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Abstract. Given an infinite-dimensional Banach space Z (substituting the Hilbert
space `2), the s-number sequence of Z-Weyl numbers is generated by the approximation
numbers according to the pattern of the classical Weyl numbers. We compare Weyl num-
bers with Z-Weyl numbers—a problem originally posed by A. Pietsch. We recover a result
of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal.
This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue
distribution of operators between Banach spaces.

1. Introduction. In [16] Albrecht Pietsch developed an axiomatic ap-
proach to s-numbers of operators in Banach spaces. Since then the amount
of literature dealing with inequalities between eigenvalues and s-numbers,
as well as inequalities between different types of s-numbers, is constantly
increasing.

The main aim of this article is to compare the s-number sequence x =
(xn) of Weyl numbers with the s-number sequences of so-called Z-Weyl num-
bers x(·|Z) = (xn(·|Z)), where Z is an infinite-dimensional Banach space.
Following Pietsch the nth Weyl number of a (bounded and linear) operator
T between two Banach spaces X and Y is given by

xn(T ) := sup an(TA),

where the supremum is taken over all operators A from the Hilbert space `2
into X of norm ≤ 1, and an(TA) stands for the nth approximation number of
the composition TA. The definition of Z-Weyl numbers is similar—replace
the Hilbert space `2 by an infinite-dimensional Banach space Z.

Today the notion of Weyl numbers is fundamental within the highly
developed theory of eigenvalue distribution of power compact operators in
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Banach spaces, and in particular, within the theory of eigenvalue distribution
of integral operators acting in function spaces. The standard references are
the monographs of König [13] and Pietsch [19].

The first systematic studies of the more general notion of Z-Weyl num-
bers were undertaken in [3, 22, 23], and this article continues these works.
After some preliminaries in Section 2, we show in Section 3 how to estimate
Weyl numbers by Z-Weyl numbers under appropriate geometrical assump-
tions on Z; the main result is Theorem 3.9. Section 4 deals with converse
estimates (i.e., estimates of Z-Weyl numbers by Weyl numbers), and in this
context our main contributions are collected in Theorem 4.2. The final Sec-
tion 5 then shows that Weyl numbers have a certain minimality property. In
[4] the first author and Hinrichs proved that every multiplicative s-number
sequence (sn) which is uniformly dominated by the Weyl numbers (xn) (i.e.,
sn(T ) ≤ Cxn(T ) for all integers n, all operators T between Banach spaces,
and some absolute constant C > 0) conversely satisfies in the case C = 1
the estimate

(1.1) x2n−1(T ) ≤ e
( n∏

k=1

sk(T )
)1/n

for all n and T . This result emphasizes the unique role of Weyl numbers
within the theory of eigenvalue distribution of operators in Banach spaces.
The main result (Theorem 5.3) is a variant of (1.1) for Z-Weyl numbers.

2. sss-numbers and basic tools. As already noted, the axiomatic ap-
proach to so-called s-number sequences for operators between Banach spaces
is due to Pietsch (cf. [16, 17, 19]). Denote the set of all bounded linear oper-
ators T : X → Y between two Banach spaces X and Y by L (X,Y ), and the
class of all bounded linear operators between arbitrary Banach spaces by L .
A map s = (sn)∞n=1 which assigns to every T ∈ L a sequence (sn(T ))∞n=1 is
called an s-number sequence if the following conditions are satisfied:

(1) ‖T‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 for all T ∈ L .
(2) sm+n−1(S + T ) ≤ sm(S) + sn(T ) for all S, T ∈ L (X,Y ).
(3) sn(BTA) ≤ ‖B‖sn(T )‖A‖ for all A ∈ L (X0, X), T ∈ L (X,Y ), and

B ∈ L (Y, Y0).
(4) sn(T ) = 0 for all T ∈ L with rank(T ) < n.
(5) sn(In) = 1 for the identity map In : `n2 → `n2 on `n2 .

We call sn(T ) the nth s-number of the operator T . Moreover, an s-number
sequence (sn) is said to be multiplicative whenever for all S ∈ L (X,Y ) and
T ∈ L (Y,Z) we have

sm+n−1(TS) ≤ sn(T )sm(S).
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Let us recall the most important examples; here, given a (closed) sub-
space M of a Banach space X, we denote by JX

M the canonical embedding
from M into X, and by QX

M the quotient map from X onto X/M . For
T ∈ L (X,Y ) the nth approximation number is defined by

an(T ) := inf {‖T −A‖ : A ∈ L (X,Y ), rank(A) < n},
the nth Gelfand number by

cn(T ) := inf {‖TJX
M‖ : M ⊂ X, codim(M) < n},

the nth Kolmogorov number by

dn(T ) := inf {‖QY
NT‖ : N ⊂ Y, dim(N) < n},

the nth Weyl number by

xn(T ) := sup {an(TA) : A ∈ L (`2, X), ‖A‖ ≤ 1},
and finally the nth Hilbert number by

hn(T ) := sup {an(BTA) : A ∈ L (`2, X), B ∈ L (Y, `2), ‖A‖, ‖B‖ ≤ 1}.
It is well-known that the approximation numbers (an) form the largest
s-number sequence, and the Hilbert numbers (hn) form the smallest one.
Moreover, the s-number sequences given by the approximation, Gelfand,
Kolmogorov, and Weyl numbers are all multiplicative; but the Hilbert num-
bers are not. If not credited differently, all needed information on s-number
sequences can be found in the monographs [13, 17, 19].

