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The Marcinkiewicz multiplier condition for
bilinear operators

by

LoukAs GRAFAKOS and NIGEL J. KALTON (Columbia, MO)

Abstract. This article is concerned with the question of whether Marcinkiewicz mul-
tipliers on R?™ give rise to bilinear multipliers on R™ x R™. We show that this is not always
the case. Moreover, we find necessary and sufficient conditions for such bilinear multipliers
to be bounded. These conditions in particular imply that a slight logarithmic modifica-
tion of the Marcinkiewicz condition gives multipliers for which the corresponding bilinear
operators are bounded on products of Lebesgue and Hardy spaces.

1. Introduction. In this article we study bilinear multipliers of Marcin-
kiewicz type. Recall that a function o(§,7) = o(&1,---,&n, M1, 0p) de-
fined away from the coordinate axes on R?", which satisfies the conditions

(L1) (980 (& m)] < Caglér| ™ o [&al = |~ |5

for sufficiently large multi-indices « = (aq,...,a,) and 5 = (G1,...,0n),
is called a Marcinkiewicz multiplier. It is a classical result (see for instance
[18]) that Marcinkiewicz multipliers give rise to bounded linear operators
M, from L,(R?*") into itself for 1 < p < oo. Here M, is the multiplier
operator with symbol o, that is,

My (F)(@) =} F(Qo(Qe*m o< dc,
R2n
where F is a Schwartz function on R2" and F(¢) is the Fourier transform
of F, defined by F(¢) = g, F(z)e ?™®0 dz. (We will use the nota-

tion (z,y) = 22121 xpyr for x = (x1,...,2p) and y = (y1,...,ym) ele-
ments of R™.) The Marcinkiewicz condition (1.1) is less restrictive than the
Hormander—Mikhlin condition

(12) 080 o (& m)| < Cap(l€] + ) 7117191,
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which is also known to imply boundedness for the linear operator W, from
L,(R?") into itself when 1 < p < co. The advantage of condition (1.2) is
that it is supposed to hold for multi-indices up to order |a| + || < n+1
versus up to order |a| + || < 2n for condition (1.1).

In this paper we study bilinear multiplier operators whose symbols sat-
isfy similar conditions. More precisely, we are interested in boundedness
properties of bilinear operators

Wa(f.9)(@) = | F(©am)o (e n)er @S e2milen e dy,
R2n

originally defined for f, g Schwartz functions on R™ and o a function on R?".
A well known theorem of Coifman and Meyer [4] says that if the function
o on R?" satisfies (1.2) for sufficiently large multi-indices a and 3, then
the bilinear map W, (f, g) extends to a bounded operator from L, (R"™) x
L,,(R™) into Ly, oo(R™) when 1 < pj,ps < o0, 1/p1 + 1/p2 = 1/pg and
po > 1. (Here L, o denotes the space weak L,,.) This result was later
extended to the range 1 > py > 1/2 by Grafakos and Torres [9] and Kenig
and Stein [11]. The extension into L,, for py < 1 was stimulated by the
recent work of Lacey and Thiele [12] who showed that the discontinuous
symbol o(£,7) = —isgn(£—n) on R? gives rise to a bounded bilinear operator
W, from L, (R) x L,,(R) into L,, (R) for 2/3 < pg < oo when 1 < p1,p2 <
oo and 1/p1 + 1/p2 = 1/p0

In this article we address the question of whether the Marcinkiewicz
condition (1.1) on R?" gives rise to a bounded bilinear operator W, on
R™ x R™. We answer this question negatively. More precisely, we show that
there exist examples of bounded functions (&, ) on R™ x R™ which satisfy
the stronger condition

(1.3) [02050(&,m)| < Caslé] ™~

for all multi-indices a and 3, for which the corresponding bilinear operators
Wy do not map L,, x Ly, into L, ~ for any triple of exponents satisfying
1/p1+1/ps =1/po and 1 < p1,pe < o0.

We reduce this problem to the study of bilinear operators of the type

(1.4) (f,9) = > > awd; fArg,

JET keT

where a;;, is a bounded sequence of scalars depending on o and A~j are the
Littlewood—Paley operators given by multiplication on the Fourier transform
side by a smooth bump supported near the frequency |£| ~ 27. In Section 6,
in particular Theorem 6.5, we find a necessary and sufficient condition on
the infinite matrix A = (a;x);, so that the bilinear operator in (1.4) maps
L,, x L,, into L,, . This condition is expressed in terms of an Orlicz space
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norm of the sequence (a;);, . It turns out that this condition is independent
of the exponents p1,po, pg and depends only on quantities intrinsic to the
matrix A (although the actual norm of the operator in (1.4) from L,, x L,
into Ly, oo does depend on the indices p1, p2, po).

The results of Section 6 are transferred in Section 7 to multiplier theo-
rems for bilinear operators. This transference is achieved by using a Fourier
expansion of the symbol o on products of dyadic cubes. Theorem 7.2 is the
main result of that section and Theorem 7.3 shows that this theorem is best
possible. Theorem 7.2 allows us to derive that the estimates

(15)  |0gago(& )] < Caplé| ™1 n|~ "8'<10g( log ||£|| >)

do give rise to a bounded bilinear operator W, on products of L, spaces
when 6 > 1, while we show that this is not the case when 0 < 6 < 1/2. We
obtain similar results when the expression (log(1+ [log(|¢|/|n])]))~? in (1.5)

is replaced by the expression
log — § >)> for 6 > 1.
7|

(o) oo

We find it more convenient to work with the martingale difference oper-
ators Ay associated with the o-algebra of all dyadic cubes of size 2~k in R™
and later transfer our results to the Littlewood—Paley operators 4. This
point of view is introduced in the next section.

We end this article with a short discussion on paraproducts (see Sec-
tion 8). These are operators of the type (1.4) for specific sequences (a;x); i
of zeros and ones.

2. A maximal operator. Let ({2, X, [P) be any probability space and
let (X'%)k>0 be a filtration, i.e. an increasing sequence of sub-o-algebras of X.
We say that (Xy) is a dyadic filtration if each X}, is atomic and has precisely
2% atoms each with probability 27%. We say (X}) is a 2"-adic filtration if
each X} is atomic with precisely 2% atoms each with probability 27 "F.

Associated with X, we define the conditional expectation operators & f
= E(f| X%) and the martingale difference operators Ay f = & f —Ex_1f for
kE>1and f € Li(12).

Let A = (ajr) be a complex M x N matrix, and let (£2,X,]P) be a
probability space with a dyadic filtration (X%)g>0. For 1 < p < co we define
hp(A) to be the least constant so that for all f € L,({2) we have

(2.1) H max Al flz,-

1<j<M
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We also define the corresponding weak constants, i.e. the least constants so
that for all f € L,(£2) we have

(2.2) ‘ max
1<j<M

< hy (AIf Iz,

Finally, for 0 < ¢ < p < oo we define the mixed constants h, ,(A) as the
least constants such that for all f € L,({2) we have

(2.3 | max \Zajkakfm Al flle,.

1<5<M

Note that these definitions are independent of the choice of the proba-
bility space and of the dyadic filtration. Indeed, if A is fixed, it suffices to
take f € L,(Xy) and hence we can consider a finite probability space with
2N points and a finite dyadic filtration (X})4_,. We also note that h,(A) is
the operator norm of the map T : L,(£2) — L, (£2; () defined by

N M
Taf= <kzl ajkAkf)jzl

Similarly, h¥¥(A) is the norm of the operator Ta : L, — Ly o0 (£2;£27).

Our first result is that all these constants are mutually equivalent, when
1 <p<oo:

THEOREM 2.1. If 1 < p,q < oo then there is a constant 0 < C =
C(p,q) < oo such that for all complex M x N matrices A we have

Shpl(A) < Y (4) < hy(4) < Ohy(4).

Proof. Tt suffices to prove an estimate of the type h,(A4) < Chy(A) for
any choice of 1 < p,q < co. We first prove a weak type (1,1) estimate for
T4, ie. that hy(A) < Chy(A). Suppose f € Ly with | f|lz, = 1. Then
if A,y > 0, with Ay > 1, we can use an appropriate Calderén—Zygmund
decomposition to find finite sets D+, ..., D,, so that each D; is an atom of
some 3/,

YA SP(D) ! | [fldP = Ave f < 29,
D b
and | f(w)| <A ifw & U2, D;. Let
9= ;(%Vle Fxo,
and E = |J;"; D;. Then Ta(fxr — g) is supported in E and thus

(2.4) P(|Ta(fxe — 9)lle > A/2) <P(E) < (70) 7
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On the other hand, ||f — fxe + QHLOO, <3yXand ||f — fxe +gl|L, <1
Hence ||f — fxE + gllz, < 3Y9 (vA)/9 and so

(2.5) |Ta(f = fxe+ 9L, @m) < h;V(A)?)l/q,(’Y)\)l/q,,
which implies that

(26)  BTA(f ~ fxe+0)loy > A2 < o

Selecting v = 1/hy’(A) and combining with (2.4) we obtain (for A > hy/(A))
(2.7) NE(|Taflloy > A) < ChY (4)

where C' = C(p, q). This gives the weak-type (1,1) estimate for T4. Now by
the Marcinkiewicz interpolation theorem (applied to the sublinear map f +—
|Taf(w)llerr) we deduce that hy(A) < C(p,q)hy (A) as long as 1 < p < gq.

