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Moisés Villegas-Vallecillos (Cádiz)

Abstract. This paper characterizes the hermitian operators on spaces of Banach-
valued Lipschitz functions.

1. Introduction. The notion of a hermitian operator on a Banach space
can be traced back to the early work of Lumer [L61] and also Vidav [V].
The definition of hermitian operator proposed by Vidav requires an expo-
nential norm condition on the operator, while Lumer considered an equiv-
alent definition in terms of semi-inner products. A semi-inner product on
a Banach space maintains some properties of an inner product and thus
adds an additional geometric component to the space. Though hermitian
operators have played an important role in the characterization of surjec-
tive isometries of various Banach spaces (see [FJ89] and [FJ03]), they are
also interesting to be studied as a class of operators themselves. For certain
Banach spaces, as for example Hp(∆) (with 1 ≤ p < ∞, p 6= 2), Lip([0, 1])
and C(Ω), with Ω a compact rigid space, it has been shown that hermi-
tian operators are trivial, which means that they are real scalar multiples
of the identity. Hermitian operators on Lp(µ) are known to be multipliers
by real L∞(µ) functions. For further information we refer the reader to
[FJ03, FJ08].

In the present paper we investigate the class of hermitian bounded lin-
ear operators on spaces of Lipschitz functions on a compact and 2-connected
metric space and with values in a complex Banach space, following a scheme
employed by Fleming and Jamison in [FJ80] in the characterization of the
hermitian operators on C(X,E). This approach relies on the existence of
semi-inner products on such spaces which are compatible with the norm.
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We now review the definition of semi-inner product on a complex Banach
space, as presented in [L61] and [L63]. Let E be a complex Banach space.
A function [·, ·]E : E × E → C is called a semi-inner product if, for every
x, y, z ∈ E and λ ∈ C, the following conditions hold:

(1) [x+ y, z]E = [x, z]E + [y, z]E ,
(2) [λx, y]E = λ[x, y]E ,
(3) [x, x]E > 0 for x 6= 0,
(4) |[x, y]E |2 ≤ [x, x]E [y, y]E .

A semi-inner product [·, ·]E is said to be compatible with the norm ‖ · ‖E
if [x, x]E = ‖x‖2E for every x ∈ E. The existence of semi-inner products
compatible with the norm follows from the Hahn–Banach Theorem, which
guarantees the existence of duality maps u 7→ ϕu from E into E∗ that satisfy
‖ϕu‖ = 1 and ϕu(u) = ‖u‖E . Such a duality map yields a semi-inner product
by defining [u, v]E = ϕv(u). Maps of this kind are not unique and so there
are several semi-inner products compatible with the existing norm unless
the unit ball of E is smooth. We denote the sets of bounded operators and
hermitian bounded operators on E by B(E) and H(E), respectively. See
[FJ03] for the above results.

A bounded operator T on E is hermitian if there exists a semi-inner
product [·, ·]E compatible with the norm such that [Tx, x]E ∈ R for every
x ∈ E. It is important to mention that if T is hermitian, then for every
semi-inner product [·, ·] on E compatible with the norm, [Tx, x] ∈ R for
every x ∈ E (cf. [FJ03]).

Let (X, d) be a compact metric space and E a complex Banach space
endowed with the norm ‖·‖E . A function f : X → E is said to be Lipschitz if

L(f) := sup
x 6=y

‖f(x)− f(y)‖E
d(x, y)

<∞.

The Lipschitz space Lip(X,E) is the Banach space of all E-valued Lipschitz
functions f on X with the norm

‖f‖ = max{L(f), ‖f‖∞}, where ‖f‖∞ = sup{‖f(x)‖E : x ∈ X}.
A metric space is said to be 2-connected if it cannot be decomposed into
two nonempty disjoint sets whose distance is greater than or equal to 2.

