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On operators whih fator through lp or c0by
Bentuo Zheng (College Station, TX)Abstrat. Let 1 < p < ∞. Let X be a subspae of a spae Z with a shrinking F.D.D.

(En) whih satis�es a blok lower-p estimate. Then any bounded linear operator T from Xwhih satis�es an upper-(C, p)-tree estimate fators through a subspae of (∑ Fn)lp , where
(Fn) is a bloking of (En). In partiular, we prove that an operator from Lp (2 < p < ∞)satis�es an upper-(C, p)-tree estimate if and only if it fators through lp. This gives ananswer to a question of W. B. Johnson. We also prove that if X is a Banah spae with
X∗ separable and T is an operator from X whih satis�es an upper-(C,∞)-estimate, then
T fators through a subspae of c0.1. Introdution. In [3℄, W. B. Johnson answered the following questionabout the relation between the struture of Lp and lp.Question 1.1. Give a Banah spae ondition so that if X is a subspaeof Lp (1 < p < 2) whih satis�es the ondition, then X embeds isomorphi-ally into lp.The equivalent dual question would be:Question 1.2. Give a Banah spae ondition so that if X is a quotientof Lp whih satis�es the ondition, then X is isomorphi to a quotient of lp.For p > 2, W. B. Johnson and E. Odell had already proved in [5℄ thatif a subspae X of Lp has no subspae isomorphi to l2, then X embedsinto lp. For p < 2, W. B. Johnson proved that if there exists a K > 0 suhthat every normalized weakly null sequene in X has a subsequene whihis K-equivalent to the unit vetor basis of lp, then X is isomorphi to asubspae of lp. Further W. B. Johnson also gave a omplete answer to thedual question in [3℄; namely, a quotient of Lp (2 < p < ∞) whih is oftype p-Banah�Saks is a quotient of lp. Reall that an operator T from a2000 Mathematis Subjet Classi�ation: Primary 46B03; Seondary 46B20.Key words and phrases: isomorphi, weakly null tree, �nite-dimensional deomposi-tion, blokings.Supported in part by NSF/DMS 02-00690 and 05-03688. This paper forms part of theauthor's dotoral dissertation whih is being prepared at Texas A&M University underthe diretion of W. B. Johnson. [177℄



178 B. ZhengBanah spae X is of type p-Banah�Saks (where 1 < p < ∞) if there existsa onstant λ suh that every normalized weakly null sequene in X has asubsequene (xn) whih satis�es for n = 1, 2, . . . ,
∥

∥

∥

n
∑

i=1

Txi

∥

∥

∥
≤ λn1/p.

X is said to be of type p-Banah�Saks when the identity operator on X is.From the results above, a more general question naturally arises.Question 1.3. Give a neessary and su�ient ondition so that if anoperator T from Lp to any Banah spae Y satis�es the ondition, then Tfators through lp.It was proved in [2℄ that a bounded linear operator T into Lp (2 < p <
∞) fators through lp if and only if T is ompat when onsidered as anoperator into L2. This atually answers Question 1.3 for 1 < p < 2. In[2℄, W. B. Johnson onjetured that an operator T from Lp (2 < p < ∞)fators through lp if and only if T is of type p-Banah�Saks. As mentionedabove, this onjeture was veri�ed in [3℄ in the ase when T has losed range.Later, W. B. Johnson disovered in [4℄ a ounterexample in the general ase,whih led him to formulate a onjeture with a stronger ondition, namelyan operator T from Lp (2 < p < ∞) fators through lp if and only if Tsatis�es the following ondition (when X is Lp).Condition 1.4. T is an operator from X so that for every normalizedweakly null sequene (xn) ⊂ X, there is a subsequene (xnk

) suh that
∥

∥

∥
T

(

∑

akxnk

)∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R.In Setion 2, we use a spae onstruted by E. Odell and Th. Shlump-reht in [12℄ to show that for an operator T from Lp (2 < p < ∞), Condi-tion 1.4 does not imply that T fators through lp. E. Odell and Th. Shlump-reht used this spae to disprove W. B. Johnson's onjeture that Condi-tion 1.5 below and re�exivity of X imply that X embeds into an lp sumof �nite-dimensional spaes. They also formulated Condition 1.6 below andproved that Condition 1.6 and re�exivity of X do imply that X embeds intoan lp sum of �nite-dimensional spaes. The above-mentioned onditions arede�ned as follows:Condition 1.5. For all ε > 0, every normalized weakly null sequene in
X admits a subsequene whih is (1 + ε)-equivalent to the unit vetor basisof lp.Condition 1.6. There is a C > 1 suh that every normalized weaklynull tree in X admits a branh whih is C-equivalent to the unit vetor basisof lp.



