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Some aspects of nuclear vector groups

by

Lydia Außenhofer (Tübingen)

Abstract. In [2] W. Banaszczyk introduced nuclear groups, a Hausdorff variety of
abelian topological groups which is generated by all nuclear vector groups (cf. 2.3) and
which contains all nuclear vector spaces and all locally compact abelian groups.

We prove in 5.6 that the Hausdorff variety generated by all nuclear vector spaces and
all locally compact abelian groups (denoted by V1) is strictly smaller than the Hausdorff
variety of all nuclear groups (denoted by V2). More precisely, we characterize those nuclear
vector groups belonging to V1 (5.5). (These are called special nuclear vector groups.) It is
proved that special nuclear vector groups can be embedded into a product of nuclear and
of discrete vector spaces (2.5).

The sequence space Σ0 is introduced (2.6) and it is proved that it is a nuclear but not
a special nuclear vector group (2.12). Moreover, together with all discrete vector spaces it
generates the Hausdorff variety of all nuclear groups (3.3).

We show that the Hausdorff variety V0 generated by all nuclear vector spaces is strictly
contained in V1 (4.5).

1. Notation. Let us first fix some notation.
We consider real vector spaces only. For a (real) vector space E and a

subset X ⊆ E we denote by 〈X〉R the linear span of X and by 〈X〉Z the
subgroup generated by X. If L ⊆ E is a linear subspace, we write L ≤ E.
For a normed space E, the closed unit ball is denoted by BE . Accordingly,
if p is a (semi)norm on E then Bp := {x ∈ E : p(x) ≤ 1}.

E′ stands for the topological dual of the topological vector space E. The
polar X0 of X ⊆ E is defined by {ϕ ∈ E′ : ϕ(X) ⊆ [−1, 1]}.

For an abelian topological group G, the set of neighborhoods of the zero
element 0 is denoted by UG(0).

For a symmetric convex subset U of a vector space E, we denote by pU
the Minkowski functional of U .

dimE is the cardinality of a basis of E and |X| stands for the cardinality
of the set X. R(X) denotes the subspace of RX which consists of those
families where at most finitely many entries are 6= 0.

Finally, N = {1, 2, 3, . . .} is the set of natural numbers and N0 := N∪{0}.
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2. (Special) nuclear vector groups. In this section we introduce
nuclear vector groups and the subclass of special nuclear vector groups. We
will see that the sequence space Σ0 (defined in 2.6) is a nuclear vector group
but not a special nuclear vector group (2.12).

Definition 2.1. For symmetric convex subsets X, Y of a vector space E
and k ∈ N, we put dk(X,Y ) := inf{c > 0 : there exists a subspace Lc ≤ E
such that dimLc < k and X ⊆ cY + Lc} ∈ [0,∞].

dk(X,Y ) is called the k-th Kolmogorov diameter of X with respect to
Y in E.

If T : E1 → E2 is a linear operator between the normed spaces E1, E2,
we set dk(T ) := dk(T (BE1), BE2).

Let us list some properties of the Kolmogorov diameter. One easily ver-
ifies that dk(T (X), T (Y )) ≤ dk(X,Y ) for every linear operator T . Hence, if
T is an isomorphism, then dk(T (X), T (Y )) = dk(X,Y ). For every c > 0 and
all symmetric convex subsets X,Y we have

dk(cX, Y ) = cdk(X,Y ) and dk(X, cY ) =
1
c

dk(X,Y ).

For symmetric convex subsets X, Y , Z, W such that Z ⊆ X and Y ⊆ W
we have dk(Z, Y ) ≤ dk(X,Y ) and dk(X,W ) ≤ dk(X,Y ) for all k ∈ N.

Recall that a (semi)norm p on a vector space V is named a pre-Hilbert
(semi)norm if it satisfies the parallelogram law:

p(x+ y)2 + p(x− y)2 = 2p(x)2 + 2p(y)2.

Lemma 2.2. (i) Let (Un)n∈N be a sequence of symmetric convex sets
in a vector space E satisfying dk(Un+1, Un) ≤ 1/k for all k, n ∈ N. For
every m ∈ N there exists a subsequence (Unj )j∈N such that n1 = 1 and
dk(Unj+1 , Unj ) ≤ k−m for all j, k ∈ N.

(ii) For every natural number m ≥ 3, there exists a constant γm > 0 such
that for all symmetric convex subsets X, Y of a vector space which satisfy
dk(X,Y ) ≤ ck−m for all k ∈ N and a positive constant c > 0, there are
pre-Hilbert seminorms p and q defined on 〈X〉R such that X ⊆ Bp, Bq ⊆ Y ,
and dk(Bp, Bq) ≤ cγmk−m+3 for all k ∈ N.

