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Tensor product of left n-invertible operators
by

B. P. DuccAL (London) and VLADIMIR MULLER (Praha)

Abstract. A Banach space operator T € B(X) has a left m-inverse (resp., an
essential left m-inverse) for some integer m > 1 if there exists an operator S € B(X)
(resp., an operator S € B(X) and a compact operator K € B(X)) such that
S (DM ST = 0 (resp., Yo (1) ()T TIS™ T = K). If Ty s left my-

invlerotible (resp., essentially left m;-invertible), then the tensor product Th ® T3 is left
(m1 4+ mo — 1)-invertible (resp., essentially left (m1 + mo — 1)-invertible). Furthermore,
if T is strictly left m-invertible (resp., strictly essentially left m-invertible), then T1 ® T
is: (i) left (m 4+ n — 1)-invertible (resp., essentially left (m + n — 1)-invertible) if and only
if T» is left n-invertible (resp., essentially left n-invertible); (ii) strictly left (m +n — 1)-
invertible (resp., strictly essentially left (m + n — 1)-invertible) if and only if T3 is strictly
left n-invertible (resp., strictly essentially left n-invertible).

1. Introduction. Let B(X') denote the algebra of bounded linear trans-
formations, equivalently operators, on a Banach space X into itself. An op-
erator T' € B(X) is left (vesp., right) m-invertible, for some integer m > 1,
by S € B(X) if

m m
S (-1 <m> ST =0 (resp. Y (1) <m) Tm=igm=i = ).
i=0 ¢ i=0 !
It is elementary to see that S is a left m-inverse of 7' if and only if (the
adjoint operator) S* is a right m-inverse of 1. We say that T" € B(X) is
m-invertible if it has both a left m-inverse and a right m-inverse.
Evidently, every left inverse (i.e., left 1-inverse) of T is a left m-inverse
of T and every right inverse of T is a right m-inverse of T', for every integer
m > 1. Indeed, if T is left n-invertible for some positive integer n, then
it is left m-invertible for every integer m > n. If T is left (resp., right)
m-invertible then it is left (resp., right) invertible, but a left (resp., right)
m-inverse of T' is not necessarily a left (resp., right) inverse of 7.
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Observe also that if T is left m-invertible by L and right n-invertible by
R (for some integers m,n > 1), then T is invertible by the operator

m—1 n—1
_q)ymA1+i <m) m—l—ipm—l—i _ _q)ntlti <n> pn—l—ipn-1-i

> o (] > o (]
The study of m-left and m-right invertible operators has its roots in the work
of Przeworska—Rolewicz [15], [16], and has since been carried out by a number
of authors, amongst them Sid Ahmed [I7]. An interesting example of a left
m-~invertible Hilbert space operator is that of an m-isometric operator 1" for
which Y7 (=1)}("")T*™ “T™~% = 0, where T* denotes the Hilbert space
adjoint of T'. A study of m-isometric operators has been carried out by Agler
and Stankus in a series of papers [I} 2 B]; more recently a generalization of
these operators to Banach spaces has been obtained by Bayart [4], Bermudez
et al. [0, 5] and Hoffmann et al. [13].

Let IC(X) denote the two-sided ideal of compact operators in B(&X'), and
let m > 1 be an integer. We say that T' € B(X) is: essentially left m-in-
vertible (resp., essentially right m-invertible) by S € B(X) if there exists an
operator K1 € K(X) (resp., K2 € K(X)) such that > (—1){(7})Sm Tt
= Ky (resp., Y it (—1)/("T)T™1S™ = Ky). We call T essentially m-
inwvertible if it is both essentially left m-invertible and essentially right m-
invertible.

Recall from Miiller [14, p. 154] that an essentially left invertible (i.e.,
essentially left 1-invertible) operator T' is upper semi-Fredholm with the
range T'(X) complemented, and an essentially right invertible operator is
lower semi-Fredholm with 7-1(0) complemented. Trivially: If T is essentially
left (resp., right) m-invertible by S then so is T+ K for every compact K, an
essentially left (resp., right) m-invertible operator is essentially left (resp.,
right) invertible, and every essentially left (resp., right) invertible operator
is essentially left (resp., right) m-invertible (indeed, if S is an essential left
(resp., right) m-inverse of T' then S is an essential n-inverse left (resp.,
right) of T for all integers n > m). Observe however that S is an essential
left (resp., right) m-inverse of T" does not imply S is an essential left (resp.,
right) inverse of 7T'.

