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The inclusion theorem for multiple summing operators

by

David Pérez-Garćıa (Madrid)

Abstract. We prove that, for 1 ≤ p ≤ q < 2, each multiple p-summing multilinear
operator between Banach spaces is also q-summing. We also give an improvement of this
result for an image space of cotype 2. As a consequence, we obtain a characterization of
Hilbert–Schmidt multilinear operators similar to the linear one given by A. Pełczyński in
1967. We also give a multilinear generalization of Grothendieck’s Theorem for GT spaces.

1. Introduction. Motivated by the importance of the theory of abso-
lutely summing linear operators, there have been some attempts to general-
ize this concept and the related results and tools to the multilinear setting
(see [1], [7], [21] or [23]). However, the results obtained were not completely
satisfactory. Recently, M. C. Matos [11] and, independently, F. Bombal,
I. Villanueva and the author [2], [17], [18] have defined and studied the class
of multiple summing operators (although the origin of this class goes back
to [23]). It is shown in these works that this class behaves better in many
ways than the previous definitions of p-summing multilinear operators. In
fact, this class has most of the main properties of its linear analogue. For
example, we have

Theorem 1.1. (i) Every multilinear operator from L∞-spaces into an
L1-space is multiple 2-summing [2].

(ii) Every multilinear operator from L1-spaces into a Hilbert space is
multiple p-summing for 1 ≤ p ≤ 2 [17].

(iii) The composition of linear 2-summing operators with a multiple 2-
summing multilinear operator is integral and even nuclear [16], [18].

(iv) X1, . . . ,Xn are L∞-spaces if and only if , for every Banach space
Y , the class of multiple 1-summing multilinear operators T : X1 ×
· · · ×Xn → Y coincides with the class of integral operators [18].
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We also have close relations with the Hilbert–Schmidt multilinear oper-
ators. In fact, it is proved in [11] that

Theorem 1.2. The class of Hilbert–Schmidt multilinear operators and
the class of multiple 2-summing operators are identically isometric.

Theorem 1.3. For a multilinear operator T : X1 × · · · ×Xn → Y , the
following are equivalent :

(i) T is Hilbert–Schmidt.
(ii) T is multiple p-summing for every p ∈ [2,∞).
(iii) T is multiple p-summing for some p ∈ [2,∞).

Theorem 1.4. Every Hilbert–Schmidt multilinear operator is multiple
p-summing for every 1 ≤ p < 2.

The class of Hilbert–Schmidt multilinear operators was introduced in [8],
and studied and used in, for example, [3], [4], [9] or [21] (see Section 5 for
more details).

However, as shown in [18], for every q > 2 there exists a bilinear form that
is multiple p-summing for every 1 ≤ p ≤ 2 but not q-summing. Therefore,
and this is one of the main defects of this class, we cannot expect an Inclusion
Theorem similar to [6, Theorem 2.8]. The aim of this paper is to solve this
problem partially by showing (see Theorem 3.4) that if 1 ≤ p ≤ q < 2, then
every multiple p-summing operator is also multiple q-summing. In Theorem
3.10 we improve this result for the case of an image space of cotype 2.

As a first application, we give in Theorem 4.2 a multilinear version of
the classical characterization of Hilbert–Schmidt linear operators given by
A. Pełczyński [15] (see also [19]). Thus, we complete the relations given in
Theorems 1.2–1.4.

Moreover, we prove in Theorem 4.5 that, for GT spaces, every multilin-
ear operator into a Hilbert space is 1-summing. Though this result can be
obtained by using the approach of [2], this new proof gives us an optimal
constant, improving the proofs in [2] and [17]. The Inclusion Theorem allows
us to extend this result to 1 ≤ p ≤ 2 and so we conclude that Theorem 1.1(ii)
is also valid for GT spaces.

2. Notation and definitions. The notation and terminology used
along the paper is standard in Banach space theory, as for instance in [5]
or [6]. These books are also our main references for basic facts, definitions
and unexplained notation. However, before going any further, we shall estab-
lish some terminology. All along this paper all the operators are supposed to
be continuous. Given Banach spaces X,Y , L(X,Y ) will denote the Banach
space of linear (and continuous) operators between them and X⊗εY will be
their injective tensor product. X∗ will be the dual of X and BX its unit ball.
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We will denote by Y
1
↪→ X an isometric inclusion and X 1=Y will denote that

X and Y are isometrically isomorphic. Given linear operators u : X → Y
and v : Z → W , u ⊗ v : X ⊗ Z → T ⊗W will be the linear operator given
by u⊗ v(x⊗ z) = u(x)⊗ v(z). As usual, u∗ will denote the adjoint operator
of u; and K will denote the basic field, which can be both R and C.