We now prove that h,(A) < C(p,q)hy(A) when 1 < ¢ < p < oo. We
consider the dual map T% : Ly (§2;¢}) — L defined by

M N
T;if = ZZajkAkfj
j=1k=1
where f(w) = (fj(w))jL,. We find that T : L.(2;/}") — L, has norm
bounded by C(q,7)hy'(A) as long as 1 < 7' < ¢, ie. ¢ < r < oo. Us-
ing this r as a starting point, we repeat the argument above to show that
T3 : L1(£2;0") — Ly o has norm bounded by Ch}'(A). The Marcinkiewicz
interpolation theorem can again be used to show that 7% : L, (§2,6}%) — L,
has norm bounded by Chy(A) for all 1 < p’ < r, and thus in particu-
lar when 1 < p’ < ¢'. Therefore we conclude that h,(A4) < Ch}(A) when
l1<g<p<oo. =

(B (4))1377 ()01,

REMARK. From now we will write h(A) = ha(A) so that each hy,(A) for
1 < p < o0 is equivalent to h(A).

It is of some interest to observe that even the corresponding mixed con-
stants are also equivalent to h(A).

THEOREM 2.2. Suppose 0 < q¢ < p and 1 < p < oco. Then there is a
constant C' = C(p,q) so that

%h(A) < hyo(A) < Ch(A).

Proof. This will depend on the following lemma:

LEMMA 2.3. Suppose 1 < p < oo and 0 < q¢ < p. Then there is a constant
C = C(p,q) so that if r = min(p,2) we have

(2.8) 1Tallz,—L, 021y < Chypq(A).



120 L. Grafakos and N. J. Kalton

Proof of Lemma 2.3. We may assume g < 7. The proof is a fairly stan-
dard application of Nikishin’s theorem (see [16]). Here we use a version given
in [17]. Tt is simplest to consider the case when 2 is finite with [2| = 2%,
Consider the map T4 : L, — Lq(§2; 031). For each f € L, with | f[|., <1,
let Fy(x) = |Taf(@)|o. For | fillr, <1 with 1<j < J, 30 bl =1,
and (g5) 3]:1 a sequence of independent Bernoulli random variables on some
probability space, we have

Chyp,q(A),

J
Il max |b;1Fy, |z, < E(HZijTAfj‘
<j< ot

) <
Lq(e2)/

since L, has type r. It follows from [17] that there is a function w € Ly,
with Swd]P’ =1, and w > 0 a.e., such that for any set £ C {2,

(§Fs dP)l/q < Chyo(4)( § de)l/qfl/T.
E E

Now consider the set S of all permutations of {2 which induce permutations
of the atoms of each X} for 1 < k < N; there are 22" =1 guch permutations
¢. For ¢ € S we have

(1 7y, ) Y < Chyg(A)( | wdP)
E E

1/q—1/r

or equivalently

(};F}I dIP’) 1/q < Chp,q(A)<§Ew o cp_l dP)l/q_l/r'

Raising to the power (1/q — 1/r)~!, averaging over S, and then raising to
the power 1/q — 1/r gives

(]SJF]? dIP’)l/q < Chy 4(A) <’% 3 ( fwop dP))UQl/r.

peS E
But this implies

()7 dP)l/q < Chyg(A)P(E)VTHT,
E

which gives the required weak type estimate (2.8). m

We now return to the proof of Theorem 2.2. We first observe that we
always have hy 4(A) < Ch)(A) since ¢ < p. If 1 <p <2, Lemma 2.3 gives
hy(A) < Chy4(A) and the required conclusion follows from Theorem 2.1.
Assume therefore that p > 2 and that T4 maps L, into L,(¢2) with norm
hp.q(A). Fix f with |[f]z, = 1 and use the Calderén—Zygmund decompo-
sition of Theorem 2.1 to obtain (2.4) as before, but instead of (2.5) the
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estimate
(2.9) ITa(f = fxE +9)|L, < hpq(A)3YP (AN)VP,

which implies
2q ’ /
(2.10)  P(|Ta(f = fx +9)llexs > A/2) < E(hp,q(A))q?)q/p (YN

Selecting v = hy, 4(A)75A*~! with 1/s = 1/p’ + 1/q and combining with
(2.4) we obtain

(2.11) AP(|Tafllear > M) < Chyg(A).

This says that T4 maps Ly into Lg o (¢2) with norm at most Ch,, 4(A),
in particular that T4 maps L; into L;(¢*!) as long as 0 < ¢t < s. Lemma
2.3 implies that T4 maps L, into La o (¢2) and also Ly into Lo o (¢2)
with norms at most a multiple of h, ,(A). By interpolation it follows that
Ta maps L, into Ly oo ((X) C Ly oo (¢M) for 1 < r < 2. We conclude that
hy'(A) < Chy4(A) for 1 < r < 2 but since h;'(A) is comparable to hy(A),
we finally obtain hy'(A) < Chy, 4(A). Since the converse inequality is always
valid when ¢ < p, we apply Theorem 2.1 to conclude the proof. m

We next prove the elementary observation that, for 1 < p < oo, h(A)
remains unchanged under interpolation of extra columns or extra rows of
Zeros.

LEMMA 2.4. Let A be a complex M x N matriz and (m,)M |, (ns)N_, be
two increasing finite sequences of natural numbers. Suppose M1 > my; and
N1 > nn. Let B = (bji) be the My x Ny matriz defined by bji, = a,s when
Jj=m, and k =ng, and b, =0 otherwise. Then h(A) = h(B).

Proof. Interpolating extra rows of zeros is trivial, so we can assume m,. =
m for all r. For the case of columns, we only need to show that h(B) < h(A).

We may suppose that {2 is a finite set with 2" points and that (Ek)kN;O
is a finite dyadic filtration of (2. It is then possible to write 2 = 21 x (2
where [£2;] = 2V1=N and |£2,| = 2V, and find a dyadic filtration (E,(gl))g:laN
of {21 and a dyadic filtration (E,(f))fﬁv:o of (25 so that Zlgl) X E,(f) = Xn,
for 0 <k < N,and £, x ¥ = 5,1 for 0 < k < N — 1. Then for
f € La(§21 x () let g = szg\’:1 Aprf and note that

Ank f(w17w2) = Agf)gu.q (w2)7

where g, (w2) = g(w1,w2). Hence

N 2
S sup ‘ Za’j,nkAnkf<w17w2) dwa < hyp(A) S |g(w1,w2)|? dws.
2 7 k=1 22
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Integrating over (2, gives

N
500 |3 aimAnf|[| < BoA)lglie < hp(AIS s m
7 k=1 2

We can now extend our definitions, replacing dyadic filtrations by 2"-adic
filtrations:

PROPOSITION 2.5. Suppose n € N and 1 < p < oco. Then there is a
constant C(p,n) with the following property. Let (£2,X,P) be a probability
space and suppose (X)), is a 2"-adic filtration. Let A be any M x N
matriz and let hy(A; n) be the least constant so that

and h))(A;n) be the least constant so that

|

Then hy(A) < hy(A;n), hy(A) < hy(Asn), and hy(A;n) < hy(A;n) <
Ch(A).

p(An)I £z,

< by (A;n) [l fllz, -

Proof. This is essentially trivial; we need only prove that h,(A;n) <
Ch(A). To do this note that h,(A;n) = h,(B) where B is obtained from
A by repeating each column n times. The proposition then follows by the
triangle law from Lemma 2.4. m

3. Estimates for h(A). We next turn to the problem of estimating
h(A). We shall assume that (£2,P) is a fixed probability space with a dyadic
filtration (X})72 . Our first estimate is trivial.

PROPOSITION 3.1. There is a constant C' so that for any M X N matrix
A = (ajr) we have

N
h(A) < C sup Z |k — ajkt1],
1<]<M
where we set ajo = ajn+1 =0 for all 1 < j < M.
Proof. Suppose f € Ls. Summation by parts gives
N N
Do apdif =) (ajn — ajps1)Ef,

k=1 k=0
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thus
N
‘ Zaakﬂkf‘ ( sup > la — aj,k+1|) sup [ f|,
1<5<M o Kk
and the result follows because of the maximal estimate

| sup xSz, < Cllfllz,,

proved in [8]. m

We next turn to the problem of getting a more delicate estimate. To do
this we need the theory of a certain Lorentz space. Let w = (wg)g32, be a
decreasing sequence of positive numbers. We will consider the following two
conditions on w:

log(j+ 1)
log(k + 1)

(where throughout this paper log denotes the logarithm with base 2) and

(3.2) Z — < oo,

Roughly speaking, (3.1) means that wy decays logarithmically while (3.2)
implies that it decays reasonably fast. Note wy, = (log(k+1))~? satisfies (3.1)
if § > 0 and (3.2) if @ > 1. The sequence wy, = (log(k+1))~*(loglog(k+2))~*¢
satisfies both (3.1) and (3.2) when 0 > 1.