(iii) Let p be an arbitrary seminorm and let q be a pre-Hilbert seminorm
on a vector space E such that d1(Bp, Bq) <∞. For every subspace E0 ≤ E,
we have dk(Bp ∩ E0, Bq ∩ E0) ≤ dk(Bp, Bq).

Proof. (i) Cf. (7.1.1) in [9] or 20.2 in [1].
A proof of (ii) can be found in [1] (Lemma 18.32). In [2] (Lemma 2.14),

a slightly stronger version is formulated.
(iii) This is Lemma 2.13 of [2] or Lemma 18.18 of [1].

Definitions 2.3. A locally convex Hausdorff vector space E is called
a nuclear vector space if for every symmetric convex neighborhood U ∈
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UE(0), there exists a symmetric convex neighborhood W ∈ UE(0) such that
dk(W,U) ≤ k−1 for all k ∈ N.

A vector space E endowed with a Hausdorff group topology having a
0-neighborhood basis consisting of symmetric convex sets is named a nu-
clear vector group if it has the following additional property: for every sym-
metric convex neighborhood U ∈ UE(0), there exists a symmetric convex
neighborhood W ∈ UE(0) such that dk(W,U) ≤ k−1 for all k ∈ N.

We call a nuclear vector group E a special nuclear vector group if there
exists a 0-neighborhood basis U0 consisting of symmetric convex sets such
that for every U0 ∈ U0 there exists a sequence (Un)n∈N of symmetric convex
neighborhoods which satisfy 〈U0〉R = 〈Un〉R for all n ∈ N and dk(Un, Un−1)
≤ 1/k for all k, n ∈ N.

Remarks 2.4. (i) The main difference between nuclear vector spaces
and nuclear vector groups is that in a nuclear vector group, the linear span
〈W 〉R of a smaller neighborhood is in general strictly smaller than 〈U〉R.

(ii) In general, a nuclear vector group is not connected. But if it is con-
nected, then every neighborhood of 0 is absorbing. Conversely, if every neigh-
borhood is absorbing, it is easily verified that the scalar multiplication is
continuous and hence the nuclear vector group is a topological (and therefore
nuclear) vector space.

(iii) For every neighborhood W of 0 in a nuclear vector group and for
every c > 0, the set cU is a neighborhood of 0.

(iv) It is clear that every nuclear vector space and every discrete vector
space (i.e. a vector space endowed with the discrete topology) is a special
nuclear vector group.

It follows easily from Lemma 2.7 of [2] that every product of (special)
nuclear vector groups is a (special) nuclear vector group. Trivially, every
Hausdorff quotient space of a (special) nuclear vector group is a (special)
nuclear vector group.

According to 2.2 and (iii), every subspace of a (special) nuclear vector
group is a (special) nuclear vector group.

Proposition 2.5. Every special nuclear vector group E can be embedded
into a product of nuclear and of discrete vector spaces.

Proof. Fix a neighborhood basis U0 as in the definition. For U0 ∈ U0,
we denote by EU0 the largest subspace contained in U0. As a consequence
of EU0 ⊆ {x ∈ U0 : λx ∈ U0 ∀λ ∈ R} ⊆ p−1

U0
(0) ⊆ EU0 and the continuity of

pU0 , we see that EU0 is a closed linear subspace. Hence E/EU0 is a special
nuclear vector group again (2.4(iv)). Let ψU0 : E → E/EU0 be the canonical
projection.
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We fix a sequence (Un)n∈N of neighborhoods which satisfies

dk(Un, Un−1) ≤ 1/k ∀k, n ∈ N and 〈Un〉R = 〈U0〉R ∀n ∈ N.
Obviously, the sequence (ψU0(Un))n∈N has the corresponding properties in
E/EU0 . So the family (εψU0(Un) : ε > 0, n ∈ N) forms a 0-neighborhood
basis of a nuclear vector space topology on F0 := 〈ψU0(U0)〉R (2.4(ii)). (Ob-
serve further that ψU0(U0) contains only the trivial subspace, which implies
that this topological space is necessarily Hausdorff.) Let F̃U0 be an algebraic
complement such that E/EU0 = FU0 ⊕ F̃U0 and let πF0 , respectively πF̃0

,

denote the corresponding projections onto FU0 , respectively F̃U0 . Due to the
definition, FU0 is open in E/EU0 . We endow F̃U0 with the discrete topology.
Then

ϕU0 : E → FU0 × F̃U0 , x 7→ (πF0(ψU0(x)), πF̃U0
(ψU0(x))),

is a well defined, continuous linear mapping with kernel EU0 ; moreover
ϕU0(U0) is a neighborhood of 0. So

ϕ : E →
∏

U0∈U0

FU0 × F̃U0 , x 7→ (ϕU0(x))U0∈U0 ,

is a continuous monomorphism. Since

ϕ(Ũ0) = ϕ(E) ∩
(( ∏

U0∈U0, U0 6=Ũ0

FU0 × F̃U0

)
× ϕŨ0

(Ũ0)
)

for every Ũ0 ∈ U0, ϕ is an embedding.

