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A contractive fixed point free mapping on a
weakly compact convex set

by

Jared Burns, Chris Lennard and Jeromy Sivek (Pittsburgh, PA)

Abstract. We prove the existence of a contractive mapping on a weakly compact
convex set in a Banach space that is fixed point free. This answers a long-standing open
question.

1. Introduction. In this paper we prove the existence of a contractive
and fixed point free mapping on a weakly compact convex subset of the
Banach space L1[0, 1] (with its usual norm), which answers a long-standing
open question. This work constitutes part of the doctoral dissertation of the
third author [Siv].

In 1965 Kirk [K] proved that every nonexpansive mapping U on a weakly
compact convex subset C of a Banach space X with normal structure has
a fixed point, extending the analogous results of Browder [B1, B2] and
Göhde [G] for uniformly convex spaces.

For a long time it was unknown if every nonexpansive mapping U on a
weakly compact convex subset C of a Banach space X has a fixed point.
In 1981 Alspach [A] settled this question by inventing the first example of
a nonexpansive mapping T on a weakly compact convex set C in a Banach
space X for which T is fixed point free. Alspach’s mapping is an isometry,
and X = L1[0, 1], with its usual norm. Soon after, Sine [Si] and Schecht-
man [Sc] invented more of these interesting fixed point free isometries T
(again on a weakly compact convex C ⊆ X = an L1-space, with its usual
norm).

It is easy to check that for Alspach’s mapping T , S := (I + T )/2 is
another nonexpansive fixed point free map on C. Moreover, S contracts the
distance between some pairs of unequal points and preserves the distance
between other such pairs. Further, this fact is true for S when T is Sine’s
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map. We thank B. Sims for pointing out to us that this is also true for S
when T is any one of Schechtman’s mappings.

The question as to whether there exists a contractive mapping U (i.e.,
U contracts the distances between all pairs of unequal points) that is fixed
point free on a weakly compact convex subset of a Banach space was still
open, and remained so until the authors recently resolved it (see Theorems
1.1 and 3.6 below).

We now describe this solution. First, we define the set

C1/2 =

{
f : [0, 1]→ [0, 1] :

1�

0

f =
1

2

}
.

This set is a weakly compact convex subset of the Lebesgue function space
L1[0, 1], with its usual norm ‖·‖1. For the rest of this paper, T will stand for
Alspach’s map as defined in [A]. This map preserves areas in the sense that
‖Tf − Tg‖1 = ‖f − g‖1 for all integrable functions f, g : [0, 1] → [0, 1]. In
particular T : C1/2 → C1/2. This and other facts about Alspach’s mapping
were discussed in [A], and also in, for example, Day and Lennard [DL] (where
the minimal invariant sets of T are characterized).

In this paper we will prove the following theorem.

Theorem 1.1. The mapping

R : C1/2 → C1/2 : f 7→
∞∑
n=0

Tnf

2n+1
=

(
I

2
+
T

4
+
T 2

8
+ · · ·

)
(f)

is contractive and fixed point free on C1/2.

2. Preliminaries. We denote the set of positive integers and the set of
real numbers by N and R respectively. Our scalar field is R.

We write “closed bounded convex set” instead of “closed, bounded, con-
vex set”. Also, all sets that are the domains of a mapping are assumed to
be nonempty.

Definition 2.1. Let (X, ‖ · ‖) be a Banach space and C be a closed
bounded convex subset of X. Let U : C → C be a mapping.

(1) We say that U is nonexpansive if for all x, y ∈ C,

‖Ux− Uy‖ ≤ ‖x− y‖.
(2) We say that U is contractive if for all x, y ∈ C with x 6= y,

‖Ux− Uy‖ < ‖x− y‖.
We remark in passing that contractive mappings U on non-weakly com-

pact, closed bounded convex sets C in a Banach space arise quite often. For
example, Maurey [M] showed that every weakly compact convex subset C
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in the Banach space c0 of all scalar sequences that converge to zero, with
the usual ‖ · ‖∞-norm, is such that every nonexpansive map U : C → C
has a fixed point. On the other hand, Dowling, Lennard and Turett [DLT]
showed the following converse result: on every non-weakly compact, closed
bounded convex set C in (c0, ‖ · ‖∞), there exists a nonexpansive mapping
W : C → C that is fixed point free. Moreover, one may arrange for W to be
contractive.

Also, recall that Alspach’s mapping T is given by: for all integrable
functions f : [0, 1]→ [0, 1],

(Tf)(x) =

{
2f(2x) ∧ 1, 0 ≤ x < 1/2,

(2f(2x− 1) ∨ 1)− 1, 1/2 ≤ x < 1.

Here, for all α, β ∈ R, α ∧ β := min{α, β} and α ∨ β := max{α, β}.

