately continuous but need not satisfy the condition ‖ab‖ ≤ ‖a‖ ‖b‖
(a, b ∈ A). Then we can investigate the equivalence of ‖ · ‖ and ‖ · ‖M from
another point of view. Namely, defining the constant

m(‖ · ‖) := sup
a∈A, ‖a‖≤1

‖a‖M ,

called the modulus of m-convexity of A (see [2]), we have

1

m(‖ · ‖)
‖a‖M ≤ ‖a‖ ≤ r(‖ · ‖)‖a‖M
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for all a ∈ A, if both r(‖ · ‖) and m(‖ · ‖) are finite. One can show that if
m(‖ · ‖) is infinite, then the algebra A is incomplete and its completion is
not even an algebra [5].

The algebra C0(X,A) satisfies m(‖ · ‖∞) = m(‖ · ‖). Indeed, first of all,

m(‖ · ‖∞) = sup
‖f‖∞≤1

(‖f‖∞)M = sup
‖f‖∞≤1

(
sup
t∈X
‖f(t)‖M

)
≤ m(‖ · ‖) sup

‖f‖∞≤1

(
sup
t∈X
‖f(t)‖

)
= m(‖ · ‖),

where we have used Proposition 2.1. For the converse, take any a and b in the
closed unit ball of A, and let φ ∈ C0(X), ‖φ‖∞ = 1. Clearly ‖φ⊗ a‖∞ ≤ 1
and ‖φ⊗ b‖∞ ≤ 1. Also,

‖(φ⊗ a)(φ⊗ b)‖∞ = ‖φ2 ⊗ ab‖∞ = ‖φ2‖∞‖ab‖ = ‖ab‖,

which implies m(‖ · ‖∞) ≥ m(‖ · ‖).

3. Segal algebras. Segal algebras are dense ideals in a Banach algebra
which satisfy a certain norm inequality. In this section we will investigate
how Segal algebras in C0(X,A) can be described in terms of those in A.
We will first discuss them on a general level and establish the connection
to norm irregular algebras. Throughout this section, B is a Banach algebra
with norm ‖ · ‖B.

Definition 3.1.

(i) The Banach algebra A is a Segal algebra in B if A is a dense, two-
sided ideal in B and there exists a constant l > 0 such that

‖a‖B ≤ l‖a‖ for all a ∈ A.

(ii) An algebra norm | · | on A is called a Segal norm on A if there exist
constants k, l > 0 such that

k‖a‖M ≤ |a| ≤ l‖a‖ for all a ∈ A.

Remark 3.2. (i) If A is a Segal algebra in B, we also say that B is a
Segal extension of A.

(ii) If B is semisimple, the inequality ‖a‖B ≤ l‖a‖, a ∈ A, is automati-
cally satisfied whenever A is a dense ideal in B [7, Proposition 2.2].

(iii) The multiplier norm ‖ · ‖M is a Segal norm on A. Up to equivalence,
it is the weakest such norm.

The following property of Segal algebras will be very useful for our pur-
poses: if A is a Segal algebra in B, then A is a Banach bi-module over B.
For the proof, see [7, Theorem 2.3].
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Lemma 3.3. Let A be a Segal algebra in B. Then there exists a constant
k > 0 such that

‖ax‖ ≤ k‖a‖ ‖x‖B and ‖xa‖ ≤ k‖a‖ ‖x‖B for all a ∈ A and x ∈ B.

The following two results establish the importance of norm irregular
Banach algebras by relating them directly to Segal algebras. They have
been noted already in [6, 16]. For the proofs, see [16, Proposition 2.6 and
Corollary 2.7].

Proposition 3.4. The following conditions are equivalent:

(i) A is a Segal algebra in B;
(ii) B is the completion of A with respect to a Segal norm on A.

At this point we adopt the following notation: We denote by AM the
algebra A equipped with the multiplier norm ‖ · ‖M , i.e. AM = (A, ‖ · ‖M ).
In particular, C0(X,A)M = (C0(X,A), (‖ · ‖∞)M ). Note that the norm ‖ · ‖
on A is still used to determine the set C0(X,A). Since ‖ · ‖M is weaker than
‖ · ‖, we have C0(X,A) ⊆ C0(X,AM ), where the inclusion is proper if and
only if A is norm irregular. By Proposition 2.1, the embedding of C0(X,A)M
into C0(X,AM ) is isometric. The completion of AM is denoted by ÃM , and
A is identified with its canonical image in the completion.

Corollary 3.5. The following conditions are equivalent:

(i) A is norm irregular;
(ii) A is a proper Segal algebra in some Banach algebra.