Call an operator S a strict left m-inverse (resp., a strict essential left
m-inverse) of T'if S is a left m-inverse (resp., essential left m-inverse) of T'
but S is not a left n-inverse (resp., essential left n-inverse) of T for all integers
n < m. Define strict right m-inverses and strict essential right m-inverses
similarly.

In the following, we consider operators 77 and 75 such that 7} is left
(resp., right) m-invertible and T% is left (resp., right) n-invertible, and prove
that their tensor product T} ® T is left (resp., right) (m +n — 1)-invertible.
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Furthermore, if T} is strictly left (similarly, right) m-invertible, then T} ® T
is: (i) left (resp., right) (m +n — 1)-invertible if and only if T5 is left (resp.,
right) n-invertible; (ii) strictly left (resp., right) (m+mn — 1)-invertible if and
only if T5 is strictly left (resp., right) n-invertible.

These results have an essentially left (resp., right) ¢-invertible counter-
part: If T} is essentially left (resp., right) m-invertible and T is essentially
left (resp., essentially right) n-invertible, then T} ® Tb is essentially left
(resp., right) (m + n — 1)-invertible. Furthermore, if T is strictly essentially
left (resp., right) m-invertible, then 77 ® T is: (i) essentially left (resp.,
right) (m +n — 1)-invertible if and only if 75 is essentially left (resp., right)
n-invertible; (ii) strictly essentially left (resp., right) (m + n — 1)-invertible
if and only if T is strictly essentially left (resp., right) n-invertible. This
generalizes some results of Botelho et al. [7, [§], Bermuidez et al. [0 [5], and
those of one of the authors on the tensor product of m-isometric operators
[9, 10, 11]. We remark that these results have a natural interpretation for
the left-right multiplication operator Agp : J — J, Agr(A) = SAT, where
J C B(Y, X) is an operator ideal.

2. Results. Given two complex infinite-dimensional Banach spaces X
and ), let X ® ) denote the completion, endowed with a reasonable uniform
cross-norm, of the algebraic tensor product X ®) of X and Y; for A € B(X)
and B € B()), denote by A® B € B(X ® )) the tensor product operator
defined by A and B.

Evidently, an operator T € B(X) is left m-invertible by S € B(X) if
and only if T ® I € B(X ® ) is left m-invertible by S® I € B(X ® ).
Furthermore, T is strictly left m-invertible by S if and only if T'®1 is strictly
left m-invertible by S ® I. Observe also that T1 @ To = (T1 @ I)(I @ Ta) =
(I®T2)(Th ®I). (Here and below, we shall make a slight misuse of notation
and write I for the identity operator on both X and ).) Hence, given T}
left m-invertible by S; and T left m-invertible by Ss, in considering the
left t-invertibility of 77 ® T by S1 ® So we may assume without loss of
generality that the positive integer m is less than or equal to the positive
integer n.

We state our theorems below for left invertibility; their analogues for
right invertibility follow from a similar argument.

THEOREM 2.1. The tensor product of a left m-invertible operator with a
left n-invertible operator is a left (m + n — 1)-invertible operator.

A proof of the theorem may be obtained using a combinatorial argu-
ment similar to that in the papers [9] [10], or by using an argument similar
to the one used to prove [II, Corollary 2.2] (see also [6]). However, we
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follow here an argument using double sequences satisfying certain proper-
ties. At the heart of this argument lies the following simple lemma, which
along with leading to a proof of the theorem has a number of other inter-
esting consequences. Let P; denote the set of all complex polynomials of
degree < d.

LEMMA 2.2. Let m € N, and let (aj)]‘?’;o be a sequence of complexr num-
bers. Then the following statements are equivalent:

(i) Sy (=1) (") akti = 0 for every integer k > 0;
(ii) there exists a polynomial p € Pp,—1 such that a; = p(i) for every
i > 0.