The following lemma is taken from [4, Lemma 1.1] (see also [7, 1, 17]),
and it will be crucial in what follows. It relates Gelfand numbers to Hilbert
numbers and turns out to be an important tool within the study of optimal
inequalities between eigenvalues and s-numbers.

Lemma 2.1. Let s = (sn) be an s-number sequence. Then for every T in
L (X,Y ) the following inequality holds:
n∏

k=1

ck(T ) ≤ sup
{ n∏
k=1

sk(BTA : `n2 → `n2 ) : ‖A : `n1 → X‖, ‖B : Y → `n∞‖≤ 1
}
.

Note that, since the Hilbert numbers form the smallest s-number se-
quence, this result in fact estimates Gelfand numbers (cn) by Hilbert num-
bers (hn).

Furthermore, to estimate approximation numbers by Gelfand and Kol-
mogorov numbers we need certain geometrical parameters given in [8, Sec-
tion 2.4]. For a fixed triple of Banach spaces (E;X,Y ) with E a (closed)
subspace of X, the extension constant p(E;X,Y ) is defined by

p(E;X,Y ) := inf
{
ρ ≥ 0 : ∀T ∈ L (E, Y ) ∃T̃ ∈ L (X,Y )

with T̃|X = T, ‖T̃‖ ≤ ρ‖T‖
}
.
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Clearly, p(E;X,Y ) ≥ 1 (provided E,X, Y 6= {0}). But p(E;X,Y ) in general
need not be finite. If Y is a Banach space with the metric extension property,
then p(E;X,Y ) = 1 for any Banach space X and any subspace E ⊂ X.
Moreover, p(E;H,Y ) = 1 for every Hilbert space H, every subspace E ⊂ H,
and every Banach space Y .

Given a pair of Banach spaces (X,Y ) and n ∈ N, and letting E vary in
the class of all subspaces E ⊂ X of codimension n − 1, the nth extension
constant pn(X,Y ) is defined by

pn(X,Y ) := sup{p(E;X,Y ) : E ⊂ X, codim(E) = n− 1}.
We recall that for each n,

(2.1) pn(X,Y ) ≤ 1 +
√
n− 1 ≤

√
2n;

see for example [8, (2.4.10)] or [17]. Similarly, we now introduce geometrical
parameters which are determined by lifting properties of the underlying pair
of Banach spaces (X,Y ). An operator T mapping a Banach space X into
a quotient space Y/F of a Banach space Y , is said to possess a lifting to

Y if there exists a (linear and bounded) operator T̃ such that T = QY
F T̃ ,

where QY
F denotes the quotient map of Y onto Y/F . For a fixed triple of

Banach spaces (X,Y ;F ) with F a (closed) subspace of Y , the lifting constant
q(X,Y ;F ) is given by

q(X,Y ;F ) := inf
{
ρ ≥ 0 : ∀T ∈ L (X,Y/F ) ∃ T̃ ∈ L (X,Y )

with T = QY
F T̃ , ‖T̃‖ ≤ ρ‖T‖

}
.

We always have q(X,Y ;F ) ≥ 1, and if X is a Banach space with the metric
lifting property, then q(X,Y ;F ) = 1 (provided the triple is nontrivial).
Moreover, in the case of Hilbert spacesH we have q(X,H;F ) = 1. In general,
however, the infimum need not be finite.

Fixing a couple of Banach spaces (X,Y ) and n ∈ N, and letting now F
vary within the class of all subspaces F ⊂ Y of dimension n − 1, the nth
lifting constant qn(X,Y ) is defined by

qn(X,Y ) := sup{q(E;X,Y ) : F ⊂ Y, dim(F ) = n− 1}.
By a result from [8] we know that

qn(X,Y ) ≤ 1 +
√
n− 1 ≤

√
2n.

Using extension and lifting constants we deduce as an immediate conse-
quence of [8, Propositions 2.4.1 and 2.4.4] the following estimates for the
approximation numbers by Gelfand and Kolmogorov numbers.

Lemma 2.2. For each T ∈ L (X,Y ) the following inequalities hold:

an(T ) ≤ pn(X,Y )cn(T ) and an(T ) ≤ qn(X,Y )dn(T ).
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As usual, we denote by Tp(X) and Cq(X), 1 < p ≤ 2 ≤ q < ∞, the
type p and cotype q constant of a Banach space X, respectively; if X has no
type p or no cotype q, we write Tp(X) := ∞ or Cq(X) := ∞ (see e.g. [25,
Section 1] for more information).

Lemma 2.3. Let T ∈ L (X,Y ).