Next we present a concrete example of a nuclear vector group.

Example 2.6. For r ∈ N0, let

pr : Σr → R, (xn)n∈N 7→ sup{nr|xn| : n ∈ N},
where

Σr := {(xn)n∈N ∈ RN : (nrxn)n∈N is bounded}.
For Σ :=

⋂
r∈NΣr we have

dk(Bpr+1 , Bpr) ≤ k−1 and dk(Bpr+1 ∩Σ,Bpr ∩Σ) ≤ k−1.

[Observe that Bpr+1 ⊆ k−1Bpr + 〈e1, . . . , ek−1〉R (where (ej)j∈N denotes the
sequence of the standard unit vectors); the analogous inclusions hold for the
intersection with Σ.]

We endow the vector space Σ0 := RN with the group topology induced
by the neighborhoods (εBpr : r ∈ N, ε > 0) and observe that it is a nuclear
vector group. Σ endowed with the topology induced by the norms pr|Σ is a
nuclear vector space. Moreover, it is easily verified that Σ is the connected
component of 0 in Σ0.
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Furthermore, for r ∈ N0, we define Vr := {(xn)n∈N :
∑

n∈N(nrxn)2 <∞}
and

qr : Vr → R, ((xn)n∈N) 7→
√∑

n∈N
(nrxn)2.

It follows easily that

Vr ⊆ Σr ⊆ Vr−1, qr ≥ pr|Vr , pr ≥
√

6
π
qr−1|Σr

for all r ∈ N. Hence the family (εBqr : ε > 0, r ∈ N0) generates the given
topology on Σ0 and for every r ∈ N0, (Vr, qr) is a Hilbert space.

Lemma 2.7. Let T : H1 → H2 be a continuous linear operator between
inner product spaces. If T ′ denotes the adjoint operator , then dk(T ′) =
dk(T ) for all k ∈ N.

Proof. The proof is straightforward. Alternatively, it is a consequence of
(11.7.6) and (11.3.4) in [8] and of (18.16) in [1].

Lemma 2.8. For every normed space E and every finite-dimensional
subspace L ≤ E, the sum of the closed unit ball B with L is closed.

Proof. This is an easy consequence of the Bolzano–Weierstraß theo-
rem.

Lemma 2.9. Let T : H1 → H2, x 7→
∑

j∈N αj(x, xj)1·yj , be a continuous
linear operator between the Hilbert spaces (H1, (·, ·)1) and (H2, (·, ·)2), where
(xj)j∈N and (yj)j∈N are orthonormal systems in H1 and H2 respectively
and (αj)j∈N is a decreasing sequence of non-negative real numbers. Then
dk(T ) = αk for all k ∈ N.

Proof. This is Proposition (11.3.3) in [8].

We intend to apply these results to the sequence space Σ0; we use the
notation introduced in 2.6.

Lemma 2.10. For every r∈N0 and all k∈N we have dk(Bqr , Bq0)=k−r.

Proof. Since (k−rek : k ∈ N) is an orthonormal basis of (Vr, qr), the
inclusion Vr → V0 can be written in the form

(xn) =
∑

k∈N
((xn), k−rek)r · k−rek =

∑

k∈N
k−r((xn), k−rek)r · ek.

(The scalar product associated with qr is denoted by (·, ·)r.) It follows from
2.9 that dk(Bqr , Bq0) = k−r for all k ∈ N.

Lemma 2.11. For every r ∈ N0 and every symmetric, convex , absorbing
subset X ⊆ Vr, there exists ε > 0 such that dk(X,Bq0) ≥ εk−r for all k ∈ N.

Proof. Fix r ∈ N0. Since Vr =
⋃
n∈N nX

qr and (Vr, qr) is a Hilbert space,
in particular a Baire space, there exists n ∈ N such that the interior of nX

qr
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is not empty. It follows easily that X
qr ⊇ εBqr for suitable ε > 0. (The norm

as upper index denotes with respect to which topology the closure is taken.)
Next we prove that dk(X,Bq0) = dk(X

qr
, Bq0). The inequality “≤” is

trivial. Conversely, let c > 0, and L ≤ Σ0 be of finite dimension such that
X ⊆ cBq0 +L. Without loss of generality we may assume that L ≤ V0. Then

X
qr ⊆ (cBq0 + L) ∩ Vr

qr ⊆ cBq0 + L
q0 2.8= cBq0 + L, which implies “≥”.

