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Tensor product of left n-invertible operators

by

B. P. Duggal (London) and Vladimir Müller (Praha)

Abstract. A Banach space operator T ∈ B(X ) has a left m-inverse (resp., an
essential left m-inverse) for some integer m ≥ 1 if there exists an operator S ∈ B(X )
(resp., an operator S ∈ B(X ) and a compact operator K ∈ B(X )) such that∑m

i=0 (−1)i
(
m
i

)
Sm−iTm−i = 0 (resp.,

∑m
i=0 (−1)i

(
m
i

)
Tm−iSm−i = K). If Ti is left mi-

invertible (resp., essentially left mi-invertible), then the tensor product T1 ⊗ T2 is left
(m1 + m2 − 1)-invertible (resp., essentially left (m1 + m2 − 1)-invertible). Furthermore,
if T1 is strictly left m-invertible (resp., strictly essentially left m-invertible), then T1 ⊗ T2

is: (i) left (m + n− 1)-invertible (resp., essentially left (m + n− 1)-invertible) if and only
if T2 is left n-invertible (resp., essentially left n-invertible); (ii) strictly left (m + n − 1)-
invertible (resp., strictly essentially left (m+ n− 1)-invertible) if and only if T2 is strictly
left n-invertible (resp., strictly essentially left n-invertible).

1. Introduction. Let B(X ) denote the algebra of bounded linear trans-
formations, equivalently operators, on a Banach space X into itself. An op-
erator T ∈ B(X ) is left (resp., right) m-invertible, for some integer m ≥ 1,
by S ∈ B(X ) if

m∑
i=0

(−1)i
(
m

i

)
Sm−iTm−i = 0 (resp.

m∑
i=0

(−1)i
(
m

i

)
Tm−iSm−i = 0).

It is elementary to see that S is a left m-inverse of T if and only if (the
adjoint operator) S∗ is a right m-inverse of T ∗. We say that T ∈ B(X ) is
m-invertible if it has both a left m-inverse and a right m-inverse.

Evidently, every left inverse (i.e., left 1-inverse) of T is a left m-inverse
of T and every right inverse of T is a right m-inverse of T , for every integer
m ≥ 1. Indeed, if T is left n-invertible for some positive integer n, then
it is left m-invertible for every integer m ≥ n. If T is left (resp., right)
m-invertible then it is left (resp., right) invertible, but a left (resp., right)
m-inverse of T is not necessarily a left (resp., right) inverse of T .
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Observe also that if T is left m-invertible by L and right n-invertible by
R (for some integers m,n ≥ 1), then T is invertible by the operator

m−1∑
i=0

(−1)m+1+i

(
m

i

)
Lm−1−iTm−1−i =

n−1∑
i=0

(−1)n+1+i

(
n

i

)
Tn−1−iRn−1−i.

The study of m-left and m-right invertible operators has its roots in the work
of Przeworska–Rolewicz [15, 16], and has since been carried out by a number
of authors, amongst them Sid Ahmed [17]. An interesting example of a left
m-invertible Hilbert space operator is that of an m-isometric operator T for
which

∑m
i=0 (−1)i( m

i )T ∗m−iTm−i = 0, where T ∗ denotes the Hilbert space
adjoint of T . A study of m-isometric operators has been carried out by Agler
and Stankus in a series of papers [1, 2, 3]; more recently a generalization of
these operators to Banach spaces has been obtained by Bayart [4], Bermúdez
et al. [6, 5] and Hoffmann et al. [13].

Let K(X ) denote the two-sided ideal of compact operators in B(X ), and
let m ≥ 1 be an integer. We say that T ∈ B(X ) is: essentially left m-in-
vertible (resp., essentially right m-invertible) by S ∈ B(X ) if there exists an
operator K1 ∈K(X ) (resp., K2 ∈K(X )) such that

∑m
i=0 (−1)i( m

i )Sm−iTm−i

= K1 (resp.,
∑m

i=0 (−1)i( m
i )Tm−iSm−i = K2). We call T essentially m-

invertible if it is both essentially left m-invertible and essentially right m-
invertible.

Recall from Müller [14, p. 154] that an essentially left invertible (i.e.,
essentially left 1-invertible) operator T is upper semi-Fredholm with the
range T (X ) complemented, and an essentially right invertible operator is
lower semi-Fredholm with T−1(0) complemented. Trivially: If T is essentially
left (resp., right) m-invertible by S then so is T+K for every compact K, an
essentially left (resp., right) m-invertible operator is essentially left (resp.,
right) invertible, and every essentially left (resp., right) invertible operator
is essentially left (resp., right) m-invertible (indeed, if S is an essential left
(resp., right) m-inverse of T then S is an essential n-inverse left (resp.,
right) of T for all integers n ≥ m). Observe however that S is an essential
left (resp., right) m-inverse of T does not imply S is an essential left (resp.,
right) inverse of T .