(i) If Y has type p and cotype q with 1 < p ≤ 2 ≤ q <∞, then with an
absolute constant c ≥ 1, for each n,

an(T ) ≤ cTp(Y )Cq(Y )n1/p−1/qdn(T ).

(ii) If X ′ has type p and cotype q with 1 < p ≤ 2 ≤ q < ∞, then with
an absolute constant c ≥ 1, for each n,

an(T ) ≤ cTp(X ′)Cq(X
′)n1/p−1/qcn(T ).

Proof. For a subspace F ⊂ Y with dim(F ) < n, we choose according to
a result of [14, Corollary 7] a projection P ∈ L (Y ) onto F with

‖P‖ ≤ cTp(Y )Cq(Y )n1/p−1/q,

where 1 ≤ c ≤ 28π−1 is an absolute constant. This immediately implies

qn(X,Y ) ≤ cTp(Y )Cq(Y )n1/p−1/q,

and hence, by Lemma 2.2, the desired estimate (i). The estimate from (ii)
now follows by a duality argument: To this end we use a result of Edmunds
and Tylli [10, Proposition 2] (see also [8, Proposition 2.5.4]) which states
that an(T ) ≤ 5an(T ′). Combining this with (i) and using moreover the
(obvious) duality relation dn(T ′) = cn(T ), we finally arrive at

an(T ) ≤ 5an(T ′)

≤ 5cTp(X
′)Cq(X

′)n1/p−1/qdn(T ′) = 5cTp(X
′)Cq(X

′)n1/p−1/qcn(T ).

This completes the proof.

3. Estimates of Weyl numbers by ZZZ-Weyl numbers. Given an
infinite-dimensional Banach space Z, the definition of Z-Weyl numbers of
operators in Banach spaces follows the pattern of classical Weyl numbers
(see e.g. [3]). For T ∈ L (X,Y ) and n ∈ N the nth Z-Weyl number xn(T |Z)
of T is defined by

xn(T |Z) := sup{an(TA) : A ∈ L (Z,X), ‖A‖ ≤ 1}.
From [3, Section 2, p. 474] it is known that (xn(·|Z))∞n=1 forms a multiplica-
tive s-number sequence. Clearly, the classical Weyl numbers are nothing else
than the `2-Weyl numbers. The main purpose of this article is to relate Weyl
numbers with Z-Weyl numbers.

We start with the following general result.
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Proposition 3.1. Let Z be an infinite-dimensional Banach spaces. Then
for any T ∈ L (X,Y ) and n ∈ N we have

xn(T ) ≤
√
n
( n∏
k=1

xn(T |Z)
)1/n

.

Proof. We have hn(T ) ≤ xn(T |Z), hence the desired result is an imme-
diate consequence of [4, Corollary 1.2].

In the case when Z or Z ′ is a Banach space of type 2, we can estimate
Weyl numbers by Z-Weyl numbers up to constants which only depend on Z.
The following result is from [3, Proposition 3.1].

Proposition 3.2. Let Z be an infinite-dimensional Banach space such
that Z or Z ′ is of type 2. Then for all T ∈ L we have

xn(T ) ≤ min{T2(Z), T2(Z
′)}xn(T |Z).

It is well-known that `p′ for 1 < p ≤ 2 is of type 2 (where p′ as usual
denotes the conjugate exponent of p), and `p for 2 ≤ p <∞ is of type 2 (see
e.g. [25, 4]). Hence the following corollary is immediate.

Corollary 3.3. Let 1 < p <∞. Then for all T ∈ L we have

xn(T ) ≤ min{T2(`p), T2(`p′)}xn(T |`p).
For p = 1 this is no longer true.

Remark 3.4. For arbitrary operators T an inequality xn(T )≤ cxn(T |`1),
n ∈ N, with a constant c > 0 independent of n is not true.

For a proof of this remark, first note the following result of independent
interest.

Proposition 3.5. Let X be a separable Banach space, Y a Banach
space, and T ∈ L . Then for all n ∈ N,

xn(T |`1) = dn(T ).

Proof. Since `1 has the metric lifting property, for T ∈ L (X,Y ) and
A ∈ L (`1, X) we have an(TA) = dn(TA). This implies xn(T |`1) ≤ dn(T ).
On the other hand we know that the separable Banach space X is isometric
to a quotient space of `1, and hence there exists a metric surjection Q in
L (`1, X). The surjectivity of the Kolmogorov numbers yields

dn(T ) = dn(TQ) ≤ an(TQ) ≤ xn(T |`1)‖Q‖ ≤ xn(T |`1),
which completes the proof.

Proof of Remark 3.4. From [17, 11.11.8] or [19, 2.9.11] we know that for
all n,

1√
2
≤ an(I : `2n2 → `2n∞ ) = xn(I : `2n2 → `2n∞ ),
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and from [12] (see also [6, 11]), with some absolute constant d ≥ 1,

dn(I : `2n2 → `2n∞ ) ≤ d 1√
n
.

Clearly, then by Proposition 3.5 a general inequality like xn(T ) ≤ cxn(T |`1)
= cdn(T ) is impossible.