Now let d = d(w, 1) be the Lorentz sequence space of all complex se-
quences u = (ug)kez such that

0
(3.1) 3C >0, 36 >0, wk§C’< )wj when 1 <j <k,

[ulla = sup Y weee lux| < oo,
T kez
where the supremum is taken over all one-one maps 7 : Z — N. The dual of
d(w, 1) can be naturally identified as the space d* = d*(w, 1) consisting of
all sequences (vg)gez so that
vi+ ...+
sup —"—E —||v||4 < o0
keN W1 + ...+ wg
where (v})52, is the decreasing rearrangement of (|vg|)rez. We refer to [13],
p. 175, for properties of Lorentz spaces. Note that under condition (3.1),
d(w, 1) is also an Orlicz sequence space (see [13], p. 176).
The following lemma is surely well known to specialists, but we include
a proof anyway.

LEMMA 3.2. Under condition (3.1), the Lorentz space d(w, 1) has cotype
two.



124 L. Grafakos and N. J. Kalton

Proof. By combining Proposition 1.£.3 (p. 82) and Theorem 1.£.7 (p. 84)
of [14] one sees that it is only necessary to show that d(w, 1) has a lower
g-estimate for some g < 2. To do this observe that if vy, ..., vy are disjointly
supported sequences, then

N
|2, >,12f1w—Zijud
j=1
Hence
N N
S I¥sllaguny < Cllog(N +1)’|| Y v
j=1 j=1

Now suppose 1 < ¢ < 2 and [|Y_vj|lq¢ = 1. Then for each s € N, let my be
the number of j so that 27% < [|vg|lq < 27571, Then
me2~% < C(log(ms + 1))°.

This in turn implies that
ml=¢ < 028

where o > 0 is chosen so that (1 — ¢)~! < ¢. Then we obtain an estimate

N o)
Do lvillg<C) m21 <.
j=1 s=1

This establishes a lower g-estimate. m

The norms ||-||4 and || - [|4« are of course defined for finite sequences with
M elements and thus can be thought of as norms on CM. We denote these
spaces by d(w, 1)) and d*(w, 1)M),

PROPOSITION 3.3. If (wy,) satisfies both (3.1) and (3.2) then given 2 <
p < oo there is a constant C so that for any sequence e, = +1 and any
M, N € N we have the estimate

(] kZNf’f“’“fH;))m < CE(IE5)7,

for any £ € L,(£2;d*(w, 1)),

Proof. We start by using an argument due to Muckenhoupt [15] (see also
[20]). For any fixed e1,...,en let S = Zszl erAg. Now fix f € Ls. Then
by a result of Burkholder [2], ||S|z,—z, =p—1if 2 < p < co. Then for any
a > 0 we have

(3-3) E(cosh(alSf1)) = D" fIZ-

m=1
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Since | f[|77 < ||f||%2Hin’:;_2 and since for m > 1 we have
(2m =1 mP
2m)! = (2m)! —
it follows from (3.3) that

E(cosh(alSf]) —1) < (ae)?|[ fI17, D_(ae)* [IfIZ-..
k=0
In particular, if ae||f|loo < 1/2 we have
(3.4) E(cosh(a|Sf]) —1) < 262a2|]f|\%2.

At this point we return to the Lorentz space d(w, 1). Let us define vo = 0,
v1 =1, and v = 22" for k > 2. Let Wy = W-,, . It will be convenient to
normalize condition (3.2) so that we have

(3.5) Z’)’ka = 1.
k=1
We also note that (3.1) implies the existence of a constant C' such that
(3.6) |lwi + ...+ wi| < Ckwy,
for k£ > 1.

Now suppose f = (fj)jj‘il € Loo(2;CM). Suppose that f is supported
on a measurable set E and satisfies ||f(w)]|4+ < 1 everywhere. Then we can
define a measurable map 7 from {2 into the set of permutations of {1,..., M}
so that | frw)ya) (W) > ... > [ frw)o)(w)| for all w € £2. Thus

|f7r(w)(j) (w)| < ij

forall1 <j< M. Let Ej, ={w € E:n(w)(k)=j} when j,k € {1,..., M}
and Ej, = () otherwise. Now for 1 < j < M and [ =1,2,..., let

Yyi—1

A= > fixes

k=v1-1

so that f; = > 2, f;l). If 0 < ae < 1/(2C) we can estimate
E(cosh(a|Sf;|) — 1) = E(cosh (‘ Zosz](l)D - 1)
[

< E(max(cosh(a; "W, IS F]) — 1))

o0
— — l
< 2> 2w VIR,
=1
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in view of (3.4) since Hf](l)HL(x, < CW; and a’yl_lﬂfl_le;l)HLm <1/2. Thus

oo ’Y[,*].
E(cosh(alSf;]) — 1) < eC%® Y v > P(Ej).
=1 k=11
It follows that
M oo Yi—1
E(cosh(a|Sf|le,.) — 1) < eQCQaQZnyl—2 Z P(Ejx).
j=11=1 k=v1-1

Note that for each k € N, Zj\il P(Ejx) < P(E). Hence if f is supported on
E with ||f(w)]|a= <1 everywhere and ae < 1/(2C), then

(3.7) E(cosh(a|Sf||,.) — 1) < e2C%a? ifyflp(E) = C1a*P(E)
=1
for a suitable constant C;. Let us next refine (3.7). For n > 0, let
Gn={weE: 4" <|f(w)]a <47}
Then by (3.7) we have, if a < (4Ce)™1,
E(cosh(2"a||S(fxa, )e.) — 1) < C1a?47"P(G,)
and as

E(cosh(a|Sf]le.) — 1) < E(sup(cosh(2"+1aHS(fXGn)
n>0

) = 1),

4= <1 everywhere and o < (4C) ™1,

we obtain, under the assumptions ||f(w)

(38)  E(cosh(allSE]e.) — 1) < C1a® 3 47"B(G,) < CoE(|f
n=0

).

If we use a fixed value of a and the estimate 22 < 2(coshx — 1) we find
that
E(||Sfll7,.) < CsE([If]la-)

if || [If]la-[loc < 1. This in turn gives us, for every f € Lo (£2;d*(w, 1)),
(3.9) E(IS£17..) < ClllIflla-lloo E(I£]la-)-
Now let 2 < p < oo and fix f with E(]|f||".) = 1. We set Ey = {||f
and E, = {2"7! < ||f|lq- < 2"} for n > 1. Applying (3.9) we obtain
> /

(E(ISE120)" <(Cs Y 2 BEE(IE)) < 0 S 27/ 2B(E,) 2

<clr? ( i 2(2—p)n) 12 ( i gnpp(En)) V2 Cu,
n=0 n=0

ar <1}
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which completes the proof under the assumption E(||f||}.) = 1. The general

case follows by scaling. =
We now establish our main estimate for h(A).

THEOREM 3.4. Let w = (w,)22, be a sequence satisfying (3.1) and
(3.2). Then there is a constant C so that for any M x N matriz A = (ak;); k
we have

h(A)

1<k<N

where ay, = (ay;)jL,. In particular, we have

h(A) < CmaXM
Ik Wi k|41

Proof. Suppose p > 2 and that A is a matrix satisfying maxi<p<n ||ag|/4-
< 1. Consider the operator T4 : L,(§2) — La(£2;¢21). The adjoint operator
is T% : Lo(82;09") — L, (£2) given by

N
TH(f) = (Arf,ay).
k=1
The dual statement of the result in Proposition 3.3 entails that for any
sequence €1,...,en of £1’s, we have the estimate
(3.10) (&(] zskaka N < omqiz)
where C' depends only on (w,,). Now let €1,...,en be a sequence of inde-

pendent Bernoulli random variables on some probability space (2/,P’). We
use E’ to denote expectations on 2. Using Lemma 3.2 we obtain

. N p'/2N 1/
BOT3E1 ) < Co(B( 3 1At an) ) )
k=1
< co(a( X 1az)”) "
k=1

N ’ ’
<o (EE(H ;gkAka: ))l/p < Co(E|F)2)V/2.

This gives hp2(A) < Cq, which completes the proof by using Theorem 2.2. m

REMARK. Theorem 3.4 implies that given any 6 > 1 there is a constant
Cy so that

(3.11) h(A) < Cy
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whenever A = (ay;);, is a matrix satisfying

(3.12) ajel < 2(10g(2+ 17 — k)~

We show that this is not the case when 0 < § < 1/2. Let N be any natural
number and define A = (a;i) to be a 2V x N matrix given by a;, = bjkN*Q
where b;, = +1 and the set (b]k)JN1 runs through all 2V choices of signs.

Choose f real so that |Agf| =1 for 1 <k < N. Then || f||z, = V'N. On the
other hand,

max ‘ ZN:ajkAkf‘ =N

1<j<2N
SIS e

which implies that h(A) > N'/2-?. However,
il < N7 < 2N +1)7% < 2(log(2 + |5 — k)~
but h(A) > N'/279 — 00 as N — oo. Thus (3.11) fails when 0 < 0 < 1/2.