Call an operator S a strict left m-inverse (resp., a strict essential left
m-inverse) of T if S is a left m-inverse (resp., essential left m-inverse) of T
but S is not a left n-inverse (resp., essential left n-inverse) of T for all integers
n < m. Define strict right m-inverses and strict essential right m-inverses
similarly.

In the following, we consider operators T1 and T2 such that T1 is left
(resp., right) m-invertible and T2 is left (resp., right) n-invertible, and prove
that their tensor product T1⊗T2 is left (resp., right) (m+n− 1)-invertible.
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Furthermore, if T1 is strictly left (similarly, right) m-invertible, then T1⊗T2
is: (i) left (resp., right) (m+ n− 1)-invertible if and only if T2 is left (resp.,
right) n-invertible; (ii) strictly left (resp., right) (m+n−1)-invertible if and
only if T2 is strictly left (resp., right) n-invertible.

These results have an essentially left (resp., right) t-invertible counter-
part: If T1 is essentially left (resp., right) m-invertible and T2 is essentially
left (resp., essentially right) n-invertible, then T1 ⊗ T2 is essentially left
(resp., right) (m+n− 1)-invertible. Furthermore, if T1 is strictly essentially
left (resp., right) m-invertible, then T1 ⊗ T2 is: (i) essentially left (resp.,
right) (m+ n− 1)-invertible if and only if T2 is essentially left (resp., right)
n-invertible; (ii) strictly essentially left (resp., right) (m+ n− 1)-invertible
if and only if T2 is strictly essentially left (resp., right) n-invertible. This
generalizes some results of Botelho et al. [7, 8], Bermúdez et al. [6, 5], and
those of one of the authors on the tensor product of m-isometric operators
[9, 10, 11]. We remark that these results have a natural interpretation for
the left-right multiplication operator 4ST : J → J , 4ST (A) = SAT , where
J ⊂ B(Y,X ) is an operator ideal.

2. Results. Given two complex infinite-dimensional Banach spaces X
and Y, let X ⊗ Y denote the completion, endowed with a reasonable uniform
cross-norm, of the algebraic tensor product X ⊗Y of X and Y; for A ∈ B(X )
and B ∈ B(Y), denote by A⊗ B ∈ B(X ⊗ Y) the tensor product operator
defined by A and B.

Evidently, an operator T ∈ B(X ) is left m-invertible by S ∈ B(X ) if
and only if T ⊗ I ∈ B(X ⊗ Y) is left m-invertible by S ⊗ I ∈ B(X ⊗ Y).
Furthermore, T is strictly left m-invertible by S if and only if T⊗I is strictly
left m-invertible by S ⊗ I. Observe also that T1 ⊗ T2 = (T1 ⊗ I)(I ⊗ T2) =
(I⊗T2)(T1⊗ I). (Here and below, we shall make a slight misuse of notation
and write I for the identity operator on both X and Y.) Hence, given T1
left m-invertible by S1 and T2 left n-invertible by S2, in considering the
left t-invertibility of T1 ⊗ T2 by S1 ⊗ S2 we may assume without loss of
generality that the positive integer m is less than or equal to the positive
integer n.

We state our theorems below for left invertibility; their analogues for
right invertibility follow from a similar argument.

Theorem 2.1. The tensor product of a left m-invertible operator with a
left n-invertible operator is a left (m+ n− 1)-invertible operator.

A proof of the theorem may be obtained using a combinatorial argu-
ment similar to that in the papers [9, 10], or by using an argument similar
to the one used to prove [11, Corollary 2.2] (see also [6]). However, we
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follow here an argument using double sequences satisfying certain proper-
ties. At the heart of this argument lies the following simple lemma, which
along with leading to a proof of the theorem has a number of other inter-
esting consequences. Let Pd denote the set of all complex polynomials of
degree ≤ d.

Lemma 2.2. Let m ∈ N, and let (aj)
∞
j=0 be a sequence of complex num-

bers. Then the following statements are equivalent:

(i)
∑m

i=0 (−1)i
(
m
i

)
ak+i = 0 for every integer k ≥ 0;

(ii) there exists a polynomial p ∈ Pm−1 such that ai = p(i) for every
i ≥ 0.

