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Applications of the scarcity theorem
in ordered Banach algebras

by

Sonja Mouton (Stellenbosch)

In memory of my father, Daniel Rode (1943–2008)

Abstract. We apply Aupetit’s scarcity theorem to obtain stronger versions of many
spectral-theoretical results in ordered Banach algebras in which the algebra cone has
generating properties.

1. Introduction. This paper is devoted to the role of B. Aupetit’s
scarcity theorem (Theorem 2.2) in ordered Banach algebras. This is a very
deep result, which, in very general terms, states that if a function f is ana-
lytic on a domain D in the complex plane and with values in a Banach alge-
bra, then either the subset of D on which the spectrum of f is finite is “very
small” in some sense, or it is the whole of D, in which case the spectrum of f
is even uniformly finite on D. In Chapter 5 of his book [2] Aupetit illustrated
several applications of the scarcity theorem, and more can be found in, for
example, the papers [12], [3] and [4], and later in [9], [8] and [7]. A corol-
lary of the scarcity theorem (Corollary 2.5) was employed in [11] to solve
the domination problem for radical elements in ordered Banach algebras.
We now expand that line of thought to obtain stronger versions of many
spectral-theoretical results in ordered Banach algebras in which the algebra
cone is suitably well-behaved.

Relying heavily on the scarcity theorem, Lemma 4.1 and our main result
Theorem 4.2 show that several spectral properties extend from certain sub-
sets of the algebra cone C of an ordered Banach algebra to larger subsets
of C, and from these subsets of C to their linear spans, respectively. The
most interesting case where this applies is when the algebra cone is gener-
ating, such as in the algebra of all regular operators on a complex Banach
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lattice. It is also useful in cases where the algebra cone generates other sub-
sets of the algebra, such as the set of quasinilpotent elements (see Section 3
for examples).

We apply our results to various aspects of spectral theory in ordered
Banach algebras. A typical result is Theorem 4.4, where we show that for
a semisimple ordered Banach algebra A with generating algebra cone to
be finite-dimensional, it is sufficient (and, of course, necessary) that the
spectrum of each positive invertible element is finite, and that A will be
isomorphic to C provided that each of these spectra consists of one element
only. Besides providing characterisations of finite-dimensional Banach al-
gebras, we also investigate the centre (Theorem 4.6), rank one and finite
rank elements (Theorems 4.8–4.9, 4.13–4.14 and 4.18–4.19) and the radical
(Theorems 4.10 and 4.20).

In the interest of self-containedness, we provide an extensive preliminary
section (Section 2), in which we give all the necessary background to our
work. Section 3 is devoted to recalling some ordered Banach algebra theory,
as well as providing a number of examples. We also show (see Proposition 3.4
for a stronger version) that algebra cones with certain natural properties
have no interior points. This fact will be of interest in some of the results in
Section 4.

2. Preliminaries. Throughout, A will be a complex Banach algebra
with unit 1, in which we denote the set of all invertible elements by A−1. By
“ideal” we shall always mean “two-sided ideal”. The spectrum of an element
a in A will be denoted by σ(a), the non-zero spectrum of a by σ′(a), the
connected hull of the spectrum of a by ησ(a) and the spectral radius of
a by r(a). If σ(a) = {0}, we say that a is quasinilpotent. The set of all
quasinilpotent elements of A is denoted by QN(A).

It is useful to observe the following:

Lemma 2.1 ([12, Proposition 2.1(2)]). Let A be a Banach algebra and
a ∈ A. If b ∈ A−1, then b+ a 6∈ A−1 if and only if −1 ∈ σ(b−1a).

The (Jacobson) radical Rad(A) of A is the ideal defined as the intersec-
tion of all maximal left (or right) ideals of A, and A is said to be semisimple
if Rad(A) consists of zero only. A is said to be semiprime if I = {0} is the
only ideal of A with the property that I2 = {0}. By [6, Proposition 5, p. 155]
a semisimple Banach algebra is semiprime.

If λ ∈ C, the element λ1 of A will be denoted by λ. The number of
elements in a set K ⊆ C will be denoted by #K and the set of all non-
negative real numbers by R+. The open disk, closed disk and circle in C
with centre λ and radius ε will be denoted by D(λ, ε), D(λ, ε) and C(λ, ε),
respectively.
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Let E be a complex Banach lattice and denote by L(E) the space of all
bounded linear operators on E. An operator T : E → E is regular if it can
be written as a linear combination over C of positive operators. The space
of all regular operators on E is denoted by Lr(E); it is a subspace of L(E).
When Lr(E) is provided with the r-norm

‖T‖r = inf{‖S‖ : S ∈ L(E), |Tx| ≤ S|x| for all x ∈ E},

it becomes a Banach algebra which contains the unit ofL(E) ([16, IV, §1], [1]).

If A is a Banach algebra and D a domain in C, then a map g : A→ A will
be called D-analytic if g ◦ f : D → A is analytic for every analytic function
f : D → A. It is easy to see that the maps g(x) = a+x and g(x) = a(1 +x)
(for a fixed a ∈ A), as well as every continuous linear map g, are D-analytic,
for every domain D ⊆ C.

The following famous result of B. Aupetit is known as the scarcity theo-
rem:

Theorem 2.2 ([2, Theorem 3.4.25]). Let f : D → A be analytic, where
D is a domain in C and A is a Banach algebra. Then either the set of λ ∈ D
such that σ(f(λ)) is finite is a Borel set having zero capacity, or there exist
an integer n ≥ 1 and a closed discrete subset E of D such that #σ(f(λ)) = n
for all λ ∈ D \ E and #σ(f(λ)) < n for all λ ∈ E.