Operators whih fator through lp or c0 179Let [N]<ω denote all �nite subsets of the positive integers. By a normal-ized weakly null tree, we mean a family (xA)A∈[N]<ω ⊂ SX with the propertythat every sequene (xA∪{n})n∈N is weakly null. Let A = {n1, . . . , nm} with
n1 < · · · < nm and B = {j1, . . . , jr} with j1 < · · · < jr. Then we say A is aninitial segment of B if m ≤ r and ni = ji when 1 ≤ i ≤ m. The tree order on
(xA)A∈[N]<ω is given by xA ≤ xB if A is an initial segment of B. A branh ofa tree is a maximal linearly ordered subset of the tree under the tree order.Motivated by Condition 1.6, we formulate a ondition stronger than Con-dition 1.4, whih is an operator version of Condition 1.6.Condition 1.7. For every normalized weakly null tree in X, there is abranh (xk) so that

∥

∥

∥
T

(

∑

akxk

)
∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R.This ondition turns out to be the right one for answering Question 1.3when X = Lp (2 < p < ∞).2. A ounterexample. In this setion, we onstrut an operator Tfrom l2 into X = (
∑

Xn)p (whih will be de�ned below) whih satis�esCondition 1.4 but does not fator through lp for 2 < p < ∞. Sine l2 isisomorphi to a omplemented subspae of Lp, we also get an operator from
Lp into X = (

∑

Xn)p whih satis�es Condition 1.4 but does not fatorthrough lp.Let 2 < q < p < ∞ and X = (
∑

Xn)p be the spae de�ned in [12℄, where
Xn is the ompletion of c00([N]≤n) under the norm
‖x‖n = sup

{(

m
∑

i=1

‖x|βi
‖p

q

)1/p
: (βi)

m
i=1 are disjoint segments in [N]≤n

}

.Here [N]≤n denotes all sets of natural numbers with ardinality less than n.By a segment in [N]≤n, we mean a sequene (Ai)
k
i=1 ∈ [N]≤n with

A1 = {n1, . . . , nl},

A2 = {n1, . . . , nl, nl+1}, . . . ,

Ak = {n1, . . . , nl, . . . , nl+k−1},for some n1 < · · · < nl+k−1. A branh in [N]≤n is a maximal segment in
[N]≤n.Remark 2.1. The node basis (ẽn

A)A∈[N]≤n given by ẽn
A(B) = δA,B forany B ∈ [N]≤n is a 1-unonditional basis for Xn. Moreover, (ẽn

Ai
)n
i=1 is 1-equivalent to the unit vetor basis of lnq if (Ai)

n
i=1 is a branh in [N]≤n.If we write l2 = (

∑

l2)2, (en
A)A∈[N]≤n is the unit vetor basis of the nth

l2 and (ẽn
A)A∈[N]≤n is the unit vetor basis of Xn, then the operator T : l2 →
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X = (

∑

Xn)p is de�ned so that
T (en

A) = ẽn
A.Sine 2 < q < p we an linearly extend T to be an operator of norm onefrom l2 into X.Claim 1. The operator T satis�es Condition 1.4.Let (xn) be a normalized weakly null sequene in l2, and ε > 0. Then

(T (xn)) is a weakly null sequene in (
∑

Xn)p. By the proof of Example 4.2in [12℄, we an pik a subsequene (xnk
) suh that for all (ak) ⊂ N,

∥

∥

∥
T

(

∑

akxnk

)∥

∥

∥
≤ 2

(

∑

‖T (akxnk
)‖p

)1/p
≤ 2

(

∑

|ak|
p
)1/p

.So we proved Claim 1. Our seond laim isClaim 2. T does not fator through lp.In order to prove the laim, we need the following lemma whih is anappliation of a result onerning blokings of F.D.D.'s proved in [7℄. Thisresult was reformulated as Proposition 1.g.4. in [10℄.Lemma 2.2. Let p > 2. Then any bounded linear operator A from l2 into
lp fators through (

∑

En)lp in suh a way that A = A′ ◦ J , where (En) is abloking of the anonial basis of l2 and J is the formal identity from l2 into
(
∑