Combining these results yields

dk(X,Bq0) = dk(X
qr
, Bq0) ≥ dk(εBqr , Bq0) = εdk(Bqr , Bq0) 2.10= εk−r

for all k ∈ N, which was to be shown.

Theorem 2.12. The nuclear vector group Σ0 is not a special nuclear
vector group.

Proof. Suppose the converse. This means: there exists a sequence
(Un)n∈N0 of symmetric convex neighborhoods which satisfies:

(i) U0 ⊆ Bq0 ,
(ii) dk(Un+1, Un) ≤ 1/k for all k ∈ N and n ∈ N0, and
(iii) 〈Un〉R = 〈U0〉R for all n ∈ N.

Applying 2.2(i) inductively enables us to find a subsequence of (Un)n∈N
(again denoted by (Un)n∈N) which satisfies

(ii)′ dk(Un, U0) ≤ k−n for all k, n ∈ N.

There exists r ∈ N such that Vr ⊆ 〈U0〉R. Hence we get

dk(Un ∩ Vr, Bq0)
(i)
≤ dk(Un, U0)

(ii)′

≤ k−n for all k, n ∈ N.

Since the Un∩Vr satisfy the assumptions of 2.11, there is a sequence (εn)n∈N
of positive numbers such that

εnk
−r ≤ dk(Un ∩ Vr, Bq0) ≤ k−n ∀k, n ∈ N.

This contradiction completes the proof.

3. Embedding of nuclear vector groups. We want to show in this
section that every nuclear vector group can be embedded into a product of
copies of Σ0 and of discrete vector spaces.

Lemma 3.1. Every nuclear vector group E has a 0-neighborhood basis U0
consisting of symmetric convex sets such that for every W ∈ U0 there exists
a sequence (ϕn)n∈N of linear forms defined on 〈W 〉R which satisfies:

(i) (nrϕn)n∈N is equicontinuous for every r ∈ N and
(ii) {x ∈ 〈W 〉R : |ϕn(x)| ≤ (2n)−1 ∀n ∈ N} ⊆W .
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Proof. Let U be a symmetric convex neighborhood of 0. We have to show
that there exists a symmetric convex neighborhood W of 0, contained in U ,
which has the properties stated above.

We may assume that U contains only the trivial subspace.
[p−1
U (0) = {x ∈ E : λx ∈ U ∀λ ∈ R} is a closed linear subspace, and

hence E/p−1
U (0) is a nuclear vector group again. Let π : E → E/p−1

U (0) be
the canonical projection. Then π(U) contains only the trivial subspace. If
we find W̃ ⊆ π(U) and (ϕ̃n) which satisfy the assertions in the quotient
space, then π−1(W̃ ) and ϕn := ϕ̃n ◦ π have the desired properties in E.]

According to 2.2, there is a sequence sn : En → R (n ∈ N0) of continuous
pre-Hilbert norms defined on a decreasing sequence (En)n∈N0 of subspaces
such that

Bs0 ⊆ U and dk(Bsn , Bs0) ≤ k−2n for all k ∈ N, n ∈ N0.(1)

Moreover, we may assume that E0 = E1. [Replacing E0 by E1 and s0 by
s0|E1 implies that Bs0|E1

= Bs0 ∩E1 is a neighborhood of 0 and

dk(Bs0|E1
, Bs1) = dk(Bs0 ∩ E1, Bs1) ≤ dk(Bs0 , Bs1).]

For n ∈ N, let Tn : (En, sn) → (E0, s0) be the inclusion map. For the
adjoint operator T ′n : (E0, s0)′ → (En, sn)′ we have

dk(T ′n) 2.7= dk(Tn) = dk(Bsn , Bs0)
(1)
≤ k−2n for all k, n ∈ N.(2)

According to (9.1.4) of [7], T ′n is a compact operator for all n ∈ N.
If one of the spaces En has finite dimension, then the assertion is clear,

since the En are open in E and the weak topology on a finite-dimensional
vector space coincides with the given one. So let us assume the converse.