Here, the capacity of a Borel set in the complex plane (see [2, pp. 177–180])
is in some sense a measure of its size, with compact sets having zero capacity
being very small. For our purposes it suffices to know that balls and line
segments have non-zero capacities.

It also follows from the scarcity theorem that if σ(f(λ)) is uniformly
finite on a subset of D with non-zero capacity, then it is (uniformly) finite
on the whole of D with the same bound:

Corollary 2.3. Let f : D → A be analytic, where D is a domain in C
and A is a Banach algebra. If n ≥ 1 is such that #σ(f(λ)) ≤ n for all λ in
a subset of D with non-zero capacity, then #σ(f(λ)) ≤ n for all λ ∈ D.

In addition, we can say the following about the non-zero spectrum:

Corollary 2.4. Let g : D → A be analytic, where D is a domain in C
and A is a Banach algebra, and let f(λ) = g(λ)a for some a ∈ A. If n ≥ 1
is such that #σ′(f(λ)) ≤ n for all λ in a subset D1 of D with non-zero
capacity such that g(D1) ⊆ A−1, then #σ′(f(λ)) ≤ n for all λ ∈ D.

Proof. Suppose that #σ′(f(λ)) ≤ n for all λ ∈ D1 ⊆ D, where D1 has
non-zero capacity and g(D1) ⊆ A−1.

If a ∈ A−1, then f(D1) ⊆ A−1, so that #σ(f(λ)) ≤ n for all λ ∈ D1. It
follows from Corollary 2.3 that #σ′(f(λ)) ≤ #σ(f(λ)) ≤ n, for all λ ∈ D.
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If a 6∈ A−1, then either Aa 6= A or aA 6= A. Suppose that Aa 6= A. Then
no element of Aa is invertible, so that 0 ∈ σ(f(λ)) for all λ ∈ D. It follows
that #σ(f(λ)) ≤ n + 1 for all λ ∈ D1, so that #σ(f(λ)) ≤ n + 1 for all
λ ∈ D by Corollary 2.3, and hence #σ′(f(λ)) ≤ n for all λ ∈ D. If instead
aA 6= A, then 0 ∈ σ(h(λ)) and σ′(f(λ)) = σ′(h(λ)) where h(λ) = ag(λ), for
all λ ∈ D, so that the previous argument, with h in place of f , establishes
the result.

Corollary 2.3, together with [2, Corollary 3.4.18], yields the following
result about quasinilpotent elements:

Corollary 2.5 ([11, Corollary 2.3]). Let f be an analytic function from
a domain D of C into a Banach algebra A. If {λ ∈ D : σ(f(λ)) = {0}}
contains a ball or a line segment, then σ(f(λ)) = {0} for all λ in D.

In the following theorem we list a number of known characterisations of
the radical. From the definition of the radical it follows easily (see
[2, p. 36]) that a ∈ Rad(A) if and only if Aa ⊆ QN(A), and an appli-
cation of Corollary 2.5 shows that the A on the left side of the inclusion
sign may be replaced by an arbitrary open set (see [9, Theorem 2.2]). This
gives (2) in the theorem below. Characterisations (3) and (4) are due to
J. Zemánek and can be found in [18] and [19], respectively, (5) is due to
Zemánek and Aupetit (see [18] and [5]), while (6)–(8) were recently given
by R. Brits [9].

Theorem 2.6 ([2], [5], [9], [18], [19]). Let A be a Banach algebra, a ∈ A
and G, G0, Ga and G1 an open set, a neighbourhood of 0, a neighbourhood of
a and a neighbourhood of 1, respectively. Then the following are equivalent:

(1) a ∈ Rad(A).
(2) Ga ⊆ QN(A).
(3) σ(a+ x) = σ(x) for all x ∈ A.
(4) a(1 + QN(A)) ⊆ QN(A).
(5) a+ (QN(A) ∩G0) ⊆ QN(A).
(6) a ∈ QN(A) and (QN(A) ∩Ga)a ⊆ QN(A).
(7) a 6∈ A−1 and #σ(ax) ≤ #σ(x) for all x ∈ G1.
(8) a 6∈ A−1 and #σ(a+ x) ≤ #σ(x) for all x ∈ G1.

The following theorem gives necessary and sufficient conditions for an
element of A to be equal to a scalar modulo the radical.

Theorem 2.7 ([2], [8]). Let A be a Banach algebra, a ∈ A and G0 and G1

neighbourhoods of 0 and 1, respectively. Then the following are equivalent:

(1) There exists α ∈ C such that a− α ∈ Rad(A).
(2) #σ(a+ q) = 1 for all q ∈ QN(A) ∩G0.
(3) #σ(a+ x) ≤ #σ(x) for all x ∈ G1.
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Characterisation (2) is a slightly stronger version of [2, Theorem 5.3.2],
obtained by applying Corollary 2.3, while characterisation (3) is one of the
results in the recent paper [8].

In order to formulate a theorem giving sufficient conditions for a Banach
algebra to be finite-dimensional, we start by defining absorbing points and
sets. A point a in a vector space X is said to be an absorbing point of a subset
U of X if for all x ∈ X there exists r > 0 such that a+λx ∈ U for all real λ
with |λ| ≤ r. A subset U of a vector space X is called an absorbing set if U
contains an absorbing point. Open sets are absorbing, but not vice versa.

The second part of the following theorem follows from the proof of the
given reference.