En)lp .Proof. By Proposition 1.g.4 in [10℄, we �nd a bloking (En) of the anon-ial basis of l2 suh that A(En) is essentially ontained in Fn−1 ⊕Fn, where
(Fn) is a bloking of the anonial basis of lp. Let J be the formal identitymap from l2 into (

∑

En)lp . Sine p > 2, J is always bounded. Let A′ be thelinear map from (
∑

En)lp into lp suh that A = A′ ◦ J . We laim that A′ isbounded. Indeed, let x =
∑

xn with xn ∈ En. Then by the onstrution of
(En) and (Fn), we have

‖A′(x)‖ ≤
∥

∥

∥
A′

(

∑

x2n

)
∥

∥

∥
+

∥

∥

∥
A′

(

∑

x2n−1

)
∥

∥

∥

≤ (‖A‖ + ε)
((

∑

‖x2n‖
p
)1/p

+
(

∑

‖x2n−1‖
p
)1/p)

≤ 2(‖A‖ + ε)
(

∑

‖xn‖
p
)1/p

.So A′ is bounded.Now we an prove Claim 2.Proof of Claim 2. Suppose T fators through lp. Then by Lemma 2.2, Tfators through (
∑

En)lp for some bloking of the anonial basis of l2. Let
T = J1 ◦J2, where J1 is the formal identity from l2 into (

∑

En)lp and J2 is abounded linear operator from (
∑

En)lp into (
∑

Xn)lp . Sine T is the formal



Operators whih fator through lp or c0 181identity from l2 into (
∑

Xn)lp , we dedue that J2 is also a formal identity.By the hoie of (En) and the de�nition of Xn, for any k ∈ N, we an �nd a�nite basi subsequene (ek
An

)k
n=1 of l2 suh that ek

An
's sit in di�erent Ern 'sand (An)k

n=1 is a branh of [N]≤k. As J2 is the formal identity, we have
J2(e

k
An

) = ẽk
An

, hene ‖J2‖ ≥ k1/q−1/p. Sine k is arbitrary, this shows that
J2 is not bounded. This is a ontradition.3. Main result. Now we give a su�ient ondition for an operator from
Lp (2 < p < ∞) to fator through lp.Definition 3.1. Let 1 ≤ p < ∞, C > 0 and X, Y be Banah spaes.Suppose T : X → Y is a bounded linear operator. We say that T satis�esan upper-(C, p)-tree estimate if for every normalized weakly null tree in X,there exists a branh (xi) suh that

∥

∥

∥
T

(

∑

aixi

)∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R.When p = ∞, T satis�es an upper-(C,∞)-tree estimate if for every normal-ized weakly null tree in X, there exists a branh (xi) suh that
sup

n

{∥

∥

∥
T

(

n
∑

i=1

xi

)∥

∥

∥

}

≤ C.Theorem 3.2. Let 2 < p < ∞, X be a Banah spae, and let T :
Lp → X be a bounded linear operator. Then T satis�es an upper-(C, p)-treeestimate if and only if T fators through lp.As preparation for the proof, we present the following known lemmas(see [3℄).Lemma 3.3. Let 2 < p < ∞, X be a Banah spae, and let T : Lp → Xbe a bounded linear operator. Then T fators through lp if and only if thereare a bloking (Hn) of the Haar system and a bounded linear operator S :
(
∑

(Hn, ‖ · ‖p))lp → X suh that T = S ◦ J , where J is the formal identitymap from Lp into (
∑

(Hn, ‖ · ‖p))lp.Remark 3.4. Sine 2 < p < ∞, the formal identity map J from Lp into
(
∑

(Hn, ‖ · ‖p))p is always bounded.Proof of Lemma 3.4. For any bloking (Hn) of the Haar system, sine
Hn is �nite-dimensional and uniformly omplemented in Lp, it is uniformlyomplemented in lp. So (

∑

(Hn, ‖·‖p))lp is omplemented in lp, hene isomor-phi to lp by [14℄ (or Theorem 2.a.3 in [10℄). On the other hand, by TheoremII.1 in [3℄ any operator T from Lp into lp fators through (
∑

(Hn, ‖ · ‖p))lpfor some bloking (Hn) of the Haar system in the way that T = S ◦ J where
J is the formal identity.