In contrast to this, it is unknown whether an estimate as stated in Corol-
lary 3.3 holds for p =∞. In this context we refer to the limit orders of the

s-number ideals L
(x(·|`∞))
r , 0 < r < ∞. In [22] (see also [23]) it was shown

that

λ(L (x(·|`∞))
r , p, q) = λ(L (x)

r , p, q), 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞,
λ(L (x(·|`∞))

r , p, q) = λ(L (a)
r , p, q), 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.

These limit orders indicate that an inequality as stated in Corollary 3.3
could be true for the case p =∞.

We now turn to the main results of this section—results which generalize
Propositions 3.1 and 3.2. We need the n-dimensional extension constant
p(n)(X,Y ) of a pair (X,Y ) of Banach spaces given by

p(n)(X,Y ) := sup{p(E;X,Y ) : E ⊂ X, dim(E) ≤ n}.
Obviously, the estimate

p(n)(X,Y ) ≤
√
n

is a simple reformulation of the well-known Kadets–Snobar theorem. We
start to estimate approximation numbers by Z-Weyl numbers.

Lemma 3.6. Let Z be an infinite-dimensional Banach space and let
T ∈ L (`n2 , Y ). Then for all k ∈ N:

(i) ak(T ) ≤ p(n)(Z, `n2 )xk(T |Z),
(ii) ak(T ) ≤ p(n)(Z ′, `n2 )xk(T |Z).

Proof. In order to check (i), let ε > 0. By Dvoretzky’s theorem (see e.g.
[21] or [25]) there is an n-dimensional subspace E ⊂ Z and an operator A in
L (E, `n2 ) such that ‖A‖ ‖A−1‖ ≤ 1 + ε. The definition of the n-dimensional
extension constant gives an operator Ã ∈ L (Z, `n2 ) with ÃJZ

E = A and

‖Ã‖ ≤ (1 + ε)p(n)(Z, `n2 )‖A‖.
But then for T ∈ L (`n2 , Y ) we have

ak(T ) ≤ ak(TA)‖A−1‖ = ak(TÃJZ
E )‖A−1‖

≤ ak(TÃ)‖A−1‖ ≤ xk(T |Z)‖Ã‖ ‖A−1‖
≤ (1 + ε)p(n)(Z, `n2 )xk(T |Z)‖A‖ ‖A−1‖ ≤ (1 + ε)2p(n)(Z, `n2 )xk(T |Z),

which clearly proves (i).



240 B. Carl et al.

In order to show (ii) we apply Dvoretzky’s theorem to the dual Banach
space Z ′. For ε > 0 there is an n-dimensional subspace E ⊂ Z ′ and an
operator A ∈ L (E, `n2 ) with ‖A‖ ‖A−1‖ ≤ 1 + ε. Again we may choose

Ã ∈ L (Z ′, `n2 ) with ÃJZ′
E = A and

‖Ã‖ ≤ (1 + ε)p(n)(Z ′, `n2 )‖A‖,

and moreover an operator B ∈ L (Z, `n2 ) for which B′ = JZ′
E A−1. Then for

T ∈ L (`n2 , Y ) we get

ak(T ) = ak(T ′) = ak(AA−1T ′) = ak(ÃJZ′
E A−1T ′) ≤ ‖Ã‖ak(B′T ′)

≤ (1 + ε)p(n)(Z ′, `n2 )‖A‖ak(TB)

≤ (1 + ε)p(n)(Z ′, `n2 )‖A‖ ‖B‖xk(T |Z)

≤ (1 + ε)p(n)(Z ′, `n2 )‖A‖ ‖A−1‖xk(T |Z)

≤ (1 + ε)2p(n)(Z ′, `n2 )xk(T |Z),

which, since ε > 0 is arbitrary, is the desired inequality (ii).

We now use the preceding lemma to estimate Weyl numbers up to
n-dimensional extension constants by Z-Weyl numbers.

Lemma 3.7. Let Z be an infinite-dimensional Banach space and T ∈ L .
Then for every n ∈ N the following inequalities hold:

(i) x2n(T ) ≤
√

2e p(2n)(Z, `2n2 )
( n∏
k=1

xk(T |Z)
)1/n

,

(ii) x2n(T ) ≤
√

2e p(2n)(Z ′, `2n2 )
( n∏
k=1

xk(T |Z)
)1/n

.

Proof. Fix T ∈ L (X,Y ), A ∈ L (`2, X), and ε > 0. According to Lemma
2.1 we may choose operators

A2n ∈ L (`2n1 , `2) with ‖A2n : `2n1 → `2‖ ≤ 1,

B2n ∈ L (Y, `2n∞ ) with ‖B2n : Y → `2n∞‖ ≤ 1

such that

c2n(TA : `2 → Y ) ≤ (1 + ε)
( 2n∏
k=1

hk(B2nTAA2n : `2n2 → `2n2 )
)1/(2n)

.