Theorem 2.8 ([2, Theorem 5.4.2]). Let A be a Banach algebra. If A
contains an absorbing subset U such that

(1) σ(x) is finite for all x ∈ U , then A/Rad(A) is finite-dimensional,
(2) #σ(x) ≤ n for all x ∈ U and some fixed n ∈ N, then dimA/Rad(A)
≤ n6.

The following lemma is well-known:

Lemma 2.9. Let A be a Banach algebra.

(1) If dimA < ∞, then there exists n ∈ N such that x is algebraic of
degree ≤ n for all x ∈ A.

(2) If x ∈ A is algebraic of degree n, then #σ(x) ≤ n.

The following theorem gives conditions under which an element in a
Banach algebra A belongs to the centre Z(A) modulo the radical of A:

Theorem 2.10 ([2, Theorem 5.2.1]). Let A be a Banach algebra and
a ∈ A. If #σ(ax− xa) = 1 for all x ∈ A, then a ∈ Z(A).

Finally, we will discuss the socle and rank one elements in Banach alge-
bras. In a semiprime Banach algebra A an element a is said to be spatially
rank one if a 6= 0 and there exists a linear functional fa on A such that
axa = fa(x)a for all x ∈ A, and a is spatially finite rank if a = 0 or a is a
finite sum of spatially rank one elements of A. On the other hand, an ele-
ment a in A is defined to be spectrally finite rank if #σ′(xa) ≤ n for all x ∈ A
and for some n ∈ N, and a is spectrally rank one if a 6= 0 and #σ′(xa) ≤ 1
for all x ∈ A. The concepts of spatially and spectrally finite rank elements
were introduced by J. Puhl [14] and Aupetit and H. du T. Mouton [3], re-
spectively, and the terminology is due to R. Harte [10]. The proof of [12,
Theorem 2.2] shows that an element is spatially rank one if and only if it is
spectrally rank one, whenever A is semisimple. Therefore, in a semisimple
Banach algebra, we can refer unambiguously to such an element as a rank
one element.
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If A has minimal left ideals (respectively minimal right ideals) then its
socle Soc(A) is defined as the sum of the minimal left ideals (it is also equal
to the sum of the minimal right ideals, so it is an ideal). If A is semisimple,
then it is clear from [3, Theorem 2.1] that Soc(A) exists, and it follows
from [14, p. 659] and the proof of [12, Theorem 3.1] that an element a is in
Soc(A) if and only if a is spatially finite rank if and only if a is spectrally
finite rank, so that we can refer unambiguously to such an element as a
finite rank element (or an element of Soc(A)). Together with Theorem 2.8 it
follows that if A is semisimple, then A = Soc(A) if and only if dimA <∞.

In spectral-theoretical contexts, we usually think of the socle as follows:

Theorem 2.11 ([12], [3, Theorem 2.1(1)]). Let A be a semisimple Ba-
nach algebra. Then

{a ∈ A : there exists n ∈ N such that #σ′(xa) ≤ n for all x ∈ A}
= Soc(A) = {a ∈ A : #σ′(xa) <∞ for all x ∈ A}.

Alternative characterisations of rank one elements and of the socle are
given in Theorems 2.12 and 2.13, respectively.

Theorem 2.12 ([12, Theorem 2.2], [3, Theorem 2.2(1)]). Let A be a
semisimple Banach algebra and 0 6= a ∈ A. Then the following are equiva-
lent:

(1) a is rank one.
(2) σ(x+ s0a) ∩ σ(x+ s1a) ⊆ σ(x) for all s0, s1 ∈ C \ {0} with s0 6= s1

and all x ∈ A.
(3) ησ(x+s0a)∩ησ(x+s1a) ⊆ ησ(x) for all s0, s1 ∈ C\{0} with s0 6= s1

and all x ∈ A.

Theorem 2.13 ([12, Theorem 3.1], [3, Theorem 2.2(2)]). Let A be a
semisimple Banach algebra and a ∈ A. Then the following are equivalent:

(1) a ∈ Soc(A).
(2) There exists n ∈ N such that

⋂
t∈F σ(x + ta) ⊆ σ(x) for all

(n+ 1)-element subsets F of C \ {0} and all x ∈ A.
(3) There exists n ∈ N such that

⋂
t∈F ησ(x + ta) ⊆ ησ(x) for all

(n+ 1)-element subsets F of C \ {0} and all x ∈ A.

3. Ordered Banach algebras. From [15, Section 3] we recall that, in
a complex Banach algebra A with unit 1, a non-empty subset C of A is
called a space cone if C is closed under addition and under non-negative
real scalar multiplication, and we call C an algebra cone if C is a space
cone containing 1 which is closed under multiplication. If A has an algebra
cone C, then A (or (A,C)) is called an ordered Banach algebra (OBA). If,
in addition, C ∩ −C = {0}, then C is called proper, and if C contains the
inverses of all its invertible elements, then C is called inverse-closed.
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An algebra cone C of A induces an ordering “≤” on A in the following
way:

a ≤ b if and only if b− a ∈ C
(where a, b ∈ A). This ordering is reflexive and transitive. Furthermore, C
is proper if and only if the ordering has the additional property of being
antisymmetric. Considering the ordering that C induces we find that C =
{a ∈ A : a ≥ 0} and therefore we call the elements of C positive.

An algebra cone C of A is said to be normal if there exists a constant
α > 0 such that it follows from 0 ≤ a ≤ b in A that ‖a‖ ≤ α‖b‖. It is well
known that if C is normal, then C is proper.