Proof. (ii)⇒(i). We prove the statement by induction on m. For m = 1,
p is a constant and the statement is clear.

Suppose that m ≥ 2 and the statement is true for m− 1. Let deg p < m.
Define q by q(t) = p(t+ 1)− p(t). Then q is a polynomial of degree deg q =
deg p− 1 < m− 1. We have

m∑
i=0

(−1)i
(
m

i

)
p(k + i) =

m∑
i=0

(−1)i
((

m− 1

i

)
+

(
m− 1

i− 1

))
p(k + i)

=
m−1∑
i=0

(−1)i
(
m− 1

i

)
p(k + i) +

m−1∑
i=0

(−1)i+1

(
m− 1

i

)
p(k + i+ 1)

=

m−1∑
i=0

(−1)i
(
m− 1

i

)(
p(k + i)− p(k + i+ 1)

)
= −

m−1∑
i=0

(−1)i
(
m− 1

i

)
q(k + i) = 0

by the induction assumption.

(i)⇒(ii). Let V be the vector space of all sequences (ai) satisfying (i).
Since each sequence in V is uniquely determined by its members ai, 0 ≤ i ≤
m− 1, we see that dimV ≤ m. Let V0 = {(p(i)) : p ∈ Pm−1}. Since V0 ⊂ V
and dimV0 = m, we have V0 = V.

Remark 2.3. The proof of (ii)⇒(i) above works just as well with p(n+j)
replaced by p(n+rj) for every r ∈ N. Indeed, let p ∈ Pm−1, r ∈ N and k ≥ 0.
Then i 7→ p(k + ri) is again a polynomial of degree ≤ m − 1, so we have∑m

i=0(−1)i
(
m
i

)
p(k + ri) = 0. In particular, if 0 ≤ c ≤ m − 1, r ∈ N and

k ≥ 0, then
∑m

i=0

(
m
i

)
(k + ri)c = 0.

Lemma 2.2 leads to the following characterization of left m-invertibility.
Let X ∗ denote space dual to X .
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Theorem 2.4. Let S, T ∈ B(X ), m ∈ N. The following statements are
equivalent:

(i) S is a left m-inverse of T ;
(ii) for all x ∈ X , x∗ ∈ X ∗ and k ≥ 0,

m∑
i=0

(−1)i
(
m

i

)
〈Si+kT i+kx, x∗〉 = 0;

(iii) for all x ∈ X and x∗ ∈ X∗ there exists a polynomial p ∈ Pm−1 such
that

〈SiT ix, x∗〉 = p(i) (i ≥ 0).

Proof. (ii)⇒(i). For all x ∈ X and x∗ ∈ X∗ we have

m∑
i=0

(−1)i
(
m

i

)
〈SiT ix, x∗〉 = 0.

So
∑m

i=0(−1)i
(
m
i

)
SiT i = 0.

(i)⇒(ii). Let x ∈ X, x∗ ∈ X∗ and k ≥ 0. We have

m∑
i=0

(−1)i
(
m

i

)
〈Si+kT i+kx, x∗〉 =

〈 m∑
i=0

(−1)i
(
m

i

)
SiT i(T kx), S∗kx∗

〉
= 0.

(ii)⇔(iii). Let x ∈ X and x∗ ∈ X∗. Write ai = 〈SiT ix, x∗〉 (i ≥ 0). The
desired equivalence then follows from the previous lemma.

The following two corollaries of Lemma 2.2 all but prove Theorem 2.1.

Corollary 2.5. If (ai,j)
∞
i,j=0 is a double sequence of complex numbers

satisfying
m∑
i=0

(−1)i
(
m

i

)
ak+i,` = 0,(1)

n∑
j=0

(−1)j
(
n

j

)
ak,`+j = 0,(2)

then

m+n−1∑
s=0

(−1)s
(
m+ n− 1

s

)
as,s = 0.(3)

Proof. Each double sequence (ai,j) is uniquely determined by its terms
ai,j , 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, so if we let V denote the vector space
of all double sequences (ai,j) satisfying (1) and (2) above, then dimV ≤ mn.
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For 0 ≤ c ≤ m− 1 and 0 ≤ d ≤ n− 1, define the double sequence (b(c,d)) by

b
(c,d)
i,j = icjd. Then

m∑
i=0

(−1)i
(
m

i

)
b
(c,d)
k+i,` = `d

m∑
i=0

(−1)i
(
m

i

)
(k + i)c = 0

for all non-negative integers k, `. Thus (b(c,d)) satisfies (1), similarly (2).
Consequently, (b(c,d)) ∈ V . Since these double sequences are linearly inde-
pendent, and hence form a basis of V , to prove the corollary it would now
suffice to prove that b(c,d) satisfy (3). But this follows from the fact that

b
(c,d)
s,s = sc+d, 0 ≤ c+ d ≤ m+ n− 2, and

m+n−1∑
s=0

(−1)s
(
m+ n− 1

s

)
b(c,d)s,s =

m+n−1∑
s=0

(−1)s
(
m+ n− 1

s

)
sc+d = 0.