In this paper we start by embedding Lip(X,E) isometrically into a space
of vector-valued continuous functions defined on a compact space. Then we
construct a semi-inner product on Lip(X,E) compatible with the norm. This
approach allows us to describe the bounded hermitian operators as multipli-
cation operators via a hermitian operator on E. In particular we conclude
that the space of all scalar-valued Lipschitz functions only supports triv-
ial hermitian operators. These results yield the form of normal and adjoint
abelian operators in this setting.
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2. Hermitian operators on Lip(X,E). In this section we characterize
the hermitian bounded operators on the spaces Lip(X,E) with X a compact
and 2-connected metric space and E a complex Banach space with norm
‖ · ‖E . We set X̃ = (X × X) \ 4, with 4 = {(x, x) : x ∈ X}. We also
denote by E∗1 the unit ball of the dual space E∗. Then the Stone–Čech

compactification β(X̃×E∗1) of X̃×E∗1 is a compact space containing X̃×E∗1
as a dense subspace.

For each f ∈ Lip(X,E), the bounded continuous mapping f̃ : X̃ × E∗1
→ C given by

f̃((x, y), ϕ) = ϕ

(
f(x)− f(y)

d(x, y)

)
has a unique continuous extension β(f̃) : β(X̃ × E∗1)→ C such that

‖β(f̃)‖∞ = ‖f̃‖∞.

We now consider the isometric embedding

Γ : Lip(X,E)→ C(X ∪ β(X̃ × E∗1), E ⊕∞ C)

given by

(2.1)

f 7→ Γ (f) : X ∪ β(X̃ × E∗1) 7→ E ⊕∞ C,
x ∈ X 7→ (f(x), 0),

ξ ∈ β(X̃ × E∗1) 7→ (0, β(f̃)(ξ)).

Standard techniques show that Γ is a linear isometry. For each function g
in Lip(X,E), we define

Pg = {t ∈ X ∪ β(X̃ × E∗1) : ‖Γ (g)(t)‖E⊕∞C = ‖g‖}.

We first choose on E a semi-inner product [·, ·]E compatible with the norm.
Then we define the semi-inner product [·, ·]E⊕∞C by

[(u0, λ0), (u1, λ1)]E⊕∞C =

{
[u0, u1]E if ‖(u1, λ1)‖E⊕∞C = ‖u1‖E ,
λ0λ1 if ‖(u1, λ1)‖E⊕∞C 6= ‖u1‖E .

It is compatible with the norm on E⊕∞C. As is easily seen, this semi-inner
product induces the following semi-inner products:

[(u, 0), (v, 0)]E⊕∞C = [u, v]E , [(0, λ0), (0, λ1)]E⊕∞C = λ0λ1,

on the component spaces {(u, 0) : u ∈ E} and {(0, λ) : λ ∈ C}, respectively,
compatible with the existing norms.

Let ψ be a choice function which selects, for each g ∈ Lip(X,E), an
element ψ(g) ∈ Pg. We now define

(2.2) [f, g]ψ = [Γ (f)(ψ(g)), Γ (g)(ψ(g))]E⊕∞C (f, g ∈ Lip(X,E)).
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This is a semi-inner product in Lip(X,E) compatible with the norm on
Lip(X,E), since

[f, f ]ψ = [Γ (f)(ψ(f)), Γ (f)(ψ(f))]E⊕∞C = ‖Γ (f)(ψ(f))‖2E⊕∞C = ‖f‖2

for all f ∈ Lip(X,E). Given v ∈ E, the symbol v represents the constant
function on X everywhere equal to v.

Lemma 2.1. Let X be a compact metric space, E a complex Banach
space and T a hermitian bounded operator on Lip(X,E). Then the function
A from X into B(E) given by

A(x)(v) = T (v)(x) (x ∈ X, v ∈ E)

is Lipschitz on X and with values in H(E).

Proof. Fix x ∈ X. Given v ∈ E, if ψ0 : Lip(X,E)→ X ∪ β(X̃ ×E∗1) is a
choice function as in (2.2) with the added condition that ψ(v) = x, define
the semi-inner product [f, g]ψ0 as in (2.2). Then we obtain

[A(x)(v), v]E = [T (v)(x),v(x)]E = [T (v),v]ψ0 ∈ R.

This shows that A(x) is hermitian. We now prove that A is Lipschitz on X.
Given x, y ∈ X with x 6= y, we have

‖A(x)−A(y)‖
d(x, y)

= sup
‖v‖E=1

‖A(x)(v)−A(y)(v)‖E
d(x, y)

= sup
‖v‖E=1

‖T (v)(x)− T (v)(y)‖E
d(x, y)

≤ sup
‖v‖E=1

L(T (v)) ≤ ‖T‖.