In addition, we shall need the following properties of positive elements:

Theorem 3.1 ([15, Proposition 5.1]). Let (A,C) be an OBA with C
closed and normal. If a ∈ C, then r(a) ∈ σ(a).

Proposition 3.2 ([13, Proposition 4.6]). Let (A,C) be an OBA with C
closed, and let a ∈ C. If λ > r(a), then (λ− a)−1 ≥ 0.

Lemma 3.3 ([13, Lemma 4.21]). Let (A,C) be an OBA with a and b
invertible elements of A such that a ≤ b and a−1, b−1 ≥ 0. Then b−1 ≤ a−1.

If (A,C) is an OBA, then C is called generating if span(C) = A, where
span(X) denotes the linear span of a set X. More generally, if B is a subset
of A, we say that C generates B if span(C∩B) = B. Note that, in this case,
C ∩B is a space cone of A.

If E is a complex Banach lattice, C = {x ∈ E : x = |x|} and K =
{T ∈ L(E) : TC ⊆ C}, then (Lr(E),K) is an OBA with a closed, normal
algebra cone (see [17, Lemma 3]), and by definition, K generates Lr(E).

Let C(X) denote the Banach algebra of all continuous complex valued
functions on a compact Hausdorff space X, and let C be the subset of C(X)
consisting of all functions which are real and non-negative at every point
of X. Then (C(X), C) is an OBA with a closed, normal, generating and
inverse-closed algebra cone.

Let An1 denote the Banach algebra of all complex n×n matrices (or all
upper triangular complex n× n matrices), Cn1 the subset of An1 consisting
of all matrices with only non-negative entries, A2 the Banach algebra l∞ of
all bounded sequences of complex numbers and C2 the subset of A2 con-
sisting of all sequences with only non-negative entries. Then (An1, Cn1) and
(A2, C2) are OBAs with closed, normal algebra cones Cn1 and C2, respec-
tively, and Cn1 and C2 generate An1 and A2, respectively. In addition, C2

is inverse-closed. Moreover, if An3 = l∞(An1) and Cn3 = l∞(Cn1) denote
the Banach algebra of all bounded sequences of (upper triangular) complex
n × n matrices and its subset consisting of all such sequences having as
entries only matrices with non-negative entries, respectively, then Cn3 is a
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closed, normal algebra cone which generates An3 (see [11]). In addition, for
any OBAs (Ai, Ci) and (Aj , Cj), if Ci and Cj are closed, normal and gener-
ate Ai and Aj , respectively, then clearly C = Ci ⊕Cj is closed, normal and
generates A = Ai ⊕Aj .

In some OBAs the set of all quasinilpotent elements is generated by the
algebra cone. In fact, it is easy to check that this is the case for (An1, Cn1),
(A2, C2) and (An3, Cn3), as defined in the previous paragraph (only with
An1 the upper triangular matrices). Moreover, for any OBAs (Ai, Ci) and
(Aj , Cj), if Ci and Cj generate QN(Ai) and QN(Aj), respectively, then C =
Ci ⊕ Cj generates QN(A), where A = Ai ⊕Aj .

In the light of assumptions concerning absorbing sets that we will make
in some of the results in Section 4, it is important to notice the following:

Proposition 3.4. Let (A,C) be an OBA with C closed and normal.
Then C is not an absorbing set.

Proof. If C is an absorbing set with absorbing point a, then there exists
r0 > 0 such that a + λi ∈ C for all real λ with |λ| ≤ r0. If r(a) = 0
and 0 < λ0 ≤ r0, then r(a + λ0i) = λ0 6∈ σ(a + λ0i), which contradicts
Theorem 3.1. Otherwise, let 0 6= λ0 ∈ R+ be such that λ0 < min{r0, r(a)}.
Then a + λ0i ∈ C, so that r(a) ∈ σ(a) and r(a + λ0i) ∈ σ(a + λ0i), by
Theorem 3.1. Also, since λ0 < r(a), we have 0 ∈ D(λ0i, r(a)), so that
C(λ0i, r(a)) contains exactly one strictly positive real point µ0.

Now, since r(a+λ0i)∈ σ(a+λ0i)⊆D(λ0i, r(a)), it follows that r(a+λ0i)

≤ µ0 =
√
r(a)2 − λ20. But r(a) ∈ σ(a) implies that r(a) + λ0i ∈ σ(a+ λ0i),

so that
√
r(a)2 + λ20 = |r(a) +λ0i| ≤ r(a+λ0i). Together with the previous

inequality, this yields λ0 = 0 — a contradiction.

4. Applying the scarcity theorem in ordered Banach algebras.
We start with the following lemma, which, roughly speaking, says that in an
ordered Banach algebra, certain spectral properties extend from particular
subsets of the algebra cone to larger subsets.

Lemma 4.1. Let (A,C) be an OBA, B a subset of C which is a space
cone of A, G a subset of A, c0 ∈ B an absorbing point of G and g : A→ A
a C-analytic map.

(1) If #σ(g(c)) < ∞ for all c ∈ B ∩ G, then there exists m ∈ N such
that #σ(g(c+ c0)) ≤ m for all c ∈ B.

(2) If n ∈ N and #σ(g(c)) ≤ n for all c ∈ B∩G, then #σ(g(c+c0)) ≤ n
for all c ∈ B.

