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Notes on q-deformed operators

by

Schôichi Ôta (Fukuoka) and
Franciszek Hugon Szafraniec (Kraków)

Abstract. The paper concerns operators of deformed structure like q-normal and q-
hyponormal operators with the deformation parameter q being a positive number different
from 1. In particular, an example of a q-hyponormal operator with empty spectrum is
given, and q-hyponormality is characterized in terms of some operator inequalities.

1. Introduction. The formal algebraic relation

xx∗ = qx∗x,(1)

with the parameter q > 0, q 6= 1, appears in several different situations
(cf. [1], [4] and [7]). If x is an operator in a Hilbert space, this leads to the
study of q-normal operators. Non-trivial q-normal operators must necessarily
be unbounded and they have many basic properties that are different from
those of usual (q = 1) normal ones (see [5]). For instance, q-normal operators
have large spectrum (e.g., the spectrum of every q-normal weighted shift is
the complex plane C). On the other hand, there is a bounded q-hyponormal
operator T such that σ(T ) = {0}. It turns out that this can be pushed to the
very extreme: in Section 3 we give an example of a q-hyponormal operator
having empty spectrum.

In Section 4 direct sums of q-deformed operators are studied and it is
shown that the direct sum of q-quasinormal operators is q-quasinormal. This
provides a way to construct new deformed operators from old ones. In par-
ticular, in the case of q > 1, we get existence of an unbounded q-quasinormal
operator which is not q-normal. This has to be related to the fact that a
q-normal operator is always unbounded, which means that q-quasinormal
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operators exist and that, on the other hand, bounded q-quasinormal opera-
tors exist as well [5].

There are different possibilities to define order relations among unbound-
ed operators. The aim of Section 5 is to characterize q-hyponormality in
terms of these relations.

2. q-deformed operators. Throughout this paper, we suppose that q
is a positive real number such that q 6= 1 and that all operators are linear.
For an operator T in a Hilbert space H, the domain and kernel of T are
denoted by D(T ) and kerT , respectively. The usual inner product of H is
denoted by 〈 · ,−〉. For operators S and T in H, the relation S ⊂ T means
that D(S) ⊂ D(T ) and Sη = Tη for all η ∈ D(S). We write C and Z for the
set of complex numbers and the set of integers, respectively.

We give a brief review of q-deformed operators (this means that q is
regarded as a deformation parameter). A densely defined operator T in a
Hilbert space H is said to be q-normal if

D(T ) = D(T ∗), ‖T ∗η‖ =
√
q ‖Tη‖ for η ∈ D(T ).(2)

Because this implies that a q-normal operator must be closed we can state
the definition in an equivalent way (see [10] or [9] for an argument): A closed
densely defined operator T in H is q-normal if and only if

TT ∗ = qT ∗T.(3)

Condition (3) reminds the formal relation (1). It, or alternatively (2), is
equivalent to

|T ∗| = √q |T |.(4)

Let T be a closed densely defined operator inH with polar decomposition
T = U |T |. If T satisfies the relation

U |T | = √q |T |U,
then T is called a q-quasinormal operator.

Weakening the requirement of (2) we say that a densely defined opera-
tor T is q-hyponormal if it satisfies

D(T ) ⊂ D(T ∗), ‖T ∗η‖ ≤ √q ‖Tη‖(5)

for all η ∈ D(T ). A q-hyponormal operator is closable and moreover a q-
quasinormal operator is q-hyponormal.

Let T be a q-hyponormal operator in H. Then there exists a unique
contraction KT such that

T ∗ ⊃ √q KTT, kerKT ⊃ kerT ∗.
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KT is called the contraction attached to T . For a closed q-hyponormal op-
erator T , T is q-quasinormal if and only if KT = (U∗)2 (U is the partial
isometry in the polar decomposition of T ).

It follows immediately from (5) that a non-trivial q-hyponormal operator
with 0 < q < 1 is unbounded. Similarly (2) implies that a non-trivial q-
normal operator is always unbounded (unless q = 1, which is not the case
of our interest in this paper). Because the spectrum of a q-normal weighted
shift is equal to C we can say that q-normal operators have sufficiently large
spectrum. Moreover, every q-normal operator T is unitarily equivalent to
qT . We refer to [5] and [6] for further details in this matter.

3. A q-deformed operator with empty spectrum. Let T be a
closed densely defined operator in a Hilbert space H. Recall that the resol-
vent set %(T ) of T is defined as the set of all λ ∈ C for which ker(λ−T ) = {0},
R(λ− T ) = H and the inverse (λ − T )−1 is bounded on H. Consequently,
0 ∈ %(T ) if and only if there is a bounded operator S on H such that

ST ⊂ 1, TS = 1.(6)

It is clear that for any q > 1 every bounded hyponormal operator is a
q-hyponormal operator. The converse is not true in general. Even more, we
have

Proposition 3.1. Let T be a non-zero bounded operator on a Hilbert
space H. If T is q-quasinormal , then T cannot be hyponormal.