The operator A2n ∈ L (`2n2 , `2) can be factorized as A2n = J `2
M (A2n)0, where

M is the range of A2n in `2, the operator (A2n)0 is the astriction of A2n

onto M , and J `2
M is the embedding from M into `2. Using the multiplicativity

of the approximation numbers for operators acting between Hilbert spaces
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(see e.g. [13, 1.b.6]) we obtain

a2n(TA) = c2n(TA)(3.1)

≤ (1 + ε)
( 2n∏
k=1

ak(B2nTAJ
`2
M : M → `2n2 )

)1/(2n)
×
( 2n∏
k=1

ak((A2n)0 : `2n2 →M)
)1/(2n)

= (1 + ε)
( 2n∏
k=1

xk(B2nTAJ
`2
M : M → `2n2 )

)1/(2n)
×
( 2n∏
k=1

ak((A2n)0 : `2n2 →M)
)1/(2n)

.

We now estimate both terms on the right-hand side of the inequality (3.1),
and start with the second one. Obviously,

ak((A2n)0) = ak(A2n),

and hence the second term in (3.1) satisfies( 2n∏
k=1

ak((A2n)0)
)1/(2n)

=
( 2n∏
k=1

ak(A2n)
)1/(2n)

≤ (2n)−1/2
( 2n∑
k=1

a2k(A2n)
)1/2

.

Here on the right-hand side we have the well-known Hilbert–Schmidt norm
of A2n ∈ L (`2n2 , `2). Choosing the unit vector basis {ek : k = 1, . . . , 2n} in
`2n2 we obtain( 2n∑
k=1

a2k(A2n : `2n2 → `2)
)1/2

=
( 2n∑
k=1

‖A2nek‖2
)1/2

≤
√

2n max
1≤k≤n

‖A2nek‖ ≤
√

2n ‖A2n : `2n1 → `2‖,

and therefore we control the second factor in (3.1):( 2n∏
k=1

ak((A2n)0 : `2n2 →M)
)1/(2n)

≤ ‖A2n : `2n1 → `2‖ ≤ 1.(3.2)

It remains to control the first factor on the right-hand side of (3.1): With
the multiplicativity of the Weyl numbers (now in Banach spaces) we check
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(3.3)
( 2n∏
k=1

xk(B2nTAJ
`2
M : M → `2n2 )

)1/(2n)
≤
( n∏
k=1

xk(B2n : Y → `2n2 )
)1/n( n∏

k=1

xk(TAJ `2
M : M → Y )

)1/n
≤
( n∏
k=1

xk(B2n : Y → `2n2 )
)1/n( n∏

k=1

ak(TAJ `2
M : M → Y )

)1/n
.

Again we consider both factors separately. We use the well-known inequality
between Weyl numbers and the 2-summing norm from [18] (see also [13,
2.a.3] or [19, 2.7.3])

√
k xk(B2n : Y → `2n2 ) ≤ π2(B2n : Y → `2n2 ),

and moreover the estimate

π2(B2n : Y → `2n2 ) ≤
√

2n,

which follows from ‖B2n : Y → `2n∞‖ ≤ 1 and π2(I : `2n∞ → `2n2 ) ≤
√

2n.
Hence we obtain( n∏

k=1

xk(B2n : Y → `2n2 )
)1/n

≤
√
e

n
π2(B2n : Y → `2n2 ) ≤

√
2e.(3.4)

In order to estimate the second factor in (3.3) we apply the two inequalities
proved in Lemma 3.6:

(3.5)

( n∏
k=1

ak(TAJ `2
M : M → Y )

)1/n
≤ p(2n)(Z, `n2 )

( n∏
k=1

xk(T |Z)
)1/n
‖A‖,

( n∏
k=1

ak(TAJ `2
M : M → Y )

)1/n
≤ p(2n)(Z ′, `n2 )

( n∏
k=1

xk(T |Z)
)1/n
‖A‖.

Combining (3.1) and (3.3)–(3.5) we finally arrive at

a2n(TA) = c2n(TA) ≤ (1 + ε)
√

2e p(2n)(Z, `n2 )
( 2n∏
k=1

xk(T |Z)
)1/n
‖A‖,

a2n(TA) = c2n(TA) ≤ (1 + ε)
√

2e p(2n)(Z ′, `n2 )
( 2n∏
k=1

xk(T |Z)
)1/n
‖A‖,

which by the definition of Weyl numbers is what we wanted.

In view of the preceding lemma the next aim is to get a better control
of the two extension constants p(2n)(Z, `2n2 ) and p(2n)(Z ′, `2n2 ) whenever we
assume additional geometrical assumptions on Z.

Recall the definition of the Banach operator ideal [Γ2, γ2] of all operators
factorizing through Hilbert spaces. Given two Banach spaces X and Y ,
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an operator T ∈ L (X,Y ) belongs to the component Γ2(X,Y ) if there is
a Hilbert space H and operators R ∈ L (X,H) and S ∈ L (H,Y ) with
T = SR, and its hilbertian norm is defined to be

γ2(T ) := inf{‖S‖ ‖R‖ : R ∈ L (X,H), S ∈ L (H,Y ), T = SR};
we write γ2(T ) := ∞ whenever T cannot be factorized through a Hilbert
space. The γ2-factorization constant of two Banach spaces X and Y is given
by

γ2(X,Y ) := inf{ρ ≥ 0 : ∃T ∈ L (X,Y ) with γ2(T ) ≤ ρ‖T‖}.
The following result is from [14, Theorem 3] (see also [24]).