For a pair of operators A,B ∈ B(X ), let [A,B] = AB −BA.

Corollary 2.6. If A1 ∈ B(X ) is left m-invertible by B1 ∈ B(X ), A2 ∈
B(X ) is left n-invertible by B2 ∈ B(X ) and [A1, A2] = 0 = [B1, B2], then
A1A2 is left (m+ n− 1)-invertible by B1B2.

Proof. Fix x ∈ X and x∗ ∈ X ∗, and let ai,j = 〈Bi
1B

j
2A

i
1A

j
2x, x

∗〉. Then,
for all non-negative integers k and `, the left m-invertibility of A1 by B1

implies that
m∑
i=0

(−1)i
(
m

i

)
ak+i,` =

m∑
i=0

(−1)i
(
m

i

)
〈Bi

1A
i
1(A

k
1A

`
2x), (B∗2

`B∗1
kx∗)〉 = 0,

i.e., (ai,j) satisfies (1). Similarly, (ai,j) satisfies (2), and hence also (3). Since
as,s = 〈(B1B2)

s(A1A2)
sx, x∗〉,

m+n−1∑
s=0

(−1)s
(
m+ n− 1

s

)
〈(B1B2)

s(A1A2)
sx, x∗〉 = 0.

Our choice of vectors x and x∗ having been arbitrary, we must have

m+n−1∑
s=0

(−1)s
(
m+ n− 1

s

)
(B1B2)

s(A1A2)
s = 0.

Proof of Theorem 2.1. If we set A1 = (T1 ⊗ I) and A2 = (I ⊗ T2), then
T1 ∈ B(X ) is left m-invertible by S1 ∈ B(X ), T2 ∈ B(Y) is left n-invertible
by S2 ∈ B(Y) and T1 ⊗ T2 is left (m + n − 1)-invertible by S1 ⊗ S2 if
and only if A1 is left m-invertible by B1 = (S1 ⊗ I), A2 is left n-invertible
by B2 = (I ⊗ S2) and A1A2 is left (m + n − 1)-invertible by B1B2. Since
[A1, A2] = 0 = [B1, B2], the conclusion follows from Corollary 2.6.
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Remark 2.7. Suppose that T ∈ B(X ) is left m-invertible by S ∈ B(X ).
Fix x ∈ X and x∗ ∈ X ∗, and let an = 〈SnTnx, x∗〉. Then it follows from
Remark 2.3 that

∑m
i=0 (−1)i( m

i )ak+ri = 0 for all r ∈ N and integers k ≥ 0.
In particular,

m∑
i=0

(−1)i
(
m

i

)
SriT ri = 0,

i.e., T r is left m-invertible by Sr for all r ∈ N.

(m, p)-isometries: a remark. Recall that a Banach space operator
T ∈ B(X ) is an (m, p)-isometry for some integer m ≥ 1 and p ∈ (0,∞) if

m∑
i=0

(−1)i
(
m

i

)
‖T ix‖p = 0, x ∈ X .

Let T, S be commuting operators in B(X ) such that T is an (m, p)-isometry
and S is an (n, p)-isometry. Define the double sequence (ai,j) by ai,j =
‖T iSjx‖p, x ∈ X . Then

m∑
i=0

(−1)i
(
m

i

)
ak+i,j = 0 =

n∑
j=0

(−1)j
(
n

j

)
ai,`+j

for integers k, ` ≥ 0. Applying Corollary 2.5 we conclude that

m+n−1∑
s=0

(−1)s
(
m+ n− 1

s

)
‖(TS)sx‖p = 0

for all x ∈ X . We have proved:

Corollary 2.8 ([6, Theorem 3.3]). If T, S ∈ B(X ) are commuting
operators such that T is an (m, p)-isometry and S is an (n, p)-isometry,
then TS is an (m+ n− 1, p)-isometry.