For a finite sequence (xi)mi=1 ⊂ X and 1 ≤ p < ∞, we will write
‖(xi)mi=1‖ωp for

sup
{( m∑

i=1

|x∗(xi)|p
)1/p

: x∗ ∈ BX∗
}
.

A linear operator T : X → Y is said to be p-summing if there exists a
constant K > 0 such that (

∑m
i=1 ‖T (xi)‖p)1/p ≤ K‖(xi)mi=1‖ωp for each finite

sequence (xi)mi=1 ⊂ X. We can extend this definition to the multilinear case:

Definition 2.1. Let 1 ≤ p <∞. A multilinear operator T : X1 × · · · ×
Xn → Y is multiple p-summing if there exists a constant K > 0 such that,
for every choice of sequences (xjij )

mj
ij=1 ⊂ Xj ,

( m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖p

)1/p
≤ K

n∏

j=1

‖(xjij )
mj
ij=1‖ωp .(1)

In that case, we define the multiple p-summing norm of T by

πp(T ) = min{K : K satisfies (1)}.
The class Πn

p (X1, . . . ,Xn;Y ) of multiple p-summing n-linear operators
is a Banach space with the norm πp.

Another class related to p-summing operators is the class of 2-dominated
operators (see [5] or [6]). A linear operator u : X → Y is said to be 2-
dominated if there exist a Hilbert space H and linear operators v : X → H
and w : H → Y such that u = wv and v and w∗ are 2-summing. We define
∆2(u) = inf{π2(v)π2(w∗)}, where the infimum is taken over all factorizations
as above.

It is not difficult to see that u : X → Y is 2-dominated if and only if u∗

is. In this case ∆2(u) = ∆2(u∗).
Grothendieck’s Theorem says that there exists a universal constantK>0

such that every linear operator u : `1 → `2 is 1-summing with π1(u) ≤ K‖u‖.
We will denote by KG the least constant for which Grothendieck’s Theorem
is valid.

Following [22], we say that a Banach space X is a GT space, or that
X satisfies Grothendieck’s Theorem, if there exists K > 0 such that each
linear operator u : X → `2 is 1-summing and satisfies π1(u) ≤ K‖u‖. We
denote the least such constant K by GT(X). According to Grothendieck’s
Theorem, L1 spaces are GT spaces, but there are several instances of GT
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spaces which are not L1 spaces, for example L1/H
1 or the quotient of L1

by a reflexive subspace (see [22]).
It is shown in [22] that X is a GT space if and only if X∗∗ is, and in that

case, GT(X) = GT(X∗∗). Therefore, by [5, Proposition 20.18], every linear
operator u : X∗ → `1 is 2-dominated and ∆2(u) ≤ GT(X)‖u‖. By the above
remarks, we have

Proposition 2.2. If X is a GT space, then every linear operator u :
c0 → X is 2-dominated and ∆2(u) ≤ GT(X)‖u‖.

For q ≥ 2, a Banach space is said to have cotype q if there exists a
constant K > 0 such that, for each choice of (xi)mi=1 ⊂ X, we have

( m∑

i=1

‖xi‖q
)1/q

≤ K
( 1�

0

∥∥∥
m∑

i=1

ri(t)xi
∥∥∥

2
dt
)1/2

,

where (ri)∞i=1 is the sequence of Rademacher functions. The least such con-
stant K will be denoted by Cq(X).

Finally, we recall Khinchin’s and Kahane’s inequalities.

Theorem 2.3 (Khinchin’s Inequality). For each 0 < p < ∞, there are
positive constants Ap, Bp such that , for each sequence (ai)∞i=1 ∈ `2, we have

Ap

( ∞∑

i=1

|ai|2
)1/2

≤
( 1�

0

∣∣∣
∞∑

i=1

airi(t)
∣∣∣
p
dt
)1/p

≤ Bp
( ∞∑

i=1

|ai|2
)1/2

.

Theorem 2.4 (Kahane’s Inequality). If 0 < p, q < ∞, there exists a
constant Kp,q > 0 such that

( 1�

0

∥∥∥
m∑

i=1

ri(t)xi
∥∥∥
q
dt
)1/q

≤ Kp,q

( 1�

0

∥∥∥
m∑

i=1

ri(t)xi
∥∥∥
p
dt
)1/p

for each Banach space X and each choice of elements x1, . . . , xm ∈ X.