182 B. ZhengLemma 3.5. Let 2 < p < ∞, X be a Banah spae, T : Lp → X be abounded linear operator and (Hn) be a bloking of the Haar system. Thenthere is a bounded linear operator S : (
∑

(Hn, ‖ · ‖p))lp → X suh that
T = S ◦J , where J is the formal identity map from Lp into (

∑

(Hn, ‖·‖p))lp ,if and only if there exists C > 0 suh that(3.1) ∥

∥

∥
T

(

∑

akxk

)
∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R, xk ∈ SHk
.Proof. Inequality (3.1) is equivalent to saying that the map Q : J(Lp) →

X whih satis�es T = Q◦J is bounded. Considering Remark 2.1 and notiingthat J(Lp) is obviously dense in (
∑

(Hn, ‖ · ‖p))lp , we are done.Definition 3.6. (xn) is said to be a blok sequene with respet to (En)if there exists a sequene of integers 0 = m1 < m2 < · · · suh that xn ∈
⊕mn+1−1

j=mn
Ej for all n ∈ N. (xn) is said to be a skipped-blok sequene withrespet to (En) if there exists a sequene of integers 0 = m1 < m2 < · · · suhthat mn + 1 < mn+1 and xn ∈

⊕mn+1−1
j=mn+1 Ej for all n ∈ N. Two skipped-blok sequenes (xn) and (yn) are said to be intrusive if x1, y1, x2, y2, . . . or

y1, x1, y2, x2, . . . is a blok sequene.Definition 3.7. A property P (C) with some parameter C > 0 for nor-malized blok sequenes in X is said to be losed under ombination if thereis a C ′ > 0 depending only on C suh that for any two intrusive normalizedblok sequenes (xn)n∈N and (yn)n∈N satisfying P (C), the natural ombi-nation sequene x1, y1, x2, y2, . . . or y1, x1, y2, x2, . . . satis�es P (C ′). For any
C > 0 and ε > 0, if there exists (δi) ց 0 so that for any normalized se-quene (xn) that has property P (C) with xn ∈ Fn for some bloking (Fn) of
(En), we have that any sequene (yn) with yn ∈ Fn and ‖yn − xn‖ < δn hasproperty P (C + ε), then we say P is stable under small perturbations.Definition 3.8. Let C > 0. A normalized blok sequene (xn) is saidto be C-good if (xn) has property P (C). Otherwise we say that it is C-bad.A branh of a normalized blok tree is C-good if it is a C-good sequene.A bloking (Fn) of (En) is C-good if all normalized sequenes (xn) with
xn ∈ Fn have property P (C). A bloking (Fn) of (En) is C-semigood if allnormalized sequenes (xn) with xn ∈ F2n have property P (C).Remark 3.9. If for every bloking (Fn) of (En), (Fn) is C-semigood,then any skipped-blok sequene (xn) with respet to (En) is C-good. Onthe other hand, if any skipped-blok sequene with respet to (En) is C-good,then all blokings of (En) are C-semigood.Definition 3.10. We say x sits in a blok of (En) if x =

∑k2

i=k1
xiwith xi ∈ Ei. Let y =

∑m2

i=m1
yi with yi ∈ Ei. If k2 < m1, then we say ysits farther than x. A normalized blok tree with respet to (En) is a family

(xA)A∈[N]<ω ⊂ SX suh that



Operators whih fator through lp or c0 183(a) For any A ∈ [N]<ω, xA sits in some blok of (En).(b) If A is a proper initial segment of B, then xB sits farther than xA.() If maxA < n < m, then xA∪{m} sits farther than xA∪{n}.Proposition 3.11. Let X be a Banah spae with an F.D.D. (En). Con-sider the three onditions:(i) There exists a C > 0 suh that every bloking of (En) has a furtherbloking (Fn) so that all further blokings of (Fn) are C-good.(ii) There exists a C > 0 suh that every bloking of (En) has a furtherbloking (Fn) so that all further blokings of (Fn) are C-semigood.(iii) There exists a C > 0 suh that every normalized blok tree withrespet to (En) in X has a C-good branh.Then:(a) (i) implies (ii) and (ii) implies (iii).(b) If property P is losed under ombination, then (ii) implies (i).() If property P is stable under small perturbations and makes D′
C losedunder the pointwise topology on [N]ω, for all C > 0, then (iii) implies(ii).Here D′

C is de�ned as
D′

C ={M ∈ [N]ω : the bloking of (En) orresponding to M is C-semigood}.
[N]ω denotes the set of all in�nite subsets of positive integers. For a bloking
(Fn) of (En), given by Fn =