For an x ∈ X and an operator T ∈ B(X ), define the sequence (an)
by an = ‖Tnx‖p. If T is an (m, p)-isometry, then Remark 2.3 implies that∑m

i=0 (−1)i( m
i )ak+ri = 0 for all r ∈ N and integers k ≥ 0. In particular:

Corollary 2.9 ([5, Theorem 3.1]). If T ∈ B(X ) is an (m, p)-isometry,
then so is T r for each r ∈ N.

Strict left invertibility. If T ∈ B(X ) is left m-invertible and S ∈B(X )
is a strict left m-inverse of T , then

∑m
i=0 (−1)i( m

i )Sm−iTm−i = 0 and∑p
i=0 (−1)i( m

i )Sp−iT p−i 6= 0 for all p < m. The proof of [8, Theorem 3.1]
shows that if S ∈ B(X ) is a strict left m-inverse of T ∈ B(X ), then
the set {I, ST, S2T 2, . . . , Sm−1Tm−1} is linearly independent. More gener-
ally:
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Theorem 2.10. Let S, T ∈ B(X ), m ∈ N, let S be a left m-inverse
of T . The following statements are equivalent:

(i) S is a strict left m-inverse of T ;
(ii) the operators I, ST, S2T 2, . . . , Sm−1Tm−1 are linearly independent;

(iii) there exists x ∈ X such that the vectors x, STx, . . . , Sm−1Tm−1x
are linearly independent;

(iv) for every polynomial p ∈ Pm−1 there exist x ∈ X and x∗ ∈ X ∗ such
that

〈SiT ix, x∗〉 = p(i) (i ≥ 0);

(v) there exist x ∈ X and x∗ ∈ X ∗ such that 〈SiT ix, x∗〉 = im−1 (i ≥ 0).

Proof. (iii)⇒(ii) is clear.
(ii)⇒(i). Suppose that S is not a strict left m-inverse of T . By definition,

the operators I, ST, . . . , Sm−1Tm−1 are linearly dependent.
(i)⇒(iii). Suppose that for anyx∈X the vectorsx, STx, . . . , Sm−1Tm−1x

are linearly dependent, i.e., there exists a non-trivial linear combination∑m−1
i=0 αiS

iT ix = 0.

Since also
∑m

i=0(−1)i
(
m
i

)
SiT ix = 0, we can get

∑m−1
i=0 (−1)i

(
m−1
i

)
SiT ix

= 0 as in [9]. So
m−1∑
i=0

(−1)i
(
m− 1

i

)
SiT i = 0,

a contradiction.
(iii)⇒(iv). Let x ∈ X and suppose the vectors x, STx, . . . , Sm−1Tm−1x

are linearly independent. Let p ∈ Pm−1. Then there exists x∗ ∈ X ∗ such
that

〈SiT ix, x∗〉 = p(i) (0 ≤ i ≤ m− 1).

By Theorem 2.4 this implies that 〈SiT ix, x∗〉 = p(i) for all i ≥ 0.
(iv)⇒(v) is clear.
(v)⇒(i). If x ∈ X and x∗ ∈ X∗ satisfy 〈SiT ix, x∗〉 = im−1 for all i ≥ 0,

then (by Theorem 2.4) S is not a left (m − 1)-inverse of T , so S is a strict
left m-inverse of T .

The converse of Theorem 2.1, namely that if S1 ∈ B(X ) is a left t-
inverse of T1 ∈ B(X ) and T1 ⊗ T2 is left s-invertible by S1 ⊗ S2 (for some
T2, S2 ∈ B(Y)) then T2 is left (s−t+1)-invertible by S2, is not as straightfor-
ward. Recall that every left n1-inverse S ∈ B(X ) of an operator T ∈ B(X )
is a left n-inverse of T for every integer n ≥ n1. Hence, if S1 is a left t-inverse
of T1, then there is a least positive integer m ≤ t such that S1 is a strict left
m-inverse of T1 (and then {I, S1T1, . . . , Sm−1

1 Tm−1
1 } is an independent set).

Theorem 2.11. Let S1, T1 ∈ B(X ), S2, T2 ∈ B(Y), m,n ∈ N. Suppose
that S1 is a strict left m-inverse of T1 and S2 is a strict left n-inverse of T2.
Then S1 ⊗ S2 is a strict left (m+ n− 1)-inverse of T1 ⊗ T2.
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Proof. By Theorem 2.1, S1 ⊗ S2 is a left (m+ n− 1)-inverse of T1 ⊗ T2.
By Theorem 2.10, there exist x ∈ X , x∗ ∈ X ∗, y ∈ Y and y∗ ∈ Y∗ such

that

〈Si
1T

i
1x, x

∗〉 = im−1 and 〈Si
2T

i
2y, y

∗〉 = in−1 (i ≥ 0).