Proof. (ii)=-(i). We prove the statement by induction on m. For m = 1,
p is a constant and the statement is clear.

Suppose that m > 2 and the statement is true for m — 1. Let degp < m.
Define ¢q by ¢(t) = p(t + 1) — p(t). Then q is a polynomial of degree degq =
degp —1 < m — 1. We have

g(—l)i<?>p(k+i) = é(—n"((m; 1) + (T__11>>p(k+i)
<m-_1> (k+1i) +mzl ”1< . 1>p(kf+i+1)

<m 1)( (k+i) — p(k +i+1))

Zl < . >q(k+i):0

=0

[l
rmi

3

I
: 'ZM

by the induction assumption.

(i)=(ii). Let V be the vector space of all sequences (a;) satisfying (i).
Since each sequence in V is uniquely determined by its members a;, 0 < i <
m — 1, we see that dimV < m. Let Vo = {(p(i)) : p € Pm—1}. Since Vy C V
and dim Vy = m, we have Vo =V. =

REMARK 2.3. The proof of (ii)=-(i) above works just as well with p(n+)
replaced by p(n+rj) for every r € N. Indeed, let p € Pp,—1, 7 € Nand k > 0.
Then i — p(k + ri) is again a polynomial of degree < m — 1, so we have
Sito (=1 (") p(k + ri) = 0. In particular, if 0 < ¢ < m —1, 7 € N and
k>0, then Y7 (") (k 4 ri)¢ = 0.

Lemma [2.2]leads to the following characterization of left m-invertibility.
Let X'* denote space dual to X.
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THEOREM 2.4. Let S,T € B(X), m € N. The following statements are
equivalent:

(i) S is a left m-inverse of T';
(ii) forallz € X, x* € X* and k > 0,

1
=0

(iii) for allz € X and x* € X* there exists a polynomial p € Pp,—1 such
that

(ST x, z*) = p(i) (i >0).
Proof. (ii)=-(i). For all z € X and z* € X* we have
S (-1 <m> (S'Tiz, %) = 0.
=0 !
So Y1y (~1)! (T)S'T = 0.
(i)=(i). Let z € X, " € X* and k > 0. We have

(=1)! <T> (Sitkpithy o) = <§:(—1)i <T> SiTH(Tk ), S*k:r*> =0.

1=0

- I

1=

i)« (iii). Let # € X and z* € X*. Write a; = (ST 'z, 2*) (i > 0). The
desired equivalence then follows from the previous lemma. =

The following two corollaries of Lemma all but prove Theorem

COROLLARY 2.5. If (ai,j);’,?:o is a double sequence of complexr numbers
satisfying

(1) i (1) <T) ag4ie = 0,

2) > -1y (j) sy =0,

(3) mi_l(—lf(mm_ 1)%,3 = 0.

S
s=0

Proof. Each double sequence (a; ;) is uniquely determined by its terms
a;j,0<i<m—1and 0 <j <n-—1,soif welet V denote the vector space
of all double sequences (a; ;) satisfying (1) and (2) above, then dim V' < mn.
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For 0 <c¢c<m-—1and 0 <d<n-—1, define the double sequence (b(cvd)) by
D — jejd Then

0,J
Z < ) He—EdZ(—l)’(i)(kJri)C:O
1= 1=0
for all non-negative integers k,¢. Thus (b(>?) satisfies (1), similarly (2).
Consequently, (b(c’d)) € V. Since these double sequences are linearly inde-
pendent, and hence form a basis of V', to prove the corollary it would now
suffice to prove that b(&? satisfy (3). But this follows from the fact that

bgizéd):Schd,OSC—FdSm—Fn—Z, and

m+n—1 m+n—1
m+n—1 m+n—1
_1)8 (cd) _1)8 ct+d _ )
S ("I e = (T e

s=0 s=0
For a pair of operators A, B € B(X), let [A, B] = AB — BA.

COROLLARY 2.6. If A1 € B(X) is left m-invertible by By € B(X), Ay €
B(X) is left n-invertible by By € B(X) and [A1,As] = 0 = By, Ba], then
A1 Ay is left (m + n — 1)-invertible by B1Bs.