4. The harmonic version of the maximal operator. We shall now
fix n € N and work with R". Let Dy be the collection of all unit cubes
of the form [[7_,[m;,m; + 1] where m; € Z and let Dy be the set of all
cubes of the form H?Zl[Q*kmj, 27%(m; + 1)] where m; € Z. For k € Z, let
Y, denote the o-algebra generated by the dyadic cubes Dy. We define the
corresponding conditional expectation operators

Ecf= > (Avefixq
QEDy,

for f € L°(R™) and the martingale difference operators Apf = Exf —Ep_1f
for k € Z.

Now let A = (ajk); kez be any infinite complex matrix. We shall call A
a coo-matriz if it has only finitely many non-zero entries. For a cgg-matrix
A define h,[A;n] to be the least constant such that for all f € L,(R™) we
have

(4.1) H max‘

plA;n]|[fllz,-

Also, let hy [A;n] be the correspondlng weak-type constant, i.e. the least
constant such that for all f € L,(R™) we have

(4.2) < hy[Ain][[fl,

max ‘
j€z

The following lemma is easﬂy verified and we omit its proof.

LEMMA 4.1. Let h))(A;n) and h,(A;n) be as in Proposition 2.5. For
any 1 < p < oo and any infinite coo-matric A we have hy[A;n] = hy(B;n)



The Marcinkiewicz multiplier condition 129

and hy[A;n] = hy(B;n), where B is any M x N matriz of the form bjj, =
Qjirkts for some r,s € Z such that ajir s = 0 unless 1 < j < M and
1<k<N.

Now for any infinite matrix A we define

h(A) = Sljilp h((a;—Nk—N)1<jk<2N)-

The following is an immediate consequence of Lemma 4.1 and Proposition
2.5.

COROLLARY 4.2. For any 1 < p < oo and any n € N there is a constant
C = C(p,N) so that for any infinite coo-matriz we have

C~'h(A) < hy [A;n] < hp[A;n] < Ch(A).

We now turn to the harmonic model of the maximal operator studied in
Section 2. Let S(R™) denote the set of all Schwartz functions on R™ and for
f e SR let

F©) = | sae 69 da
Rn

~

denote the Fourier transform of f. We will denote by fY(§) = f(—&) the
inverse Fourier transform of f. We shall fix a radial function ¢ € S(R")
whose Fourier transform is real-valued and satisfies 12(5) =1for || <1
and 121\(5) = 0 for || > 2. We define a Schwartz function ¢ by setting
gg(f) = 1;(5) — 12(25). Then ¢ is supported in the annulus 2~ < €] < 2. We
then define ¢;(z) = 2™ (27z) and ¢;(x) = 2" ¢(27x) for j € Z. Note that
ggj(f) = 5(2*j§) is supported in the annulus 2771 < |¢| < 2771 We also
define operators

Sif =i and A;f=¢;xf
for f € L1 + L. The ANj’s are called the Littlewood—Paley operators. Now

if A = (ajx)(jk)ez2 is an infinite copo-matrix and 1 < p < oo, we let EP(A)
be the least constant so that for all f € L, we have

sup | - ajedef|, < Fp(A)fl1,.

JEL " ez

(4.3)

We also define E;V(A) to be the least constant such that for all f € L, we
have

(4.4)

< Iy (A)| Iz, -

JEZ

We now have the following.
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LEMMA 4.3. Supposer € Z. If 1 < p < oo and A = (a;) is any infinite
coo-matrix, then hy(A) = hy(B) and h)(A) = hy(B), where B = (b;;,) and
bjk = @) k+r-

Proof. Consider the dilation operator D, f(z) = f(27"z). Then we have
D;lAkDrf = Akfrf and

H sup ’ Zaj,kJrrAkf‘ HL = H sup ‘ > aplp_rf
J k P J k

sup ‘ Z ajkAkarf
J k

Ly

_ 2frn/p

<27 Phy ()P, Sz, = hol(A)S ],

Ly

which implies h,(B) < hy(A). Likewise, we obtain h,(A) < hy(B). The
corresponding result for the weak type constants follows similarly. m

Next we prove that the Littlewood—Paley operators A~j and the martin-
gale difference operators Ay are essentially orthogonal on Lo when k # j.

PROPOSITION 4.4. There erists a constant C' so that for every k,j in Z

we have the following estimate on the operator norm of A;Ay : Ly(R™) —
LQ(R”)Z

(4.5) 1Ak Al p, < C27197F

Proof. By a simple dilation argument it suffices to prove (4.5) when
k = 0. In this case we have the estimate

1204 | Lt = 604 — E1 44| 101,
<€) — Ajlly—r, + €145 — AjllL,—1,
and also by the self-adjointness of the Ax’s and A~j’s we have
1204 || sy = 14 A0l y—rs = 14560 — AjE || Ly—Ls
<148 = &ollzy—1, + 14561 — EollLy—L,-

The required estimate (4.5) (when k£ = 0) will be a consequence of the pair
of inequalities

(4.6) €04 — Ajllpary + 1E-14; — Aj|lpy—z, <C27 when j <0,
(4.7) A58 — EollLy—rs + [[AjE-1 — &0l Ly, < C277  when j > 0.

We start by proving (4.6). We only consider the term Sojj — ANJ- since the
term €_1A; — A; is similar. Let f € Ly(R™). Then
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Hg()ANjf - ANij%z
= Y fxe; - Age(f 011,00

Q€eDy

[(f % ¢5) () — (f = ¢;)(1)]* dt da

VAN IA
™ 3
Qe— Qe

|

Q
§(§ 17 1o — vl dy) dide

Q 3Q

P55 1) o5t~ )l dy) dede

QY 3Q

P55 1@ V6@ s — )l dy) drde,
QeED QQ (3Q)°

where £, ; lies on the line segment between = and ¢. It is now easy to see
that the sum of the last three expressions above is bounded by

c2m Y N f ()P dy+Cu2¥ ) §<R§( g ) dz,

J _ M
050 S I\ Tl —y)

which is clearly controlled by C2%/| f||7_. This estimate is useful when j < 0.

We now turn to the proof of (4.7). Since A~j is the difference of two §j’s,
it will suffice to prove (4.7) where A; is replaced by S;. We only work with
the term S;& — & since the other term can be treated similarly. We have

IS;€f — Eofll7, = H > (Aye f)(vj *xq - XQ)H2

L
QEeDy 2

< ZH Q%:)O(Agef)(% *XQ ~ XQ)X?’QH;
2

n QH 3 (Ave [)(¥ * Xx@)XGo):
QEeDy

Ly

Since the functions appearing inside the sum in the first term above have
supports with bounded overlap we obtain

2
| 3 e« xa — xehval|, <€ Y (Avelf)*v + xa ~ xallf..
QeDy ? QeDy

and the crucial observation is that

145 % X — XqllL, <C277,
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which can be easily checked using the Fourier transform. Therefore we obtain

H Z Avef

2 .
< C27%|f|I1,,
Lo

QeDy
and the required conclusion will be proved if we can show that
2 )
(4.8) | 3 v s * xadxeer|, <2l
QeDo 2

We prove (4.8) by using a purely size estimate. Let cg be the center of the
dyadic cube Q. For x ¢ 3@ we have the easy estimate

Jn Jn
(W # x0) ()] < M2 < Cn2 !
(4 2]z — D™ = (14 2)ME (14 [z — g M2

since both 27 > 1, |z — ¢g| > 1. We now control the left hand side of (4.8)

by
gi2n=) §°§7 Ave\f\ (Ave!f\)
Q€eDo Q'€Dy
y S CM dJ,'
o (UL 2 = cD) M2 (L + o — cq/ ) V72

< 9iGn-an 3§ (Aveg |f])(Aveq | f])

_ M4
Gt e, (LT lee—corl)

% S CM dx
an (L4 |2 =DM+ |z — CQ/DM/‘*

j(2n—M) 2
<2 Z Z 1+‘CQ CQ |)M/4<§2+ S )’f(y” dy

QEDy Q'EDy Q'

< O ST ()P dy = C £,
Q€eDo Q
By taking M large enough we obtain (4.8) and thus (4.7). =
We have the following result relating h(A) and EP(A).

THEOREM 4.5. For every 1 < p < o0, there is a constant C depending
only on Y and p so that for any coo-matriz A we have

1 ~ ~
Eh(A) < h;f(A) < hp(A) < Ch(A).
Proof. Consider the operators V,., r € Z, defined by

JEZ
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Then
‘/;* — Z AjAvj-H"Avk-i-’r‘Ak = Z Ajjj_i_TAvk_i_TAk.
gk li—k|<1

Hence by splitting into 3 pieces and using Proposition 4.4 we obtain the
estimate

HV7“||L2—>L2 < 027“"

Next pick ¢ so that 1 < ¢ < oo and 1/p = 6/q + (1 —6)/2 where
0 < 0 < 1. Let (¢)jez be a sequence of independent Bernoulli random
variables on some probability space (£2,P). Then for f € L,(f2) we have

= 1> ej(w)er—r(w)A; Arf dP.
0 jEL kel

Averaging now gives
Ve fllc,

< (|55, , ) (o] Sevt0)

Hence |V,||z,~1z, < C where C depends only on ¢ and ). Similarly
IVFr,—~r, < C. By interpolation we obtain ||V,|r,—r,, [V |lL,—1, <
Co-lrl(1-6)

Finally, let us write

sup ‘ ZaJkAkf‘ = sup ‘ > ain ) Are rAkf‘

JEL ye keZ  rez

LI,

q

< Z sup ‘ Z asj, k—i—rAkAk-H”f

rez €L ez

Thus by Proposition 2.5,
sup(ZaJkAkf\H < ChA) Y VS, < Chy(A)fl,.