So

〈(S1 ⊗ S2)i(T1 ⊗ T2)i(x⊗ y), x∗ ⊗ y∗〉 = 〈Si
1T

i
1x, x

∗〉 · 〈Si
2T

i
2y, y

∗〉 = im+n−2

for all integers i ≥ 0. This, again by Theorem 2.10, implies that S1 ⊗ S2 is
a strict left (m+ n− 1)-inverse of T1 ⊗ T2.

Theorem 2.12. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y). If S1 is a strict
left m-inverse of T1, then S1 ⊗ S2 is a left s-inverse of T1 ⊗ T2 if and only
if S2 is a left (s−m+ 1)-inverse of T2.

Proof. If S2 is a left (s − m + 1)-inverse of T2 then S1 ⊗ S2 is a left
s-inverse of T1 ⊗ T2 by Theorem 2.1.

Suppose that S1⊗S2 is a left s-inverse of T1⊗T2. Let y ∈ Y and y∗ ∈ Y ∗.
Write f(i) = 〈Si

2T
i
2y, y

∗〉 (i ≥ 0).

By Theorem 2.10, for each p ∈ Pm−1 there exist x ∈ X and x∗ ∈ X ∗
such that 〈Si

1T
i
1x, x

∗〉 = p(i) for all i ≥ 0. So

p(i)f(i) = 〈Si
1T

i
1x, x

∗〉 · 〈Si
2T

i
2y, y

∗〉 = 〈(S1 ⊗ S2)i(T1 ⊗ T2)i(x⊗ y), x∗ ⊗ y∗〉.

Hence i 7→ p(i)f(i) is a polynomial of degree ≤ s− 1. For p ≡ 1 this means
that f is a polynomial of degree ≤ s− 1. For p ≡ im−1 we get f ∈ Ps−m.

Since y ∈ Y and y∗ ∈ Y ∗ were arbitrary, Theorem 2.4 implies that S2 is
a left (s−m+ 1)-inverse of T2.

Example. If m ≥ 2 and S is a strict left m-inverse of T , then S2 is a
left 2-inverse of T 2. Thus S2 is not a strict left 3-inverse of T 2. Observe here
that S and T do not commute.

Theorem 2.11 (and also Theorem 2.12) is not true if we assume only that
S1, S2, T1, T2 are commuting operators (such that S1S2 is a left s-inverse of
T1T2). Let X be the `1-space with the standard basis ei,j (i, j ∈ N). Let the
operators T1, T2, S1, S2 ∈ B(X) be defined by

T1ei,j =
i+ j + 1

i+ j
ei+1,j ,

T2ei,j =
i+ j + 1

i+ j
ei,j+1,

S1ei,j = ei−1,j if i ≥ 2, S1e1,j = 0,

S2ei,j = ei,j−1 if j ≥ 2, S2ei,1 = 0.
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Clearly S1, S2, T1, T2 are mutually commuting operators. We have S1T1ei,j =
i+j+1
i+1 ei,j and S2

1T
2
1 ei,j = i+j+2

i+1 ei,j . So (I − 2S1T1 + S2
1T

2
1 )ei,j = 0 for all

i, j ∈ N and so S1 is an (obviously strict) left 2-inverse of T1. Similarly, S2
is a strict left 2-inverse of T2.

It is easy to verify that S1S2 is a left 2-inverse of T1T2, so it is not a
strict left 3-inverse.

Evidently, S2 may not be a strict left (s−m+ 1)-inverse of T2 in Theo-
rem 2.12. For S2 to be a strict left (s−m+ 1)-inverse one requires S1 ⊗ S2
to be a strict left s-inverse of T1 ⊗ T2. The following result complements
Theorem 2.11.

Theorem 2.13. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y). Suppose that S1
is a strict left m-inverse of T1 and S1 ⊗ S2 is a left s-inverse of T1 ⊗ T2.
Then S2 is a strict left (s−m+ 1)-inverse of T2 if and only if S1 ⊗ S2 is a
strict left s-inverse of T1 ⊗ T2.