More notation and terminology will be introduced when needed.

3. Main results. To give the proof of the main result of this paper,
we will need an integral formulation of the definition of multiple summing
operators, in the spirit of [22, Proposition 1.2].

Proposition 3.1. Let T ∈ Πn
p (X1, . . . ,Xn;Y ) and let (Ωj , Σj , µj) be

measure spaces for each 1 ≤ j ≤ n. Then

(2)
( �

Ω1

· · ·
�

Ωn

‖T (f1(ω1), . . . , fn(ωn))‖p dµn(ωn) · · · dµ1(ω1)
)1/p

≤ πp(T )
n∏

j=1

sup
x∗∈BX∗

( �

Ωj

|〈x∗, fj(ωj)〉|p dµj(ωj)
)1/p

for every fj ∈ Lp(µj,Xj).
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Proof. It is enough to prove the result for simple functions of the form
fj =

∑mj
ij=1 x

j
ij
χ
Ajij
, where, for each j, the sets Ajij ⊂ Ωj are measurable and

disjoint and xjij ∈ Xj. Then (2) reduces to

( m1,...,mn∑

i1,...,in=1

‖T (µ1(A1
i1)1/px1

i1 , . . . , µn(Anin)1/pxnin)‖p
)1/p

≤ πp(T )
n∏

j=1

sup
x∗∈BX∗

( mj∑

ij=1

|〈x∗, µj(Ajij )
1/pxjij 〉|

p
)1/p

,

which is true by Definition 2.1.

Our main tool will be probability in Banach spaces. For this, all we will
need is covered by [20, Chapter 21].

The first result we will need is the existence of q-stable random variables:

Proposition 3.2. For 1 ≤ p < q ≤ 2, there exist a positive constant cp,q,
a measure space (Ω,Σ, µ) and a sequence (θi)∞i=1 of measurable scalar-valued
functions such that

∥∥∥
m∑

i=1

αiθi

∥∥∥
Lp(µ)

= cp,q

( m∑

i=1

|αi|q
)1/q

(3)

for each (αi)mi=1 ⊂ K.

Moreover, we will need the following fact, due to Maurey [12], which
essentially says that every Banach space has cotype (q, p) for 1 ≤ p < q < 2:

Proposition 3.3. If 1≤p<q<2, there exists a constant K̃p,q>0, which
only depends on p and q, such that if Z is a Banach space and (zi)mi=1 ⊂ Z,
then

( m∑

i=1

‖zi‖q
)1/q

≤ K̃p,q

( �

Ω

∥∥∥
m∑

i=1

θi(t)zi
∥∥∥
p
dµ(t)

)1/p
.(4)

We set Kp,q = cp,qK̃p,q.

Theorem 3.4. Let 1 ≤ p < q < 2. If X1, . . . ,Xn, Y are Banach spaces
and T ∈ Πn

p (X1, . . . ,Xn;Y ), then T ∈ Πn
q (X1, . . . ,Xn;Y ) and πq(T ) ≤

Kn
p,qπp(T ).

Proof. Take T ∈ Πn
p (X1, . . . ,Xn;Y ) and (xjij )

mj
ij=1 ⊂ Xj . We are going

to show that
( m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖q

)1/q
≤ Kn

p,qπp(T )
n∏

j=1

‖(xjij)
mj
ij=1‖ωq .(5)
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By (4), it is not difficult to see by induction that
( m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖q

)1/q

≤ K̃n
p,q

( �

Ω

· · ·
�

Ω

∥∥∥T
( m1∑

i1=1

θi1(ω1)x1
i1 , . . . ,

mn∑

in=1

θin(ωn)xnin
)∥∥∥

p

dµ(ωn) · · · dµ(ω1)
)1/p

Then Proposition 3.1 tells us that
( m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖q

)1/q

≤ K̃n
p,qπp(T )

n∏

j=1

sup
x∗∈BX∗

( �

Ω

∣∣∣
mj∑

ij=1

θij (ωj)〈x∗, xjij 〉
∣∣∣
p
dµ(ωj)

)1/p

and using (3) we obtain (5).

Remark 3.5. It is important to note that we cannot ensure that the
constant Kp,q in Theorem 3.4 is bounded as q increases to 2.

We can improve the constant in Theorem 3.4 using a tricky induction
argument. This new result gives the constant 1 in the case n = 1.

