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Two applications of smoothness in C(K) spaces

by

Mat́ıas Raja (Murcia)

Abstract. A simple observation about embeddings of smooth Banach spaces into
C(K) spaces allows us to construct a parametrization of the separable Banach spaces
using closed subsets of the interval [0, 1]. The same idea is applied to the study of the
isometric embedding of `p spaces into certain C(K) spaces with the additional condition
that the functions of the image must be Lipschitz with respect to a fixed finer metric
on K. The feasibility of that kind of embeddings is related to Szlenk indices.

1. Introduction. Along the paper all the Banach spaces considered
are real. We shall denote by K a compact Hausdorff space, and C(K) will
be the Banach space of real continuous functions on K endowed with the
supremum norm. As usual, if X is a Banach space we shall denote by BX
its closed unit ball, and by SX its unit sphere. For any unexplained concept
or notation about Banach spaces we refer the reader to [2].

Given a subspace X ⊂ C(K) and a closed subset H ⊂ K, we shall denote
by X|H the set of restrictions of the functions of X to H, understood as
elements of C(H). The map f 7→ f |H for f ∈ C(K) is in general not
injective, so any coset is identified with the same function on H. We are
ready to state the first result of the paper.

Theorem 1.1. There exists a closed linear subspace W ⊂ C[0, 1] with
the following property: for any separable Banach space X, there exists a
closed subset H ⊂ [0, 1] such that X is isometric to W |H .

The result claims that the range of the mapping that to a closed subset
H ⊂ [0, 1] assigns the linear space W |H covers all the isometry classes of
separable Banach spaces. Notice that it provides a sort of “parametrization”
of the separable Banach spaces by a quite simple set of indices. The precise
description of the family of closed subsets H ⊂ [0, 1] such that W |H is
a Banach space is done in Proposition 2.3. Compare Theorem 1.1 to the
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classical Banach–Mazur Theorem [2, Theorem 5.8] about the universality of
C[0, 1] for the separable Banach spaces.

As a byproduct of the ideas behind the proof of Theorem 1.1, we give an
application to the properties of the subspaces of C(K) made up of functions
which are Lipschitz with respect to a fixed finer metric defined on K. This
topic has been discussed in our papers [4, 5]. It is an easy exercise to prove
that if K is a compact metric space, then every closed subspace of C(K)
made of Lipschitz functions is finite-dimensional. Therefore, to avoid trivial
situations, we shall always consider K equipped with a metric whose induced
topology is strictly finer than the original topology on K. A typical scenario
for that is a dual ball BX∗ , which is compact for the weak∗ topology, together
with the metric d induced by the dual norm on X∗.

The second result that we are going to prove in this note partially solves
a question motivated after [5, Proposition 4.14].

Theorem 1.2. Let p, q ∈ [1,∞). The topology τp of pointwise conver-
gence turns B`p into a compact space. On B`p we also consider the met-
ric d induced by the norm ‖ · ‖p. Then C(B`p) contains an isometric copy
of `q made of functions that are Lipschitz for the metric d if and only if
(p− 1)(q − 1) ≥ 1.

The isomorphic embedding of `1 as Lipschitz functions into a C(K) space
has been studied in [4] in relation with the fragmentability of K. In the case
of embeddings of `p, the “speed of fragmentation” of K, which is under-
stood in terms of the Szlenk index, plays a major role in the arguments (see
Proposition 3.2).

2. Parametrization of separable Banach spaces. We shall use the
notion of Gâteaux smoothness of a norm [2, Definition 7.1]. For our purposes
it is enough to know that Gâteaux smoothness is equivalent, by the Šmulian
Lemma [2, Corollary 7.22], to the uniqueness of norming functionals, that is,
the set {x∗ ∈ BX∗ : x∗(x) = ‖x‖} has only one element for every x ∈ X\{0}.

The following result was first noticed by Donoghue [1] under stronger
hypotheses and used for the construction of Peano-type filling curves.