Proof. It is clear from the above that if S1 ⊗ S2 is a left s-inverse of
T1 ⊗ T2, then S2 is a left (s −m + 1)-inverse of T2. To prove that S2 is a
strict (s−m+ 1)-inverse of T2 if and only if S1⊗S2 is a strict left s-inverse
of T1 ⊗ T2, suppose (to start with) that S1 ⊗ S2 is a strict left s-inverse of
T1⊗T2 but S2 is not a strict left (s−m+ 1)-inverse of T2. Then there exists
an integer k, 1 ≤ k < s −m + 1, such that S2 is a left k-inverse of T2, and
hence S1 ⊗ S2 is a left (m + k − 1)-inverse of T1 ⊗ T2 (see Theorem 2.1).
Since m+ k − 1 < s, we have a contradiction. If, instead, S2 is a strict left
(s −m + 1)-inverse of T2, then S1 ⊗ S2 is a strict left s-inverse of T1 ⊗ T2
(by Theorem 2.11).

Essentially left m-invertible operators. We prove next the ana-
logues of Theorem 2.12 and 2.13 for the tensor product of essentially left
m-invertible operators. To this end we start by introducing a construction,
known in the literature as the Sadovskĭı/Buoni, Harte, Wickstead construc-
tion [14, p. 159], which leads to a representation of the Calkin algebra as an
algebra of operators on a suitable Banach space. Let `∞(X ) denote the Ba-
nach space of all bounded sequences x = (xn)∞n=1 of elements of X endowed
with the norm ‖x‖∞ := supn∈N ‖xn‖, and write T∞, T∞x := (Txn)∞n=1 for
all x = (xn)∞n=1, for the operator induced by T on `∞(X ). The set m(X )
of all precompact sequences of elements of X is a closed subspace of `∞(X )
which is invariant for T∞. Let Xq := `∞(X )/m(X ), and denote by Tq the
operator T∞ on Xq. The mapping T 7→ Tq is then a unital homomorphism
from B(X ) → B(Xq), with kernel the ideal K(X ) of compact operators
on X , which induces a norm decreasing monomorphism from B(X )/K(X )
to B(Xq) with the following properties (see [14, Section 17] for details):
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(i) T is upper semi-Fredholm if and only if Tq is injective, if and only
if Tq is bounded below;

(ii) Tq = 0 if and only if T is compact.

Furthermore, as is easily verified,

(iii) (S ⊗ T )q = Sq ⊗ Tq for every S ∈ B(X ) and T ∈ B(Y).

As above, let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y). If S1 is an essential left
m-inverse of T1, equivalently if

∑m
i=0 (−1)i( m

i )S1
m−iT1

m−i = K for some

K ∈ K(X ), then
∑m

i=0 (−1)i( m
i )(S1)

m−i
q (T1)

m−i
q = 0, i.e., (S1)q ∈ B(Xq) is

a left m-inverse of (T1)q ∈ B(Xq). The converse holds, and we conclude that
(S1)q ∈ B(Xq) is a left m-inverse of (T1)q ∈ B(Xq) if and only if S1 is an
essential left m-inverse of T1. Again, S1 ⊗ S2 is an essential left s-inverse
of T1 ⊗ T2 if and only if (S1)q ⊗ (S2)q is a left s-inverse of (T1)q ⊗ (T2)q.
Observing that the property of being “strict” transfers from an operator T
to Tq (and back), we have:

Theorem 2.14. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y).

(i) If Si, i = 1, 2, is an essential left mi-inverse of Ti, then S1 ⊗ S2 is
an essential left (m1 +m2 − 1)-inverse of T1 ⊗ T2.

(ii) If S1 is a strict essential left m-inverse of T1, then S1 ⊗ S2 is an
essential left s-inverse of T1 ⊗ T2 if and only if S2 is an essential
left (s−m+ 1)-inverse of T2.

(iii) If S1 is a strict essential left m-inverse of T1 and S1 ⊗ S2 is an
essential left s-inverse of T1 ⊗ T2, then S2 is a strict essential left
(s−m+ 1)-inverse of T2 if and only if S1 ⊗ S2 is a strict essential
left s-inverse of T1 ⊗ T2.

Elementary operator 4T1T2 = LT1RT2. Given T1 ∈ B(X ) and
T2 ∈ B(Y), the elementary operator4T1T2 ∈ B(Y,X ) is defined by4T1T2(A)
= T1AT2 for all A ∈ B(Y,X ). Theorems 2.12–2.14 have natural analogues
for the operator 4T1T2 .