Proof. Suppose T is hyponormal. It is well known that

‖T‖ = γ(T ),

where γ(T ) is the spectral radius of T . Since T is q-quasinormal, T is
quasinilpotent by [5, Corollary 9.2]. Therefore, T = 0. This is a contra-
diction.

The following result is in [9, Proposition 1.6].

Lemma 3.2. Let T be a closed densely defined operator in a Hilbert space
H such that 0 ∈ %(T ). If σ(T−1) = {0}, then σ(T ) = ∅.

Let S be a closed densely defined operator in a separable Hilbert spaceH.
If there are an orthonormal basis {en} (n ∈ Z) and a sequence {wn} (wn 6= 0,
n ∈ Z) of complex numbers such that

D(S) =
{ ∞∑

n=−∞
αnen ∈ H :

∞∑

n=−∞
|αn|2|wn|2 <∞

}

and
Sen = wnen+1 for all n ∈ Z,
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then S is called a bilateral (injective) weighted shift with weight sequence
{wn} (with respect to {en}). A unilateral weighted shift is defined analo-
gously. A bilateral (resp. unilateral) weighted shift is q-hyponormal if and
only if

√
q |wn+1| ≥ |wn| for all n ∈ Z (resp. for all n ≥ 0) (see [5, Section 4]

for further details).
Let q > 1. Let H be a separable Hilbert space with orthonormal basis

{en}n∈Z. Take numbers r and ` such that

` > 1 > r ≥ 1/
√
q.(7)

Put

wn =
{
rn if n ≥ 0,

`n if n ≤ −1,

and consider the weighted shift S0 with weight sequence {wn}. Then, clearly,
S0 is bounded with D(S0) = H. Since the sequence {wn} tends to zero as
|n| → ∞, S0 is compact and so σ(S0) is countable. On the other hand, by
[8, Corollary 2],

σ(S0) = cσ(S0)

for all c ∈ C with |c| = 1. It follows that σ(S0) = {0}.
Since ker(S0) = ker(S∗0) = {0}, S0 is injective and has dense range. This

means that the inverse S−1
0 is closed and densely defined. Hence, it follows

from Lemma 3.2 that S−1
0 has empty spectrum. On the other hand, we have

wn+1

wn
=
{
r ≥ 1/

√
q for n ≥ 0,

` > 1 > 1/
√
q for n ≤ −1.

These inequalities imply that S0 is q-hyponormal. Therefore, by [5, Propo-
sition 3.10], S−1

0 is also q-hyponormal. Thus, we obtain

Theorem 3.3. For every q > 1 there exists a q-hyponormal operator
with empty spectrum.

Remark 3.4. The argument given in the above proof shows that if a
bounded q-hyponormal operator T with σ(T ) = {0} is injective and has
dense range then T−1 is a closed densely defined q-hyponormal operator
and it satisfies σ(T−1) = ∅.

4. Direct sums of q-deformed operators. Let S and T be densely
defined operators in a Hilbert space H. Then S ⊕ T is a densely defined
operator in the direct sum Hilbert space H⊕H defined by

(S ⊕ T )(ξ ⊕ η) = Sξ ⊕ Tη
for ξ ∈ D(S) and η ∈ D(T ).
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Theorem 4.1. Let T1 and T2 be q-hyponormal operators in a Hilbert
space H. Then T1 ⊕ T2 is also q-hyponormal in H⊕H and

KT1⊕T2 = KT1 ⊕KT2 .

Moreover , T1 ⊕ T2 is q-normal (resp. q-quasinormal) if and only if both T1
and T2 are q-normal (resp. q-quasinormal).

Proof. Since Ti∗ ⊃
√
qKTiTi and kerKTi ⊃ kerTi∗ (i = 1, 2), we have

(T1 ⊕ T2)∗ = T1
∗ ⊕ T2

∗

⊃ √q(KT1T1 ⊕KT2T2) =
√
q(KT1 ⊕KT2)(T1 ⊕ T2)

and
ker(KT1 ⊕KT2) ⊃ kerT1

∗ ⊕ kerT2
∗ = ker(T1 ⊕ T2)∗.

Hence, KT1 ⊕KT2 is the contraction attached to T1⊕T2. Therefore, T1⊕T2
is q-hyponormal and KT1⊕T2 = KT1 ⊕KT2 .

Let Ti = Ui|Ti| be the polar decomposition of Ti (i = 1, 2). Then T1⊕T2
has the polar decomposition

T1 ⊕ T2 = (U1 ⊕ U2)(|T1| ⊕ |T2|).
If T1 and T2 are q-quasinormal, then

KT1 ⊕KT2 = (U∗1 )2 ⊕ (U∗2 )2 = (U1 ⊕ U2)∗2.