JEL reZ

This shows that hp(A) < Ch(A).
For the converse direction we use V,* and Lemma 4.3. We have

SUP ‘ Z a]kAkf‘ Z sup ‘ Z ajyr Mg D f

rez €L

and so

SR YV e,

S rez

which leads to the estimate h(A) < C’ﬁg(A). n
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We next extend the definition of l~1p(A) to the case when 0 < p < 1. For
such p’s we define h,(A) to be the least constant so that for f € S we have

(4.9) | L <Ol

jez | £
The space H, that appears on the right of (4.9) when 0 < p < 1 is the
classical real Hardy space of Fefferman and Stein [7] and the expression
| ||z, is its quasi-norm.

THEOREM 4.6. If 0 < p < 1 then there is a constant C = C(p,v) so
that C~'h(A) < h,(A) < Ch(A).

Proof. First we show the estimate %p(A) < Ch(A). Using the atomic
characterization of H, (cf. [3]), we note that it suffices to get an estimate
for a function f € S supported in a cube @ so that |f(z)| < |Q|~/P for
z € Qand {2*f(z) =0if |a] <N = [n(1/p—1)]. It is then easy to see that
for z & 2Q),

| apdef(@)] < Ch(A)le - cq 1,
keZ

since |a;ji| < Ch(A) for each j, k. (Here 2Q is the cube with twice the length
and the same center cq, as usual.) This gives the estimate

S sup ‘ Z a]kAkf )
rR\2Q 7
On the other hand,

" dr < CPR(A).

p/2
§ o[ Sandustof ax < clQreniay (S ) ds )
2Q 7
and combining with the previous estimate we obtain hp(A) < Ch(A).
Complex interpolation gives ﬁq(A) < EQ(A)OEP(A)PQ when 1 < ¢ < 2
and 1/¢ = (1 —0)/p+6/2. Since Eq(A) > C~1h(A) we deduce the estimate
hp(A) > C~h(A). u

5. Bilinear operators. Let ¢ be a bounded measurable function on
R™ x R™. For f,g € S(R™) we define a bilinear operator W, (f,g) with
multiplier o by setting

~

(5.1) Wo(f,9)(@) = | | o(&n) f(&)g(n)e*™ <t de dn.

R" R™
If (5.1) is satisfied we say that o is the bilinear symbol (or multiplier) of W,.
Now suppose 1 < p1,p2 < oo and let pg be defined by 1/pg = 1/p1 + 1/pa.
We say that W, is strongly (p1,p2)-bounded if W, extends to a bounded
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bilinear operator L, X L,, — L,,. In this case we denote its norm by
WollL,, xLy,—L,, (We define this expression to be oo if W, is not bounded).
Similarly, we say W, is weakly (p1,p2)-bounded if it extends to a bounded
bilinear operator L,, X L,, — L, o and its norm is then denoted by
HWUHLm XLpy—Lpg,00°

We extend these definitions to the case 0 < py,p2 < 0o by replacing
the L, spaces by the corresponding Hardy spaces when 0 < p; < 1. In the
definition below we set H,, = L, for 1 < p < oo. Given 0 < p; < pa < oo and
po defined by 1/pg = 1/p1+1/p2, we say that W, is strongly (p1, p2)-bounded
if it extends to a bounded bilinear operator Hy,, x Hy,, — Ly, and we denote
its norm by ||WO'||Hp1 X Hpy— Ly, - We say that Wo is weakly (p1, p2)-bounded
if it extends to a bounded bilinear operator H,, x H,, — L, ~, and in
this case we denote its norm by Wo |, xH,,—L,, .- Now for a bounded
function o on R™ x R™ and 0 < p1,p2 < oo we define its corresponding
strong and weak (pi, p2)-multiplier norm by

HUH,MPLP2 = HWUHHP1><H;;2—>L;;O and HUHMW == HWUHHZqXHPQ_’LPOvOO’

pP1,P2
where 1/pg = 1/p1 +1/po.
This definition of multiplier norm is analogous to that in the linear case.
If v € Loo(R™), then [|v|| A4, denotes the norm of v as a multiplier from H),
into L,,, that is,

lvllm, = IMollm,~z,, where M,f=(vf),
when 0 < p < co. Next we mention a few properties of multipliers.

PROPOSITION 5.1. Suppose 0 € Loo(R™ X R™) and 0 < p1,p2 < 0.
Then:

(i) If o'(&n) = a(§ =&, n—mn0) for some fived So,no then |[0”|m,, ,, =
HO-HMm’Pz'

(ii) If L : R — R™ is an invertible linear operator and or(§,n) =
o(LE, L) then |lorllm,, ,, = llollm,, ,, -

(if) If 1,0 € Loo(R™) and o/ (€,1) = u(€)r(€, m)o(), then
10" | My, g < Nl ay, 1ol My, 10, -
Proof. For (i) note that
ng(ﬁg) — e27ri(a:,£o+no)W(efQWi(x,go)f’ 6727ri(3c,770>g)‘
For (ii) note that W,, (f,g)o(L")™! = W(fo(L*)™1, go(L)~1). Part (iii) is
trivial. m

LEMMA 5.2. Let 0 € Loo(R™ x R™). Suppose that either po > 1, or o is
locally Riemann-integrable (i.e. continuous except on a set of measure zero).
Then ||lo|lL., < llollam,, ,, whenever pg = p1p2/(p1+p2) and 0 < p1,p2 < oo.
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Proof. Suppose that o is locally Riemann-integrable and let (£y,79) be a
point of continuity of ¢. Then if we put o} (£, 1) = o (&0 + A, no+An), Propo-
sition 5.1 gives | Wo || 1, x1,,—L,, = IWollm,, x#,,—1,,- Nowif f,g € S'it
is easy to see that as A — 0 we have convergence in Lo (and even pointwise)

of WO’;\ (fa g) to 0(607 nO)f(x)g(‘T)
If po > 1 let Qy be a cube of side 27% centered at (0,0) in R™ x R™. Let

(&) | o(&+ &, + o) déo dnp.

_ 1
| Qx| O

Proposition 5.1 and the fact that po > 1 easily imply that | Wy, ||, xL,,—L,,
<|WsllL,, xL,,—L,,- Since oy, is continuous we have

HUkHLoo < HWUHLM X Lpy—Lpg -
Taking limits as k — oo yields the conclusion. =

Next we require a lemma on series in L.

LEMMA 5.3. Let 0<p<oo. Suppose that for some sequence (fjx)(j k)ez>
of L, functions and for all pairs of sequences (0;) ez, (0}, )kez with supcz ||
<1 and sup,¢z |87 < 1, we have

sup H Z Z 5j5;“fijLp <M.

NENT <N k<N
Then there is a constant C' = C(p) such that

(i) supys,j<1 11 225ez 95 f55llL, < CM (and the series converges uncondi-
tionally),

(i) 11X ez Xnez [ Fw?) 2 ]le, < OM.

Proof. In fact (ii) follows immediately from Khinchin’s inequality by
taking two mutually independent sequences ¢, €}, of Bernoulli random vari-
ables. To obtain (i), take a sequence ¢; of Bernoulli random variables and
for any finite subset F C Z write

(5.2) Z 0;fi = Z Z diejenfin — Z djeiek fik-

JEF JEF keF jkeF
j#k
Now for all |0;] <1 (see also [10], proof of Theorem 4.6),

IE(H Z dicick fik i )1/p§CH< Z |5jfjk+5kfkj|2)l/2HL
j,kEF P P

J,keF
Jj#k i<k

<ol (ZEr), <o

JET keZ
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by a generalization of Khinchin’s inequality due to Bonami [1] and part (ii).
The same estimate is also valid for 3, = > rd;€56k fjx by our assump-
tions. These estimates together with (5.2) give (i). m

We now introduce some notation that will be useful in what follows. For
(Jik) € Zlet Dy = {(&,m) : 2771 < €] < 27H1, 2871 < < 21} Also,
for > 0 let D (0) = {(&,n) : 2979 < |€] < 29F9) 2F=0 < || < 2840}

PROPOSITION 5.4. For any 1 < p1,p2 < oo there is a constant C =
C(p1,p2) so that whenever (oji)jkez s a family of bilinear symbols with
supp o C Dji which satisfy

sup sup széﬁ;ﬂjkum <M,
ik

‘5j‘§1 “%‘ﬁl P1,P2
then the following statements are valid:
i) For any scalar sequence (0;) with sup;|d;| < 1 and any r € Z we
(i) F y scal (67) with sup; |6;] < 1 and any Z
have
0;0; i+
DI
(ii) For all r > 3 we have
IS5 ol +13 ¥ ol zcasmmamon
JEZ k<j—r Mo k€Z j<k—r Mo1.py
(iii) For everyr >3, po < 1 and for all f,g € S we have
H Z Z W"jk <C(l+ rmaX(l/Po,l))M

JEL k<j—r

T Y .

kEZ j<k—r

< CM.