Lemma 3.8. Let 1 < p ≤ 2 ≤ q <∞, E a subspace of a Banach space X,
and Y an n-dimensional Banach space. Then every T ∈ L (E, Y ) has an

extension T̃ ∈ L (X,Y ) for which

γ2(T̃ ) ≤ cTp(X) min{Cq(E), Cq(Y )}n1/p−1/q‖T‖,
where c > 0 is an absolute constant.

This lemma can be seen as a finite-dimensional variant of Maurey’s ex-
tension theorem from [15] (see also [25, 13.13]): Let E ⊂ X be a subspace
of a Banach space X of type 2, and Y a Banach space of cotype 2. Then
every T ∈ L (E, Y ) has an extension T̃ ∈ L (X,Y ) satisfying

γ2(T̃ ) ≤ cT2(X)C2(Y )‖T‖.(3.6)

Finally, we are able to state and prove the main result of this section.

Theorem 3.9. Let Z be an infinite-dimensional Banach space, 1 < p ≤
2, and T ∈ L . Then the following inequalities hold with absolute constants
c1, c2 > 0:

(i) If Z has type p, then for every n ∈ N,

p(n)(Z, `n2 ) ≤ c1Tp(Z)n1/p−1/2,

x2n(T ) ≤ c2Tp(Z)n1/p−1/2
( n∏
k=1

xk(T |Z)
)1/n

.

(ii) If Z ′ has type p, then for every n ∈ N,

p(n)(Z ′, `n2 ) ≤ c1Tp(Z ′)n1/p−1/2,

x2n(T ) ≤ c2Tp(Z ′)n1/p−1/2
( n∏
k=1

xk(T |Z)
)1/n

.

Proof. We prove statement (i). By Lemma 3.8, given a subspace E ⊂ Z
with dim(E) ≤ n and S ∈ L (E, `n2 ), there exists an extension S̃ ∈ L (Z, `n2 )
such that

‖S̃‖ ≤ γ2(S̃) ≤ cTp(Z)n1/p−1/2‖S‖,
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where c > 0 is an absolute constant (recall that C2(`
n
2 ) = 1). We conclude

that
p(n)(Z, `n2 ) ≤ cTp(Z)n1/p−1/2,

and hence (i) is an immediate consequence of Lemma 3.7. Similarly, (ii)
follows.

4. Estimates of ZZZ-Weyl numbers by Weyl numbers. In this sec-
tion we deal with converse inequalities—we estimate Z-Weyl numbers by
Weyl numbers.

Proposition 4.1. Let Z be an infinite-dimensional Banach space and
T ∈ L (X,Y ). Then

xn(T |Z) ≤ γ2(Z,X)xn(T ).

Proof. Without loss of generality we may assume that γ2(Z,X) < ∞.
Given ε > 0, there is some A ∈ L (Z,X) with ‖A‖ ≤ 1 and xn(T |Z) ≤
(1 + ε)an(TA). Since by definition we have γ2(A) ≤ γ2(Z,X)‖A‖, there
are operators S ∈ L (H,X), R ∈ L (Z,H) with A = SR and ‖S‖ ‖R‖ ≤
(1 + ε)γ2(Z,X). But then

xn(T |Z) ≤ (1 + ε)an(TA) ≤ (1 + ε)an(TS)‖R‖
≤ (1 + ε)xn(T )‖S‖ ‖R‖ ≤ (1 + ε)2γ2(Z,X)xn(T ),

which clearly yields the desired estimate.

Similar to the strategy for the proof of Proposition 3.9, estimates of
γ2(Z,X) (under additional geometrical assumptions on Z and Y ) lead to
more concrete inequalities. In order to control the γ2-factorization constant
we mainly use results of König, Retherford, and Tomczak-Jaegermann [14],
Maurey [15], and Pisier [20, 21].

Theorem 4.2. Let Z be an infinite-dimensional Banach space, X a Ba-
nach space, and T ∈ L (X,Y ). Then, with an absolute constant c > 0, the
following three inequalities hold:

(i) If Z has type 2 and X cotype 2, then for all n ∈ N,

γ2(Z,X) ≤ cT2(Z)C2(X) and xn(T |Z) ≤ cT2(Z)C2(X)xn(T ).

(ii) If Z ′ has cotype 2 and X cotype 2, then for all n ∈ N,

γ2(Z,X) ≤ c
(
C2(Z

′)C2(X)
)2

and xn(T |Z) ≤ c
(
C2(Z

′)C2(X)
)2
xn(T ).

