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The simplex of tracial quantum symmetric states

by

Yoann Dabrowski (Lyon), Kenneth J. Dykema (College Station, TX)
and Kunal Mukherjee (Chennai)

Abstract. We show that the space of tracial quantum symmetric states of an arbi-
trary unital C∗-algebra is a Choquet simplex and is a face of the tracial state space of the
universal unital C∗-algebra free product of A with itself infinitely many times. We also
show that the extreme points of this simplex are dense, making it the Poulsen simplex
when A is separable and nontrivial. In the course of the proof we characterize the centers
of certain tracial amalgamated free product C∗-algebras.

1. Introduction and description of results. Quantum exchangeable
random variables (that is, random variables whose distributions are invariant
for the natural co-actions of S. Wang’s quantum permtuation groups [11])
were characterized by Köstler and Speicher [6] to be those sequences of iden-
tically distributed random variables that are free with respect to the condi-
tional expectation onto their tail algebra (that is, free with amalgamation
over the tail algebra).

In [4], Dykema, Köstler and Williams considered, for any unital C∗-
algebra A, the analogous notion of quantum symmetric states on the univer-
sal unital free product C∗-algebra A = ∗∞1 A. The symbol QSS(A) denotes
the compact convex set of all quantum symmetric states on A. The paper [4]
contains a convenient characterization of the extreme points of QSS(A). Also
the compact convex set TQSS(A) ⊆ QSS(A) of all tracial quantum symmet-
ric states on A was considered, and the extreme points of TQSS(A) were
described. Question 8.8 of [4] asks whether TQSS(A) is a Choquet simplex
(when A has a tracial state, for otherwise TQSS(A) is empty).

The main result of this note is that TQSS(A) is a Choquet simplex
whose extreme points are dense. Thus, when A is separable and nontrivial,
TQSS(A) is the Poulsen simplex [7], which is the unique metrizable simplex
whose extreme points are dense. In showing this, we also see that TQSS(A)
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is a face of the simplex TS(A) of all tracial states on A and we obtain a better
description of the extreme points of TQSS(A).

Along the way, we prove some technical results that we need and that
may be useful in other contexts. In Section 2, we provide a proof (not readily
found in the literature) of a well known fact that natural conditions are
sufficient for an amalgamated free product to have a trace. In Section 3, we
characterize the centers of certain tracial von Neumann algebra free products
with amalgamation and we use this to characterize the set of conditional-
expectation-preserving traces of von Neumann algebras. Section 4 is short
and consists of a technical result about conditional expectations. Finally, in
Section 5, we prove the main result.

2. Amalgamated free products and tracial amalgamated free
products. Let D be a von Neumann algebra, let I be a nonempty set and
for every i ∈ I let Bi be a von Neumann algebra containing D by a unital
inclusion of von Neumann algebras, and suppose Ei : Bi → D is a normal
conditional expectation with faithful GNS representation. Let

(M, F ) = (∗D)i∈I(Bi, Ei)

be the von Neumann algebra amalgamated free product. In the case that the
Ei are all faithful, details of this construction were given by Ueda [9], and
he showed that then F is faithful (see [9, p. 364]). Alternatively, and also
when the conditional expectations Ei fail to be faithful but do have faithful
GNS representations, the free product construction may be performed by
(a) taking the C∗-algebra free product (M0, F0) of the family of (Bi, Ei)
acting on the free product Hilbert C∗-module V , (b) taking any normal,
faithful ∗-representation π of D on a Hilbert space Hπ, (c) lettingM be the
strong-operator-topology closure of the image of the resulting representation
of M0 on the Hilbert space V ⊗π Hπ, and (d) letting F : M → D be
compression by the projection from V ⊗π Hπ onto the Hilbert subspace
D ⊗π Hπ. The fact that M is independent of the representation π follows
from the fact that any two normal faithful representations of D are related
by dilation and compression by a projection in the commutant.

The following result is well known, but since we rely on it, this seems like
a good place to give a brief proof.

Proposition 2.1. Suppose τ is a normal trace on D such that for all
i ∈ I, τ ◦ Ei is a trace on Bi. Then τ ◦ F is a trace on M and is faithful if
and only if τ is faithful. Furthermore, every normal tracial state onM that
is preserved by F arises in this fashion.

Proof. Since every tracial state τ on M that is preserved by F must
equal τ�D ◦F , the last assertion of the proposition is clearly true. Moreover,
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suppose we know that τ ◦ F is a trace; if we assume also that τ is faithful,
then the GNS representation of τ ◦ F will be faithful; since it is a trace, it
follows that τ ◦ F is itself faithful. Thus, we need only show that τ ◦ F is a
trace.