3. Proof of the main theorem. First, let us confirm that R maps
C1/2 back into C1/2. Fix an arbitrary f ∈ C1/2. For each n ∈ N, we have
0 ≤ Tnf ≤ 1, and therefore 0 ≤ Rf ≤ 1. Further,

1�

0

Rf dm =
∞∑
n=0

1

2n+1

1�

0

Tnf dm =
∞∑
n=0

1

2n+1

1�

0

f dm =
1

2
.

We will begin the proof that R : C1/2 → C1/2 is contractive and fixed
point free by defining for every f ∈ C1/2 the set

An(f) = {x ∈ [0, 1] : Tnf(x) ∈ (0, 1)}.

Lemma 3.1. For every f ∈ C1/2,

lim
n→∞

m(An(f)) = 0.

In particular, m(An(f)) ≤ 2−n.

Proof. In what follows, we will ignore certain dyadic numbers in the
domain. These constitute a set of measure zero.

Decompose the set

A1(f) = (A1(f) ∩ [0, 1/2)) ∪ (A1(f) ∩ (1/2, 1]).

If x ∈ A1(f) ∩ [0, 1/2), then x ∈ [0, 1/2) and Tf(x) ∈ (0, 1). By definition,
for x ∈ [0, 1/2), Tf(x) = 2f(2x) ∧ 1. So

x ∈ [0, 1/2) and f(2x) ∈ (0, 1/2) ⇔ x ∈ A1(f) ∩ [0, 1/2).

Similarly, if x ∈ A1(f) ∩ (1/2, 1], then x ∈ (1/2, 1] and Tf(x) ∈ (0, 1). By
definition, for x ∈ (1/2, 1], Tf(x) = (2f(2x− 1)− 1) ∨ 0. So

x ∈ (1/2, 1] and f(2x− 1) ∈ (1/2, 1) ⇔ x ∈ A1(f) ∩ (1/2, 1].
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Note that

m{x ∈ [0, 1/2) : f(2x) ∈ (0, 1/2)} = 1
2m{x ∈ (0, 1) : f(x) ∈ (0, 1/2)},

m{x ∈ (1/2, 1] : f(2x− 1) ∈ (1/2, 1)} = 1
2m{x ∈ (0, 1) : f(x) ∈ (1/2, 1)}.

Putting this together gives
1
2m(A0(f)) ≥ 1

2m[f ∈ (0, 1/2)] + 1
2m[f ∈ (1/2, 1)]

= m(A1(f) ∩ (1/2, 1]) +m(A1(f) ∩ [0, 1/2)) = m(A1(f)).

Generalizing, we have

m(An(f)) = m(A1(T
n−1f)) ≤ 1

2m(A0(T
n−1f)) = 1

2m(An−1(f)),

giving

m(An(f)) ≤ 1

2n
m(A0(f)) ≤ 1

2n
→ 0.

Lemma 3.2. Let h ∈ C1/2, and let y be any nondyadic number in [0, 1].
Also, let n ∈ N. If h(y) = 0, then for all j ∈ {1, . . . , 2n},

Tnh

(
y + j − 1

2n

)
= 0.

If h(y) = 1, then for all j ∈ {1, . . . , 2n},

Tnh

(
y + j − 1

2n

)
= 1.

Proof. We start with n = 1. We need to check j ∈ {1, 2}. First,

Th(y/2) = 2h(y) ∧ 1 (because y/2 is between 0 and 1/2),

which is 1 when h(y) = 1 and is 0 when h(y) = 0. This settles the case
j = 1. Then for j = 2,

Th

(
y + 1

2

)
= (2h(y)− 1) ∨ 0 (because (y + 1)/2 is between 1/2 and 1),

which agrees with h when h is 1 or 0.
By way of induction, suppose for all j ∈ {1, . . . , 2m} that when h(y) is 0

or 1,

h(y) = Tmh

(
y + j − 1

2m

)
.

Applying the base case to Tmh and k ∈ {1, 2} for all j ∈ {1, . . . , 2m} we
have

Tmh

(
y + j − 1

2m

)
= Tm+1h

( y+j−1
2m + k − 1

2

)
.

It follows from this fact and the inductive assumption that

h(y) = Tm+1h

( y+j−1
2m + k − 1

2

)
= Tm+1h

(
y + j + 2m(k − 1)− 1

2m+1

)
.
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When k = 1 we have j + 2m(k − 1) = j spanning {1, . . . , 2m}. When k = 2
we have j + 2m(k − 1) = j + 2m spanning {2m + 1, 2m + 2, . . . , 2m+1}.

Lemma 3.3. For every f and g in C1/2 with ‖f − g‖1 > 0 there is some
N ∈ N such that ∥∥∥∥I + TN

2
f − I + TN

2
g

∥∥∥∥
1

< ‖f − g‖1.