Proof. Fix x € X and z* € X*, and let a;; = (B{B%AilAgw,m*). Then,
for all non-negative integers k and ¢, the left m-invertibility of A; by Bj
implies that

S 0 (7 ok = 30 07 (7) (Bl Ao 5573 o

=0 =0

i.e., (a; ;) satisfies (1). Similarly, (a; ;) satisfies (2), and hence also (3). Since
as,s = ((B1B2)*(A142)"x, 27),

m—+n—1
Z (1) <m e 1> ((B1B2)®*(A1A2)°x,2") = 0.

S
s=0

Our choice of vectors x and z* having been arbitrary, we must have

mant m+n—1
> (1)8( ) )(BlBQ)s(AlAg)s =0.u
s=0

Proof of Theorem 2.1. If we set Ay = (Th1 ® I) and Ay = (I ® T3), then
Ty € B(X) is left m-invertible by S; € B(X), Ty € B()) is left n-invertible
by Sy € B(Y) and Ty} ® T3 is left (m 4+ n — 1)-invertible by S; ® So if
and only if A; is left m-invertible by By = (S1 ® I), Ag is left n-invertible
by Bs = (I ® Sy) and Aj Ay is left (m + n — 1)-invertible by Bj Bs. Since
[A1, As] = 0 = [By, Ba], the conclusion follows from Corollary .
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REMARK 2.7. Suppose that T' € B(X) is left m-invertible by S € B(X).
Fix ¥ € X and z* € X", and let a, = (S"T"x,z"). Then it follows from
Remark that > (=1)"("7 )ag4ri = 0 for all » € N and integers k > 0.

In particular,
Z (_1)z< . )STZTTZ — 0,
=0 L

ie., T" is left m-invertible by S™ for all r € N.

(m,p)-isometries: a remark. Recall that a Banach space operator
T € B(X) is an (m, p)-isometry for some integer m > 1 and p € (0, 00) if
m
3 (1) (f‘) ITiz|P =0, =ze€AX.
i=0
Let T, S be commuting operators in B(X) such that 7" is an (m, p)-isometry

and S is an (n,p)-isometry. Define the double sequence (a;;) by a;; =
|T*S7x||P, x € X. Then

i (=1)’ (7?) Ui =0 = i (-1 <Z> Wi+

i=0 =0
for integers k, ¢ > 0. Applying Corollary [2.5| we conclude that
m+n—1
-1
> ("I sy <o
s
s=0

for all x € X. We have proved:

COROLLARY 2.8 ([0, Theorem 3.3]). If T,S € B(X) are commuting
operators such that T is an (m,p)-isometry and S is an (n,p)-isometry,
then T'S is an (m +n — 1,p)-isometry.

For an z € X and an operator 7' € B(X), define the sequence (a,)
by ap, = ||T"z|[P. If T' is an (m, p)-isometry, then Remark implies that
Yoo (=) )aksri = 0 for all r € N and integers k£ > 0. In particular:

COROLLARY 2.9 (|5, Theorem 3.1]). If T € B(X) is an (m, p)-isometry,
then so is T" for each r € N.

Strict left invertibility. If 7" € B(X) is left m-invertible and S € B(X)

is a strict left m-inverse of T, then > 1", (=1)"("}")S™*T™ % = 0 and

P o (=1)("7)SPTiTP=t £ 0 for all p < m. The proof of [8, Theorem 3.1]

shows that if S € B(X) is a strict left m-inverse of T' € B(X), then

the set {I,ST,S?T?,...,S™ T™~1} is linearly independent. More gener-
ally:
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THEOREM 2.10. Let S,T € B(X), m € N, let S be a left m-inverse
of T. The following statements are equivalent:

(i) S is a strict left m-inverse of T';

(ii) the operators I,ST,S?*T?,...,S™ 1T™=L are linearly independent;

(iii) there emists x € X such that the vectors x,STx,..., S 1Tm g

are linearly independent;

(iv) for every polynomial p € Pp,—1 there exist x € X and x* € X* such

that o
(S'T'x,x*)y =p(i) (i >0);
(v) there exist x € X and z* € X* such that (S*T'z,z*) =™~ (i > 0).