Theorem 3.6. Let 1 ≤ p < q < 2. If X1, . . . ,Xn, Y are Banach spaces
and T ∈ Πn

p (X1, . . . ,Xn;Y ), then T ∈ Πn
q (X1, . . . ,Xn;Y ) and πq(T ) ≤

Kn−1
p,q πp(T ).

The induction step will use the following lemma, which is trivial from
the definitions.

Lemma 3.7. Let T : X1 × · · · × Xn → Y be a multilinear operator and
let 1 ≤ p <∞. The following are equivalent :

(i) T is multiple p-summing.
(ii) There exists a constant K > 0 such that for every finite sequence

(x1
i )
m
i=1 ⊂ X1 with ‖(x1

i )
m
i=1‖ωp ≤ 1 the associated (n − 1)-linear

operator
T(x1

i ) : X2 × · · · ×Xn → `mq (Y )

given by
T(x1

i )(x
2, . . . , xn) = (T (x1

i , x
2, . . . , xn))mi=1

is multiple p-summing and satisfies

πp(T(x1
i )) ≤ K.(6)

In that case, πp(T ) = min{K : K satisfies (6)}.
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Proof of Theorem 3.6. We reason by induction. The case n = 1 is [6, The-
orem 2.8]. To deduce the n-case from the (n−1)-case, we will use Lemma 3.7.
So consider (x1

i )
m
i=1 ⊂ X1 such that ‖(x1

i )
m
i=1‖wq ≤ 1. We want to show that

πq(T(x1
i )) ≤ Kn−1

p,q πp(T ).(7)

Set hi = θi/cp,q, E = span{h1, . . . , hm} ⊂ Lp(µ) and let h : `mq
1
↪→ E be the

isometric inclusion given by ei 7→ hi. Then

‖h‖ = ‖h−1‖ = 1.(8)

Let ε > 0. Choose simple functions Si ∈ Lp(µ) such that ‖Si − hi‖Lp(µ) ≤
ε/m. Clearly, there exist A1, . . . , AN ⊂ Ω, measurable and disjoint, such
that

Si =
N∑

j=1

αji
µ(Aj)1/p

χAj for i = 1, . . . ,m.

We define u : E → `Np by u(hi) = (αji )
N
j=1 and v : `Np

1
↪→ Lp(µ) by v(ej) =

χAj/µ(Aj)1/p. It is clear that v is an isometric inclusion. Moreover,

‖u‖ ≤ 1 + ε,(9)

because
∥∥∥u
( m∑

i=1

βihi

)∥∥∥
`Np

=
∥∥∥v ◦ u

( m∑

i=1

βihi

)∥∥∥
Lp(µ)

=
∥∥∥

m∑

i=1

βiSi

∥∥∥
Lp(µ)

≤
∥∥∥

m∑

i=1

βihi

∥∥∥
Lp(µ)

+
∥∥∥

m∑

i=1

βi(Si − hi)
∥∥∥
Lp(µ)

≤
∥∥∥

m∑

i=1

βihi

∥∥∥
Lp(µ)

+
( m∑

i=1

|βi|q
)1/q m∑

i=1

‖Si − hi‖Lp(µ)

≤ (1 + ε)
∥∥∥

m∑

i=1

βihi

∥∥∥
Lp(µ)

by (8).

Moreover, for y =
∑n

i=1 hi ⊗ yi ∈ Lp(µ, Y ), by (8) and [5] we have

max
i
‖yi‖Y ≤

∥∥∥
n∑

i=1

ei ⊗ yi
∥∥∥
`mq ⊗εY

≤
∥∥∥

n∑

i=1

hi ⊗ yi
∥∥∥
E⊗εY

≤ ‖y‖Lp(µ,Y ).

Therefore,

(1− ε)‖y‖Lp(µ,Y ) ≤ ‖y‖Lp(µ,Y ) −
m∑

i=1

‖yi‖Y ‖hi − Si‖Lp(µ)(10)

≤
∥∥∥

m∑

i=1

Si ⊗ yi
∥∥∥
Lp(µ,Y )

= ‖(v ◦ u)⊗ id(y)‖Lp(µ,Y ).
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Finally, using (4) we see that, for y =
∑m

i=1 ei ⊗ yi ⊂ `mq (Y ),

‖h⊗ id(y)‖Lp(µ,Y ) ≥
1

cp,qK̃p,q

‖y‖`mq (Y ).(11)

We can now prove that πq(T(x1
i )) ≤ Kn−1

p,q πp(T ).