Due to the spectral decomposition theorem (cf. (8.3.1) in [7]), for all
n ∈ N there are orthonormal systems (ϕn,k)k∈N in (E0, s0)′ and (ψn,k)k∈N in
(En, sn)′ and a decreasing sequence (αn,k)k∈N of non-negative numbers such
that

T ′n(ϕ) =
∑

k∈N
αn,k(ϕ,ϕn,k)0 · ψn,k ∀n ∈ N, ∀ϕ ∈ (E0, s0)′(3)

where (·, ·)n denotes the inner product of the Hilbert space (En, sn)′ (for
n ∈ N0). Furthermore, according to 2.9 and (2), we have

αn,k = dk(T ′n) ≤ k−2n.(4)

Since T1 is surjective, the adjoint operator T ′1 is injective and hence
(ϕ1,k)k∈N is an orthonormal basis of (E0, s0)′. Hence the closed linear span
of the set {ϕn,k : n, k ∈ N} equals (E0, s0)′. We form the Gram–Schmidt
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“orthonormalization” of the ϕn,k with respect to (·, ·)0 in the following order:

ϕ1,1

ϕ2,1 ϕ2,2 ϕ1,2

ϕ3,1 ϕ3,2 ϕ3,3 ϕ2,3 ϕ1,3
...

...
...

...
...

Observe that the family (ϕn,k : n, k ∈ N) need not be linearly indepen-
dent. (In this case it happens that some ϕl are 0 and hence not of norm 1.)
Anyhow, the set {ϕl : l ∈ N} \ {0} forms an orthonormal basis of (E0, s0)′.

Since the k-th row has 2k−1 entries and ϕn,k appears in the max(n, k)-th
row, we get

(ϕl, ϕn,k)0 = 0 for l >
max(n,k)∑

j=1

(2j − 1) = max(n, k)2.

Moreover, putting ϕl in (3) yields

T ′n(ϕl) = ϕl|En =
∑

k≥
√
l

αn,k(ϕl, ϕn,k)0 · ψn,k for all l > n2(5)

and hence for all l > n2 we have

(ϕl|En , ϕl|En)n
(5)
=
∑

k≥
√
l

(αn,k(ϕl, ϕn,k)0)2
(4)
≤
∑

k≥
√
l

k−4n((ϕl, ϕn,k)0)2

≤ l−2n
∑

k≥
√
l

((ϕl, ϕn,k)0)2 ≤ l−2n

by the Bessel inequality. This implies lnϕl ∈ B0
sn for all l > n2 and hence

the set {lrϕl : l ∈ N} is equicontinuous for all r ∈ N.
Now, let x ∈ E0 satisfy |ϕn(x)| ≤ 1/(2n) for all n ∈ N and let ϕ ∈ B0

s0 .
Since ϕ can be represented in the form ϕ =

∑
l∈N(ϕ,ϕl)0 · ϕl, we get

|ϕ(x)| ≤
√∑

l∈N
((ϕ,ϕl)0)2

√∑

l∈N
ϕl(x)2 ≤ (ϕ,ϕ)0

√
π2

4 · 6 < 1.

By the Hahn–Banach theorem, x is an element of Bs0 and hence W := Bs0
and (ϕl)l∈N have the desired properties.

Corollary 3.2. With the notation introduced above, for every W ∈ U0
there exists a continuous linear mapping ΦW : 〈W 〉R → Σ0 which satisfies
W ⊇ Φ−1

W

(1
2Bp1

)
(Bp1 as in 2.6); in particular , ΦW (x) 6= 0 for all x ∈

〈W 〉R \W .



Nuclear vector groups 107

Proof. Let (ϕn)n∈N have the properties stated in 3.1 and put

ΦW : 〈W 〉R → Σ0, x 7→ (ϕn(x))n∈N.

It is clear that ΦW is a linear operator.
Fix r ∈ N. By the equicontinuity of the sequence (nrϕn)n∈N, there exists

a neighborhood Ur of 0 in 〈W 〉R such that ϕn(x) ≤ n−r for all x ∈ Ur. Hence
ΦW (Ur) ⊆ Bpr and the continuity of ΦW follows.

According to 3.1(ii), W ⊇ Φ−1
W

(1
2Bp1

)
, which implies ΦW (x) 6= 0 for all

x ∈ 〈W 〉R \W .

Theorem 3.3. Every nuclear vector group E can be embedded into a
product of copies of Σ0 and of discrete vector spaces.

Proof. Let U0 be a neighborhood basis having the properties stated
in 3.1. For W ∈ U0, we fix a complementary subspace EW such that E =
〈W 〉R⊕EW (algebraically). Endowing EW with the discrete topology makes
the above decomposition topological. Let πW : E → 〈W 〉R denote the pro-
jection with kernel EW and for ΦW as in 3.2, put

Φ : E →
∏

W∈U0

(Σ0 ×EW ), x 7→ (ΦW (πW (x)), x− πW (x))W∈U0 .