Since KT1⊕KT2 is the contraction attached to T1⊕T2, it follows that T1⊕T2
is q-quasinormal. The converse is easily proved analogously.

Finally, from the definition of q-normality it is not difficult to see that
T1 ⊕ T2 is q-normal if and only if both T1 and T2 are q-normal.

Remark 4.2. For 0 < q < 1 a non-trivial q-hyponormal operator is
always unbounded and the 2-dimensional Lebesgue measure of its spectrum
is positive ([6]).

If q > 1 a q-quasinormal unilateral weighted shift is always bounded
([5]). On the other hand q-normal operators which are always q-quasinormal
must necessarily be unbounded. Using Theorem 4.1 one can construct an
unbounded q-quasinormal operator which is not q-normal. For this take T1
to be any q-normal operator (which is unbounded) and T2 to be any bounded
q-quasinormal operator.

In view of Theorem 3.3 there exists a q-hyponormal operator, again
with q > 1, which has empty spectrum; this is in contrast to the fact that
every closed densely defined hyponormal operator (q = 1) has non-empty
spectrum ([9]).

5. Order relations for q-deformed operators. For unbounded op-
erators there are several ways to define order relations. Besides the relations
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considered by Kato and Rellich ([2] and [11]), where for operators S and T
in H,

S � T means D(T ) ⊂ D(S) and ‖Sη‖ ≤ ‖Tη‖ for η ∈ D(T )

and
S � T means D(T 1/2)⊂D(S1/2) and ‖S1/2η‖≤ ‖T 1/2η‖ for η ∈D(T 1/2)

provided S and T are selfadjoint and non-negative,

we consider the relation

S ≤ T means D(T ) ⊂ D(S) and 〈Sη, η〉 ≤ 〈Tη, η〉 for η ∈ D(T )(8)

provided S and T are symmetric.

Let H be a symmetric operator in H such that 〈Hη, η〉 = 0 for all
η ∈ D(H). Then it follows that 〈Hη, ξ〉 = 0 for all η, ξ ∈ D(H). Since D(H)
is dense in H, H = 0. This shows that, if symmetric operators S and T
satisfy S ≤ T and T ≤ S, then S = T . Therefore, ≤ is an order relation.

Because q-normality means TT ∗ = q T ∗T a question is under which
meaning of “≤” the condition

TT ∗ ≤ qT ∗T(9)

characterizes q-hyponormality.

Proposition 5.1. For a closed densely defined operator T in H consider
the following statements:

(a) T is q-hyponormal ,
(b) |T ∗| � √q |T |,
(c) |T ∗| ≤ √q |T |,
(d) |T ∗| � √q |T |,

Then (a)⇔(b)⇒(c)⇒(d). If T is a weighted shift , unilateral or bilateral ,
then all these statements are equivalent.

Proof. The equivalence of statements (a) and (b) is elementary. The
implication (b)⇒(c) follows from [3, Chapter 5, Theorem 4.12].

We show the implication (c)⇒(d). Suppose |T ∗| ≤ √q |T |. Take η in
D(|T |1/2). Since D(|T |) is a core for |T |1/2, there is a sequence {ηn} in D(|T |)
such that ηn → η and |T |1/2ηn → |T |1/2η. By our assumption, we have

ηn ∈ D(|T ∗|) ⊂ D(|T ∗|1/2)
and

‖ |T ∗|1/2ηn‖2 = 〈|T ∗|ηn, ηn〉 ≤
√
q 〈|T |ηn, ηn〉 =

√
q ‖ |T |1/2ηn‖2.

Hence, the sequence {|T ∗|1/2ηn} is Cauchy. It follows that

η ∈ D(|T ∗|1/2), |T ∗|1/2ηn → |T ∗|1/2η.
Therefore, ‖ |T ∗|1/2η‖ ≤ 4

√
q ‖ |T |1/2η‖. Thus |T ∗| � √q |T |.
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Next, suppose that T is a bilateral weighted shift with weight sequence
{wn} and statement (d) holds true. Clearly, en ∈ D(|T |) ∩ D(|T ∗|). Hence,

〈|T ∗|en, en〉 = ‖ |T ∗|1/2en‖2 ≤
√
q ‖ |T |1/2en‖2 =

√
q 〈|T |en, en〉.

Since |T |en = |wn|en and |T ∗|en = |wn−1|en, we have
√
q |wn+1| ≥ |wn| for

all integers n. Thus, T is q-hyponormal. In the case of a unilateral weighted
shift, an analogous argument shows that all the statements are equivalent.
This completes the proof.

By the same arguments as in the proof of implication (c)⇒(d) above, we
have

Proposition 5.2. If a closed densely defined operator T in H satisfies
condition (9) with “≤” defined as in (8), then T is q-hyponormal.
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