∑ni

i=ni−1+1 Ei and n0 = 0, we say that (Fn)orresponds to the set {n1, n2, . . .}.Proof. Sine (a) and (b) trivially follow from the de�nitions above, weomit the proof.It remains to prove that (iii) implies (ii) when D′
C is losed under point-wise topology on [N]ω. This is essentially ontained in Theorem 3.3 of [12℄.For the onveniene of the reader, we write down a diret argument whihinludes only the part of the proof of Theorem 3.3 in [12℄ that is needed. Forany C > 0, set

DC = {blokings of (En) whih are C-semigood}.So we an identify DC with
D′

C = {M ∈ [N]ω : the bloking orresponding to M is C-semigood}.Let (Gn) be any bloking of (En). Sine property P makes D′
C losed underthe pointwise topology on [N]ω, by the in�nite version of Ramsey's theorem(f. [11℄), there are two ases:

Case 1: there is a bloking (Fn) of (Gn) all further blokings of whih are
C-semigood.
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Case 2: there is a bloking (Fn) of (Gn) no further bloking of whih is

C-semigood.In the �rst ase, we are done. In the seond ase, we will onstrut a bloktree whih results in a ontradition. Let N ′ be the in�nite subset of positiveintegers orresponding to the bloking (Fn) no further bloking of whihis C-semigood. Then for eah M̃ ∈ [N ′]ω (whih orresponds to a furtherbloking of (Fn)), we an pik a C-bad sequene (xM̃
i ) whih is a skipped-blok sequene relative to the bloking orresponding to M̃ . Letting N ′ =

{n1, n2, n3, . . .}, we know that for any M̃ ∈ [{n3, n4, . . .}]
ω,

x
{n1,n2}∪M̃
1 ∈ S[Ei]|

n2
i=n1+1

.By Ramsey's theorem and the ompatness of S[Ei]|
n2
i=1

, we an �nd an x{1} ∈

S[Ei]|
n2
i=n1+1

and an M̃1 ⊂ {n3, n4, . . .} suh that for all M̃ ∈ [M̃1]ω, we have
‖x{1} − x

{n1,n2}∪M̃
1 ‖ < δ1.Repeating the proedure again, we an �nd an x{2} ∈ S

[Ei]|
n′
2

i=1+n′
1

and an
M̃2 ∈ [M̃1]ω so that for all M̃ ∈ [M̃2]ω, we have

‖x{2} − x
{n′

1
,n′

2
}∪M̃

1 ‖ < δ1,where n′
1, n

′
2 are the �rst two elements of M̃2. Continuing this proedure,we get xi for all i ∈ N. For the seond level of the tree, by using the samemethod as above, we an �nd for x1 an x1,2 ∈ S

[Ei]|
n′
2

i=1+n′
1

and an M̃1,2 ∈

[M̃1 − {n′
1, n

′
2}]

ω suh that for all M̃ ∈ [M̃1,2]ω, we have
‖x{1,2} − x

{n1,n2,n′
1
,n′

2
}∪M̃

2 ‖ < δ2.Let ñ2
1, ñ

2
2 be the smallest two elements of M̃1,2; then we an �nd our desired

x1,3 and so on. Sine P is stable under small perturbations, by ontinuingthis proess, we get a normalized blok tree with respet to (Fn) no branh ofwhih has property P (C + ε). Sine C is arbitrary, we get a ontradition.Now we an prove our main result.Proof of Theorem 3.2. Given an operator T , we say that a normalizedblok sequene (xn) with respet to the anonial Haar system (hn) hasproperty P (C) if
∥

∥

∥
T

(

∑

aixi

)∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R.Let (xn) and (yn) be two intrusive normalized skipped-blok sequenes with



Operators whih fator through lp or c0 185respet to (hn). If both of them have property P (C), then
∥

∥

∥
T

(

∑

(aixi + biyi)
)
∥

∥

∥
≤

∥

∥

∥
T

(

∑

aixi

)
∥

∥

∥
+

∥

∥

∥
T

(

∑

biyi

)
∥

∥

∥

≤ C
((

∑

|ai|
p
)1/p

+
(

∑

|bi|
p
)1/p)

≤ 2C
(

∑

(|ai|
p + |bi|

p)
)1/p

.So P is losed under ombination. Let (Hn) be a bloking of (hn), and (xn)be a normalized blok sequene with xn ∈ Hn whih has property P (C).Let (yn) be another normalized blok sequene with yn ∈ Hn suh that
‖xn − yn‖ < δn where δn < ε/2n‖T‖. Then