By (8) and (9) the linear operator w = u ◦ h : `mq → `Np satisfies ‖w‖ ≤
1 + ε. Denote by l : `mq∗ → X1 the linear operator defined by l(ei) = x1

i . By
[6, Proposition 2.2], ‖l‖ = ‖(x1

i )
m
i=1‖wq ≤ 1 and so ‖l ◦ w∗‖ ≤ 1 + ε.

Now, l◦w∗ : `Np∗ → X1 and so if we set z1
j = l◦w∗(ej), then ‖(z1

j )
N
j=1‖ωp ≤

1 + ε, again by [6, Proposition 2.2]. But z1
j =

∑m
i=1 α

j
ix

1
i for each 1 ≤ j ≤ N

and (w ⊗ id) ◦ T(x1
i )

: X2 × · · · ×Xn → `Np (Y ) is given by

(w ⊗ id) ◦ T(x1
i )(x

2, . . . , xn) =
(
T
( m∑

i=1

αjix
1
i , x

2, . . . , xn
))N

j=1
.

Consequently, (w⊗ id) ◦ T(x1
i ) = T(z1

j ) : X2× · · · ×Xn → `Np (Y ), and we can
deduce from Lemma 3.7 that

πp((w ⊗ id) ◦ T(x1
i )) ≤ (1 + ε)πp(T ).(12)

We now consider (x2
i2

)m2
i2=1 ⊂ X2, . . . , (xnin)mnin=1 ⊂ Xn such that

‖(xjij )
mj
ij=1‖ωp ≤ 1 for each 2 ≤ j ≤ n.

We have
( m2,...,mn∑

i2,...,in=1

‖T(x1
i )(x

2
i2 , . . . , x

n
in)‖p`mq (Y )

)1/p

≤ Kp,q

( m2,...,mn∑

i2,...,in=1

‖(h⊗ id) ◦ T(x1
i )(x

2
i2 , . . . , x

n
in)‖pLp(µ,Y )

)1/p
by (11)

≤ Kp,q

1− ε
( m2,...,mn∑

i2,...,in=1

‖(vu⊗ id) ◦ (h⊗ id) ◦ T(x1
i )(x

2
i2 , . . . , x

n
in)‖pLp(µ,Y )

)1/p

by (10)

=
Kp,q

1− ε
( m2,...,mn∑

i2,...,in=1

‖(w ⊗ id) ◦ T(x1
i )(x

2
i2 , . . . , x

n
in)‖p

`Np (Y )

)1/p

as v ⊗ id is an isometry

≤ Kp,q

1− ε (1 + ε)πp(T ) by (12).
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Therefore, as ε is arbitrary, we have πp(T(x1
i )

) ≤ Kp,qπp(T ). Now the induc-
tion hypothesis tells us that πq(T(x1

i )) ≤ Kn−2
p,q πp(T(x1

i )
) and we obtain the

estimate (7).

We can improve Theorem 3.4 if the target space has cotype 2. First of
all, we can cover the case q = 2. What is even more important, we obtain
uniform bounds for the inclusions (we have seen in Remark 3.5 that we do
not have this in general).

We will need the following multiple cotype inequality.

Proposition 3.8. If Y has cotype 2, p ≤ 2 and (yi1,...,in)m1,...,mn

in,...,in=1 ⊂ Y ,
then
( m1,...,mn∑

i1,...,in=1

‖yi1,...,in‖2
)1/2

≤ (Kp,2C2(Y ))n
( 1�

0

· · ·
1�

0

∥∥∥
m1,...,mn∑

i1,...,in=1

ri1(t1) · · · rin(tn)yi1,...,in
∥∥∥
p
dt1 · · · dtn

)1/p
,

where Kp,2 is the constant in Kahane’s inequality 2.4.

Proof. We argue by induction. The case n = 1 is just the definition of
cotype and Kahane’s inequality. Let us prove case n assuming case n − 1.
Again by the definition of cotype and Kahane’s inequality we get

(Kp,2C2(Y ))p
1�

0

· · ·
1�

0

∥∥∥
m1,...,mn∑

i1,...,in=1

ri1(t1) · · · rin(tn)yi1,...,in
∥∥∥
p
dt1 · · · dtn

≥
1�

0

· · ·
1�

0

( mn∑

in=1

∥∥∥
m1,...,mn−1∑

i1,...,in−1=1

ri1(t1) · · · rin−1(tn−1)yi1,...,in
∥∥∥

2)p/2
dt1 · · · dtn−1

and using Minkowski’s inequality for integrals, we obtain

1�

0

· · ·
1�

0

( mn∑

in=1

∥∥∥
m1,...,mn−1∑

i1,...,in−1=1

ri1(t1) · · · rin−1(tn−1)yi1,...,in
∥∥∥
p 2
p
)p/2

dt1 · · · dtn−1

≥
( mn∑

in=1

( 1�

0

· · ·
1�

0

∥∥∥
m1,...,mn−1∑

i1,...,in−1=1

ri1(t1) · · · rin−1(tn−1)yi1,...,in
∥∥∥
p

dt1 · · · dtn−1

)2/p)p/2
.