According to 3.2, Φ is a continuous monomorphism and

Φ(W ) ⊇ imΦ ∩
((1

2Bp1 × {0}
)
×

∏

W 6=W ′∈U0

(Σ0 × EW ′)
)

for all W ∈ U0. [Observe that an element of the right hand side is of the form
Φ(x) where x ∈ 〈W 〉R; moreover, ΦW (x) ∈ 1

2Bp1 implies x ∈ W .] Hence Φ
is an embedding.

Corollary 3.4 (T. and Y. Kōmura). Every nuclear vector space E can
be embedded into a product of copies of Σ.

Proof. We use the notation introduced in the proof of 3.3. One has to
observe that every neighborhood of 0 in E is absorbing, which implies that
EW = {0} for every W ∈ U0. Moreover, ΦW (E) is a topological vector space
and a subspace of Σ0, hence contained in the component Σ (see 2.4).

This corollary was first proved by T. and Y. Kōmura in [5].

4. On the variety generated by all nuclear vector spaces

Notation 4.1. Let C be a class of topological groups. By V(C) we de-
note the smallest class of topological groups which contains C and which is
closed under forming arbitrary products, Hausdorff quotient groups, arbi-
trary subgroups, and which is closed under topological isomorphisms. Then
V(C) is called the Hausdorff (group-) variety generated by C.
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It is well known that every member of V(C) is topologically isomorphic
to a Hausdorff quotient group of a subgroup of a product of elements of C
(cf. [4], p. 65). In particular, V(C) exists. If C consists of abelian Hausdorff
groups, so does V(C).

In what follows we use the following abbreviations:

• V0 for the Hausdorff variety generated by all nuclear vector spaces,
• V1 for the Hausdorff variety generated by all nuclear vector spaces and

all discrete abelian groups, and
• V2 for the Hausdorff variety generated by all nuclear vector groups.

In this section we are going to show that V0 is a proper subclass of V1.

Lemma 4.2. Let E be a nuclear vector space which has a neighborhood
U ∈ UE(0) containing only the trivial subspace. Then dimE ≤ |R|.

Proof. Choose linear functionals ϕn : E → R as in 3.1 associated with a
neighborhood W contained in U . Since W contains only the trivial subspace,
we conclude from 3.1(ii) that Φ := (ϕn) : E → RN is injective. Hence
dimE ≤ dimRN ≤ |RN| = |R|.

Lemma 4.3. For a symmetric convex subset C of a vector space E and
a subgroup H of E, put U := H ∩ C, HU := {x ∈ H : 〈x〉Z ⊆ U}, and
EC := {x ∈ E : 〈x〉R ⊆ C}. Then HU is the largest subgroup contained in
U , EC is the largest subgroup (subspace) contained in C, and EC ∩H = HU .

Proof. Since EC = p−1
C (0), EC is the largest linear subspace contained

in C.
Obviously, EC∩H ⊆ HU . Conversely, for x ∈ HU , we have 〈x〉Z ⊆ U ⊆ C

and hence pC(kx) ≤ 1 for all k ∈ Z. This implies pC(x) = 0 and hence
x ∈ EC ∩H. Combining these inclusions yields EC ∩H = HU .

This shows that HU is a subgroup of H contained in U ; by the definition
of HU , it is the largest one.

Using the above notation, we get the following commutative square where
all mappings are the canonical ones and where τ is injective.

E E/EC

H H/HU

π0 //

ι

OO

π
//

τ

OO

Theorem 4.4. A discrete abelian group D does not belong to V0 if |D| >
|R|.

Proof. For D ∈ V0, there exists a nuclear vector space E, a subgroup
H ≤ E and a projection ϕ : H → D. SinceD is discrete, there is a continuous
seminorm p on E such that ϕ(H∩Bp) = {0}. Put U := H∩Bp and C := Bp.
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Since ϕ induces an epimorphism ϕ̃ : H/HU → D, we get |D| ≤ |H/HU | ≤
|E/EC | (by the injectivity of τ). According to 4.2, the nuclear vector space
E/EC is of dimension ≤ |R| and hence |E/EC | ≤ |R(R)| = |R|. This implies
the assertion.

Corollary 4.5. The variety V0 is properly contained in V1.

5. On the variety generated by all nuclear groups

Remark 5.1. In [2], nuclear groups have been introduced and it is shown
there that the class of nuclear groups forms a Hausdorff variety (Chapter 7)
which coincides with V2 (Theorem 9.6 of [2]).

As a consequence of the structure theorem for locally compact abelian
groups, these groups are nuclear (7.10 in [2]); even more, the same argument
shows that they belong to the (possibly) smaller variety V1. Of course, nu-
clear vector spaces are also nuclear groups. Since these examples all belong
to V1, the question arose whether every nuclear group belonged to V1.

In this section we show that V1 is a proper subclass of V2.