Let Boi = Bi ∩ kerEi. Let m,n ∈ N and let bj ∈ Boi(j) for 1 ≤ j ≤ m and
cj ∈ Bok(j) for all 1 ≤ j ≤ n, with i(j) 6= i(j + 1) and k(j) 6= k(j + 1). If
d ∈ D, then by freeness, we have

(2.1) F (d(c1 · · · cn)) = 0 = F ((c1 · · · cn)d),
so the composition with τ is also zero. We will show by induction on
min(m,n) that

(2.2) τ ◦ F ((bm · · · b2b1)(c1c2 · · · cn)) = τ ◦ F ((c1c2 · · · cn)(bm · · · b2b1)),
and furthermore that the above quantity is zero unlessm = n and i(j) = k(j)
for all j, in which case it equals

(2.3) τ ◦ Ei(m)(bmEi(m−1)(bm−1 · · ·Ei(2)(b2Ei(1)(b1c1) c2) · · · cm−1) cm)
= τ ◦ Ei(1)(c1Ei(2)(c2 · · ·Ei(m−1)(cm−1Ei(m)(cmbm) bm−1) · · · b2) b1).

This will suffice to prove the proposition, because the span of D and such
elements b1 · · · bm is dense inM.

By freeness, we have

(2.4) F ((bm · · · b2b1)(c1c2 · · · cn))
= δi(1),k(1) F ((bm · · · b2)Ei(1)(b1c1)(c2 · · · cn)).

If m = n = 1, then (2.2) and (2.3) follow from traciality of τ ◦ Ei(1) :
Bi(1) → C. If min(m,n) = 1 and max(m,n) > 1, then the right-hand side of
(2.4) is zero by (2.1), and by symmetry also F ((c1c2 · · · cn)(bm · · · b2b1))=0,
as required.

We may thus suppose min(m,n) > 1 and i(1) = k(1). Then, using the
induction hypothesis (and noting that Dc2 ⊆ Bok(2)), we have

τ ◦ F ((bm · · · b2b1)(c1c2 · · · cn))
= δi(1),k(1) τ ◦ F ((bm · · · b2)Ei(1)(b1c1)(c2 · · · cn))
= δi(1),k(1)δm,nδi(2),k(2) · · · δi(m),k(m)

· τ ◦ Ei(m)(bmEi(m−1)(bm−1 · · ·Ei(2)(b2Ei(1)(b1c1) c2) · · · cm−1) cm).
If m 6= n or if m = n but i(j) 6= k(j) for some j, then not only is the
above quantity zero but, by symmetry, also τ ◦ F ((c1c2 · · · cn)(bm · · · b2b1))
vanishes.

We may thus suppose m = n > 1 and i(j) = k(j) for all j. Treating
Ei(1)(b1c1)c2 as an element of Bok(2), by the induction hypothesis of (2.3), we
get
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τ ◦ Ei(m)(bmEi(m−1)(bm−1 · · ·Ei(2)(b2Ei(1)(b1c1) c2) · · · cm−1) cm)
= τ ◦ Ei(2)(Ei(1)(b1c1)c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2)
= τ(Ei(1)(b1c1)Ei(2)(c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2))
= τ ◦ Ei(1)(b1c1Ei(2)(c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2))
= τ ◦ Ei(1)(c1Ei(2)(c2Ei(3)(c3 · · ·Ei(m)(cmbm) · · · b3)b2)b1),

where in the last equality we have used the traciality of τ ◦ Ei(1). Thus, we
have proved the identity (2.3) and that this quantity equals

τ ◦ F ((bm · · · b2b1)(c1c2 · · · cn)).
By symmetry, it is equal also to τ ◦ F ((c1c2 · · · cn)(bm · · · b2b1)).

Of course, the result analogous to Proposition 2.1 for amalgamated free
products of C∗-algebras is true by the same proof.

3. Centers of certain amalgamated free products. Let D ⊆ B
be a unital inclusion of von Neumann algebras with a normal conditional
expectation E : B → D whose GNS representation is faithful. Suppose there
is a normal, faithful, tracial state τD on D such that τB := τD ◦E is a trace
on B. The GNS representation of τB is an action of B on the Hilbert space
L2(B, τB) = L2(B, E)⊗DL2(D, τ) by multiplication on the left, and thus the
GNS representation of τB is faithful. Since τB is a trace, it follows that τB
itself is faithful, and hence E must be faithful.

For an element x of a von Neumann algebra, we will let [x] denote the
range projection of x. Thus, [x] is the orthogonal projection onto the closure
of the range of x, considered as a Hilbert space operator, and it belongs to
the von Neumann algebra generated by x. The notation Z(A) means the
center of A.

Lemma 3.1. With E : B → D and trace τB as above, let
q = q(E) =

∨
{[E(b∗b)] | b ∈ kerE}.