Remark 3.6. (i) Since ‖·‖M is the weakest Segal norm on A, the algebra

ÃM is the largest Segal extension of A, and every Segal extension of A can
be embedded as a dense subalgebra of ÃM .

(ii) Since a unital algebra cannot be a proper ideal in any algebra, it
cannot be a proper Segal algebra. This observation combined with Corollary
3.5 gives us another perspective on the issue of unitizing a norm irregular
Banach algebra.

Throughout the rest of the paper, we will regard all Segal extensions of A
as subalgebras of ÃM .

By Corollary 3.5 and Proposition 2.5, A is a proper Segal algebra in some
Banach algebra if and only if the same holds for C0(X,A). The following
theorem, which is the main result of this section, characterizes the Segal
extensions of C0(X,A).

Theorem 3.7. The following conditions are equivalent:

(i) A is a Segal algebra in B;
(ii) C0(X,A) is a Segal algebra in C0(X,B).
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Furthermore,

C0(X,A)∼M = C0(X, ÃM )

is the largest Segal extension of C0(X,A).

Proof. We denote the norms on C0(X,A) and C0(X,B) by ‖ · ‖(A)∞ and

‖ · ‖(B)
∞ , respectively. Let A be a Segal algebra in B, and let f ∈ C0(X,A)

and g ∈ C0(X,B) be arbitrary. Obviously fg and gf map X into A. To
show that fg is continuous with respect to ‖ · ‖, take any t ∈ X and ε > 0.
Let k > 0 be as in Lemma 3.3. Now choose δ > 0 such that

kδ(‖g(t)‖B + ‖f(t)‖) + kδ2 < ε,

and neighbourhoods U and V of t such that ‖f(t)−f(s)‖ < δ for s ∈ U and
‖g(t)− g(s)‖B < δ for s ∈ V . The continuity of fg at t follows, because for
all s ∈ U ∩ V ,

‖(fg)(t)− (fg)(s)‖ = ‖(f(t)− f(s))g(t) + f(s)(g(t)− g(s))‖
≤ k‖f(t)− f(s)‖ ‖g(t)‖B + k‖f(s)‖ ‖g(t)− g(s)‖B
< kδ‖g(t)‖B + k(‖f(t)‖+ ‖f(t)− f(s)‖)δ

< kδ(‖g(t)‖B + ‖f(t)‖) + kδ2 < ε.

Also, fg vanishes at infinity. Indeed, if ‖f(t)‖ and ‖g(t)‖B are less than a
given

√
ε/k > 0 outside compact sets K and L, respectively, then

‖(fg)(t)‖ ≤ k‖f(t)‖ ‖g(t)‖B < ε

outside K∪L. The proofs for gf are similar, so C0(X,A) is a two-sided ideal
of C0(X,B).

To show the density of C0(X,A) in C0(X,B), let g ∈ C0(X,B) and ε > 0
be arbitrary. Choose n ∈ N and φj ∈ C0(X), xj ∈ B, j = 1, . . . , n, such that∥∥∥g − n∑

j=1

φj ⊗ xj
∥∥∥(B)

∞
<
ε

2
.

Clearly we can assume that ‖φj‖∞ ≤ 1 for all j. Since A is dense in B, we
can choose aj , j = 1, . . . , n, such that ‖xj − aj‖B < ε/(2n), j = 1, . . . , n.
The density of C0(X,A) in C0(X,B) follows:∥∥∥g − n∑

j=1

φj ⊗ aj
∥∥∥(B)

∞
= sup

t∈X

∥∥∥g(t)−
n∑
j=1

φj(t)aj

∥∥∥
B

= sup
t∈X

∥∥∥g(t)−
n∑
j=1

φj(t)xj +

n∑
j=1

φj(t)(xj − aj)
∥∥∥
B
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≤ sup
t∈X

∥∥∥g(t)−
n∑
j=1

φj(t)xj

∥∥∥
B

+

n∑
j=1

sup
t∈X
|φj(t)| ‖xj−aj‖B

<
ε

2
+ n

ε

2n
= ε.

Finally, if l > 0 is such that ‖a‖B ≤ l‖a‖ for all a ∈ A, then, for
f ∈ C0(X,A),

‖f‖(B)
∞ = sup

t∈X
‖f(t)‖B ≤ l sup

t∈X
‖f(t)‖ = l‖f‖(A)∞ .