∥

∥

∥
T

(

∑

aiyi

)
∥

∥

∥
≤

∥

∥

∥
T

(

∑

aixi

)
∥

∥

∥
+

∥

∥

∥
T

(

∑

ai(xi − yi)
)
∥

∥

∥

≤ (C + ε)
(

∑

|ai|
p
)1/p

.So P is stable under small perturbations. Also notie that the set
Ω(C) =

{

(xk) ∈ Sω
Lp

:
∥

∥

∥
T

(

∑

akxk

)∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p}

, ∀(ak) ⊂ R,is losed under pointwise limits where Sω
Lp

denotes the set of all in�nitesequenes in the unit sphere of Lp. Then the set
D′

C = {M ∈ [N]ω : the bloking orresponding to M is C-semigood}is losed under pointwise limits in [N]ω. For Lp, sine every blok tree is aweakly null tree, by hypothesis every blok tree has a good branh. So byProposition 3.11 and our argument above, we know that there is a bloking
(Hn) of (hn) and D < ∞ suh that all blok sequenes of (Hn)n>1 are in
Ω(D). Then it is easy to see that there is a C ′ > 0 so that all blok sequenesof (Hn) are in Ω(C ′). Combining Lemmas 3.3 and 3.5, we onlude that Tfators through lp.Remark 3.12. If T fators through lp, say T = T1 ◦ T2 where T2 is anoperator from Lp into lp and T1 is an operator from lp into X, then for anynormalized weakly null tree (xA) in Lp, (T2(xA)) is a weakly null tree in lp.Hene there is a branh of (xA) whih satis�es an upper-(2, p)-tree estimate.So the upper-(C, p)-tree estimate is also a neessary ondition.Atually we have the following generalization of Theorem 3.2.Definition 3.13. Let 1 ≤ p ≤ ∞. Let X be a Banah spae with anF.D.D. (En). We say (En) satis�es a blok lower-p estimate if there exists a
C > 0 suh that for any blok basis (xn) with respet to (En),

∥

∥

∥

∑

xn

∥

∥

∥
≥ C

(

∑

‖xn‖
p
)1/p

.



186 B. ZhengTheorem 3.14. Let 1 < p ≤ ∞ and X be a Banah spae with a shrink-ing F.D.D. (En) whih satis�es a blok lower-p estimate. Let T : X → Ybe a bounded linear operator whih satis�es an upper-(C, p)-tree estimate. If
p < ∞, then T fators through (

∑

Fn)lp and if p = ∞, T fators through
(
∑

Fn)c0 for some bloking (Fn) of (En).Proof. Let p < ∞. Let (Fn) be any bloking of (En) and JF : (
∑

Fn)X →
(
∑

Fn)lp be the formal identity map. Sine (En) satis�es a blok lower-pestimate, JF is always bounded. If the map SF : JF (X) → Y with T =
SF ◦ JF |X is bounded, i.e. there exists a C > 0 suh that for all (xk) with
xk ∈ Fk and j ∈ N,

∥

∥

∥
T

(

j
∑

k=1

akxk

)
∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

, ∀(ak) ⊂ R,then T fators through the subspae JF [X] of (
∑

Fn)lp . Sine JF [X] isdense in (
∑

Fn)lp , the operator SF an be extended to the whole spae
(
∑

Fn)lp . Hene T fators through (
∑

Fn)lp . For an operator T , we say thata normalized blok sequene (xn) with respet to (En) has property P (C) iffor all j ∈ N,
∥

∥

∥
T

(

j
∑

i=1

aixi

)∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R.As in the proof of Theorem 3.2, we an hek that property P is losed underombination and stable under small perturbation. Sine (En) is shrinking,every blok tree is weakly null, hene by hypothesis every blok tree has agood branh. Now by applying Proposition 3.11, we onlude that there isa bloking (Fn) of (En) so that the operator SF de�ned above is bounded.The proof above works as well when p = ∞.A further question is what if X is only a subspae of a spae with ashrinking F.D.D. In the ase when p is �nite, we an prove the followinggeneralization of Theorem 3.2 by using the method of the proof of Theorem4.1 in [12℄.Theorem 3.15. Let 1 < p < ∞ and X be a subspae of a spae Zwith a shrinking F.D.D. (En) whih satis�es a blok lower-p estimate. Let
T : X → Y be a bounded linear operator whih satis�es an upper-(C, p)-treeestimate. Then T fators through a subspae of (