Then q ∈ D ∩ Z(B) and (1− q)B = (1− q)D.
Proof. If b ∈ kerE and u is a unitary in D then bu ∈ kerE, and

[E((bu)∗(bu)] = [u∗E(b∗b)u] = u∗[E(b∗b)]u

and we get u∗qu = q. Thus, q ∈ Z(D).
If q 6∈ Z(B), then there would be a partial isometry v ∈ B so that

0 6= v∗v ≤ 1−q and vv∗ ≤ q. Since q ∈ Z(D) we get E(v) = qE(v)(1−q) = 0.
But, since E is faithful, E(v∗v) 6= 0 and [E(v∗v)] ≤ 1 − q, contrary to the
definition of q. Thus, we must have q ∈ Z(B).

If (1 − q)B 6= (1 − q)D, then there would be b ∈ (1 − q)B ∩ kerE with
b 6= 0. But again, this yields 0 6= E(b∗b) = (1 − q)E(b∗b), contrary to the
choice of q. Thus, we must have (1− q)B = (1− q)D.
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Let

(3.1) (M, F ) = (∗D)∞1 (B, E)

be the von Neumann algebra free product with amalgamation over D of
infinitely many copies of (B, E). Our main goal in this section is to show
that the center ofM is contained in D.

Let τ = τD◦F . By Proposition 2.1, τ is a faithful trace onM. Let (Bi, Ei)
denote the ith copy of (B, E) in the construction ofM. We now describe some
standard notation forM and related objects. The von Neumann algebraM
is constructed on the Hilbert space L2(M, τ), and we write M 3 x 7→ x̂ ∈
L2(M, τ) for the usual mapping with dense range. For convenience, we will
take the inner product on L2(M, τ) to be linear in the second variable and
conjugate linear in the first variable. Thus, we have, for x1, x2 ∈M,

〈x̂1, x̂2〉 = τ(x∗1x2),

and, as usual, we write the corresponding norm ‖x‖2 = τ(x∗x)1/2. Then we
have L2(M, τ) = L2(M, F )⊗D L2(D, τD), and this is isomorphic to

L2(D, τD)⊕
⊕
k≥1

i1,...,ik≥1
ij 6=ij+1

Ho
i1 ⊗D · · · ⊗D Ho

ik
⊗D L2(D, τD),

where Ho
i is the Hilbert D,D-bimodule L2(Bi, Ei) 	 D. We will denote by

λ the left action of M on L2(M, τ) and by ρ the anti-multiplicative right
action, ρ(x) = Jλ(x∗)J , where J is the standard conjugate linear isometry
of L2(M, τ) defined by x̂ 7→ (x∗)̂ .

Lemma 3.2. Let N ∈ N, let

η1, η2 ∈ L2(D, τD)⊕
⊕
k≥1

1≤i1,...,ik≤N
ij 6=ij+1

Ho
i1 ⊗D · · · ⊗D Ho

ik
⊗D L2(D, τD)

and let b1, b2 ∈ BN+1. Let c1, c2, d1, d2 ∈ D be such that

c∗1c2 = EN+1(b
∗
1b2), d2d

∗
1 = EN+1(b2b

∗
1).

Then

〈λ(b1)η1, λ(b2)η2〉 = 〈λ(c1)η1, λ(c2)η2〉,
〈ρ(b1)η1, ρ(b2)η2〉 = 〈ρ(d1)η1, ρ(d2)η2〉.

Proof. We may without loss of generality assume ηj = x̂j for some xj in
W ∗(

⋃N
j=1 Bj). Then

〈λ(b1)η1, λ(b2)η2〉 = τ(x∗1b
∗
1b2x2) = τD(F (x

∗
1b
∗
1b2x2)).

By freeness, we have

F (x∗1b
∗
1b2x2) = F (x∗1F (b

∗
1b2)x2) = F (x∗1c

∗
1c2x2),
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from which we get

〈λ(b1)η1, λ(b2)η2〉 = τ(x∗1c
∗
1c2x2) = 〈λ(c1)η1, λ(c2)η2〉.

Similarly, we have

〈ρ(b1)η1, ρ(b2)η2〉 = τ(b∗1x
∗
1x2b2) = τ(x2b2b

∗
1x
∗
1)

= τ(x2d2d
∗
1x
∗
1) = 〈ρ(d1)η1, ρ(d2)η2〉.

Theorem 3.3. The center ofM lies in D. In particular,

(3.2) Z(M) = D ∩ Z(B).

Proof. It suffices to show Z(M) ⊆ D, for then (3.2) follows readily.
Let x ∈ Z(M). Let η = x̂− F (x)̂ . Then

η ∈
⊕
k≥1

i1,...,ik≥1
ij 6=ij+1

Ho
i1 ⊗D · · · ⊗D Ho

ik
⊗D L2(D, τD).