(iii) If Z has type p and cotype q, 1<p≤ 2≤ q <∞, and X is a finite-
dimensional Banach space with dim(X)≤m, then for all n∈N,

γ2(Z,X) ≤ cT2(Z)C2(Z)m1/p−1/q,

xn(T |Z) ≤ cT2(Z)C2(Z)m1/p−1/qxn(T ).
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Proof. The first result (i) follows from Maurey’s result repeated in (3.6)
and Proposition 4.1. The assertion (ii) is based on a result of Pisier—in [20]
it is shown that for A ∈ L (Z,X),

γ2(A) ≤
(
c0
ϑ
C2(Z

′)C2(X)

)1/(1−ϑ)
‖A‖,

where c0 > 0 is an absolute constant and 0 < ϑ < 1. Putting ϑ = 1/2 we
get

γ2(A) ≤
(
2c0C2(Z

′)C2(X)
)2‖A‖,

and therefore

γ2(Z,X) ≤ 2c0
(
C2(Z

′)C2(X)
)2
.

Again we apply Proposition 4.1 and get (ii). In order to prove (iii) we apply
Lemma 3.8 to the operator A ∈ L (Z,X) and obtain

γ2(A) ≤ cTp(Z)Cq(Z)m1/p−1/q‖A‖.

This implies

γ2(Z,X) ≤ cTp(Z)Cq(Z)m1/p−1/q,

which is the first statement from (iii), and as before we deduce the second
assertion from (iii) by Proposition 4.1.

Corollary 4.3. Under the assumption of Theorem 4.2(i), for T ∈ L
and all n ∈ N we have

c1T2(Z)−1xn(T ) ≤ xn(T |Z) ≤ c2T2(Z)C2(X)xn(T ),

where c1, c2 > 0 are absolute constants.

Proof. The result follows from Proposition 3.2 and Theorem 4.2(i).

5. Minimal multiplicative sss-numbers. This section is devoted to
minimal multiplicative s-numbers which are very useful tools for estimating
eigenvalues of operators. Given s-number sequences s = (sn) and t = (tn),
we write

s . t

whenever there exists a constant ρ > 0 such that sn(T ) ≤ ρtn(T ) for all
T ∈ L and all n ∈ N.

The following question is studied: Given a multiplicative s-number se-
quence s = (sn) and an infinite-dimensional Banach space Z for which
s . x(·|Z). To what extent does the converse inequality x(·|Z) . s hold?

For the classical Weyl numbers x = x(·|`2) the following result was
proved in [4, Theorem 3.1].
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Theorem 5.1. Let s be a multiplicative s-number sequence with s . x.
Then for all operators T ∈ L and n ∈ N we have

x2n−1(T ) ≤ c
( n∏
k=1

sk(T )
)1/n

,

where c > 0 is some absolute constant.

The Weyl numbers are considered to be a minimal s-number sequence in
the sense of Theorem 5.1. Replacing the classical Weyl numbers by arbitrary
Z-Weyl numbers we have the following

Theorem 5.2. Let Z be an infinite-dimensional Banach space, and s =
(sn) a multiplicative s-number sequence with the property that s . x(·|Z).
Then for every T ∈ L we have

xn(T |Z) ≤
√

2n3/2
( n∏
k=1

sk(T )
)1/n

.

Proof. Let T ∈ L (X,Y ), A ∈ L (Z,X) with ‖A‖ ≤ 1 and ε > 0. Then
from Lemma 2.2 and (2.1) (see also [16, 2.1.2]) we obtain

an(TA) ≤
√

2n cn(TA),

and as a consequence of Lemma 2.1,

(5.1) an(TA : Z → Y ) ≤ (1 + ε)
√

2n
( n∏

k=1

sk(BnTAAn : `n2 → `n2 )
)1/n

with operators

An ∈ L (`n1 , Z) with ‖An : `n1 → Z‖ ≤ 1,

Bn ∈ L (Y, `n2 ) with ‖Bn : Y → `n∞‖ ≤ 1.

This implies

an(TA) ≤ (1 + ε)
√

2n3/2
( n∏
k=1

sk(TA)
)1/n

,

and consequently

xn(T |Z) ≤
√

2n3/2
( n∏
k=1

sk(T )
)1/n

,

which is the desired inequality.

Under geometrical assumptions on Z we obtain a far better control of
the constant

√
2n3/2.

Theorem 5.3. Let Z be an infinite-dimensional Banach space, and s =
(sn) a multiplicative s-number sequence with the property that s . x(·|Z).
If Z has type p and cotype q, 1 < p ≤ 2 ≤ q < ∞, then for every T ∈ L
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we have

x3n−2(T |Z) ≤ cTp(Z)3Cq(Z)3n3min{1/p−1/q,1/2}
( n∏
k=1

sk(T )
)1/n

,

where c > 0 is some absolute constant.

The case p = q = 2 and Z = `2 is of special interest; then the Weyl and
Z-Weyl numbers coincide, and Z = `2 has type and cotype 2. Hence, we
obtain a slightly weaker version of Theorem 5.1 as a corollary of the preceding
result; note that in [4] a more direct proof shows that the (3n− 2)th Weyl
number in the previous inequality can even be replaced by the (2n − 1)th
Weyl number.