Proof. (iii)=-(ii) is clear.

(ii)=(i). Suppose that S is not a strict left m-inverse of T'. By definition,
the operators I, ST, ..., S™ 1T™ 1 are linearly dependent.

(i)=(iii). Suppose that for any z € X thevectorsz, STz, ..., S" 1 T™ 1z
are linearly dependent, i.e., there exists a non-trivial linear combination
St ST = 0.

Since also Y 1" (—1)*("") ST "z = 0, we can get Zgﬁl(—l)i(m;l) STz
=0 as in [9]. So

[y

i =1\ ..
(")
7
0
a contradiction.

(iii)=>(iv). Let € X and suppose the vectors z, STz, ..., S" 1T™m g
are linearly independent. Let p € P,,—1. Then there exists z* € X* such
that

i=

(S'T'z,x*) = p(i) (0<i<m—1).
By Theorem [2.4] this implies that (S*T%z, 2*) = p(i) for all i > 0.
(iv)=-(v) is clear.
(v)=(i). If z € X and 2* € X* satisfy (S*T"z,z*) =™~ ! for all i > 0,
then (by Theorem S is not a left (m — 1)-inverse of T', so S is a strict
left m-inverse of T'. m

The converse of Theorem namely that if S € B(X) is a left ¢-
inverse of 77 € B(X) and T1 ® T5 is left s-invertible by S; ® Sy (for some
15,52 € B(Y)) then T is left (s—t+1)-invertible by Sa, is not as straightfor-
ward. Recall that every left ni-inverse S € B(X) of an operator T' € B(X)
is a left n-inverse of T for every integer n > ny. Hence, if S1 is a left t-inverse
of T1, then there is a least positive integer m < ¢ such that Sy is a strict left
m-inverse of T1 (and then {I,$1T1,..., S *T{" '} is an independent set).

THEOREM 2.11. Let S1,T1 € B(X), So,T> € B(Y), m,n € N. Suppose
that Sy is a strict left m-inverse of T1 and S is a strict left n-inverse of Ts.
Then S1 ® Sy is a strict left (m 4+ n — 1)-inverse of T1 ® Ts.
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Proof. By Theorem S1 ® Sy is a left (m +n — 1)-inverse of 17 ® T5.
By Theorem there exist x € X, 2" € X*, y € Y and y* € Y* such
that
(SiTiz,a%) =™ and (SiTy,y") =" (i > 0).
So
((S1©89)(Th @ Ty) (z ®y), 2" @ y*) = (SiT{z,z*) - (S5Tay,y*) = "+ 2

for all integers ¢ > 0. This, again by Theorem [2.10} implies that S; ® Ss is
a strict left (m +n — 1)-inverse of T} ® T. =

THEOREM 2.12. Let S1,Th € B(X) and S2,Ty € B(Y). If Sy is a strict
left m-inverse of T1, then S1 ® So is a left s-inverse of T1 ® T if and only
if So is a left (s —m + 1)-inverse of Ts.

Proof. If Sy is a left (s — m + 1)-inverse of T then S; ® Sy is a left
s-inverse of T} ® Ty by Theorem

Suppose that S1® 53 is a left s-inverse of T1 ®T5. Let y € Y and y* € Y.
Write f(i) = (S5T3y, y*) (i > 0).

By Theorem for each p € P,,,_1 there exist x € X and z* € X*
such that (SiTiz,x*) = p(i) for all i > 0. So

p(i) (i) = (SiT{z, &%) - (S5T3y, y*) = ((S1® o) (Th @ Ty)'(z @ y), 2" @ ).

Hence i — p(i) f(7) is a polynomial of degree < s — 1. For p = 1 this means
that f is a polynomial of degree < s — 1. For p = "~ ! we get f € Ps_pn.

Since y € Y and y* € Y* were arbitrary, Theorem implies that So is
a left (s —m + 1)-inverse of T5. =

EXAMPLE. If m > 2 and S is a strict left m-inverse of T, then S? is a
left 2-inverse of T2. Thus S?2 is not a strict left 3-inverse of T2. Observe here
that S and T" do not commute.