For N ∈ N, let ηN be the orthogonal projection of η onto the subspace⊕
k≥1

1≤i1,...,ik≤N
ij 6=ij+1

Ho
i1 ⊗D · · · ⊗D Ho

ik
⊗D L2(D, τD).

Then ηN converges in L2(M, τ) to η as N →∞. Suppose b ∈ B∩ kerE. Fix
N ∈ N and let bN denote the copy of b in the copy BN ⊆ M of B. Then
λ(bN )ηN−1 and ρ(bN )ηN−1 are orthogonal to each other, because they lie in
the respective subspaces⊕

k≥1
1≤i1,...,ik≤N−1

ij 6=ij+1

Ho
N ⊗D Ho

i1 ⊗D · · · ⊗D Ho
ik
⊗D L2(D, τD),(3.3)

⊕
k≥1

1≤i1,...,ik≤N−1
ij 6=ij+1

Ho
i1 ⊗D · · · ⊗D Ho

ik
⊗D Ho

N ⊗D L2(D, τD).(3.4)

On the other hand, λ(bN )F (x)̂ and ρ(bN )F (x)̂ lie in the subspace Ho
N ⊗D

L2(D, τD), which is orthogonal to both of the subspaces (3.3) and (3.4).
Thus, we have

0 = (bNx− xbN )̂ = (λ(bN )− ρ(bN ))x̂
= (λ(bN )− ρ(bN ))(ηN−1 + F (x)̂ + (η − ηN−1))
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and from the orthogonality relations noted above, we get

(3.5) ‖λ(bN )ηN−1‖22 + ‖ρ(bN )ηN−1‖22
≤ ‖λ(bN )ηN−1 − ρ(bN )ηN−1 + (λ(bN )− ρ(bN ))F (x)̂ ‖22
= ‖(λ(bN )− ρ(bN ))(η − ηN−1)‖22
≤ 4‖b‖2‖η − ηN−1‖22.

Consider the elements d1 = E(b∗b)1/2 and d2 = E(bb∗)1/2 of D. By Lem-
ma 3.2, we have

‖λ(bN )ηN−1‖2 = ‖λ(d1)ηN−1‖2, ‖ρ(bN )ηN−1‖2 = ‖ρ(d2)ηN−1‖2,
and from (3.5), we get

‖λ(d1)ηN−1‖22 + ‖ρ(d2)ηN−1‖22 ≤ 4‖b‖2‖η − ηN−1‖22.
Letting N →∞, we get

(3.6) λ(d1)η = 0 = ρ(d2)η.

Let q = q(E) ∈ D ∩ Z(B) be the projection associated to the conditional
expectation E : B → D as described in Lemma 3.1. From (3.6) and letting b
run through all of kerE, we get λ(q)η=ρ(q)η=0. This yields q(x−F (x))=0,
so x − F (x) ∈ (1 − q)B = (1 − q)D. But x − F (x) ⊥ D, so we must have
x− F (x) = 0 and x ∈ D.

The aim of the remainder of this section (realized in Corollary 3.6 below)
is to characterize the normal traces on a von Neumann subalgebra whose
compositions with a given conditional expectation are traces on the larger
von Neumann algebra. The result is quite natural and is perhaps known.
It may also be possible to prove it directly using state decompositions or
averaging techniques, rather than free products. However, as we get it from
the results above with very little extra effort, it seems worth doing it here.
Furthermore, it is clearly related to the proof of our main result, Theorem 5.3,
and indeed to the improved characterization of extremality of elements of
TQSS(A), though we do not actually use it in the proof.

Let D ⊆ B be a unital inclusion of finite von Neumann algebras with
a faithful conditional expectation E : B → D. Suppose there is a normal
faithful tracial state ρ on D such that ρ ◦ E is a trace on B. Let
(3.7) C = Z(B) ∩ D.
Let (M, F ) be the free product of infinitely many copies of (B, E) with amal-
gamation over D, as in (3.1). Due to the existence of ρ, by Proposition 2.1,
M is a finite von Neumann algebra. Let η be the center valued trace onM
and let η�D denote its restriction to D. By Theorem 3.3, the center ofM is
C as in (3.7).
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Let α be a permutation of N that has no proper, nonempty, invariant
subsets; thus, α results from the shift on Z after fixing a bijection from N
to Z. Let α̂ be the automorphism ofM that permutes the copies of B in the
free product construction (3.1) according to α.

Lemma 3.4. We have η = η ◦ α̂.
Proof. Dixmier averaging says that for any x ∈ M, η(x) is the unique

element in the intersection of C and the norm closed convex hull of the
unitary conjugates of x. (See, for example, Section 8.3 of [5].) In symbols,
this is

{η(x)} = C ∩ conv{uxu∗ | u ∈ U(M)}.
Since C ⊆ D, α̂ leaves every element of C fixed. Thus,

{η(x)} = α̂({η(x)}) = α̂(C) ∩ α̂(conv{uxu∗ | u ∈ U(M)})
= C ∩ conv{u α̂(x)u∗ | u ∈ U(M)}) = {η(α̂(x))}.