The induction hypothesis yields the result.

Using Minkowski’s inequality exactly as in the proof of Proposition 3.8
we can obtain the following multiple version of Proposition 3.2.
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Proposition 3.9. If (αi1,...,in)m1,...,mn

i1,...,in=1 ⊂ K, then

(13)
( �

Ω

· · ·
�

Ω

∣∣∣
m1,...,mn∑

i1,...,in=1

αi1,...,inθi1(ω1) · · · θin(ωn)
∣∣∣
p
dµ(ω1) · · · dµ(ωn)

)1/p

≥ cnp,q

( m1,...,mn∑

i1,...,in=1

|αi1,...,in |q
)1/q

.

Clearly, we also have (3) and (13) for (εiθi)∞i=1, independently of the
choice of signs (εi)∞i=1 ∈ {−1, 1}N.

We can now prove our improvement of Theorem 3.4.

Theorem 3.10. If 1 ≤ p < q ≤ 2, the space Y has cotype 2 and T ∈
Πn
p (X1, . . . ,Xn;Y ), then T ∈ Πn

q (X1, . . . ,Xn;Y ) and

πq(T ) ≤ (Kp,2C2(Y ))nπp(T ),

where Kp,2 is the constant in Kahane’s inequality 2.4.

Proof. Using Proposition 3.2 and reasoning as in the proof of Theorem
3.4, we obtain

(14)
( 1�

0

· · ·
1�

0

�

Ω

· · ·
�

Ω

∥∥∥
m1,...,mn∑

i1,...,in=1

ri1(t1) · · · rin(tn)θi1(ω1) · · ·

· · · θin(ωn)T (x1
i1 , . . . , x

n
in)
∥∥∥
p
dµ(ω1) · · · dµ(ωn)dt1 · · · dtn

)1/p

≤ πp(T )cnp,q

n∏

j=1

‖(xjij )
mj
ij=1‖ωq .

Using now Proposition 3.8 we find that the left side of (14) is greater than
or equal to

(15)
1

((Kp,2C2(Y ))n

( �

Ω

· · ·
�

Ω

( m1,...,mn∑

i1,...,in=1

|θi1(ω1) · · ·

· · · θin(ωn)‖T (x1
i1 , . . . , x

n
in)‖|2

)p/2
dµ(ω1) · · · dµ(ωn)

)1/p

Now, using Khinchin’s inequality 2.3, together with the fact that Bp = 1,
we see that (15) is again greater than or equal to

(16)
1

(Kp,2C2(Y ))n

( �

Ω

· · ·
�

Ω

1�

0

· · ·
1�

0

∣∣∣
m1,...,mn∑

i1,...,in=1

ri1(t1) · · · rin(tn)θi1(ω1) · · ·

· · · θin(ωn)‖T (x1
i1 , . . . , x

n
in)‖

∣∣∣
p
dt1 · · · dtndµ(ω1) · · · dµ(ωn)

)1/p
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and Proposition 3.9 shows that (16) is greater than or equal to

1
(Kp,2C2(Y ))n

cnp,q

( m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖q

)1/q
,

which finishes the proof.

Remark 3.11. By [10], we can take Kp,2 =
√

2.

4. Applications. The first application of the previous results will be a
multilinear version of the main theorem of [15]. We need to define first the
class of Hilbert–Schmidt multilinear operators.

Definition 4.1. A multilinear operator T : H1×· · ·×Hn → H between
Hilbert spaces is said to be Hilbert–Schmidt if there exists K > 0 such that

( ∑

i1∈I1,...,in∈In
‖T (e1

i1 , . . . , e
n
in)‖2

)1/2
< K,(17)

where (ejij )ij∈Ij ⊂ Hj is an orthonormal basis (1 ≤ j ≤ n). In that case, the
least constant K satisfying (17) is the Hilbert–Schmidt norm of T , which
will be denoted by ‖T‖S2 .