This concludes the part (i)⇒(ii).
Then suppose C0(X,A) is a Segal algebra in C0(X,B), and take any

a ∈ A, x ∈ B. Choose f ∈ C0(X,A), g ∈ C0(X,B) and t0 ∈ X such
that f(t0) = a and g(t0) = x, so ax = (fg)(t0) ∈ A. Similarly xa ∈ A.
Furthermore, for any ε > 0, there is a function h ∈ C0(X,A) such that

‖g − h‖(B)
∞ < ε. In particular, ‖g(t0) − h(t0)‖B = ‖x − h(t0)‖B < ε, from

which it follows that A is a dense two-sided ideal of B. To show that ‖ · ‖
majorizes ‖ · ‖B on A, pick any a ∈ A and a nonzero φ ∈ C0(X). We have

‖φ⊗ a‖(B)
∞ ≤ l‖φ⊗ a‖(A)∞ for some l > 0, i.e.

sup
t∈X
|φ(t)| ‖a‖B ≤ l sup

t∈X
|φ(t)| ‖a‖,

which implies ‖a‖B ≤ l‖a‖.
It remains to prove the final claim of the theorem. By the above, the

algebra C0(X, ÃM ) is a Segal extension of C0(X,A). By Proposition 3.4,

C0(X, ÃM ) is the completion of C0(X,A) with respect to ‖·‖(ÃM )
∞ . However,

by Proposition 2.1, the norms ‖ · ‖(ÃM )
∞ and (‖ · ‖∞)M coincide on C0(X,A),

so C0(X, ÃM ) equals C0(X,A)∼M .

Example 3.8. The algebra Cv0 (Y ) is a Segal algebra in C0(Y ). In fact,
we have C0(Y ) = Cv0 (Y )∼M , by the Stone–Weierstrass Theorem. Thus,
Theorem 3.7 tells us that the largest Segal extension of C0(X,C

v
0 (Y )) is

C0(X,C0(Y )), which by [19, Propositions 1.10.21–22] is isomorphic to both
C0(X) ⊗̌ C0(Y ) and C0(X × Y ).

4. Approximate identities. An approximate identity for the Banach
algebra A is a net (eα)α∈Ω in A satisfying

‖a− eαa‖ → 0 and ‖a− aeα‖ → 0

for all a ∈ A. An approximate identity (eα)α∈Ω is said to be bounded if there
exists a constant R such that supα∈Ω ‖eα‖ ≤ R, and minimal if such an R
exists and R ≤ 1. If the index set Ω equals N, the approximate identity is
said to be sequential.
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We consider approximate identities in the algebra C0(X,A), primarily
in the case where AM has a bounded approximate identity. Note that a
(bounded) approximate identity for A is automatically a (bounded) approx-
imate identity for AM , but the converse does not hold for norm irregular
algebras. Also recall that C0(X) has a minimal approximate identity, which
is sequential if and only if X is σ-compact.

Remark 4.1. The assumption that an approximate identity for the al-
gebra A is bounded with respect to ‖·‖M is not very restrictive. For example,
by the Uniform Boundedness Principle, any sequential approximate identity
for A is automatically ‖ · ‖M -bounded (see e.g. [12, p. 191]).

The following lemma summarizes current knowledge on the relation of
approximate identities for C0(X,A) and for A.

Lemma 4.2.

(i) If the algebra A has a bounded approximate identity, then C0(X,A)
has a bounded approximate identity.

(ii) If C0(X,A) has a (bounded) approximate identity, then A has a
(bounded) approximate identity.

For the proof of Lemma 4.2, see [13, Proposition 8.1 and Theorem 8.2]. At
the end of this section we will give a sufficient condition for the unbounded
analogue of Lemma 4.2(i) to hold.

Lemma 4.3. The following conditions are equivalent:

(i) AM has a bounded approximate identity;

(ii) ÃM has a bounded approximate identity;
(iii) A has a Segal extension with a bounded approximate identity.

Furthermore, a bounded approximate identity for AM is also a bounded ap-
proximate identity for ÃM .

The claims in Lemma 4.3 follow from Proposition 3.4 and the fact that
a normed algebra has a bounded approximate identity if and only if its
completion has one (see e.g. [11, Lemma 2.1]). The following proposition
extends Lemma 4.2.

Proposition 4.4. The algebra C0(X,A)M has a bounded approximate
identity if and only if AM has a bounded approximate identity.

Proof. Suppose C0(X,A)M has a bounded approximate identity. By

Lemma 4.3 and Theorem 3.7, C0(X,A)∼M = C0(X, ÃM ) has a bounded

approximate identity. By Lemma 4.2(ii), ÃM has a bounded approximate
identity, and again by Lemma 4.3 the same is true for AM . Obviously all
the implications are reversible.
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Though A need not have an approximate identity, some subalgebras of A
always do. Following [6, 16], we make the following definition.

Definition 4.5. Let A be a Banach algebra such that AM has a bounded
approximate identity. The approximate ideal of A is the set

EA := AÃM := {ax : a ∈ A, x ∈ ÃM}.