Lemma 5.2. For every subgroup H of a nuclear vector group (E,O),
the sets (convU)U∈UH(0) form a 0-neighborhood basis of a nuclear vector
group topology Oconv; the inclusion H → (E,Oconv) is an embedding and
the identity mapping (E,Oconv)→ (E,O) is continuous.

Proof. For U ′, U ∈ UH(0) such that U ′ + U ′ ⊆ U we get U ′ ⊆ 1
2 convU

and hence convU ′+ convU ′ ⊆ convU . Now it is easy to verify that the sets
(convU : U ∈ UH(0)) form a neighborhood basis of a group topology Oconv
on E. Since for every symmetric convex neighborhood UE ∈ UE(0), we have
conv(UE ∩H) ⊆ UE , this topology is finer than the given topology on E. In
particular, (E,Oconv) is a Hausdorff space. Obviously, the inclusion mapping
H → (E,Oconv) is continuous. Moreover, since UE∩H = conv(UE∩H)∩H,
it is an embedding.

It remains to show that (E,Oconv) is a nuclear vector group. Therefore,
let p and q be continuous pre-Hilbert seminorms on an open subspace E0 ≤
E such that dk(Bp, Bq) ≤ 1

2k
−1 (see 2.2). Then

d :=
∑

k∈N
dk(Bp, Bq)2 ≤ 1

4
· π

2

6
<

1
2
.

According to 3.20 of [2], we get

dk(conv(Bp ∩H), conv(Bq ∩H)) ≤ 1
1− ddk(Bp, Bq) ≤ k−1,

which completes the proof.
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Lemma 5.3. Let p and q be pre-Hilbert seminorms on a vector space E
such that

21
2π

∑

k∈N
dk(Bp, Bq) <

1
4

and let H be a subgroup of E. For every homomorphism χ : H → T satisfying
χ(H ∩ Bq) ⊆ {e2πit : |t| ≤ 1/4}, there exists a linear homomorphism f :
E → R such that e2πif |H = χ and f(Bp) ⊆ [−1/4, 1/4].

Proof. This is Lemma 19.14(ii) in [1]; cf. also 8.1 in [2].

Remarks 5.4. (i) The variety V1 is generated by all nuclear and all
discrete vector spaces.

[Every discrete abelian group is a quotient group of a free abelian group
and free abelian groups can be considered as subgroups of vector spaces.]

(ii) The variety V1 is generated by all special nuclear vector groups.
[According to 2.5, every special nuclear vector group belongs to V1. Con-

versely, according to 2.4(iv), every nuclear and every discrete vector space
is a special nuclear vector group and hence the assertion follows from (i).]

Lemma 5.5. A nuclear vector group V belongs to V1 if and only if it is
a special nuclear vector group.

Proof. One direction was proved in 2.5.
So let us prove the other implication. According to 5.4(i), there exist

a nuclear vector space E, a family of discrete vector spaces Dj (j ∈ J), a
subgroup H ≤ E ×∏j∈J Dj , and a quotient mapping ϕ : H → V .

We denote the free abelian group over H by A(H); let η : H → A(H) be
an injective mapping onto the basis η(H) of A(H). Further, we denote by
L(H) a vector space with basis η(H) and we assume A(H) to be a subgroup
of L(H). So we have

H
η→ A(H) τ→ L(H)

where τ denotes the canonical inclusion.
Now we endow A(H) and L(H) with the initial topology O induced by

the inclusion τ and the linear operator ψ:

A(H) τ→ L(H)
ψ→
(
E ×

∏

j∈J
Dj

)
× RC(H,R)

where

ψ
(∑

x∈H
µxη(x)

)
=
(∑

x∈H
µxx,

(∑

x∈H
µxf(x)

)
f∈C(H,R)

)
for (µx) ∈ R(H)

and C(H,R) denotes the space of continuous functions H → R. The space
RC(H,R) is endowed with the product topology.
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Taking into consideration that H is a completely regular space, there
exists for every 0 6= ∑

µxη(x) ∈ L(H) a continuous mapping f : H → R
such that f(x) = sign(µx) for all x such that µx 6= 0. Hence

∑
µxf(x) =

∑
|µx| > 0.

This shows that ψ is injective.
According to 2.4(iv), (E×∏j∈J Dj)×RC(H,R) is a special nuclear vector

group and so is L(H).
Since ψ(τ(A(H))) is a subgroup of H × RC(H,R) (and the topology on

A(H) is induced by the embedding A(H)
ψ◦τ−→ H × RC(H,R)), the projection

πH : A(H)→ H,
∑

kxη(x) 7→
∑

kxx,

is well defined and continuous. We now show that it is also open. Fix U ∈
UH(0) and a finite subset C ⊆ C(H,R), and let ε > 0. Since

πH

({∑
kxη(x) :

∑
kxx ∈ U and

∣∣∣
∑

kxf(x)
∣∣∣ < ε for all f ∈ C

})

⊇ {x = x− 0 : x ∈ U and |f(x)− f(0)| < ε for all f ∈ C}
is a neighborhood of 0 in H, the projection πH is open.