Given f ∈ Lip(X,E), we denote by |f | the function |f |(x) = ‖f(x)‖E .
Clearly, |f | ∈ Lip(X) and L(|f |) ≤ L(f).

Proposition 2.2. Let X be a compact metric space, E a complex
Banach space and T a hermitian bounded operator on Lip(X,E). If f ∈
Lip(X,E) and x0 ∈ X are such that f(x0) = 0, then T (f)(x0) = 0.

Proof. Assume T (f)(x0) 6= 0. Hence f 6= 0. We may suppose without
loss of generality that ‖T (f)(x0)‖E = 1. Let h1 and h2 be the functions in
Lip(X,E) defined by

h1(t) = (2‖f‖ − |f |(t))T (f)(x0) + if(t),

h2(t) = (2‖f‖ − |f |(t))T (f)(x0).

An easy computation shows that h1(x0) = h2(x0) = 2‖f‖T (f)(x0) and

L(hk) ≤ 2L(f) ≤ 2‖f‖ = ‖hk‖∞ = ‖hk(x0)‖E
for k = 1, 2. Since ‖hk(x0)‖E = ‖hk‖ we have x0 ∈ Phk for k = 1, 2.
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A result in [G, Theorem 1, p. 437] states the existence of a semi-inner
product [·, ·]E on E compatible with the norm, and which satisfies

[u, 2‖f‖T (f)(x0)]E = 2‖f‖[u, T (f)(x0)]E

for all u ∈ E. We now select a choice function ψ : Lip(X,E)→ X∪β(X̃×E∗1)
as in (2.2) with the additional condition that ψ(h1) = ψ(h2) = x0, and we
consider the semi-inner product [·, ·]ψ on Lip(X,E) as defined in (2.2). Then

[T (h1), h1]ψ = [T (h1)(x0), h1(x0)]E

= [T (h2)(x0), h2(x0)]E + [T (if)(x0), h2(x0)]E

= [T (h2), h2]ψ + 2‖f‖i[T (f)(x0), T (f)(x0)]E

= [T (h2), h2]ψ + 2‖f‖i.
Since T is hermitian, [T (h1), h1]ψ and [T (h2), h2]ψ are real numbers. There-
fore T (f)(x0) = 0.

Proposition 2.3. Let X be a compact metric space, E a complex Ba-
nach space and T a bounded operator on Lip(X,E). If T is hermitian, then
there exists a mapping A ∈ Lip(X,H(E)) such that T (f)(x) = A(x)(f(x))
for every f ∈ Lip(X,E) and x ∈ X.

Proof. Given f ∈ Lip(X,E) and x ∈ X, let fx = f − f(x), where the
“boldfaced” f(x) denotes the constant function on X everywhere equal to
f(x). Proposition 2.2 implies that T (f)(x) = T (f(x))(x) = A(x)(f(x)).

Theorem 2.4. Let X be a compact and 2-connected metric space, E a
complex Banach space and T : Lip(X,E) → Lip(X,E) a bounded operator.
Then T is hermitian if and only if there exists a hermitian bounded operator
A : E → E such that T (f)(x) = A(f(x)) for every f ∈ Lip(X,E) and
x ∈ X.

Proof. An operator T on Lip(X,E) of the form described in the theorem
is hermitian. Indeed, it is clear that T is linear and, for a fixed function
f ∈ Lip(X,E), we have

[T (f), f ]ψ = [Γ (T (f))(ψ(f)), Γ (f)(ψ(f))]E⊕∞C,

where ψ : Lip(X,E) → X ∪ β(X̃ × E∗1) is a choice function as in (2.2). If
‖f‖ = ‖f‖∞, we may take ψ such that also ψ(f) = x ∈ X, and then

[T (f), f ]ψ = [T (f)(x), f(x)]E = [A(f(x)), f(x)]E ∈ R.