Proof. Fix f, g ∈ C1/2 with f 6= g. Note that all sets in the domain can
vary up to a set of measure zero without affecting the argument. Define

Bn = {x ∈ [0, 1] : Tnf(x) ∈ (0, 1) or Tng(x) ∈ (0, 1)} = An(f) ∪An(g),

Cn = {x ∈ [0, 1] : Tnf(x) = 1 and Tng(x) = 0},
Dn = {x ∈ [0, 1] : (Tnf(x) = 1 and Tng(x) = 1)

or (Tnf(x) = 0 and Tng(x) = 0)},
En = {x ∈ [0, 1] : Tnf(x) = 0 and Tng(x) = 1}.

Note that [0, 1] = Bn ∪ Cn ∪Dn ∪ En is a disjoint union.
We will show that for a given measurable set W of positive measure,

for n large, the measure of the intersection with the sets Cn and En can be
bounded from below by a positive constant multiple of the measure of W .
This will lead us to an index N for which

‖(1/2)(I + TN )f − (1/2)(I + TN )g‖1 < ‖f − g‖1.

By Lemma 3.1 we have m(Bn) → 0. Because ‖f − g‖1 > 0 and
	1
0 f =	1

0 g = 1/2, it follows that m[f > g] > 0 and m[g > f ] > 0.
Now we will check that there is some N0 so that when n > N0 we have

m(Cn) > 0 and m(En) > 0. Note that

‖f − g‖1 = ‖Tnf − Tng‖1 =
�

Bn

|Tnf − Tng|+
�

Dn

0 +
�

Cn

1 +
�

En

1

=
�

Bn

|Tnf − Tng|+m(Cn) +m(En).

This gives m(En) + m(Cn) = ‖f − g‖1 −
	
Bn
|Tnf − Tng|. Also,

	
Tnf =	

Tng = 1
2 , which implies

�

Bn

(Tnf − Tng) +
�

Cn

(Tnf − Tng) +
�

Dn

(Tnf − Tng) +
�

En

(Tnf − Tng) = 0

⇒
�

Bn

(Tnf − Tng) +
�

Cn

1 +
�

En

(−1) = 0

⇒ m(En)−m(Cn) =
�

Bn

(Tnf − Tng).
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We know that |Tnf(x)− Tng(x)| ≤ 1, and so we can deduce from these
facts that

‖f − g‖1 ≥ m(En) +m(Cn) ≥ ‖f − g‖1 −m(Bn)

and

|m(En)−m(Cn)| ≤ m(Bn).

Now, since m(Bn)→ 0 it follows that

m(En)→ 1
2‖f − g‖1 and m(Cn)→ 1

2‖f − g‖1.

So, we choose n to be sufficiently large so that m(En) and m(Cn) are both
greater than 1

4‖f − g‖1. By Lemma 3.2 we have, for all k ∈ N,

Cn+k ⊇
2k−1⋃
j=0

(
j

2k
+

1

2k
Cn

)
and En+k ⊇

2k−1⋃
j=0

(
j

2k
+

1

2k
En

)
.

(♠) Claim. There exists k ∈ N such that

S1 := En+k ∩ [f > g] and S2 := Cn+k ∩ [f < g]

both have positive measure.

Proof of (♠). Let W := [f > g]. Fix ε > 0. By, for example, Royden [R,
Chapter 3, Proposition 15], there exists a finite sequence of open intervals
(Il)

ν
l=1 such that m(W4Γ ) < ε for Γ :=

⋃ν
l=1 Il. Without loss of generality,

we may assume that the intervals Il are pairwise disjoint, and that each Il is
a dyadic interval of the form (jl/2

k, (jl+1)/2k) for some jl ∈ {0, . . . , 2k−1}
and some k ∈ N. We may write

χΓ =

2k−1∑
j=0

βjχ(j/2k,(j+1)/2k),

where each βj is in {0, 1}. Then

m(En+k ∩W ) ≥ m
( 2k−1⋃

j=0

(
j

2k
+

1

2k
En

)
∩W ∩ Γ

)

≥ m
( 2k−1⋃

j=0

(
j

2k
+

1

2k
En

)
∩ Γ

)
−m

( 2k−1⋃
j=0

(
j

2k
+

1

2k
En

)
∩ Γ \W

)

≥
1�

0

2k−1∑
j=0

χ( j

2k
+ 1

2k
En)

2k−1∑
s=0

βsχ( s

2k
, s+1

2k
) dm−m(Γ \W )
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>

1�

0

2k−1∑
j=0

βjχ( j

2k
+ 1

2k
En)

dm− ε = m(En)
1

2k

2k−1∑
j=0

βj − ε

= m(En)m(Γ )− ε > m(En)(m(W )− ε)− ε ≥ m(En)m(W )− 2ε

≥ ‖f − g‖1
4

m(W )− 2ε >
‖f − g‖1

8
m(W ) > 0

for ε ∈ (0,∞) chosen small enough. Observe that the estimate holds for
every k ≥ k1, for some k1 ∈ N.