(3) If σ(g(c)) = {0} for all c ∈ B ∩ G, then σ(g(c + c0)) = {0} for all
c ∈ B.
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Proof. Towards (2), let c ∈ B and f(λ) = g((1 − λ)c + c0). Then f is
analytic on C. Since c0 is absorbing in G, there exists rc > 0 such that
(1 − λ)c + c0 ∈ B ∩ G, and hence #σ(f(λ)) ≤ n, for all λ in the real
interval [1 − rc, 1]. It follows from Corollary 2.3 that #σ(f(λ)) ≤ n for all
λ ∈ C, so that (2) follows by taking λ = 0. The same argument, using
Theorem 2.2 (respectively Corollary 2.5) instead of Corollary 2.3, proves (1)
(respectively (3)).

We now prove our main result, which we will afterwards apply to various
situations in ordered Banach algebras.

Theorem 4.2. Let (A,C) be an OBA, B a subset of C which is a space
cone of A, c0 ∈ B and g : A→ A a C-analytic map.

(1) If #σ(g(c + c0)) < ∞ for all c ∈ B, then there exists m ∈ N such
that #σ(g(x)) ≤ m for all x ∈ span(B).

(2) If n ∈ N and #σ(g(c + c0)) ≤ n for all c ∈ B, then #σ(g(x)) ≤ n
for all x ∈ span(B).

(3) If σ(g(c + c0)) = {0} for all c ∈ B, then σ(g(x)) = {0} for all
x ∈ span(B).

Proof. Suppose that #σ(g(c+ c0)) ≤ n for all c ∈ B and let m ∈ N and
c1, . . . , cm ∈ B. If λ2, . . . , λm are any fixed positive real numbers and λ1 is a
complex variable, then f1(λ1) = λ1c1 + · · ·+λmcm +c0 is analytic on C, and
hence g◦f1 is analytic on C. Also, for all λ1 ∈ [0, 1], we have f1(λ1) ∈ B+c0,
so that #σ(g(f1(λ1))) ≤ n. By Corollary 2.3 #σ(g(f1(λ1))) ≤ n for all
λ1 ∈ C. Hence, for any λ1 ∈ C and λ2, . . . , λm ∈ R+, we have

(4.3) #σ(g(λ1c1 + · · ·+ λmcm + c0)) ≤ n.
Now take any fixed λ1 ∈ C, any fixed λ3, . . . , λm ∈ R+ and let λ2 be a com-
plex variable. Then f2(λ2) = λ1c1 + · · ·+λmcm +c0 is analytic on C, so that
g ◦ f2 is analytic on C. Also, for all λ2 ∈ [0, 1], we have #σ(g(f2(λ2))) ≤ n,
by 4.3. Again, it follows from Corollary 2.3 that #σ(g(f2(λ2))) ≤ n for
all λ2 ∈ C. Hence, for any λ1, λ2 ∈ C and λ3, . . . , λm ∈ R+, we deduce
that #σ(g(λ1c1 + · · · + λmcm + c0)) ≤ n. After m steps it follows that
#σ(g(λ1c1 + · · ·+λmcm + c0)) ≤ n, for any λ1, . . . , λm ∈ C. This proves (2).

The same argument, using Theorem 2.2 instead of Corollary 2.3 in the
first step, proves (1), and the same argument, applying Corollary 2.5 instead
of Corollary 2.3 in each step, proves (3).

The above theorem applies, for instance, to B = B1 ∩ C for any vector
subspace B1 of A. The most important case is when B = C, which shows
that, when the algebra cone C is generating, then certain properties extend
from C to all of A. In fact, by taking B = C, c0 = 0 and g(x) = ax for some
a ∈ A, we note that Theorem 4.2(3) reduces to [11, Lemma 4.4].
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Let us start illustrating the use of Theorem 4.2 by considering character-
isations of finite-dimensional Banach algebras. Theorem 2.8 says that, for A
a general Banach algebra, A/Rad(A) is finite-dimensional provided that the
spectrum is finite on a very “small” part of A, namely on an absorbing set.
Our next result shows that if A is an ordered Banach algebra with a gener-
ating algebra cone C, then in order for A/Rad(A) to be finite-dimensional,
it is sufficient that the spectrum is finite on an even “smaller” part of A: for
any subset G of A which contains a point of C which is absorbing in G, the
spectrum only has to be finite at all positive elements of G.

Theorem 4.4. Let (A,C) be an OBA such that C is generating, and
let G be any subset of A which contains a point of C which is absorbing in G.

(1) If #σ(c) <∞ for all c ∈ C ∩G, then dimA/Rad(A) <∞.
(2) If n ∈ N and #σ(c) ≤ n for all c ∈ C∩G, then dimA/Rad(A) ≤ n6.
(3) If #σ(c) = 1 for all c ∈ C ∩G, then A/Rad(A) ∼= C.

Proof. If n ∈ N and #σ(c) ≤ n for all c ∈ C ∩ G, then by taking
B = C and g the identity, it follows from Lemma 4.1(2) and Theorem 4.2(2)
that #σ(x) ≤ n for all x ∈ A. The conclusion in (2) now follows by ap-
plying Theorem 2.8(2). The same argument, with Lemma 4.1(1) instead of
Lemma 4.1(2), proves (1).

For instance, by taking G = A in Theorem 4.4, we see that a sufficient
condition for A/Rad(A) to be finite-dimensional is that the spectrum of each
positive element is finite. Moreover, by taking G = A−1, we see that it is
even enough that the spectrum of each invertible positive element is finite.

Corollary 4.5. Let (A,C) be a semisimple OBA with C generating.
Then the following are equivalent:

(1) dimA <∞.
(2) #σ(c) <∞ for all c ∈ C.
(3) There exists n ∈ N such that #σ(c) ≤ n for all c ∈ C.
(4) All elements of C are algebraic.
(5) There exists n ∈ N such that c is algebraic of degree ≤ n for all

c ∈ C.