Lemma 3.5. We have η = η ◦ F .
Proof. It is well known and not difficult to check that for all x ∈M, the

ergodic averages
1

n

n−1∑
k=0

α̂k(x)

converge in ‖ ·‖2-norm as n→∞, and thus also in strong operator topology,
to F (x). Because the center valued trace is normal, using Lemma 3.4, we get

η(F (x)) = lim
n→∞

1

n

n−1∑
k=0

η(α̂k(x)) = η(x).

For a von Neumann algebra N , we let NTS(N ) denote the set of normal
tracial states on N .

Corollary 3.6. The map

(3.8) τ 7→ τ ◦ η�D
is a bijection from NTS(Z(B) ∩ D) onto
(3.9) {ρ ∈ NTS(D) | ρ ◦ E is a trace on B}.

Proof. It is clear that the map (3.8) is injective.
We view B as embedded in M by identification of B with any of the

copies arising in the free product construction (3.1). Since, by Lemma 3.5,
η = η ◦E = η�D ◦E, if τ ∈ NTS(C) and ρ = τ ◦η�D, then ρ◦E = τ ◦ (η�B) =
(τ ◦ η)�B is a trace on B. Thus, the map (3.8) goes into the set (3.9).

To see that it is onto, suppose ρ belongs to the set (3.9). SinceM is a finite
von Neumann algebra, by a standard theory (see, for example, [5, Theorem
8.3.10]), the map τ 7→ τ ◦ η is a bijection from NTS(C) onto NTS(M). By



Tracial quantum symmetric states 211

Proposition 2.1, ρ◦F is a normal tracial state onM, so equals τ ◦η for some
τ ∈ NTS(C). Thus, ρ = ρ ◦ F �D = τ ◦ η�D, as required.

4. The conditional expectation onto the tail algebra in an amal-
gamated free product. Some of the main results of [4] depended on the
characterization of quantum symmetric states as arising from amalgamated
free products of C∗-algebras in a natural way. In this section, we prove a
related result, which is unsurprising but of a slightly different flavor. We
show, roughly speaking, that if a quantum symmetric state arises from an
amalgamated free product of von Neumann algebras with faithful condi-
tional expectations and states, then the tail algebra is contained in the von
Neumann algebra over which one amalgamates, and the conditional expec-
tation onto the tail algebra is the restriction of the one coming from the
amalgamated free product construction.

Before embarking on the proof, we must review some facts about condi-
tional expectations. The results of [4] about conditional expectations are for
symmetric states, which are more general than quantum symmetric states.
A state ψ on the universal free product C∗-algebra A = ∗∞1 A is a symmetric
state if it is invariant under the natural action of the permutation group
S∞ on A that exchanges the copies of A. We then let Mψ denote the von
Neumann algebra generated by the image of A under the GNS representa-
tion πψ of A on L2(A, ψ), arising from ψ, and we let ψ̂ denote the normal
extension of ψ to Mψ, which is the vector state for the vector of L2(A, ψ)
corresponding to the identity element of A. The tail algebra Tψ is the von
Neumann subalgebra

Tψ =
⋂
n≥1

W ∗
(⋃
k≥n

πψ ◦ λk(A)
)
⊆Mψ

where λk : A→ A is the embedding onto the kth copy of A in the universal
free product C∗-algebra. Note that the action of the permutation group S∞
on A by permuting the embedded copies of A results in a ψ-preserving action
of S∞ on Mψ; we let Fψ denote the fixed point subalgebra of this action,
and we always have Tψ ⊆ Fψ (see [4, Lemma 5.1.3]).

For most of this paper, we will be interested in the case when ψ is a trace.
In this case, the state ψ̂ on Mψ, since it has faithful GNS representation,
must be faithful. Also, in Proposition 4.1 below, though in the interest of
generality we do not assume ψ is a trace, the assumptions do imply that ψ̂
is faithful on Mψ. In any case, assuming ψ̂ is faithful on Mψ, Proposition
5.2.4 of [4] implies that Tψ = Fψ and that there is a normal, faithful ψ̂-
preserving conditional expectation Eψ :Mψ → Tψ. The purpose of the next
result and the remark that follows is to identify Eψ and Tψ in the case of an
amalgamated free product.
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Proposition 4.1. Let D ⊆ B̃ be a unital von Neumann subalgebra with
Ẽ : B̃ → D a normal, faithful, conditional expectation. Let