The first observation we make is that the definition does not depend on
the orthonormal basis chosen [11, Proposition 5.1]. It is easy to see that the
class of Hilbert–Schmidt multilinear operators Sn2 (H1, . . . ,Hn;H), with its
norm ‖ · ‖S2 , is a Hilbert space. The scalar product is given by

(T |S) =
∑

i1∈I1,...,in∈In
(T (e1

i1 , . . . , e
n
in) |S(e1

i1 , . . . , e
n
in)).

Theorem 4.2. Let H1, . . . ,Hn,H be Hilbert spaces and T : H1 × · · · ×
Hn → H a multilinear operator. The following are equivalent :

(i) T ∈ Sn2 (H1, . . . ,Hn;H).
(ii) T ∈ Πn

p (H1, . . . ,Hn;H) for every p ∈ [1,∞).
(iii) T ∈ Πn

p (H1, . . . ,Hn;H) for some p ∈ [1,∞).

Proof. (i)⇒(ii) is [11, Proposition 5.6] and (ii)⇒(iii) is trivial. To see that
(iii)⇒(i) we take T ∈ Πn

p (H1, . . . ,Hn;H). If p ≥ 2, then [11, Proposition
5.7] tells us that T ∈ Sn2 (H1, . . . ,Hn;H). If 1 ≤ p ≤ 2, Theorem 3.10 yields
T ∈ Πn

2 (H1, . . . ,Hn;H). Then [11, Proposition 5.5] allows us to conclude
that also in that case T ∈ Sn2 (H1, . . . ,Hn;H).

Now, we are going to give the announced improvement of Theorem
1.1(ii). First, we need the following

Lemma 4.3. Let H1, . . . ,Hn,H be Hilbert spaces, X1, . . . ,Xn Banach
spaces, T : X1 × · · · × Xn → H a multilinear operator and uj : H1 → Xj
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linear operators such that u∗j is 2-summing for each 1 ≤ j ≤ n. Then S =
T (u1, . . . , un) is Hilbert–Schmidt and

‖S‖S2 ≤
( n∏

j=1

π2(u∗j)
)
‖T‖.

Proof. The case n = 1 is well known (see [6]). We reason by induction.
If we suppose the case n− 1 holds, we can consider the following diagram:

H1

u1

��

S1 // Sn−1
2 (H2, . . . ,Hn;H)

X1
T1 // Ln−1(X2, . . . ,Xn;H)

u

OO

where T1, S1 are the linear operators associated to T and S respectively,
u(R) = R(u2, . . . , un) and

‖u‖ ≤
n∏

j=2

π2(u∗j).

As Sn−1
2 (H2, . . . ,Hn;H) is again a Hilbert space, the case n = 1 shows that

S1 is Hilbert–Schmidt and

‖S1‖S2 ≤
( n∏

j=1

π2(u∗j )
)
‖T‖.

Now [11, Proposition 5.3] finishes the proof.

We also need the following result proved in [2].

Theorem 4.4. Let uj ∈ Πq(Xj , Yj) and T ∈ Πn
p (Y1, . . . , Yn;Z) and let

1 ≤ r <∞ be such that 1/r = 1/p+1/q. Then S = T (u1, . . . , un) is multiple
r-summing and πr(S) ≤ πp(T )

∏n
j=1 πq(uj).

Theorem 4.5. Let X1, . . . ,Xn be GT spaces. Then, for any Hilbert space
H, every multilinear operator T : X1×· · ·×Xn → H is multiple 1-summing
and

π1(T ) ≤
( n∏

j=1

GT(Xj)
)
‖T‖.

Moreover , the constant
∏n
j=1 GT(Xj) is optimal.

Proof. Take finite sequences (xjij )
mj
ij=1 ⊂ Xj with ‖(xjij )

mj
ij=1‖ω1 ≤ 1 and

define the operators uj : `mj∞ → Xj by uj(eij ) = xjij . By [6, Proposition 2.2],
‖uj‖ ≤ 1.

By Proposition 2.2, uj is 2-dominated and ∆2(uj) ≤ GT(Xj). Therefore,
for any ε > 0, there exist Hilbert spaces Hj and operators vj : `mj∞ → Hj
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and wj : Hj → Xj such that uj = wjvj and vj , w
∗
j are 2-summing with

π2(vj)π2(w∗j ) ≤ GT(Xj) + ε.

By Lemma 4.3, T (w1, . . . , wn) is Hilbert–Schmidt and

‖T (w1, . . . , wn)‖S2 ≤
( n∏

j=1

π2(w∗j )
)
‖T‖.