Lpy X Lpy—Hp,

< O(1 4 pmax(/po1)y £y

Ly XLpy—Hp,

Proof. For simplicity we write W, = W, below. (i) follows directly
from Lemma 5.3. To prove (ii) and (iii) it is enough to consider the case
r = 3, since the other cases follow trivially by applying (i) and the case
r = 3. We therefore suppose r > 3 and establish both (ii) and (iii). An easy
calculation gives that for f,g Schwartz, Wji(f,g) has Fourier transform
supported in the annulus 2772 < |¢| < 29%2 when k < j — 3. It follows that

63) |2 X wathal, <|X X watr9),

JEZ k<j—3 JEZ E<j—3 Po

<c|(Z| ¥ waera]) ],

JET k<j—3
Po )1/170

<CE(||> e > wlf.g)

JEZ k<j—3 Po
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where as usual (g;);ez is a sequence of independent Bernoulli random vari-
ables. (If pg > 1 then H,,, = L,,.) We need to control the last term in (5.3).
Our hypothesis gives the estimate

6 E(| S ewatral) )" <oMifln, ol

JEL kET
while we can apply (i) to obtain

63 (| T ewatal) )" <M, Lol

GEL |k—j|<2
It remains to estimate

HOIPIELACH

JEZ k>j43

Po )1/100

< E(H o> eiWilfi9)

JEL k>j+3

<CE(|3 3 s

kEZ j<k—3

Po )l/po
Hyp,

Po )1/170

<ce(|Sa X awatral) )"

keZ  j<k—3

where £ is a second (independent) sequence of independent Bernoulli ran-
dom variables. Hence using again Khinchin’s inequality we have

(HZ Z S Wo(f.0) Po )1/170

JEZ k>5+3 Po

(= |ij(f,g)\2)1/2HLp

k€Z j<k—3 0

<e|(SEmerar) "],

kEZ jEZ P
in view of Lemma 5.3. Using (5.4)—(5.6) we obtain

E(|Xe ¥ watro|) )" < oMlflL, ol

JEZ k<j—-3
which combined with (5.3) gives the first of the assertions (ii) and (iii) for
r = 3. The second assertions are derived similarly by symmetry. m

< CMHfHLpl HgHLm

We will need one further preliminary lemma.

LEMMA 5.5. For any 1 < p1,p2 < oo there is a constant C = C(p1,p2)
such that for any family of symbols (o1); kez with suppojr C Dji and for
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any C* functions p,v on the annulus 1/4 < || < 4 we have

sup sup HZZ(S 5ijkH

‘(sj‘ ‘5,2:IS1 ]EZ kEZ Plypz
< CK,K,sup sup H 56'0%“ ,
s e sz: PR My
where 75 (&,1) = p(277€) o (€,m)v(27Fn),
o“u 0%v
KL: sup ‘—, K, = sup ‘—,
Y agm | 0€° T alem | 0€°
1/4<(€1<4 1/4<|€1<4

and m = [(n+1)/2].

Proof. Recalling the definition of ¢ from Section 4 we note that the

function
Jj+2 k+2

(X a@)( > am)

l=j—-2 l=5—-2

is compactly supported and is equal to 1 on the support of o;1(§,n). For
any sequence d; with sup|d;| <1 we observe that

62) (o) 3 ae),,

1=j—2

(5.8) H (;Zéw(?‘j’“n)) (l:;ﬁ(n)) HM

by the Hormander multiplier theorem. Let Uj, j, &, k, be the bilinear oper-
ator with symbol

' J1+2 R k142 R
(502776 3" G(O))osma &) (81,027 0) S dilm),
1=j1—2 I=k1—2

for some fixed |§;], 05| < 1. Let

M = sup sup HZZ& 5kaij

1651 165 1<1 Mpy.py

and let (¢;), (¢}) be two sequences of mutually independent Bernoulli ran-
dom variables. Then for f,g € S we have

(H Z Z Z Z 6116328’6161% Jli]21k17k2(f g)

J1EZ jo €L k1 EL ko €L

Po )1/170

S OMELKo||flz,, 1 f]lz,,
by our hypothesis, (5.7), and (5.8). We now use Lemma 5.3 twice to deduce
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that
| S visnatt)|, < CKKMISIL,, gl
PO

JEZ kEL

This proves the required assertion. m

6. Bilinear operators and infinite matrices. Recall from Section
4 that ¢;(x) = 2" ¢(27x) are smooth bumps whose Fourier transforms are
supported in the annuli 2771 < |¢] < 2771, In this section we will consider
symbols ¢ of the form

(6.1) oa(§m) = Zzajk%(ﬁ)%(n)

JET ke

where A = (a;i)(j,x)ez2 is a bounded infinite matrix. We let Wa = W, ,
and || Alloe = sup; ;, |a;x/.

If A is such an infinite matrix we define A, to be its lower triangle and
Ay to be its upper triangle, i.e. Ay, = (a;j10;x) ;1 and Ay = (a;,0k;);,x Where
0 = 1if k < j and 0 otherwise. We let Ap be the diagonal A — Ay — Ar.
Now define

(6.2) H(A) = h(AL) + h(Ay) + | Al

Notice that H(A) > ||A||~ and that H is a norm on the space of {A :
H(A) < oo}, which makes it a Banach space.

Our objective will be to show that for any choice of 0 < p1,p2 < co we
have ||Wallm,, xm,,—L,, = H(A). This will provide us with an equivalent
expression for the norm of the multiplier o4 defined in (6.1).

We start by proving the simple upper estimate below.

LEMMA 6.1. If 0 < p1,pa < oo there is a constant C = C(p1,p2) so that
for any matriz A we have ||o || m < CH(A).

P1,P2 —

Proof. We give the proof in the case p1,ps > 1; the only real alteration
for the other cases would be to replace the appropriate L, -norm with the
H,,-norm and use Theorem 4.6. Suppose f,g € § and consider

(63) Wal(f,9) =Y > and;flrg

JEZ k<j—3
Y0 apndifAeg+ Y Y apdfArg.
keZ j<k—3 JEL k=j—2

We estimate the first term by noticing that for fixed j the Fourier transform
of A; if D oh<j BajkAkg is contained in the set {¢ : 2972 < |¢| < 2772}
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Hence if pg > 1 we have

5287 3 andal, <o(Sir) (| X endif)",

k<j— JEL k<j—3 Po

If 0 < pp <1 we obtain the same estimate by noticing that

Hzﬂf > a]kAkgH <HZAf >

k<j—3 k<j—3

and using the corresponding square-function estimates in H,, . Now we have

(51807 5 ondiaf)",

k<j—3 Po

NS5 | 5

I8 p<j-3

If we let Arr, be the matrix with entries aj if £ < j — 3 and 0 otherwise,
then h(Arr) < h(Ar) + h(B) where B is the matrix with entries aj; if
j—2 < k < j—1and 0 otherwise. It is trivial to see that one has the estimate
h(B) < 2||Aljs so that h(Arr) < Ch(AL). Hence (6.4) and Theorem 4.5

give

|52 3 ndisial, <cl(San)",,

JEZ k<j-—3

JEZ

SCh(AL)HfHLpI HQHLPQ-

The same argument shows that the third term in (6.3) is controlled by
Ch(Ap)[Ifllz,, I9llz,,- The middle term in (6.3) is easy. For —2 <r < 2 we
have

H Z aj, ]+TA fA]-‘rrg

JEZ Po

< (el 1372) (el 1350002) ),

JEZ kezZ P2

< Cmﬁx\aj,jw’ Al lgllz,,-

Combining we obtain the required upper estimate: |0 a1, ,, < CH(A). =

To obtain the converse is somewhat more complicated. First we prove a
general result which we will use in other situations as well.

PROPOSITION 6.2. For any 1 < p1,p2 < oo with pg = (1/p1 + 1/pa)~!

> 1, there is a constant C' = C(p1, p2) with the following property: Whenever
(0jk) (g k)ez 15 a family of symbols with supp o, C Djx which satisfy
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sup sup széﬂ'd;ﬂw"jk ;
ik

16;1<1 105 ]<1

<M

p1 X Lpy—Lp,

)

then
loallrm,, ,, < CM,

where A = (a;;);, and
ajk = S S oix(27€,27n) d¢ dn.
Rn R”L

Proof. As before, we write Wy, = We - Consider first the case when
ojr = 0 unless k < j — 5. Let v be a C* function on R" supported on
274 < J¢] < 2% and such that v(§) =1 on 272 < |¢] < 23. Fix & € R™ and
consider the symbol

Tik(60; €, m) = v(277E) Tk (€ + 27 €0, ).