(M̃, F̃ ) ∼= (∗D)∞1 (B̃, Ẽ)

be the amalgamated free product of von Neumann algebras. Suppose ρ is a
normal faithful state on D. Suppose A is a unital C∗-algebra and σ : A→ B̃
is a unital ∗-homomorphism. Let ψ = ρ ◦ F̃ ◦ (∗∞1 σ) : A = ∗∞1 A → C. By
[4, Proposition 3.1], ψ ∈ QSS(A). Then Mψ is canonically identified with
a von Neumann subalgebra of M̃ with the tail algebra Tψ identified with a
subalgebra of D. Moreover, the normal state ψ̂ on Mψ is identified with
the restriction of the state ρ ◦ F̃ to Mψ, which is faithful, and the normal
conditional expectation Eψ : Mψ → Tψ is identified with the restriction to
Mψ of F̃ .

Proof. Note that under the hypotheses, ρ◦ F̃ is a faithful state on M̃ (by
Ueda’s result [9], as discussed in Section 2 above). Thus, the GNS Hilbert
space L2(A, ψ) is a subspace of L2(M̃, ρ ◦ F̃ ), and Mψ is realized as the
strong operator topology closure in M̃ of (∗∞1 σ)(A) with ψ̂ the restriction
toMψ of ρ◦ F̃ . Now, by examining the free product structure of the Hilbert
space L2(M̃, ρ ◦ F̃ ), we see that the fixed point subalgebra Fψ must lie
in D, and since ψ̂ is faithful on Mψ, from [4], as discussed above, we have
Tψ = Fψ ⊆ D.

We must only show that the conditional expectation Eψ : Mψ → Tψ
equals the restriction to Mψ of F̃ . Since both of these conditional expec-
tations are normal, it will suffice to show their agreement on elements of
πψ(A). For this, we appeal to the construction of the conditional expec-
tation Gψ found in [4, Theorem 5.1.10]; since ψ̂ is faithful on Mψ, this
conditional expectation Gψ coincides with the restriction to πψ(A) of Eψ.
The ∗-endomorphism α appearing in the aforementioned construction of Gψ
must, by [4, Lemma 5.1.9], agree with the normal “shift” ∗-endomorphism α̃

of M̃, that sends the ith copy of B̃ in M̃ to the (i + 1)th copy (and which
is easily seen to exist). Thus (see [4, Theorem 5.1.10]),

Eψ(x) = WOT- lim
n→∞

α̃n(x)

for all x ∈ πψ(A), and by the structure of the free product Hilbert space
L2(M̃, ρ ◦ F̃ ), we conclude Eψ(x) = F̃ (x).

Remark 4.2. In the situation of the previous proposition, by the meth-
ods of [4, Section 7] (see in particular [4, Theorem 7.3 and Definition 7.1])
the tail algebra of ψ is equal to the smallest von Neumann subalgebra D∞
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of D that contains

(4.1) F̃ (σ(a1)d1σ(a2) · · · dn−1σ(an))
for all a1, . . . an ∈ A and all d1, . . . , dn−1 ∈ D∞. Thus, letting D0 = C1 and
for p ≥ 1 letting Dp be the von Neumann algebra generated by all expressions
of the form (4.1) for aj ∈ A and d1, . . . , dn−1 ∈ Dp−1, we see that D∞ equals
the von Neumann algebra generated by

⋃∞
p=0Dp.

5. The simplex of tracial quantum symmetric states. Let A be
a unital C∗-algebra and let TQSS(A) be the compact, convex set of tracial,
quantum symmetric states on A = ∗∞1 A. We assume that A has a tracial
state, so that TQSS(A) is nonempty, and we assume that A 6= C.

The following is Definition 7.5 of [4].

Definition 5.1. For a unital C∗-algebra A, let TW(A) be the set of all
equivalence classes of quintuples W = (B,D, E, σ, ρ) where

(i) B is a von Neumann algebra,
(ii) D is a unital von Neumann subalgebra of B,
(iii) E : B → D is a normal, faithful conditional expectation onto D,
(iv) σ : A→ B is a unital ∗-homomorphism,
(v) σ(A) ∪ D generates B as a von Neumann algebra,
(vi) D is the smallest unital von Neumann subalgebra of B that satisfies

(5.1) E(x0σ(a1)x1 · · ·σ(an)xn) ∈ D
whenever n ∈ N, x0, . . . , xn ∈ D and a1, . . . , an ∈ A,

(vii) ρ is a normal faithful tracial state on D, such that ρ ◦ E is a trace
on B,

under the obvious notion of equivalence.

(Naturally, to avoid set-theoretic difficulties, since conditions (v) and (vi)
put a bound on the cardinality of B, we may fix a Hilbert space and insist
that B act on this Hilbert space.)

The following is Theorem 7.6 of [4].