Proof. (2)⇒(3) follows from Theorem 4.2(1) by choosing B = C, c0 = 0
and g the identity. (3)⇒(1) follows from Theorem 4.4(2) by choosing G = A.
The proof is completed by applying Lemma 2.9.

For OBAs with generating algebra cones, we have the following stronger
version of Theorem 2.10 about the centre modulo the radical:

Theorem 4.6. Let (A,C) be an OBA such that C is generating, and let
G be any subset of A which contains a point of C which is absorbing in G.
If a ∈ A and #σ(ac− ca) = 1 for all c ∈ C ∩G, then a ∈ Z(A).
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Proof. The condition is equivalent to #σ(g(c)) ≤ 1 for all c ∈ C ∩ G,
where g(x) = ax− xa. By Lemma 4.1(2) and Theorem 4.2(2), #σ(ax− xa)
= 1 for all x ∈ A, so that a ∈ Z(A), by Theorem 2.10.

In the following part of this section we will look at characterisations of
the socle and of rank one elements in OBAs with generating algebra cones.
Here, the most important applications of Theorem 4.2 are Theorems 4.8–4.10
and 4.18–4.19. We start with the following important observation:

Proposition 4.7. Let (A,C) be an OBA with C generating, and let G
be any subset of A which contains a point of C which is absorbing in G. If
n ∈ N, then

{a ∈ A : #σ(ca) <∞ ∀c ∈ C ∩G} = {a ∈ A : #σ(xa) <∞ ∀x ∈ A},
{a ∈ A : #σ(ca) ≤ n ∀c ∈ C ∩G} = {a ∈ A : #σ(xa) ≤ n ∀x ∈ A},
{a ∈ A : σ(ca) = {0} ∀c ∈ C ∩G} = {a ∈ A : σ(xa) = {0} ∀x ∈ A}.
Proof. Suppose that #σ(ca) ≤ n for all c ∈ C ∩ G. Then by taking

B = C and g(x) = xa in Lemma 4.1(2) and in Theorem 4.2(2), it follows
that #σ(xa) ≤ n for all x ∈ A. The first and third statements follow sim-
ilarly by using Lemma 4.1(1) and Theorem 4.2(1), and Lemma 4.1(3) and
Theorem 4.2(3), respectively.

Together with Theorem 2.11, we have the following characterisation of
the socle in semisimple OBAs with generating algebra cones:

Theorem 4.8. Let (A,C) be a semisimple OBA with C generating, and
let G be any subset of A which contains a point of C which is absorbing
in G. Then

{a ∈ A : there exists n ∈ N such that #σ′(ca) ≤ n for all c ∈ C ∩G}
= Soc(A) = {a ∈ A : #σ′(ca) <∞ for all c ∈ C ∩G}.

For rank one elements we have:

Theorem 4.9. Let (A,C) be a semisimple OBA with dimA = ∞ and
C generating, and let G be any subset of A which contains a point of C
which is absorbing in G. If 0 6= a ∈ A, then a is rank one if and only if
#σ′(ca) ≤ 1 for all c ∈ C ∩G.

Proof. If #σ′(ca) ≤ 1 for all c ∈ C∩G, then #σ(xa) ≤ 2 for all x ∈ A, by
Proposition 4.7, so that a ∈ Soc(A), by Theorem 2.11 (or by Theorem 4.8).
Since dimA =∞, Soc(A) is a proper ideal of A. Therefore 0 ∈ σ(xa) for all
x ∈ A, so that #σ′(xa) ≤ 1 for all x ∈ A, i.e. a is rank one.

From the last statement in Proposition 4.7 we obtain the following char-
acterisation of the radical, which is a slightly stronger version of [11, Theo-
rem 4.17(3)] and an analogue of Theorem 2.6(2) in OBAs:
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Theorem 4.10. Let (A,C) be an OBA with C generating, and let G be
any subset of A which contains a point of C which is absorbing in G. Then

Rad(A) = {a ∈ A : (C ∩G)a ⊆ QN(A)}.
Having obtained a stronger version of Theorem 2.11 in the context of

OBAs, we proceed to develop analogous versions of Theorems 2.12 and 2.13
in OBAs (see Theorems 4.13, 4.14, 4.18 and 4.19).

If B is a subset of a Banach algebra A, then we denote the set of inverses
of invertible elements of B by B−1, i.e. B−1 = (B ∩A−1)−1. If the set B is
inverse-closed, then B−1 = B∩A−1. The following result is a slightly sharper
version of the reference, but the proof remains the same. We include it for
completeness.

Lemma 4.11 ([12, Lemma 3.3]). Let A be a Banach algebra, B a subset
of A, a ∈ A and n ∈ N. If

⋂
t∈F σ(x + ta) ⊆ σ(x) for all (n + 1)-element

subsets F of C\{0} and all x ∈ B−1, then #σ′(xa) ≤ n for all x ∈ B∩A−1.

Proof. Suppose the given condition holds. Let x ∈ B ∩A−1 and suppose
that {ti : i = 0, . . . , n} is a set of non-zero complex numbers. If y = x−1,
then y ∈ B−1, and so

⋂n
i=0 σ(y + sia) ⊆ σ(y), where si = −1/ti. Since

y ∈ A−1, there exists i0 ∈ {0, . . . , n} such that 0 6∈ σ(y + si0a). It follows
that −si0y(ti0 − y−1a) = y + si0a ∈ A−1, so that ti0 − y−1a ∈ A−1, i.e.
ti0 6∈ σ′(xa).