Lemma 2.1. Let X be an infinite-dimensional Banach space endowed
with a Gâteaux smooth norm and let J : X → C(K) be an isometric embed-
ding. Then

BX∗ = J∗(K) ∪ (−J∗(K)),

where J∗ denotes the adjoint map from C(K)∗ into X∗.

Proof. Let NA ⊂ SX∗ the set of norm-one attaining functionals. Given
x ∈ X and its corresponding norm attaining functional x∗ ∈ NA, we have
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{y∗ ∈ BX∗ : |y∗(x)| = ‖x‖} = {x∗,−x∗},
since the norm is Gâteaux smooth. The function J(x) attains its norm at
some t ∈ K, and so, since J is an isometry, ‖x‖ = |J(x)(t)|. It follows that
J∗(t) ∈ {x∗,−x∗}. Since x ∈ X was arbitrary, we have

NA ⊂ J∗(K) ∪ (−J∗(K)).

Now NA = SX∗ by the Bishop–Phelps Theorem [2, Theorem 7.41]. As X is
infinite-dimensional,

BX∗ = SX∗
w∗

= NA
w∗ ⊂ J∗(K) ∪ (−J∗(K)),

finishing the proof, since the other inclusion is trivial.

The above lemma has a simpler proof—skipping the use of the Bishop–
Phelps theorem—if we make the stronger assumption that X∗ is strictly
convex. Note that every separable Banach space has an equivalent Gâteaux
norm, which can be obtained by a strictly convex dual renorming of its dual
[2, Corollary 7.23].

Proof of Theorem 1.1. Let W be the space `1 with a Gâteaux smooth
equivalent norm. By the Banach–Mazur Theorem [2, Theorem 5.8] we may
find W isometrically inside C[0, 1]. Let J be the inclusion mapping of W
into C[0, 1].

Given a separable Banach space X, there is an onto linear operator
T : W → X with ‖T‖ ≤ 1, since every separable Banach space is isometric
to a quotient of `1 [2, Theorem 5.1]. For the adjoint operator we have ‖T ∗‖ =
‖T‖ ≤ 1 and thus

T ∗(BX∗) ⊂ BW ∗ = J∗([0, 1]) ∪ (−J∗([0, 1])).

Take H = {t ∈ [0, 1] : J∗(t) ∈ T ∗(BX∗)}. Obviously,

T ∗(BX∗) = J∗(H) ∪ (−J∗(H)).

Given any w ∈W , we have

‖T (w)‖ = sup
x∗∈BX∗

T ∗(x∗)(w) = sup
w∗∈T ∗(BX∗ )

w∗(w) = sup
t∈H
|J(w)(t)|.

This implies that X is isometric to W |H .

Remark 2.2. Given a closed subspace W ⊂ C(K) and a closed subset
H ⊂ K, in general W |H is not a closed subspace of C(H). As a matter of
fact, in the proof of Theorem 1.1 we may suppose that X is the range of a
bounded linear operator defined on `1 (or any separable Banach space) in
order to obtain an isometry onto a linear space of the form W |H .

The parametrization of the class of separable Banach spaces provided
by Theorem 1.1 will be completed with a suitable description of the set of
indices. We shall denote by F(K) the family of nonempty closed subsets of
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a metrizable compact space K. Endowed with the Vietoris topology, F(K)
becomes a metrizable compact space, and its associated Borel σ-algebra
coincides with the Effros Borel structure. Recall that the Vietoris topology
of F(K) is generated by the sets of the form {H ∈ F(K) : H ⊂ U} and
{H ∈ F(K) : H ∩ U 6= ∅} where U ⊂ K is open. We address the reader to
[6] for additional definitions and more information about these topics.

Proposition 2.3. Let K be a compact metric space and let W ⊂ C(K)
be a closed subspace. Then the set

D = {H ∈ F(K) : W |H is Banach}
is Borel with respect to the Vietoris topology on F(K).