Note that 7 is supported in D, (4). Let T}, be the bilinear operator with
symbol 7;;. For any sequences (9;) ez, (0}.)kez with sup |d;|,sup |9;.| < 1 and
f,9 € S we have

|EX s, <c|(SISamual) ],

JEZ kEZ JEZ kEZ 0

by considering the supports of the Fourier transforms. But then, for fixed 7,

S0 Ti(f9) (@) = e 2PN ST Wi (f, 9) (@),

keZ kEZ
hence
|E3 szuiral, <el(SITawural)™,
JEZ kEZ Lo JEZ kEZ Po
<ol Lz amaral,
JEL kEZ

< CMHfHLpl HgHLm

by Proposition 5.4.
Now note that if |£y| > 18 then all T}, vanish. Since py > 1, we integrate
over [£y| < 18 to obtain symbols

TEn = | m(&n) déo =v(277¢) | oju(€+27&,n) dy
|€0|<18 Rm
with corresponding bilinear operators T J’ i satisfying
Daparrt
JEL kel
whenever |§;|, |0;| < 1.

<CM
p1 X Lps—Lpg
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Note that 7/, is supported on Djp,(3). Also, if 2973 < [¢] < 2772 we see
that 7/, (£,n) is constant in &.

Next let O,, be the orthogonal group of R™ and let dL denote the Haar
measure on this group. Define

4
& = | A | T (LE ML) dLdA,
1/4 On

and let Tﬁ: be the corresponding bilinear operator. If ({,7) € D), we can
compute that

Tﬁg(fa n) = 2" "y,
where c is a constant depending only on dimension. On the other hand, since
po > 1, Proposition 5.1(ii) gives

Daparrts

JEZ kET

<CM

Lp, XLp,— Ly,

whenever |§;], |0;| < 1.

Note that supp Tﬁ: C Djk(6). Take M; and My to be residue classes
modulo 10. Then if we replace d; by d;xm, (j) and d;, by ;. xm, (k) we obtain
a bilinear operator whose symbol coincides with a;,2"*|n|="4,5}, on D;j, for

(J. k) € My x Ma. Using Proposition 5.1(iii) and the multipliers 37 ¢y, &,
and ) ren, @k we find that the bilinear operator V' with symbol

Do D 582 ™ " agud; (€) k),

JEM, keMy

satisfies |V||L,, xL,,—L,, <CM. Summing over 100 different pairs of residue
classes gives a similar estimate for the symbol

DY g2 0l ajn s (€)dn(n)-
JEZ KEZL

The last step is to remove the factor 2% |n|~". But this can be done by using
Lemma 5.5 since [n|™" is C® on 1/4 <|n| < 4. =

We will use this result to make an important estimate on the effect of
translation in the computation of |Wal|z, xL,,—L,,- Let us define Alrsl to
be the matrix (ajqr k+s)jk-

LEMMA 6.3. (i) There is a constant C' so that for all matrices A we have
o v llavzz < O oallaty ..

(ii) For all 1 < p1,p2 < oo with py = pip2/(p1 + p2) > 1, there is a
constant C = C(p1,p2) so that if |6;],|0;| <1 then
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| S-S asandeigae n| < Cloalu, ..

JEZ keZ P1,P2

i.e. lopllnm,, ., < Clloallam where D = (djx)jk = (0;0,a5k)j k-

1,p2 — P1,p2 )

Proof. 1t is clear from Proposition 5.1 that for any r € Z we have
HWA[“T] ||L2><L2HL1 = HWAHL2><L2*>L1'

Thus it suffices to consider the case r = 0 and s = +1 and establish a bound
in this case. To do this we consider the symbols

ok (€m) = oa(Emu2IE(2 )65 (€)dr(n),
where p,v are C*°-functions satisfying |u(§)], |v(n)| < 1 for all &, 7. Since
12°ez 0;11(277€)p;(€)llm, is bounded by 3 whenever sup; [6;| < 1, and

there is a similar bound for », _, 5231)(2*’“7])5/%(77), we have an immediate

estimate:
H Z Z 515;6W0jk

JEL keZ

< .
LoxLo—1L4 - 9HWA”L2><L24>L1

Now let
bjk = S S O’jk(2j£, 2k7’]) dé. d?’]
R™ R

Then we can compute

1 1
bjk = Z E CrsQj+tr k+s

r=—1s=-—1

where

ere = | | m©VMG_(€)d—s(m)S0(&)Bo(n) d€ dn.

R R

Since the functions QET for —1 < r <1 are linearly independent on the
support of ¢g we can use the above estimate for a linear combination of
a finite number of choices of v and £ so that ¢,.s = 0 except when r = 0
and s = 1, so that B = cAl%Y for some fixed constant ¢ # 0. By Proposi-
tion 6.2 we have ||Wgllroxn,—1, < Cl|WallLyxLs—1,- This and the similar
argument for the case s = —1 gives the result (i).

For (ii) we observe that the above argument actually also yields a bound
on |Wpllryxn,—r, when D = (djx) = (6;0,.b,%) (since 06,0, also satisfies
the hypotheses of Proposition 6.2). By choosing a similar linear combination
we can then ensure that bj; = ca;i and obtain the desired result. m

The next step is to consider a discrete model of the bilinear operator
W, ,. We restrict ourselves to p1 = py = 2 for this, although our calculations
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can be done in more generality. If A is a cog-matrix we define V4 : Lo X Ly —

L1 by
Valf,g) =Y. aud;fArg,

JEL kEZ

where A; are the martingale difference operators as defined in Section 4.
We then have

LEMMA 6.4. There is a constant C so that if A is a (strictly) lower-
triangular matriz we have h(A) < C|\VallLox Lo—L, -

Proof. This is a stopping time argument. Suppose f € Ly with || f||z, =1.
Note that for each j the function f; = ZkeZ ajrArf is X;_i-measurable
where Y;_; is the o-algebra generated by the dyadic cubes in D;_;. Fix
A > 0. For each j let Q; be the collection of cubes Q € D;_; so that
|fil > A on @ and for each j; < j we have |fj,| <A on Q. It is not difficult

to see that
{z: max|f] N>x= U e

JEZ QEQ;
and this is a disjoint union. Also note the left-hand side has finite measure.
For each j let u; be a X¥j-measurable function such that |u;| =1 every-

where and &;_ju; = 0. Let
9=2 1 > Xo

JEL  QEQ;
Then
lgll7, = ez : max | f;(x)[}|
and
9) =>_[i49=> fiu; > Xo-
JEZ JEZ QeQ;
Hence

‘VA(fv g)’ > AX(man [fil>N)
so that we have
)\|{IDJ&X|fJ| > )‘} < HVAHL2><L2*>L1'

This implies that hY (A) < ||VallL,xL,—1, and the result follows from The-
orem 2.1. m

We are now ready for the main result:

THEOREM 6.5. Suppose 0 < p1,p2 < co. Then there is a constant C =
C(p1,p2) so that for any infinite matriz A we have

1
SH(A) < oallug, ,, < loalm,, ,, < CH(A),
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Proof. The upper bound is proved in Lemma 6.1 so we only need to
prove the lower bound. It suffices to prove the results for the case when A
is a cgo-matrix. We start by considering the case p; = po = 2, when A is
strictly lower-triangular.

In this case let us estimate the norm of the discrete model V4. In fact,

Va(f,g) = Z Z ajrd;fArg = Z Z Z Z a2 AjfAr_sArg

JEZ kEZ rE€Z s€EL jJEL kEZ
= Z Z aj+r,k+sA~jAj+rfA~kAk+sg
rEZL sEL
=3 > W ( Y A ALY ANkAkJrsg)
reZ s€l JEZL keZ
=D Wara (V5 £,V,9),
rEZ sEL

where V. is defined in the proof of Theorem 4.5. Using Proposition 4.4 we
obtain

||VA||L2><L2*>L1 < CZ Z 2_‘T|_‘s‘ ||WA[’”=S] ||L2><L2*>L1'
re€Z s€l

(All these quantities are finite since A has only finitely many non-zero en-
tries, and so there is a uniform bound on W4r,s.)
It follows that we have an estimate (for a suitable Cy)

(6.5) h(A) < COZZQ_M_ISIHWAM]

r€Z s€EL

LoxXLo—Lq-

Next we estimate H(A®]). If s > r it is clear that A remains lower-
triangular and the invariance properties of h(A) imply that H(Al) <
H(A). If s < r then it is easy to estimate

W(AD) < h(AL) + (r = 9)| Al
and
R((AF)Y) < (7 = 5)[1Al| -
We deduce that
H(AP) < h(A) +|r — 5| - | Al

for all r, s. Thus for a suitable constant Cy we have
(6.6) IWatrsillLyxLy—1, < C1(1+ |1 — s|)h(A).
Now we may pick an integer N large enough so that

1
_sNo-lrl-lsl « 2
CiCo > > (I+]|r—s)27!" <3

[r|>N |s|>N
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Then we can combine (6.5) and (6.6) to obtain