For any invertible element x we can take B = {x−1}, and obtain the
following

Corollary 4.12. Let A be a Banach algebra, a ∈ A and n ∈ N. If
x ∈ A−1 is such that

⋂
t∈F σ(x+ta) ⊆ σ(x) for all (n+1)-element subsets F

of C \ {0}, then #σ′(x−1a) ≤ n.

Lemma 4.11 (with B = C), together with Theorem 4.8 (with G = A−1),
and Theorem 2.13 yield the following analogue of the equivalence (1)⇔(2)
in Theorem 2.13 in OBAs:

Theorem 4.13. Let (A,C) be a semisimple OBA with C generating
and let a ∈ A. Then a ∈ Soc(A) if and only if there exists n ∈ N such that⋂

t∈F σ(x+ ta) ⊆ σ(x) for all (n+ 1)-element subsets F of C \ {0} and all
x ∈ C−1.

Similarly, Theorem 2.12, Theorem 4.9 and Lemma 4.11 yield an analogue
of the equivalence (1)⇔(2) in Theorem 2.12 in OBAs:

Theorem 4.14. Let (A,C) be a semisimple OBA with dimA = ∞
and C generating, and let 0 6= a ∈ A. Then a is rank one if and only if
σ(x+ s0a) ∩ σ(x+ s1a) ⊆ σ(x) for all s0, s1 ∈ C \ {0} with s0 6= s1 and all
x ∈ C−1.
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In order to obtain OBA-versions of the equivalences (1)⇔(3) in Theo-
rems 2.12 and 2.13, we take a slightly different approach. The proof of the
following lemma (which we include for completeness) forms part of the proof
of [3, Theorem 2.2(2)].

Lemma 4.15. Let A be a Banach algebra, a ∈ A and n ∈ N. If x ∈ A
is such that

⋂
t∈F ησ(x + ta) ⊆ ησ(x) for all (n + 1)-element subsets F

of C \ {0}, then #σ′((µ− x)−1a) ≤ n for all µ 6∈ ησ(x).

Proof. Suppose that the condition holds and suppose that {ti : i =
0, . . . , n} is a set of non-zero complex numbers. Then

⋂n
i=0 ησ(x + sia)

⊆ ησ(x), where si = 1/ti. If µ 6∈ ησ(x), there exists i0 ∈ {0, . . . , n}
such that µ 6∈ ησ(x + si0a). It now follows from Lemma 2.1 that −1 6∈
σ((µ− x)−1(−si0a)) and so ti0 6∈ σ′((µ− x)−1a).

The lemma remains true if ησ is replaced by σ, in which case it is equiv-
alent with Corollary 4.12.

Lemma 4.16. Let (A,C) be an OBA with C closed. If c ∈ C ∩A−1 and
λ > 2r(c), then there exists d ∈ C ∩A−1 such that (µ− d)−1 = c−λ (where
µ = −1/λ) and µ 6∈ ησ(d).

Proof. Let µ = −1/λ and define d = (λ−c)−1+µ. Then (µ−d)−1 = c−λ.
Since λ > r(c) and c ∈ C, it follows from Proposition 3.2 and Lemma 3.3
that (λ−c)−1 ≥ 1/λ, which proves that d ∈ C. Since c ∈ A−1 and λ > 2r(c),
it can easily be checked that 0 6∈ σ(d), so that d ∈ A−1, and that r(d) < |µ|,
so that µ 6∈ ησ(d).

Lemmas 4.15 and 4.16 now yield the following

Proposition 4.17. Let (A,C) be a semisimple OBA with C closed and
generating, a ∈ A and n ∈ N. If

⋂
t∈F ησ(c + ta) ⊆ ησ(c) for all (n + 1)-

element subsets F of C \ {0} and all c ∈ C ∩A−1, then #σ′(ca) ≤ n for all
c ∈ C ∩A−1.

Proof. Suppose the condition holds. Let c ∈ C ∩A−1 and let D1 be the
interval [2r(c) + 1, 2r(c) + 2]. Then it follows from Lemmas 4.16 and 4.15
that #σ′((c− λ)a) ≤ n for all λ ∈ D1. Taking g(λ) = c− λ, it follows from
Corollary 2.4 that #σ′((c− λ)a) ≤ n for all λ ∈ C; in particular for λ = 0,
which yields the result.

The proposition remains true if ησ is replaced by σ. Moreover, in the case
that A in Lemma 4.11 is a semisimple OBA and B = C, where the algebra
cone C is closed, generating and inverse-closed, Proposition 4.17 (with ησ
replaced by σ) coincides with Lemma 4.11.

Proposition 4.17, together with Theorem 4.8, and Theorem 2.13 now
yield the following stronger version of Theorem 2.13 in the context of OBAs:
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Theorem 4.18. Let (A,C) be a semisimple OBA with C closed and
generating and a ∈ A. Then the following are equivalent:

(1) a ∈ Soc(A).
(2) There exists n ∈ N such that

⋂
t∈F σ(c + ta) ⊆ σ(c) for all

(n+ 1)-element subsets F of C \ {0} and all x ∈ C ∩A−1.
(3) There exists n ∈ N such that

⋂
t∈F ησ(c + ta) ⊆ ησ(c) for all

(n+ 1)-element subsets F of C \ {0} and all x ∈ C ∩A−1.