∑

Fn)lp , where (Fn) is abloking of (En).In order to prove the above theorem, we need Lemma 3.16, whih is aresult of W. B. Johnson restated as Corollary 4.4 in [12℄.Lemma 3.16 (Corollary 4.4 in [12℄). Let X be a subspae of the re�exivespae Z and let (Fi) be an F.D.D. for Z. Let δi ↓ 0. There exists a bloking
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(Gi) of (Fi) given by Gi =

⊕Ni

j=Ni−1+1 Fj for some 0 = N0 < N1 < · · ·with the following property. For all x ∈ SX there exist (xi)
∞
i=1 ⊂ X and

ti ∈ (Ni−1, Ni] for i ∈ N so that :(a) x =
∑∞

i=1 xi.(b) For i ∈ N, either ‖xi‖ < δi or ‖P⊕ti−1

j=ti−1+1
Fj

(xi) − xi‖ < δi‖xi‖.() For i ∈ N, ‖P⊕ti−1

j=ti−1+1
Fj

(x) − xi‖ < δi.Proof of Theorem 3.15. Let (Fn) be any bloking of (En) and JF :
(
∑

Fn)Z → (
∑

Fn)lp be the formal identity map. Sine (En) satis�es ablok lower-p estimate, JF is always bounded. If the map SF : JF (X) → Ywith T = SF ◦ JF |X is bounded, i.e. there exists a C > 0 suh that for all
x =

∑

akxk ∈ X with xk ∈ SFk
,

∥

∥

∥
T

(

∑

akxk

)∥

∥

∥
≤ C

(

∑

|ak|
p
)1/p

,then T fators through a subspae of (
∑

Fn)lp . Let C > 0 and set
A =

{

(xi) ∈ Sω
X : ∀j ∈ N,

∥

∥

∥
T

(

j
∑

i=1

aixi

)
∥

∥

∥
≤ C

(

∑

|ai|
p
)1/p

, ∀(ai) ⊂ R

}

.Applying Proposition 2.4 in [13℄ to the set A, we get a bloking (Fi) of
(Ei) suh that there exists δ = (δi) so that if (xn) ⊂ SX is a δ-skippedblok with respet to (Fn) (see De�nition 2.2 in [13℄), then whenever ∑

aixionverges, we have ‖T (
∑

aixi)‖ ≤ 2C(
∑

|ai|
p)1/p. Beause the F.D.D. (Ei)is shrinking and satis�es a blok lower-p estimate, Z is re�exive. Now let (Gi)be the bloking of (Fi) given by Lemma 3.16. Let x ∈ SX , x =

∑

xi =
∑

x̃iwith x̃i ∈ Gi and xi as in Lemma 3.16. Let yi = P⊕ti−1

j=ti−1+1
Fj

x; then thereexist C1, C2 suh that
C1 max(‖yi‖, ‖yi+1‖) − δi ≤ ‖x̃i‖ ≤ C2‖yi‖ + δi.So when δi's are su�iently small, we have

∥

∥

∥
T

(

∑

x̃i

)∥

∥

∥
=

∥

∥

∥
T

(

∑

xi

)∥

∥

∥
≤ C

(

∑

‖xi‖
p
)1/p

≤ 2C
(

∑

‖yi‖
p
)1/p

≤ C ′
(

∑

‖x̃i‖
p
)1/p

.This is exatly what we want.In partiular, when Z is Lp (2 < p < ∞), we have the orollary below.Corollary 3.17. Let 2 < p < ∞ and let X be a subspae of Lp. If
T : X → Y is a bounded linear operator whih satis�es an upper-(C, p)-treeestimate, then T fators through a subspae of lp.