Now, Theorems 1.2 and 4.4 tell us that T (u1, . . . , un) is multiple 1-summing
and

π1(T (u1, . . . , un)) ≤
( n∏

j=1

(GT(Xj) + ε)
)
‖T‖.

As ε is arbitrary and ‖(eij)
mj
ij=1‖ω1 = 1 in `

mj
∞ , we conclude that

m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖ ≤ π1(T (u1, . . . , un)) ≤

( n∏

j=1

GT(Xj)
)
‖T‖.

To see the optimality of the constant we consider, for ε > 0, operators
uj : Xj → `2 and finite sequences (xjij )

mj
ij=1 ⊂ Xj such that ‖(xjij )

mj
ij=1‖ω1 ≤ 1

and
mj∑

ij=1

‖uj(xjij )‖ ≥ GT(Xj)− ε.

The operator T = u1 ⊗ · · · ⊗ un : X1 × · · · × Xn → `2(N × · · · × N) has
‖T‖ ≤ 1 and

m1,...,mn∑

i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖ =

n∏

j=1

mj∑

ij=1

‖uj(xjij )‖ ≥
n∏

j=1

(GT(Xj)− ε).

Grothendieck’s Theorem tells us that `1 is a GT space with GT(`1) =
KG. Thus we have the following

Corollary 4.6. Every multilinear operator T : `1 × · · · × `1 → `2 is
multiple 1-summing and

π1(T ) ≤ Kn
G‖T‖.

Moreover , the constant Kn
G is optimal.

Finally, as another application of Theorem 3.10, we have the following
general version of Theorem 1.1(ii).

Corollary 4.7. Let X1, . . . ,Xn be GT spaces, H a Hilbert space, T :
X1×· · ·×Xn → H a multilinear operator and 1 ≤ p ≤ 2. Then T is multiple
p-summing and

πp(T ) ≤
( n∏

j=1

√
2 GT(Xj)

)
‖T‖.
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5. Open problems

5.1. Schatten classes of multilinear operators. We have seen in Theo-
rem 4.2 a close relation between Hilbert–Schmidt and multiple summing
multilinear operators. In the linear case we have a similar relation with the
Schatten spaces Sq. Specifically, we have

Theorem 5.1 ([6, Theorem 10.3]). If 2 ≤ q<∞ and H1,H2 are Hilbert

spaces, then Sq(H1,H2) 1=Π(q,2)(H1,H2).

It is natural to ask if we can obtain a multilinear analogue of this result.
The first question here is to find the right definition for the multilinear
Schatten classes. The problem of finding this definition was first stated in
[21]. By the same time, and motivated by the application of the Schatten
spaces to the study of Hankel operators, this problem appeared again in [9],
[13] and [14]. [3] and [4] are the first steps towards a solution.

The idea in all these papers is to define the Schatten classes Sq of multi-
linear forms (they only consider the case of forms) by interpolation between
the nuclear forms S1 and the compact forms S∞. The first question, still
open, is whether the spaces obtained by the real and complex interpolation
methods coincide. What is known (see [3]) is that the definition of S2 by
interpolation coincides with Definition 4.1 for both the real and complex
method.

Another possible way of defining the Schatten classes, which also appears
in the above mentioned works, is to define them using approximation num-
bers. This alternative definition, as it appears in [14], is also closed under
interpolation. However, the exact relation between these two definitions, and
the relation of both of them to the class of multiple (q, 2)-summing operators
are not clear at all.

5.2. On the Inclusion Theorem. All what is known about inclusions be-
tween the classes of multiple p-summing operators is contained in Theorems
3.4, 3.10 and [17, Theorem 3.6]. There are still many open questions. We
point out the following:

Q1. Is it essential for Y to have cotype 2 in Theorem 3.10?
Q2. Does there exist an Inclusion Theorem for 2 < p ≤ q <∞? If not, we

could ask for weak versions of the Inclusion Theorem. Specifically,
we do not know if, or under which conditions, the following is true:
If T ∈ Πn

p (X1, . . . ,Xn;Y ) ∩ Πn
q (X1, . . . ,Xn;Y ) and 1 ≤ p ≤ r ≤

q <∞, then T ∈ Πn
r (X1, . . . ,Xn;Y ).
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[2] F. Bombal, D. Pérez-Garćıa, and I. Villanueva, Multilinear extensions of Grothen-
dieck’s theorem, to appear.
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