If ‖f‖ 6= ‖f‖∞, we may find a sequence {(xn, yn)} in X̃ such that{
‖(f(xn)− f(yn))‖E

d(xn, yn)

}
converges to L(f) = ‖f‖ as n→∞. For every n ∈ N, there exists ϕn ∈ E∗1
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such that

ϕn

(
f(xn)− f(yn)

d(xn, yn)

)
=
‖f(xn)− f(yn)‖E

d(xn, yn)

and [
u,
f(xn)− f(yn)

d(xn, yn)

]
E

= ϕn(u)ϕn

(
f(xn)− f(yn)

d(xn, yn)

)
for all u ∈ E. Note that

β(T̃ (f))((xn, yn), ϕn)β(f̃)((xn, yn), ϕn)

= ϕn

(
T (f)(xn)− T (f)(yn)

d(xn, yn)

)
ϕn

(
f(xn)− f(yn)

d(xn, yn)

)
= ϕn

(
A

(
f(xn)− f(yn)

d(xn, yn)

))
ϕn

(
f(xn)− f(yn)

d(xn, yn)

)
=

[
A

(
f(xn)− f(yn)

d(xn, yn)

)
,
f(xn)− f(yn)

d(xn, yn)

]
E

∈ R.

For every j ∈ N, let Fj = {((xn, yn), ϕn) : n ≥ j}. Note that Fj is a closed

subset of the compact set β(X̃ × E∗1). Clearly, the family {Fj : j ∈ N} has
the finite intersection property and therefore there exists ξ ∈

⋂∞
j=1 Fj .

Let us assume that β(T̃ (f))(ξ)β(f̃)(ξ) /∈ R. By the continuity of the func-

tion β(T̃ (f))β(f̃), it follows that the set U := (β(T̃ (f))β(f̃))−1(C\R) is open

in β(X̃ × E∗1). Since ξ ∈ U , there exists j ∈ N such that ((xj , yj), ϕj) ∈ U .

Hence β(T̃ (f))((xj , yj), ϕj)β(f̃)((xj , yj), ϕj) ∈ (C \ R) ∩ R, which is impos-

sible, and this shows that β(T̃ (f))(ξ)β(f̃)(ξ) ∈ R.

Assume β(f̃)(ξ) 6= ‖f‖ and denote r =
∣∣‖f‖ − β(f̃)(ξ)

∣∣/2. Then there
exists m ∈ N such that∣∣∣∣ϕn(f(xn)− f(yn)

d(xn, yn)

)
− ‖f‖

∣∣∣∣ < r, ∀n ∈ N, n ≥ m.

So W := β(f̃)−1(C \ D(‖f‖, r)) is open in β(X̃ × E∗1) since the function

β(f̃) is continuous. Since ξ ∈W , there exists j0 ∈ N with j0 ≥ m such that
((xj0 , yj0), ϕj0) ∈W . It follows that

r <
∣∣‖f‖ − β(f̃)((xj0 , yj0), ϕj0)

∣∣ =

∣∣∣∣ϕj0(f(xj0)− f(yj0)

d(xj0 , yj0)

)
− ‖f‖

∣∣∣∣ < r,

a contradiction. This proves that β(f̃)(ξ) = ‖f‖. Therefore we may choose
ψ such that ψ(f) = ξ and so

[T (f), f ]ψ = β(T̃ (f))(ξ)β(f̃)(ξ) ∈ R,
as we wanted. This completes the proof of the desired implication.
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We now prove the reverse implication. If T is hermitian, Proposition 2.3
implies the existence of a Lipschitz mapping B : X → H(E) such that

T (f)(x) = B(x)(f(x)), ∀x ∈ X, ∀f ∈ Lip(X,E).

If X reduces to a single point, the result is trivial. Otherwise, let a and x,
distinct points in X, be such that 0 < d(x, a) < 2 and v ∈ E with v 6= 0.
Take δ = d(x, a)/2 and define g : X → E by

g(t) =

(
hx,δ(t)− ha,δ(t) +

√
4− (δ + 1)2

δ + 1
i

)
v (t ∈ X),

where hx,δ and ha,δ are the functions given by

hy,δ(t) = max

{
0, 1− d(y, t)

δ

}
, ∀t ∈ X (y = x, a).

It is easy to check that g ∈ Lip(X,E) with ‖g‖ = L(g) = ‖v‖E/δ since

‖g‖∞ =
2‖v‖E
δ + 1

<
‖v‖E
δ

= L(g).

Take ϕ ∈ E∗1 such that ϕ(v) = ‖v‖E and observe that

β(g̃)((x, a), ϕ) = g̃((x, a), ϕ) = ϕ

(
g(x)− g(a)

d(x, a)

)
=

2ϕ(v)

d(x, a)
=
‖v‖E
δ

.