Theorem 5.2. There is a bijection TW(A)→ TQSS(A) which to a quin-
tuple (B,D, E, σ, ρ) associates the quantum symmetric tracial state ψ defined
as follows. One constructs the amalgamated free product von Neumann alge-
bra

(5.2) (M, F ) = (∗D)∞1 (B, E)

of infinitely many copies of (B, E) and one takes the free product ∗-homo-
morphism ∗∞1 σ : A→M arising from the universal property, sending the ith
copy of A into the ith copy of B. Then ψ = ρ◦F ◦ (∗∞1 σ). Moreover, D = Tψ
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is the tail algebra and M =Mψ is the von Neumann algebra generated by
the GNS representation of ψ.

The extreme points of TQSS(A) were characterized in [4, Theorem 8.2]
as corresponding to the set of quintuples (B,D, E, σ, ρ) so that ρ is extreme
among the set R(E) of tracial states of D so that ρ ◦ E is a trace on B. In
fact, we arrive at a better characterization of the extreme tracial quantum
symmetric states below.

Note that TQSS(A) is a closed convex subset of the tracial state space,
TS(A), of A. The tracial state space of any C∗-algebra is known to be a
Choquet simplex (see, for example, [8, Theorem 3.1.18]) and the extreme
points of it are the tracial states that are factor states.

Theorem 5.3. TQSS(A) is a Choquet simplex and is a face of TS(A).
Moreover, for ψ ∈ TQSS(A) with corresponding quintuple (B,D, E, σ, ρ), the
following are equivalent:

(i) ψ is an extreme point of TQSS(A),
(ii) ψ is an extreme point of TS(A),
(iii) D ∩ Z(B) = C1.
Proof. The implication (i)⇒(ii), when proved, will imply that TQSS(A)

is a face of TS(A), and thus a Choquet simplex.
The implication (ii)⇒(i) is clearly true.
Let (M, F ) be as in (5.2). By Theorem 3.3, condition (iii) is equivalent to

factoriality ofM, and this is equivalent to condition (ii). Thus, conditions (ii)
and (iii) are equivalent.

To finish the proof, it will suffice to show (i)⇒(iii). If (iii) fails to hold,
then D ∩ Z(B) has a projection p equal to neither 0 nor 1. Let t = ρ(p).
Since ρ is faithful, we have 0 < t < 1 and we can write ρ = tρ0 + (1− t)ρ1,
where

ρ0(x) = t−1ρ(px), ρ1(x) = (1− t)−1ρ((1− p)x).
Since p lies in D ∩ Z(B), we see that ρ0 and ρ1 are distinct normal tracial
states on D and that ρi ◦ E is a trace on B (i = 0, 1). Thus, ρ is not an
extreme point of R(E), and ψ is not extreme in TQSS(A).

In Theorem 5.5, we will use multiplicative free Brownian motion (see [2])
to show that every quantum symetric state is a limit of extreme quantum
symmetric states. This will show that TQSS(A) is the Poulsen simplex when
A is separable and not a copy of C.

Multiplicative free Brownian motion is the solution (Ut)t≥0 of the linear
stochastic differential equation

Ut = 1− 1

2

t�

0

Us ds+

t�

0

i dSsUs = e−t/2 +

t�

0

i dSse
−(t−s)/2Us,
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where (St)t≥0 is an additive free Brownian motion. Then each Ut is unitary
(see [1]) and belongs to the von Neumann algebra W ∗(St, t > 0), which is a
copy of L(F∞). We will need the following lemma.

Lemma 5.4. Let M be a von Neumann algebra with normal, faithful,
tracial state τ and suppose N ⊆M is a unital von Neumann subalgebra and
(Ut)t≥0 is a multiplicative free Brownian motion that is free from N with
respect to τ . Then for every unital C∗-subalgebra A ⊆ N with dim(A) > 1
and for every t > 0, we have

(U∗t AUt)
′ ∩N = C1.

Proof. If (U∗t AUt)′ ∩ N is nontrivial, then it contains a projection p /∈
{0, 1}. Without loss of generality, we may assume A is a von Neumann
subalgebra of N , and thus contains a projection q /∈ {0, 1}.

From [10, Proposition 9.4 and Remark 8.10], the liberation Fisher infor-
mation satisfies

ϕ∗(U∗t AUt : N ) ≤ F (Ut) <∞,
for any t > 0, where F is the Fisher information for unitaries. Thus, from
[10, Remark 9.2(e)], we have

ϕ∗(W ∗(U∗t qUt) :W
∗(p)) ≤ ϕ∗(U∗t AUt : N ) <∞.

As a consequence, the assumptions of [10, Lemma 12.5] are satisfied, and
therefore U∗t qUt and p are in general position, i.e.,

(5.3) U∗t qUt ∧ p = 0 or U∗t (1− q)Ut ∧ (1− p) = 0,

and

(5.4) U∗t (1− q)Ut ∧ p = 0 or U∗t qUt ∧ (1− p) = 0.