Proof of Theorem 5.3. In view of Theorem 5.2 we may assume that
1/p− 1/q < 1/2. Again let T ∈ L (X,Y ), A ∈ L (Z,X) with ‖A‖ ≤ 1 and
ε > 0. Since

Tp(Z) = Cp′(Z
′) and Cq(Z) = Tq′(Z

′)

(cf. [25]), we deduce from Lemma 2.3 that, with an absolute constant c1 > 0,
we have

a3n−2(TA) ≤ c1Cp′(Z
′)Tq′(Z

′)n1/q
′−1/p′c3n−2(TA)(5.2)

= c1Tp(Z)Cq(Z)n1/p−1/qc3n−2(TA).

By Lemma 2.1 we find operators

A3n−2 ∈ L (`3n−21 , Z) with ‖A3n−2 : `3n−21 → Z‖ ≤ 1,

B3n−2 ∈ L (Y, `3n−2∞ ) with ‖B3n−2 : Y → `3n−2∞ ‖ ≤ 1

such that

c3n−2(TA) ≤ (1 + ε)
(3n−2∏

k=1

sk(B3n−2TAA3n−2 : `3n−22 → `3n−22 )
)1/(3n−2)

.

The multiplicativity of the s-number sequence (sn) implies

(5.3)

c3n−2(TA) ≤ (1+ε)
( n∏
k=1

sk(B3n−2 : Y → `3n−22 )
)1/n( n∏

k=1

sk(T : X → Y )
)1/n

×
( n∏
k=1

sk(A3n−2 : `3n−22 → Z)
)1/n
‖A : Z → X‖.

By [18] (see again [13, 2.a.3] or [19, 2.7.3]) we know that

sk(A3n−2 : `3n−22 → Z) ≤ ak(A3n−2 : `3n−22 → Z)

= xk(A3n−2 : `3n−22 → Z)

≤ k−1/qπq,2(A3n−2 : `3n−22 → Z)
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(here πq,2 as usual denotes the (q, 2)-summing norm), and by [14, Corol-
lary 6], with absolute constants c2, c3 > 0,

πq,2(A3n−2 : `3n−22 → Z) ≤ c2Tp(Z)Cq(Z)n1/p−1/2π2(A
′
3n−2 : Z ′ → `3n−22 )

≤ c3Tp(Z)Cq(Z)n1/p.

This then implies the following estimate for the third factor in (5.3):( n∏
k=1

sk(A3n−2 : `3n−22 → Z)
)1/n

≤ c3Tp(Z)Cq(Z)n1/p(n!)−1/(nq)(5.4)

≤ c4Tp(Z)Cq(Z)n1/p−1/q.

Now we show a similar inequality for the first term on the right-hand side
of (5.3). Because of s . x(·|Z) and the properties of the operators B3n−2
we have, with a constant ρ > 0, the estimate

sk(B3n−2 : Y → `3n−22 ) ≤ ‖B3n−2 : Y → `3n−2∞ ‖ ‖sk(I : `3n−2∞ → `3n−22 )‖
≤ ρxk(I : `3n−2∞ → `3n−22 |Z).

By Theorem 4.2(iii) we get, with an absolute constant c5 > 0,

xk(I : `3n−2∞ → `3n−22 | Z) ≤ c5Tp(Z)Cq(Z)n1/p−1/qxk(I : `3n−2∞ → `3n−22 ).

Moreover, we know that

xk(I : `3n−2∞ → `3n−22 ) ≤
(

3n

k

)1/2

(see again [17, 11.11.8] or [19, 2.9.11]), and hence we deduce, with absolute
constants c6, c7 > 0, the inequality

( n∏
k=1

sk(B3n−2 : Y → `3n−22 )
)1/n

≤ ρ
( n∏
k=1

xk(I : `3n−2∞ → `3n−22 | Z)
)1/n(5.5)

≤ c6Tp(Z)Cq(Z)n1/p−1/q
(
nn

n!

)1/(2n)

≤ c7Tp(Z)Cq(Z)n1/p−1/q.

Combining the estimates (5.2)–(5.5) we conclude that

a3n−2(TA) ≤ (1 + ε)cTp(Z)3Cq(Z)3n3(1/p−1/q)
( n∏
k=1

sk(T )
)1/n

,

with an absolute constant c > 0. This completes the proof.

Remark 5.4. The proof shows that the statement of the above theorem
remains valid for a multiplicative s-number sequence satisfying

sk(I : `n∞ → `n2 ) ≤ xk(I : `n∞ → `n2 | Z), k, n ∈ N.



Weyl numbers versus Z-Weyl numbers 249

Closing remarks. First, observe that one can prove similarly that the
dual Weyl numbers are also minimal multiplicative s-numbers in the sense of
Theorem 5.1. In this context the problem arises whether there exist minimal
multiplicative s-numbers different from the Weyl or dual Weyl numbers.
Second, we remark that a weaker Weyl type inequality for an arbitrary
multiplicative s-number sequence (sn) was proved by the first named author
(cf. also [13, 2.d.8]). For inequalities between eigenvalues and s-numbers
and their applications we refer to the monographs [8], [9], [13], or [19], as
well as to the recent articles [2]–[5]. Here we treated Z-Weyl numbers defined
through approximation numbers. Similar procedures can be used to generate
new s-number sequences by classical s-numbers; see [3] for details.
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