Hence ((x, a), ϕ) ∈ Pg. We now select a choice function ψ : Lip(X,E) →
X ∪β(X̃ ×E∗1) of the form as at (2.2) such that ψ(g) = ((x, a), ϕ). For each
w ∈ E there exists a functional ϕw ∈ E∗1 such that ϕw(w) = ‖w‖E , and we
set τ : E → E∗1 to be such a choice function with τ(w) = ϕw. We consider

the semi-inner product on E given by [u0, u1]τ = τ(u1)(u0)τ(u1)(u1). Now
we have the following relations:

[Tg, g]ψ = T̃ (g)((x, a), ϕ)g̃((x, a), ϕ)

= ϕ

(
T (g)(x)− T (g)(a)

d(x, a)

)
ϕ

(
g(x)− g(a)

d(x, a)

)
= ϕ

(
T (g)(x)− T (g)(a)

d(x, a)

)
· 2ϕ(v)

d(x, a)

=
2

d(x, a)2

(
1 +

√
4− (δ + 1)2

δ + 1
i

)
ϕ
(
(B(x)−B(a))(v)

)
ϕ(v)

+
4

d(x, a)2
ϕ(B(a)(v))ϕ(v).

Taking into account that [Tg, g]ψ,

ϕ
(
(B(x)−B(a))(v)

)
ϕ(v) = [(B(x)−B(a))(v), v]τ
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and
ϕ(B(a)(v))ϕ(v) = [B(a)(v), v]τ

are real numbers, we get ϕ((B(x) − B(a))(v))ϕ(v) = 0. Therefore we con-
clude that for every v ∈ E, [(B(x) − B(a))(v), v]τ = 0. This implies that
B(x) = B(a) (cf. [L61, Theorem 5, p. 33]).

Now, given a ∈ X, take K = {y ∈ X : B(y) = B(a)}. If X \ K is
nonempty, then given x ∈ X\K and y ∈ K, we have d(x, y) ≥ 2. This implies
that d(X \K,K) ≥ 2, contradicting the 2-connectedness assumption on X.
Therefore X = K and B(x) = B(a) for every x ∈ X. Denoting A = B(a),
we conclude that A ∈ H(E) and T (f)(x) = A(f(x)) for all x ∈ X and
f ∈ Lip(X,E). This completes the proof of Theorem 2.4.

Remark 2.5. A shorter proof of the sufficient condition of Theorem 2.4
can be given by using the definition of hermitian operator given by Vidav [V].
Let T be an operator on Lip(X,E) as in the statement of the theorem. We
show that exp(itT ) is an isometry for every t ∈ R. We have

exp(itT )f =

∞∑
n=0

(it)n

n!
Tnf =

( ∞∑
n=0

(it)n

n!
An
)
f = exp(itA)f

for all f ∈ Lip(X,E). Since A is hermitian, exp(itA) is an isometry for every
t ∈ R. This implies that ‖exp(itT )f‖ = ‖exp(itA)f‖ = ‖f‖. Therefore T is
hermitian by [BD, Corollary 13, p. 55].

Taking into account that the metric space X is compact and that the
2-connected components of X are open sets in X, the next corollary follows
straightforwardly from Theorem 2.4 and Proposition 2.3.

Corollary 2.6. Let X be a compact metric space, E a complex Ba-
nach space and T : Lip(X,E) → Lip(X,E) a hermitian bounded operator.
Denote by X1, . . . , Xm the 2-connected components of X. Then there exist
m hermitian bounded operators A1, . . . , Am : E → E such that

T (f)(x) =

m∑
j=1

Aj(χj(f)(x)), ∀x ∈ X, ∀f ∈ Lip(X,E),

where, for each j ∈ {1, . . . ,m}, χj(f)(x) = f(x) if x ∈ Xj and χj(f)(x) = 0
otherwise.

Proof. Let j ∈ {1, . . . ,m}. For f ∈ Lip(Xj , E), define f̂ ∈ Lip(X,E) by

f̂(x) =

{
f(x) if x ∈ Xj ,

0 if x /∈ Xj .