Proof. Fix a dense sequence (fk)k∈N ⊂W . The subsets of K defined by

U(m, k, j) = {x ∈ K : |fk(x)− fj(x)| < 1/m},
V (n,m, k, j) = {x ∈ K : ‖fj‖ < n|fk(x)|+ 1/m}

for n,m, k, j ∈ N are open. Lemma 2.4 below applied to the restriction
operator TH : W → C(H), which is defined as TH(f) = f |H for H ∈ F(K),
implies that

D =
⋃
n∈N

⋂
m,k∈N

⋃
j∈N
{H ∈ F(K) : H ⊂ U(m, k, j), H ∩ V (n,m, k, j) 6= ∅}.

Hence D is a Gδσ set in the Vietoris topology, and so it is Borel.

Lemma 2.4. Let X and Y be separable Banach spaces and let (xk)k∈N
⊂ X be a dense sequence. Then T (X) is closed in Y if and only if there is
β > 0 such that, for every ε > 0 and every k ∈ N, there is j ∈ N with the
property that ‖T (xk)− T (xj)‖ < ε and ‖xj‖ < β‖T (xk)‖+ ε.

Proof. If T (X) is closed in Y , then T is open onto T (X) by the open
mapping principle [2, Theorem 2.25]. Hence there is β > 0 such that for
every y ∈ T (X), there is x ∈ X such that T (x) = y and ‖x‖ ≤ β‖y‖. Now
set y = T (xk) and find j ∈ N such that ‖x − xj‖ < min{ε, ‖T‖−1ε}. Then
‖T (xk)− T (xj)‖ < ε and ‖xj‖ ≤ ‖x‖+ ‖x− xj‖ < β‖T (xk)‖+ ε.

For the converse, let y ∈ Z := T (X) with ‖y‖ ≤ 1. Find a subsequence
(xkn)n∈N such that y = limn xkn . We may assume ‖T (xkn)‖ < 2 for all n ∈ N.
Find, according to our assumption, xjn such that ‖xjn‖ ≤ 2β + 1/n with
‖T (xkn) − T (xjn)‖ < 1/n. Then limn T (xjn) = y and ‖xjn‖ < α := 2β + 1.

This shows that BZ ⊂ T (αBX). By [2, Lemma 2.24], we get λBZ ⊂ T (αBX)
for some λ ∈ (0, 1), and so T is an open mapping from X into Z. This shows,
in particular, that T (X) is closed.

3. Smooth subspaces and finite Szlenk indices. We need to in-
troduce several notions. In all that follows, we shall consider a pair (K, d)
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consisting of a compact space K and a metric d on K whose induced topol-
ogy is strictly finer than the original topology on K. Let ‘diam’ denote the
diameter measured with respect to d. For any subset A ⊂ K consider the
derived set

〈A〉′ε = {x ∈ A : diam(A ∩ U) ≥ ε for each neighbourhood of x}.
By iteration, the sets 〈A〉γε are defined for any ordinal γ, taking intersection
in the case of limit ordinals. The Szlenk indices of K (with respect to d) are
ordinal numbers defined by

Sz(K, ε) = inf{γ : 〈K〉γε = ∅}
if such an ordinal γ exists, otherwise we say that Sz(K, ε) = ∞ (beyond
ordinals). We say that K has Szlenk index at most ω if Sz(K, ε) < ω for
every ε > 0. For instance, the closed balls of superreflexive Banach spaces
endowed with the weak topology have Szlenk index at most ω with respect
to the norm metric. Note that the standard Szlenk index of a Banach space
X is defined dually as supε>0 Sz(BX∗ , ε) and it has many applications in
isomorphic theory of Banach spaces (see [3]). The “bitopological” version of
the Szlenk index that we will use here has been studied in [5].

Finally, L(K, d) stands for the set of real functions defined on K which
are Lipschitz with respect to the metric d. If d is lower semicontinuous, then
C(K) ∩ L(K, d) separates the points of K.

The next lemma contains the properties of the Szlenk index that we shall
use here.

Lemma 3.1. Let (K, d) be a compact space together with an associated
metric.

(a) Sz(K, ε) ≤ max{Sz(Ai, ε/2) : i = 1, . . . , n} whenever Ai ⊂ K are
closed with K =

⋃n
i=1Ai and ε > 0.