Similarly, there exists k2 ∈ N such that we also have

m(Cn+k2 ∩ [f < g]) >
‖f − g‖1

4
m[f < g]− 2ε >

‖f − g‖1
8

m[f < g] > 0

for an even smaller choice of ε ∈ (0,∞). Moreover, from the above we see
that we may choose k and k2 to be equal. ♠

Finally, letting N = n + k we can compute the cancellation. Define
S3 = [0, 1] \ (S1 ∪ S2). Then∥∥∥∥I + TN

2
f − I + TN

2
g

∥∥∥∥
1

=

1�

0

∣∣∣∣f + TNf

2
− g + TNg

2

∣∣∣∣
=

�

S1

∣∣∣∣f − g − 1

2

∣∣∣∣+
�

S2

∣∣∣∣f + 1− g
2

∣∣∣∣+
�

S3

∣∣∣∣f + TNf

2
− g + TNg

2

∣∣∣∣
=

�

S1

1 + g − f
2

+
�

S2

1 + f − g
2

+
�

S3

∣∣∣∣f + TNf

2
− g + TNg

2

∣∣∣∣
<

�

S1

1 + f − g
2

+
�

S2

1 + g − f
2

+
�

S3

∣∣∣∣f + TNf

2
− g + TNg

2

∣∣∣∣
=

�

S1

(∣∣∣∣TNf − TNg2

∣∣∣∣+

∣∣∣∣f − g2

∣∣∣∣)+
�

S2

(∣∣∣∣TNf − TNg2

∣∣∣∣+

∣∣∣∣f − g2

∣∣∣∣)

+
�

S3

∣∣∣∣f − g2
+
TNf − TNg

2

∣∣∣∣
≤

1�

0

(∣∣∣∣f − g2

∣∣∣∣+

∣∣∣∣TNf − TNg2

∣∣∣∣) = ‖f − g‖1.

Corollary 3.4. The mapping R is contractive. That is, for all f and
g in C1/2 with ‖f − g‖1 > 0 we have

‖Rf −Rg‖1 < ‖f − g‖1.
Proof. This follows from Lemma 3.3 and the fact that we can rewrite R

in the following way:
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Rf =

(
I

2
+
T

4
+
T 2

8
+
T 3

16
+ · · ·

)
f

=
1

2

I + T

2
f +

1

4

I + T 2

2
f +

1

8

I + T 3

2
f + · · · =

∞∑
n=1

1

2n
I + Tn

2
f.

Each of the pieces (I + Tn)/2 is nonexpansive. By Lemma 3.3, every pair
f 6= g is contracted by at least one piece, and therefore it is contracted
by R.

Before the final lemma, we need yet one more reformulation of R:

Rf =
f

2
+
Tf

4
+
T 2f

8
+
T 3f

16
+ · · ·

=
f

2
+

1

2

(
Tf

2
+
T (Tf)

4
+
T 2(Tf)

8
+ · · ·

)
=
I

2
f +

1

2
R(T (f)) =

I +RT

2
f.

Lemma 3.5. R is fixed point free on C1/2.

Proof. Because R is contractive and T : C1/2 → C1/2 is an isometry, we
find that for all f, g ∈ C1/2 with ‖f − g‖1 > 0,

‖RTf −RTg‖1 < ‖Tf − Tg‖1 = ‖f − g‖1.
But then

‖Rf −Rg‖1 =

∥∥∥∥f − g2
+
RTf −RTg

2

∥∥∥∥
1

≥
∥∥∥∥f − g2

∥∥∥∥
1

−
∥∥∥∥RTf −RTg2

∥∥∥∥
1

> 0.

This shows that R is 1-1 on C1/2 as a subset of L1. Now let f0 be any fixed
point of R in this set. We have

f0 =
f0
2

+
Tf0

4
+
T 2f0

8
+
T 3f0
16

+ · · · ⇒ f0
2

=
Tf0

4
+
T 2f0

8
+
T 3f0
16

+ · · ·

⇒ f0 =
Tf0

2
+
T 2f0

4
+
T 3f0

8
+ · · · = R(Tf0).

But then R(f0) = R(Tf0), with R 1-1, implies Tf0 = f0, giving a fixed point
of Alspach’s map in C1/2. This is known to be impossible.

Looking back over this section, we see that we have proven Theorem
1.1. We can immediately state the following result, which answers the open
question discussed in the Introduction.

Theorem 3.6. There exists a fixed point free contractive mapping on a
weakly compact convex set in a Banach space.
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Proof. By Corollary 3.4 and Lemma 3.5, R is such a map.
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