188 B. ZhengFor the ase when p = ∞, we have the following result, the proof of whihwas shown to me by W. B. Johnson.Theorem 3.18. Let X be a Banah spae with X∗ separable. Let T :
X → Y be a bounded linear operator satisfying an upper-(C,∞)-tree esti-mate. Then T fators through a subspae of c0.To prove the theorem, we need the following lemma, whih is a orollaryof Theorem 3.14.Lemma 3.19. Let X be a Banah spae with a shrinking F.D.D. (Ei) andlet T : X → Y be a bounded linear operator satisfying an upper-(C,∞)-treeestimate. Then T fators through a subspae of c0.Proof. By Theorem 3.14, we know that T fators through (

∑

Fi)c0 forsome bloking (Fi) of (Ei). Sine (
∑

Fi)c0 embeds into c0, T fators througha subspae of c0.Proof of Theorem 3.18. For onveniene, without loss of generality, weassume Y is l∞. Sine X∗ is separable, by Theorem IV.4 in [6℄ (or see Theo-rem 1.g.2 in [10℄), there is a losed subspae E of X so that both E and X/Ehave a shrinking F.D.D. Let TE be the restrition of the operator T to E. ByLemma 3.19, TE fators through a subspae of c0. We write TE = B◦A where
A is an operator from E into c0 and B is an operator from A[E] into l∞.Sine X is separable and A[E] is in c0, we an extend A to be de�ned on X.Let Ã be the extension. Sine Y = l∞, we an also extend B to be de�nedon c0. Let B̃ be the extension. So we get a new operator T̃ = B̃ ◦ Ã whihfators through a subspae of c0 (atually through c0).Now we onsider the operator T − T̃ . It is identially zero on E and alsosatis�es an upper-(C1,∞)-tree estimate. So it naturally indues an operator Sfrom X/E into l∞ (S(x + E) = (T − T̃ )(x)). If we an prove that S satis�esan upper-(C,∞)-tree estimate, then by Lemma 3.19, S fators through asubspae of c0. Hene so does T − T̃ . Sine T̃ fators through a subspaeof c0, we onlude that so does T = (T − T̃ ) + T̃ .So it is enough to show S satis�es an upper-(C,∞)-tree estimate. Letus �rst prove that for any normalized weakly null sequene (zi) in X/E,there is a subsequene (zki

) whose pull bak (under the anonial quotient
Q : X → X/E) (xi) in X is also weakly null and max{‖xi‖} < 2. Pik asequene (xi) in X suh that Q(xi) = zi and max{‖xi‖} < 1 + ε. Sine l1does not embed into X, by Rosenthal's l1 theorem (see [15℄) and passing to asubsequene, we an assume (xi) is weakly Cauhy. Sine (zi) is weakly null,we an �nd onvex ombinations yi =

∑Ni

j=Ni−1+1 αjzj suh that ‖yi‖ < 1/2i.Replaing xi by xi −
∑Ni

j=Ni−1+1 αjxj, we see that (xi) is weakly null and
‖Q(xi) − zi‖ < 1/2i. By replaing xi by an element in the ball entered at
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xi with radius 1/2i, we get a weakly null sequene (xi) suh that Q(xi) = ziand ‖xi‖ < 2.For any normalized weakly null tree in X/E, using the result above, it iseasy to prove by indution that there is a subtree whose pull bak in X is alsoa weakly null tree and the norms of eah element of the tree are uniformlybounded. Sine T − T̃ satis�es an upper-(C1,∞)-tree estimate, we onludethat S satis�es an upper-(C,∞)-tree estimate. We are done.When T is the identity map, in view of Lemma 3.21, we have the followingorollary.Corollary 3.20 (Theorem 3.2 in [9℄). Let X be a separable Banahspae whih does not ontain l1. If for every normalized weakly null treein X, there is a branh (xi) so that

sup
n

{∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

X

}

≤ C,then X embeds into c0.Lemma 3.21. Let 1 < p ≤ ∞. When X is a Banah spae with anupper-(C, p)-tree estimate, then the ondition �X is separable and l1 doesnot embed into X� and the ondition �X∗ is separable� are equivalent.Proof of Lemma 3.21.Fat 1 (see Theorem 4.2 in [1℄). If l1 does not embed into X, then
η(X) = I+

w (X).Here η(X) is the Szlenk index (see De�nition 4.1 in [1℄) and I+
w (X) isthe l+1 -weakly null index (see De�nition 3.6 in [1℄).Fat 2. The upper-(C, p)-tree estimate implies that I+

w (X) = ω.Fat 3 (see (ix) of Theorem 3.14 of [1℄). If l1 does not embed into X,then η(X) < ω1 is equivalent to X∗ being separable.From the above fats, we know that if l1 does not embed into X and Xsatis�es an upper-(C, p)-tree estimate for some p > 1, then X∗ is separable.The other diretion is trivial. So we are done.Aknowledgements. The author thanks the referees for thorough read-ing of this paper, whih led to many useful suggestions for formal improve-ments and helped me avoid some tehnial impreisions.
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