The following lemma summarizes the key features of the approximate
ideal and motivates the definition. In particular, EA is the largest closed
ideal of A which contains an approximate identity, and A has an approximate
identity if and only if A = EA. The results of Lemma 4.6 have already been
noted in [6, 16]. For the proofs, see [16, Proposition 2.10] and the preceding
discussion therein.

Lemma 4.6. Assume thatAM has a bounded approximate identity (eα)α∈Ω.
Then:

(i) EA = AÃM = ÃMA;
(ii) EA is a closed, two-sided ideal of A;

(iii) EA = {a ∈ A : ‖a− aeα‖ → 0 and ‖a− eαa‖ → 0};
(iv) EA has an approximate identity;
(v) if I is a closed ideal of A with an approximate identity, then I ⊆ EA.

To construct the approximate ideal of C0(X,A) we need the following
lemma, which is another extension of Lemma 4.2.

Lemma 4.7. Assume that AM has a bounded approximate identity. Then
C0(X,EA) has an approximate identity.

Proof. Let (φα)α∈Λ and (eβ)β∈Ω be bounded approximate identities for
the algebras C0(X) and AM , bounded by R′ and R′′, respectively. Assume
that R′, R′′ ≥ 1, and put R := R′R′′. Using Proposition 2.1 we see that

(‖φα ⊗ eβ‖∞)M = ‖φα‖∞‖eβ‖M ≤ R

for all (α, β) ∈ Λ × Ω. Let n ∈ N and ψj ∈ C0(X), aj ∈ EA, j = 1, . . . , n,
be arbitrary. Following the proof of [13, Proposition 8.1] we get∥∥∥ n∑

j=1

ψj ⊗ aj − (φα ⊗ eβ)

n∑
j=1

ψj ⊗ aj
∥∥∥
∞

≤
n∑
j=1

‖ψj − φαψj‖∞‖aj‖+
n∑
j=1

‖ψj‖∞‖aj − eβaj‖

+

n∑
j=1

‖ψj − φαψj‖∞‖aj − eβaj‖,
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which converges to zero by Lemma 4.6(iii). Then let f ∈ C0(X,EA) and
ε > 0 be arbitrary, and choose n ∈ N and ψj ∈ C0(X), aj ∈ EA, j = 1, . . . , n,
in such a way that g :=

∑n
j=1 ψj ⊗ aj satisfies ‖f − g‖∞ < ε/(4R). Choose

(αε, βε) such that ‖g − (φα ⊗ eβ)g‖∞ < ε/2 for all (α, β) ≥ (αε, βε) (i.e.
α ≥ αε and β ≥ βε). Then, recalling the general property ‖ab‖ ≤ ‖a‖M‖b‖
(a, b ∈ A) of the multiplier norm, we obtain

‖f − (φα ⊗ eβ)f‖ ≤ (‖φα ⊗ eβ‖∞)M‖f − g‖∞ + ‖f − g‖∞
+ ‖g − (φα ⊗ eβ)g‖∞

< R
ε

4R
+

ε

4R
+
ε

2
≤ ε

for (α, β) ≥ (αε, βε). Similarly we show that ‖f − f(φα ⊗ eβ)‖∞ → 0.

Theorem 4.8. Assume that the algebra AM has a bounded approximate
identity. Then EC0(X,A) = C0(X,EA).

Proof. Recall that, by Proposition 4.4, C0(X,A)M has a bounded ap-
proximate identity. The inclusion “⊆” follows at once from Theorem 3.7,
since

EC0(X,A) = C0(X,A)C0(X, ÃM ) ⊆ C0(X,AÃM ) = C0(X,EA).

For the converse inclusion, note that C0(X,EA) is a closed ideal of C0(X,A),
and by Lemma 4.7 it has an approximate identity. Thus, by Lemma 4.6(v),
C0(X,EA) ⊆ EC0(X,A).

Example 4.9. Let the weight function v be such that Cvb (Y ) ⊆ C0(Y ).
The algebra Cv0 (Y ) has an approximate identity (unbounded whenever
v is). Thus, by the easily verified fact Cvb (Y )C0(Y ) ⊆ Cv0 (Y ), we see that
ECv

b (Y ) = Cv0 (Y ), and by Theorem 4.8, EC0(X,Cv
b (Y )) = C0(X,C

v
0 (Y )).

As immediate corollaries to Theorem 4.8 we obtain the following further
extensions of Lemma 4.2. For the latter corollary, see Remark 4.1.

Corollary 4.10. Assume that AM has a bounded approximate iden-
tity. Then C0(X,A) has an approximate identity if and only if A has an
approximate identity.

Corollary 4.11. Let X be σ-compact. Then C0(X,A) has a sequential
approximate identity if and only if A has a sequential approximate identity.
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