Similarly, a stronger version of Theorem 2.12 for OBAs is obtained by
applying Theorem 2.12, Theorem 4.9 and Proposition 4.17:

Theorem 4.19. Let (A,C) be a semisimple OBA with dimA =∞ and
C closed and generating, and let 0 6= a ∈ A. Then the following are equiva-
lent:

(1) a is rank one.
(2) σ(c + s0a) ∩ σ(c + s1a) ⊆ σ(c) for all s0, s1 ∈ C \ {0} with s0 6= s1

and all c ∈ C ∩A−1.
(3) ησ(c+s0a)∩ησ(c+s1a) ⊆ ησ(c) for all s0, s1 ∈ C\{0} with s0 6= s1

and all c ∈ C ∩A−1.

Finally, we consider some applications of Lemma 4.1 and Theorem 4.2
to OBAs in which the algebra cone generates the quasinilpotents (see the
examples preceding Proposition 3.4). The following result provides a number
of characterisations of the radical in these cases:

Theorem 4.20. Let (A,C) be an OBA with the property that C gener-
ates the quasinilpotents. Let a ∈ A and let G0 and G1 be neighbourhoods
of 0 and 1, respectively. Then the following are equivalent:

(1) a ∈ Rad(A).
(2) a(1 + (C ∩QN(A))) ⊆ QN(A).
(3) a+ (C ∩QN(A) ∩G0) ⊆ QN(A).
(4) a ∈ QN(A) and (C ∩QN(A))a ⊆ QN(A).
(5) a 6∈ A−1 and #σ(ac) ≤ #σ(c) for all c ∈ C ∩G1.

Proof. Taking g(x) = a(1 + x), g(x) = a + x and g(x) = xa, respec-
tively, with B = QN(A) ∩ C and c0 = 0 in Theorem 4.2(3) and G = G0 in
Lemma 4.1, characterisations (2), (3) and (4) follow from Theorem 2.6(4),
(5) and (6), respectively. Towards the non-trivial part of the equivalence
(1)⇔(5), we note that the second condition in (5) implies that, given cq ∈
C ∩QN(A), there exists r > 0 such that #σ(a(1 + λcq)) ≤ #σ(1 + λcq) = 1
for all 0 ≤ λ ≤ r. Therefore, with f(λ) = a(1 + λcq), it follows from
Corollary 2.3 that #σ(a(1 + cq)) = 1. The first condition now implies that
σ(a(1 + cq)) = {0}, and since cq ∈ C ∩ QN(A) was arbitrary, the result
follows from (2).
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We note that characterisation (5) in the above theorem is an OBA-
analogue of characterisation (7) in Theorem 2.6.

The following theorem gives necessary and sufficient conditions for ele-
ments of certain OBAs to be equal to a scalar modulo the radical.

Theorem 4.21. Let (A,C) be an OBA with the property that C gener-
ates the quasinilpotents. Let a ∈ A and let G0 be a neighbourhood of 0. Then
there exists α ∈ C such that a− α ∈ Rad(A) if and only if #σ(a+ cq) = 1
for all cq ∈ C ∩QN(A) ∩G0.

Proof. By choosing B = QN(A) ∩ C, G = G0, c0 = 0 and g(x) =
a + x, this follows from Lemma 4.1(2) and Theorem 4.2(2), together with
Theorem 2.7(2).

We conclude with the following result, where, in (3), conditions are given
under which two elements a and b will be equal modulo the radical:

Theorem 4.22. Let (A,C) be an OBA with the property that C gen-
erates the quasinilpotents. Let a ∈ A, b ∈ −C and let G1 and G−b be
neighbourhoods of 1 and −b, respectively. Then the following holds:

(1) Rad(A) = {a 6∈ A−1 : #σ(a+ c) ≤ #σ(c) for all c ∈ C ∩G1}.
(2) There exists α ∈ C such that a − α ∈ Rad(A) if and only if

#σ(a+ c) ≤ #σ(c) for all c ∈ C ∩G1.
(3) a−b ∈ Rad(A) if and only if σ(a+c) = σ(b+c) for all c ∈ C∩G−b.

Proof. (1) The ⊆ inclusion follows from Theorem 2.6(3). For the reverse
inclusion we note that if a 6∈ A−1 and #σ(a+ c) ≤ #σ(c) for all c ∈ C ∩G1,
then σ(a) = {0}. Moreover, if cq ∈ C ∩ QN(A), then there exists r > 0
such that #σ(a+ 1 + λcq) = 1 for all 0 ≤ λ ≤ r. Hence it follows from
Corollary 2.3 that #σ(a + 1 + cq) = 1 for all cq ∈ C ∩ QN(A), so that, by
Theorem 4.21, a + 1 − α ∈ Rad(A) for some α ∈ C. Since σ(a) = {0}, it
follows that a ∈ Rad(A).

(2) follows from (1).

(3) For the non-trivial implication, we note that the assumption im-
plies that σ(a − b) = {0} and that #σ(a + c) = #σ(b + c) for all c ∈
C ∩ G−b. Hence, given cq ∈ C ∩ QN(A), there exists r > 0 such that
#σ(a− b+ λcq) = #σ(λcq) = 1 for all 0 ≤ λ ≤ r. It follows from Corol-
lary 2.3 that #σ(a − b + cq) = 1 for all cq ∈ C ∩ QN(A), so that The-
orem 4.21 yields a − b − α ∈ Rad(A) for some α ∈ C. Therefore {0} =
σ(a− b+ Rad(A)) = σ(α+ Rad(A)) = {α}, so that a− b ∈ Rad(A).

We note that (1), (2) and (3) in the above theorem are OBA-analogues of
(1)⇔(8) in Theorem 2.6, (1)⇔(3) in Theorem 2.7 and [7, Theorem 2.1(ii)],
respectively.
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