Theorem (and also Theorem is not true if we assume only that
Sy, S92, T1, Ty are commuting operators (such that 515 is a left s-inverse of
T1T»). Let X be the ¢;-space with the standard basis e; j (i, € N). Let the
operators 11, T», 51,52 € B(X) be defined by

i+j+1
Tie;; = ?jewl,j,
i+7+1
Tae;; = %jemﬂa

Slem =€i—1,5 if 4 2 2, 51617]' == O,

Sgei’j = €55-1 ifj > 2, S’Qei,l =0.
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Clearly S1, S2,T1,T> are mutually commuting operators. We have S1Te; j =

Bltle; ; and S3TPe;; = “2e; ;. So (I — 28Ty + S3T)e;; = 0 for all

i,7 € N and so S; is an (obviously strict) left 2-inverse of 77. Similarly, Sy
is a strict left 2-inverse of T5.

It is easy to verify that 5155 is a left 2-inverse of 7175, so it is not a
strict left 3-inverse.

Evidently, Sy may not be a strict left (s —m + 1)-inverse of T5 in Theo-
rem For Sy to be a strict left (s —m + 1)-inverse one requires 51 ® Sy
to be a strict left s-inverse of 77 ® T5. The following result complements
Theorem 2111

THEOREM 2.13. Let S1,T1 € B(X) and S2,T» € B(Y). Suppose that S;
18 a strict left m-inverse of T1 and S1 ® So is a left s-inverse of T1 ® T5.
Then So is a strict left (s —m + 1)-inverse of Ty if and only if S1 ® Sy is a
strict left s-inverse of Ty ® Ts.

Proof. Tt is clear from the above that if S ® Sy is a left s-inverse of
T ® Ty, then Sy is a left (s — m + 1)-inverse of T. To prove that Ss is a
strict (s —m + 1)-inverse of T5 if and only if S; ® Sy is a strict left s-inverse
of T} ® T, suppose (to start with) that S} ® Ss is a strict left s-inverse of
T) ® T but Sy is not a strict left (s —m+ 1)-inverse of T5. Then there exists
an integer k, 1 < k < s —m + 1, such that S5 is a left k-inverse of T5, and
hence S1 ® Sy is a left (m + k — 1)-inverse of 71 ® T (see Theorem [2.1)).
Since m + k — 1 < s, we have a contradiction. If, instead, S5 is a strict left
(s —m + 1)-inverse of Ty, then S} ® Sy is a strict left s-inverse of T ® T

(by Theorem [2.11)). m

Essentially left m-invertible operators. We prove next the ana-
logues of Theorem [2.12] and [2.13] for the tensor product of essentially left
m-~invertible operators. To this end we start by introducing a construction,
known in the literature as the Sadovskii/Buoni, Harte, Wickstead construc-
tion [14, p. 159], which leads to a representation of the Calkin algebra as an
algebra of operators on a suitable Banach space. Let £*°(X) denote the Ba-
nach space of all bounded sequences x = (x,,)72 ; of elements of X endowed
with the norm ||z« := sup,cy |||, and write Too, Toox 1= (T'z,)5%, for
all © = (2,,)02,, for the operator induced by T' on ¢*°(X). The set m(X)
of all precompact sequences of elements of X" is a closed subspace of £>°(X)
which is invariant for T. Let & := £>°(X)/m(X), and denote by T the
operator T, on X;. The mapping T" + T} is then a unital homomorphism
from B(X) — B(X,), with kernel the ideal IC(X') of compact operators
on X, which induces a norm decreasing monomorphism from B(X)/K(X)
to B(AX;) with the following properties (see [I4, Section 17] for details):
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(i) T is upper semi-Fredholm if and only if T is injective, if and only
if T;, is bounded below;
(ii) Ty = 0 if and only if T" is compact.

Furthermore, as is easily verified,
(ili) (S®T)y= 95,1, for every S € B(X) and T € B(Y).