This yields that the composition ϕ ◦ πH is a continuous and open epi-
morphism. Let Φ : L(H) → V be the (unique) linear extension of ϕ ◦ πH
and consider the following diagram:

(L(H),O)

(L(H),Oconv)

A(H) V

ιconv

OO

Φ

�
�

�
�

�
�

�
�

�
� %%

ι

OO

ϕ◦πH
//

For Oconv as in 5.2, the inclusion ι is an embedding, the identity ιconv
is continuous, and τ = ιconv ◦ ι. In particular, by the definition of the 0-
neighborhood basis in Oconv and since V has a neighborhood basis of sym-
metric convex sets, the linear mapping Φ is continuous and, of course, open.

We fix a symmetric convex neighborhood U ∈ UV (0). By the continuity
of Φ, there exists a continuous (with respect to Oconv) seminorm q on a sub-
space Lq of L(H) such that Φ(Bq) ⊆ U . According to 5.2 and by assumption,
Oconv and O induce the same topology on A(H).

Since (L(H),O) is a special nuclear vector group, there exists, due to
2.2(i) and (ii) and 2.4(iii), a sequence (pn)n∈N0 of pre-Hilbert seminorms de-
fined on (the same) subspace Lp ≤ L(H) which are continuous with respect
to O and which satisfy:
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(i) A(H) ∩Bq ⊇ A(H) ∩Bp0 ,
(ii) (21/(2π))

∑
k∈N dk(Bp1 , Bp0) < 1/4, and

(iii) dk(Bpn+1 , Bpn) ≤ k−1 for all k, n ∈ N.

The subspace L0 := 〈A(H) ∩Bq ∩Bp1〉R ≤ Lq ∩Lp is open with respect
to Oconv by the continuity of ιconv.

We wish to show

(∗) L0 ∩Bq ⊇ L0 ∩Bp1 .

Therefore, let f : L0 → R be a linear functional such that f(Bq∩L0) ⊆ I :=
[−1/4, 1/4]. Due to (i), we have f(A(H)∩Bp0∩L0) ⊆ f(A(H)∩Bq∩L0) ⊆ I.

Since
21
2π

∑

k∈N
dk(Bp1 ∩ L0, Bp0 ∩ L0)

2.2(iii)
≤ 21

2π

∑

k∈N
dk(Bp1 , Bp0) <

1
4
,

we can apply 5.3 to the character e2πif |A(H)∩L0 and get a linear functional

f̃ : L0 → R which satisfies f̃(Bp1 ∩ L0) ⊆ I and e2πif̃(x) = e2πif(x) for all
x ∈ A(H) ∩ L0. This implies that (f − f̃)(A(H) ∩ L0) is a subgroup of Z.
By assumption,

(f − f̃)(A(H) ∩Bq ∩Bp1) ⊆ (I − I) ∩ Z = {0},
which shows that f |L0 = f̃ |L0 . In particular, we have f(Bp1 ∩ L0) ⊆ I.

This inclusion implies (Bq∩L0)0 ⊆ (Bp1 ∩L0)0 and an application of the
Hahn–Banach theorem to the seminormed space (L0, q|L0) (cf. Chap. II, §3,
Corollary 4 of [3]) yields Bp1 ∩ L0 ⊆ Bq ∩ L0 (since Bq ∩ L0 is closed).

By the continuity of ιconv, the sets Bpn ∩L0 are neighborhoods of 0 with
respect to Oconv. They satisfy

dk(Bpn+1 ∩ L0, Bpn ∩ L0)
2.2(iii)
≤ dk(Bpn+1 , Bpn)

(iii)
≤ 1/k

for all k, n ∈ N and 〈Bpn ∩ L0〉R = Lp ∩ L0 = L0 for all n ∈ N.
As a consequence of (∗) we get Φ(L0 ∩Bp1) ⊆ Φ(L0 ∩Bq) ⊆ U . Since Φ

is open, it is clear that the sequence (Φ(Bpn ∩L0))n∈N of neighborhoods has
the desired properties.

Corollary 5.6. The nuclear vector group Σ0 does not belong to V1 and
hence V1 is properly contained in V2.

Proof. According to 2.12, Σ0 is not a special nuclear group. As a con-
sequence of the above lemma, Σ0 6∈ V1. But Σ0 is an element of V2, so the
assertion follows.
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