Recall from [12, p. 50] that a pair 〈X , X̃ 〉 of Banach spaces is a dual
pairing if either X̃ = X ∗ or X = X̃ ∗. Let x⊗ y′, x ∈ X and y′ ∈ Y∗, denote
the rank one operator Y → X , y 7→ 〈y, y′〉x. An operator ideal J between
Banach spaces Y and X is a linear subspace of B(Y,X ) equipped with a
Banach norm α such that

(i) x⊗ y′ ∈ J and α(x⊗ y′) = ‖x‖ ‖y‖;
(ii) 4ST (A) = LSRT (A) = SAT and α(SAT ) ≤ ‖S‖α(A)‖T‖

for all x ∈ X , y′ ∈ Y∗, A ∈ J , S ∈ B(X ) and T ∈ B(Y) [12, p. 51]. Thus
defined, each J is a tensor product relative to the dual pairings 〈X ,X ∗〉 and
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〈Y∗,Y〉 and the bilinear mappings

X × Y∗ → J, (x, y′) 7→ x⊗ y′,
B(X )×B(Y∗)→ B(J), (S, T ∗) 7→ S ⊗ T ∗,

where S ⊗ T ∗(A) = SAT . The following result is now evident from Theo-
rems 2.12–2.14.

Theorem 2.15. Let S1, T1 ∈ B(X ) and S2, T2 ∈ B(Y).

(i) If S1 is a left m1-inverse (resp., essential left m1-inverse) of T1
and S2 is a right m2-inverse (resp., essential right m2-inverse) of
T2, then 4S1S2 is a left (m1 +m2 − 1)-inverse (resp., essential left
(m1 +m2 − 1)-inverse) of 4T1T2.

(ii) If S1 is a strict left m-inverse (resp., strict essential left m-inverse)
of T1, then 4S1S2 is a left s-inverse (resp., an essential left s-
inverse) of 4T1T2 if and only if S2 is a right (s − m + 1)-inverse
(resp., an essential right (s−m+ 1)-inverse) of T2.

(iii) If S1 is a strict left m-inverse (resp., strict essential left m-inverse)
of T1 and 4S1S2 is a left s-inverse (resp., an essential left s-inverse)
of 4T1T2, then S2 is a strict right (s−m+ 1)-inverse (resp., strict
essential right (s −m + 1)-inverse) of T2 if and only if 4S1S2 is a
strict left s-inverse (resp., a strict essential left s-inverse) of 4T1T2.

A limited version of Theorem 2.15 has been considered by Sid Ahmed
[17, Theorems 3.1 and 3.2], and versions of the theorem for m-isometric
operators on the ideal C2(H) of Hilbert–Schmidt class operators have been
considered in [6, 7, 8, 9, 10].

Acknowledgments. The second author was supported by grant No.
201/09/0473 of GACR and RVO:67985840.

References

[1] J. Agler and M. Stankus, n-Isometric transformations of Hilbert space I , Integral
Equations Operator Theory 21 (1995), 383–429.

[2] J. Agler and M. Stankus, n-Isometric transformations of Hilbert space II , Integral
Equations Operator Theory 23 (1995), 1–48.

[3] J. Agler and M. Stankus, n-Isometric transformations of Hilbert space III , Integral
Equations Operator Theory 24 (1996), 379–421.

[4] F. Bayart, m-Isometries on Banach spaces, Math. Nachr. 284 (2011), 2141–2147.
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[6] T. Bermúdez, A. Martinón and J. A. Noda, Products of m-isometries, Linear Al-

gebra Appl. 438 (2013), 80–86.
[7] F. Botelho and J. Jamison, Isometric properties of elementary operators, Linear

Algebra Appl. 432 (2010), 357–365.

http://dx.doi.org/10.1007/BF01222016
http://dx.doi.org/10.1007/BF01261201
http://dx.doi.org/10.1007/BF01191619
http://dx.doi.org/10.1002/mana.200910029
http://dx.doi.org/10.4064/sm208-3-4
http://dx.doi.org/10.1016/j.laa.2012.07.011
http://dx.doi.org/10.1016/j.laa.2009.08.013


Left n-invertible operators 125

[8] F. Botelho, J. Jamison and B. Zheng, Strict isometries of arbitrary order , Linear
Algebra Appl. 436 (2012), 3303–3314.

[9] B. P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437 (2012),
307–318.

[10] B. P. Duggal, Tensor product of n-isometries II , Funct. Anal. Approx. Comput. 4
(2012), no. 1, 27–32.

[11] B. P. Duggal, Tensor product of n-isometries III , Funct. Anal. Approx. Comput. 4
(2012), no. 2, 61–67.

[12] J. Eschmeier, Tensor products and elementary operators, J. Reine Angew. Math.
390 (1988), 47–66.
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