As above, let S1,Ty € B(X) and Sa,T> € B(Y). If S; is an essential left
m-inverse of T4, equivalently if S (—1)("?)S;™“Ty™ " = K for some
K € K(X), then Y70 (=1)"("?)(S)"(T1) =" = 0, i.e., (S1)q € B(X,) is
a left m-inverse of (11), € B(&X;). The converse holds, and we conclude that
(S1)q € B(Xy) is a left m-inverse of (Th)q € B(Xy) if and only if Sy is an
essential left m-inverse of T1. Again, S1 ® Sy is an essential left s-inverse
of Ty ® Ty if and only if (S1)y ® (S2)4 is a left s-inverse of (T1)q ® (T2)4-
Observing that the property of being “strict” transfers from an operator T
to Ty, (and back), we have:

THEOREM 2.14. Let S1,T1 € B(X) and S2,T» € B()).

(i) If Si, i = 1,2, is an essential left m;-inverse of T;, then S1 ® Sy is
an essential left (m1 + mg — 1)-inverse of Th ® Ts.

(ii) If Sy is a strict essential left m-inverse of Ty, then S1 ® So is an
essential left s-inverse of T1 ® Ts if and only if Sy is an essential
left (s —m + 1)-inverse of Ts.

(i) If Sy is a strict essential left m-inverse of Ty and S; ® Sy is an
essential left s-inverse of Th ® Tb, then S is a strict essential left
(s — m+ 1)-inverse of Ty if and only if S1 ® Sy is a strict essential
left s-inverse of T1 ® T5.

Elementary operator App, = Ly Rp,. Given T3 € B(X) and
Ty € B(Y), the elementary operator Aq 1, € B(), X) is defined by A, 7, (A)
= T1 ATy for all A € B(Y,X). Theorems have natural analogues
for the operator Ar,7,.

Recall from [I2, p. 50] that a pair <X,?€> of Banach spaces is a dual
pairing if either X = X* or X = X*. Let 2 ® ¢/, z € X and v/ € V*, denote
the rank one operator Y — X, y — (y,y)x. An operator ideal J between
Banach spaces ) and X is a linear subspace of B(),X) equipped with a
Banach norm « such that

(i) z@y" € Jand a(z@y) = ||zl ly[|;
(ii) Asr(A) = LsRr(A) = SAT and a(SAT) < ||S||la(A)|T])

forallz e X,y € Y*, Ae J, S e BX)and T € B(Y) [12, p. 51]. Thus
defined, each J is a tensor product relative to the dual pairings (X', X*) and
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(¥*,Y) and the bilinear mappings
XXV ST, (@y) ey,
B(X) x B(Y") = B(J), (5,T%)— S®T",

where S ® T*(A) = SAT. The following result is now evident from Theo-
rems

THEOREM 2.15. Let S1,T1 € B(X) and Sz, T» € B()).

(i) If Sy is a left my-inverse (resp., essential left mq-inverse) of Ti
and Sy is a right ma-inverse (resp., essential right mo-inverse) of
Ty, then Ag, s, is a left (m1 + ma — 1)-inverse (resp., essential left
(m1 4+ mg — 1)-inverse) of Aq,,.

(ii) If Sy is a strict left m-inverse (resp., strict essential left m-inverse)
of T1, then Agys, is a left s-inverse (resp., an essential left s-
inverse) of Aqy, if and only if Sz is a right (s —m + 1)-inverse
(resp., an essential right (s —m + 1)-inverse) of Ts.

(iii) If Sy is a strict left m-inverse (resp., strict essential left m-inverse)
of Th and Ag, s, is a left s-inverse (resp., an essential left s-inverse)
of Ary1,, then Sa is a strict right (s —m + 1)-inverse (resp., strict
essential right (s —m + 1)-inverse) of Ty if and only if Ng,s, is a
strict left s-inverse (resp., a strict essential left s-inverse) of Ay, .

A limited version of Theorem has been considered by Sid Ahmed
[17, Theorems 3.1 and 3.2], and versions of the theorem for m-isometric
operators on the ideal Co(#H) of Hilbert-Schmidt class operators have been
considered in [6] [7, [8, 9l 10].
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