But this is not compatible with the assumption that U∗t qUt and p commute.
For example, if

U∗t qUt ∧ p = U∗t (1− q)Ut ∧ p = 0,

then
0 = U∗t qUtp+ U∗t (1− q)Utp = p,

contrary to hypothesis, and similarly if other cases of (5.3) and (5.4) hold.

Theorem 5.5. For every unital C∗-algebra A with dim(A) > 1, the ex-
treme points of TQSS(A) are dense in TQSS(A). Hence, if A is also sepa-
rable, then TQSS(A) is the Poulsen simplex.

Proof. If A is separable, then the free product algebra A is also separable,
and thus TQSS(A) is second countable. By Urysohn’s metrization theorem,
it is metrizable. Once the density of extreme points is shown, it will follow
that TQSS(A) is the Poulsen simplex (see [7]).
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We now show density of extreme points. Let ψ ∈ TQSS(A) and let
(B,D, E, σ, ρ) be its associated quintuple. We use the notation from the
description at the beginning of this section. In particular, ψ = ρ◦F ◦ (∗∞1 σ),
and we let ψ̂ = ρ ◦ F denote the normal extension of ψ toM. Let

(M̃, τ) = (M, ψ̂) ∗ (L(F∞), τF∞)

be the free product ofM with a copy of L(F∞). Then, since (L(F∞), τF∞)
∼=

∗∞1 (L(F∞), τF∞)
∼= ∗∞1 (W ∗(St, t > 0), τ), for the von Neumann algebra of a

free Brownian motion algebra W ∗(St, t > 0) ∼= L(F∞), letting

(B̃, η) = (B, ρ ◦ E) ∗ (W ∗(St, t > 0), τ)

and letting Ẽ : B̃ → D be the composition of the η-preserving conditional
expectation B̃ → B arising from the free product construction with the
conditional expectation E : B → D, we find that M̃ is isomorphic to the
von Neumann algebra free product with amalgamation,

(5.5) (M̃, F̃ ) ∼= (∗D)∞1 (B̃, Ẽ),

and the trace τ arises as ρ ◦ F̃ .
Letting (Ut)t≥0 be a multiplicative free Brownian motion in W ∗(St,

t > 0), from the free L∞ version of the Burkholder–Gundy inequalities [3,
Theorem 3.2.1], we have the upper bound

‖Ut − 1‖ ≤ (1− e−t/2) + 2
√
2
(t�
0

‖Us‖2e−(t−s) ds
)1/2

(5.6)

= (1− e−t/2) + 2
√
2(1− e−t),

which tends to zero as t→ 0+.
Let σt : A → B̃ be the ∗-homomorphism Utσ(·)U∗t . Then ∗∞1 σt is a

∗-homomorphism from A into M̃. By freeness with amalgamation (see [4,
Proposition 3.1]), the state ψt := ρ ◦ F̃ ◦ (∗∞1 σt) = τ ◦ (∗∞1 σt) is a quantum
symmetric state.

We will show that for every t > 0, ψt is an extreme point of TQSS(A).
By Proposition 4.1, the tail algebra Tψt of ψt is a von Neumann subalgebra
of D, and the conditional expectation Eψt onto the tail algebra is the restric-
tion of F̃ . In particular, see Remark 4.2 for description of generators for D.
Let (Bt,Dt, Etσt, ρt, ) denote the quintuple corresponding to the quantum
symmetric state ψt. Then Dt = Tψt ⊆ D and Bt ⊇ σt(A). By Theorem 5.3,
showing that ψt is an extreme point of TQSS(A) is equivalent to showing
that Dt ∩Z(Bt) is trivial. But Dt ∩Z(Bt) is contained in Dt ∩ (U∗t σ(A)Ut)′.
By Lemma 5.4, the latter set is trivial, and we have proved that ψt is an
extreme tracial quantum symmetric state.
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From (5.6), we deduce that for every x ∈ A, limt→0+ |ψt(x)− ψ(x)| = 0,
working first with the case of x in the algebraic free product, and passing to
the general case by norm approximation.

Remark 5.6. In contrast, the simplices ZQSS(A) and ZTQSS(A) of
central quantum symmetric states and central tracial quantum symmetric
states, respectively (see [4]), are Bauer simplices, meaning that their respec-
tive sets of extreme points are closed. This follows from the proof of [4,
Theorem 9.2] and in particular the fact that the map φ 7→ ∗∞1 φ in [4, equa-
tion (35)] is a homeomorphism from S(A) onto the extreme boundary (i.e.,
the set of extreme points) of ZQSS(A) and, by restricting to the tracial state
space, yields a homeomorphism from TS(A) onto the extreme boundary of
ZTQSS(A).
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