It is clear that ‖f̂‖ = ‖f‖. Consider Tj : Lip(Xj , E)→ Lip(Xj , E) given by

Tj(f) = T (f̂)|Xj , ∀f ∈ Lip(Xj , E).
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It is straightforward to see that Tj is linear and bounded. Now define in
Lip(Xj , E) the following semi-inner product compatible with the norm:

[f, g]Lip(Xj ,E) = [f̂ , ĝ]ψ, ∀f, g ∈ Lip(Xj , E).

Taking into account Proposition 2.3, it follows that T̂j(f) =
̂
T (f̂)|Xj = T (f̂)

for all f ∈ Lip(Xj , E). Then

[Tj(f), f ]Lip(Xj ,E) = [T (f̂), f̂ ]ψ ∈ R, ∀f ∈ Lip(Xj , E).

Therefore Tj is hermitian. By Theorem 2.4 there exist m hermitian bounded
operators A1, . . . , Am : E → E such that

Tj(f)(x) = Aj(f(x)), ∀x ∈ Xj , ∀f ∈ Lip(Xj , E), ∀j ∈ {1, . . . ,m}.
On the other hand, Proposition 2.3 gives us a mapping A ∈ Lip(X,H(E))
such that T (f)(x) = A(x)(f(x)) for every f ∈ Lip(X,E) and x ∈ X. Then,
for any f ∈ Lip(X,E), j ∈ {1, . . . ,m} and x ∈ Xj , we have

T (f)(x) = A(x)(f(x)) = A(x)(f̂ |Xj (x)) = T (f̂ |Xj )(x)

= Tj(f |Xj )(x) = Aj(f(x)) = Aj(χj(f)(x)) =

m∑
k=1

Ak(χk(f)(x)).

We now state the result for the scalar case, which follows as a particular
case of Theorem 2.4.

Corollary 2.7. Let X be a compact and 2-connected metric space and
T a bounded operator on Lip(X). Then T is hermitian if and only if T is a
real multiple of the identity operator on Lip(X).

3. Some remarks on adjoint abelian and normal operators on
Lip(X,E). We start with the definitions of adjoint abelian and normal op-
erators as presented in [S] and in [M].

Definition 3.1. Let E be a complex Banach space and let T : E → E
be a bounded operator.

(i) T is adjoint abelian if there exists a semi-inner product [·, ·] compat-
ible with the norm of E such that [Tx, y] = [x, Ty] for all x, y ∈ E.

(ii) T is normal if there exist two hermitian and commuting operators
T0 and T1 on E such that T = T0 + iT1.

The results presented in the previous section imply the following.

Theorem 3.2. Let X be a compact and 2-connected metric space, E a
complex Banach space and T a bounded operator on Lip(X,E).

(i) If T is an adjoint abelian hermitian operator, then there exist an
adjoint abelian hermitian operator A on E such that T (f) = Af for
every f ∈ Lip(X,E).
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(ii) T is normal if and only if there exist commuting hermitian operators
A and B on E such that T (f) = Af + iBf for all f ∈ Lip(X,E).

Proof. The first statement follows easily from Theorem 2.4. Indeed, since
T is hermitian there exists a hermitian operator A : E → E such that T (f) =
Af for all f ∈ Lip(X,E). Let [·, ·] be a semi-inner product on Lip(X,E)
compatible with the norm of Lip(X,E) such that [T (f), g] = [f, T (g)] for
every f, g ∈ Lip(X,E). If u, v ∈ E, we define a semi-inner product on E by
[u, v]E = [u,v]. It is easy to check that it is compatible with the norm on E.
Now we consider

[T (u),v] = [Au,v] = [Au,v] = [Au, v]E ,

[u, T (v)] = [u, Av] = [u,Av] = [u,Av]E .

This implies that A is adjoint abelian on E with respect to [·, ·]E .

We now prove the second statement. If T is normal, then there exist two
commuting and hermitian operators T0 and T1 on Lip(X,E) such that T =
T0 + iT1. An application of Theorem 2.4 implies the existence of operators
A0 and A1 in H(E) such that T0(f) = A0f and T1(f) = A1f . Since T0T1
= T1T0, we see that given a constant function everywhere equal to v ∈ E,
we have A0A1v = A1A0v. Hence A0 and A1 commute and this completes
the proof of the implication. The converse is immediate.
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