(b) Let (K̃, d̃) be a compact space with an associated metric such that
there exists a continuous surjection of K onto K̃ which is Lipschitz
for the two metrics. Then there exists a > 0 such that Sz(K̃, ε) ≤
Sz(K, aε) for any ε > 0.

Hint to the proof. Replacing the diameter by the Kuratowski measure
of noncompactness in the definition of the derived set above, we obtain a
new ordinal index denoted by Sk(K, ε) (see the details in [5]). The relation
between the functions Sk and Sz is given by the inequality

Sz(K, 2ε) ≤ Sk(K, ε) ≤ Sz(K, ε).

Statement (a) follows from the fact that Sk(K, ε) = max1≤i≤n Sk(Ai, ε) [5,
Proposition 2.5]. On the other hand, (b) follows from [5, Corollary 2.11],
saying that Sk(K̃, ε) ≤ Sk(K, ε/λ) where λ the Lipschitz constant of the
surjection.
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This result is an improvement of [5, Theorem 4.4] under stronger as-
sumptions.

Proposition 3.2. Let (K, d) have Szlenk index at most ω. If X is a
Banach space endowed with a Gâteaux smooth norm which embeds isomet-
rically into C(K) as a subset of L(K, d), then

Sz(BX∗ , ε) ≤ Sz(K, c ε)

for some c > 0 and every ε > 0.

Proof. Without loss of generality we may assume that X is of infinite
dimension. Let J : X → C(K) be the embedding and J∗ : C(K)∗ → X∗ its
adjoint. A suitable use of the Baire category theorem implies that there is
a common Lipschitz bound λ > 0 for all the functions of J(BX). The set
J∗(K) is a weak∗ compact subset of X∗ such that BX∗ = J∗(K)∪(−J∗(K))
by Lemma 2.1. We claim that J∗(K) is also a Lipschitz image of K. Indeed,
if x ∈ BX and t1, t2 ∈ K then

|J∗(t1)(x)− J∗(t2)(x)| = |J(x)(t1)− J(x)(t2)| ≤ λd(t1, t2).

Taking the supremum over x ∈ BX we get ‖J∗(t1) − J∗(t2)‖ ≤ λ d(t1, t2).
Then Sz(J∗(K), ε) ≤ Sz(K, aε) by Lemma 3.1(b). Applying now Lemma
3.1(a), we have Sz(BX∗ , ε) ≤ Sz(J∗(K), ε/2) and the conclusion of the proof
is straightforward.

Remark 3.3. If (K, d) has Szlenk index at most ω, and the Banach
space X embeds isomorphically into C(K) as a subset of L(K, d), then BX∗

has Szlenk index at most ω by [5, Theorem 4.4]. In particular, X∗ admits an
equivalent locally uniformly rotund dual norm [3, Theorem 13] and therefore
X is Fréchet smoothable.

Proof of Theorem 1.2. Let q′ denote the conjugate exponent of q, that
is, 1/q + 1/q′ = 1. Clearly, the inequality (p− 1)(q − 1) ≥ 1 is equivalent to
q′ ≤ p. Consider the Mazur mapping ϕp,q′ : B`p → B`q′ defined by

ϕp,q′((xn)n∈N) := (sign(xn)|xn|p/q
′
)n∈N,

which is Lipschitz for q′ ≤ p (see [2, proof of Theorem 12.50]). The natural
embedding of `q into C(B`q′ ) composed with the Mazur mapping will provide

an isometric embedding of `q as Lipschitz functions. On the other hand, if
X is a Gâteaux smooth subspace of C(B`p), then

Sz(BX∗ , ε) ≤ Sz(B`p , cε) ≤ cε−p

for some c > 0 by Proposition 3.2, and so `q does not embed as Lipschitz

functions if q′ ∈ (p,∞) because Sz(B`q′ , ε) ≥ aε−q
′

for some a > 0 (see

[5, Example 4.10]). If q′ = ∞, then Sz(B`∞) = ∞ since `1 is not Asplund
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(see [3, Theorem 2]), and so `1 does not embed as Lipschitz functions into
C(B`p).
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