(6.7) h(A)<Cy > > Wi

Ir|<N [s|<N

LoxLo— 1L+ -

At this point Lemma 6.3 gives the conclusion that
h(A) < C”WAHLzXLzHLl'

Now suppose A is arbitrary. If we let W}, be the bilinear operator with

symbol ajk&ﬁ\j (§)$k<77)7 Lemma 6.3(ii) implies that we can use Proposition
5.4(i1) to deduce that |Wa, ||Loxr.—L, < C||WallL,xL,—1, for some abso-
lute constant C. Thus the above argument yields h(Ar,) < C||Wal|Lox£o—L, -
Similarly h(Ay;) < C|WallL,xL,—1, and Lemma 5.2 is enough to show that
|A]loo < ClWallLyxLy—L,- Combining these we have the estimate

H(A) < C||WAHL2><L2—>L1‘

The proof is completed by a simple interpolation technique. We will
argue first that an estimate of the type

(6.8) H(A) < C(p1,p2)lloallm,, ,,
for some fixed 1 < p1,p2 < oo implies the estimate
(6.9) H(4) < Cla,po)lloallay

for every 1 < ¢ < oo. We only need to consider the first case and ¢ # po
(when ¢ = po one repeats the step). Then we may find 1 < r < oo and

0 < 6 <1 so that
1 1-0 0
Pa q r
The Marcinkiewicz interpolation theorem yields

(6.10) loall My, p, < Co1p2,0)(loallrgy, )~ (loallmy, )"

Since [[oallm,, . < C(p2,r)H(A), using (6.10) and (6.8) we obtain estimate
(6.9) as required (recall that we assume A is a cop-matrix so that all these
quantities are finite).

Repeated use of this argument starting from p; = py = 2 gives the
theorem in the cases 1 < p1,ps < 0.

Finally, in the case where either p; < 1 or p < 1 (or both) one can use

complex interpolation to deduce

—0 6
loallag, . < Clloallag, ) " (loallm,..)

91,92 p1,P

where ¢1,¢q2 > 1 and
1 1-60 0 1 1—-0 6
= + +

a1 m 2 qy p2 2
This clearly extends the lower estimate to the cases p1,po < 1. m
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7. Applications to bilinear multipliers. We will now consider the
boundedness of the bilinear operator W, under conditions of Marcinkiewicz
type on the symbol 0. We will say that a symbol o is CV if it is C™ on the set
{(&,m): [&],|n| > 0}. We first give an example to show that conditions (1.3)
for a function ¢ on R?" do not imply boundedness for the corresponding
bilinear map on R™ x R".

ExaMPLE. There is a '™ symbol o so that for every pair of multi-indices
(o, B) there is a constant Cy g so that

(7.1) €1 ) 0g 8o (¢,m)| < Cayp

but W, is not of weak type (p1,p2) for any 0 < p1,ps < 0.

Indeed, if we let A be a bounded infinite matrix and o(&,n) = 0a(§,n),
then o satisfies the condition (7.1). However, W4 is of weak type (p1,p2) if
and only if H(A) < oo by Theorem 6.5. At the end of Section 3 we showed
that there are examples (with A lower-triangular) where H(A) = oo.

In fact, more is true. It is shown that the condition 0 < § < 1/2 in (3.12)
is insufficient to give a bound on h(A) or H(A) when A is lower-triangular.
This means that if 0 < # < 1/2 we can construct a symbol o which is C*°,
with W, not of weak type (p1,p2) for any 0 < p1,p2 < 0o and such that for
each pair of multi-indices (o, 3) there is a constant Cy, 3 with

(7.2) 1 n1PN0g 0 o (¢,m)| < Ca,p(log(1 + [log €] /Inl]) ~*
but W, is not of weak type (p1,p2) for any pi,ps > 0.

These examples indicate that the Marcinkiewicz-type conditions (7.1)
need to be modified if they are to imply boundedness for bilinear operators
on R™ x R™.

In order to formulate some general results, let us introduce the following
notation. For o € L., we define

(7.3) lollz = sup  sup H((0(27¢,2%n)); k).
1<[¢]<2 1<|n/<2

If o is of class CV we define
N al na
(7.4) ol = 37 el ogola + S (HnlPoSo] .
la|<N |BI<N
It will also be useful to define in this case

N
(75) ol = > el™0golm,,,, + > I "o ]m,,.,,
la|<N IBI<N

Now consider an arbitrary L> symbol o of class C" 1. Let

(7.6) ain(€,m) = o (€,m)d277E)d(2 7 n).
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Set C(€) = ¢_o(&) + d_3(€) + _4(€). Then  is equal to 1 on the annulus
1/16 < |£] < 1/4 and vanishes off the annulus 1/32 < |¢| < 1/2. Thus the

function E(f)( (n) is supported in the unit cube [0, 1]?" and is equal to one
on the support of

(&n) — oj(2713¢, 27 3y),

which is also contained in [0, 1]>". Inspired by [5], we expand the function
above in a Fourier series on [0, 1]?". We have

o (2T, 20) = 37 N ag(v, 0) EIT (),
VEL™ oEL™
where for (v, p) € Z™ x Z™ we set
(71.7)  ajr(v,0) = S X o (293¢, 2k+3s)q§(8t)$(8s)e*2m(<t7”>+<5’9>)dtds.
R™ R®

We will denote by A(v, o) the matrix with entries a;x (v, 0). Now setting
(78) TVHQ(g? 77)
= (Z ZCij(l/7 Q)e(ﬂi/4)(2_~7 <€yV)+2_k(7779>)>A(Q*j*3§)/\(2 k—3 )

JEL keZ

we can write a symbol o of class C"*1 as

(7.9) a&m = D> ™).

IJEZ" QEZ”

In the next lemma we obtain some elementary estimates based on this
expansion.

LEMMA 7.1. Suppose 0 < p1,p2 < 0o and 1/pg = 1/p1 + 1/pa. Then:
(i) There is a constant C = C(p1,p2) so that for any (v, o),
1772 My, g < C(L+ 1]+ [0)*™ H(A(v, 0))

where m = [(n+ 1)/2].
(ii) There is a constant C = C(N,p1,p2) such that if o is of class OV,
and |v| + |o| > 0, then

H(A(v, 0)) < C(1+|v] + o)™l

while

H(A(0,0)) < Cllolla-

(iii) If po > 1 and o is of class CV then there is a constant C =
C(N,p1,p2) such that

H(A(v,0)) < C(1+ [v] + [)* Vo] &) .
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Proof. Observe that ((27973¢) = $(27971¢) + (279€) + $(279+1¢) and
therefore 7°¢(£,n) is the sum of nine terms of the form
. TN e — i - —k ~ 5
D> (v, )(eMVE TN G2 (e NE ) gamhmey)
JEL keZ
where 7,5 € {—1,0,+1}. We now use Lemmas 5.5, 6.3(ii) and 6.1 in that
order to obtain

7y, < COA+ D™ (14 o) H(A(, 0))

where m = [(n + 1)/2]. This proves (i).
For (ii) note that if |«, |3] < N integration by parts gives

(710)  aju(v.0)

= | | 02 (0(27+3, 253 n)d(8¢)d(8n))
(7.11) ajk@,SR

= | | 02(o(27+3¢,2543)a(8¢)d(8n)

R R

e—2mi((&,1)+(n,0))

(—2miv)>

dg dn,

e—2mi((E0)+(n.e))

déd
(—2mip)P? §dn,

provided v ... v% and ' ... 02" are non-zero.

Now using the fact that H is a norm it is easy to see that by choosing
an appropriate «a or [ for each pair (v, g) # (0,0) one obtains the estimate

_ N
H(A(v,0)) < C(N,p1,p2) (1 + V] + o) ¥ llollyy".

If (v, 0) = (0,0) the same estimate follows directly from (7.7).

Finally we turn to (iii). For fixed §;, §;, with sup|d;|,sup|d;| < 1 define
(&) = 3 ez 0;0;() and v(n) = 3 ;7 6,.¢;(n). Then it follows from Lemma
5.5 that for any multi-indices o, o’ we have

el 12192 w(€)dg o (&, mr()llag,, , < Clasa)llo] ).

This implies that for fixed N and any o with |a] = N we have
« N
(7.12)  sup sup [|IE]N DD 6560805k (& m)llay, < CNOlSE)
|5j|§1 |6;c|§1 JEZ kEL

Now we either use (7.7) if (v, o) = (0,0) or refer back to Proposition 6.2
(7.10) or (7.11), according to the values of v or p, when (v, ¢) # (0,0). For
example, if N = |v| > |o| and the [th entry of v has maximal size N, then

| Y v ods©dm|

el ke P1,P2
9N e—2mi((277 &) +(27 ¥ n,0))
<Csup sup 6,01, 29N ——01(&,m) - :
16;1<1 |6, |<1 ZZ TR g (=2miv) N Moy g

JET keZ
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Now by Lemma 5.5 we can estimate the last expression above by

S Y aiolel (%No]k(s )

C(1+|v|+o)*™ N sup sup H
JEZ kEZ Mopy .po

16;1<1 18, |<1

Using (7.12) we obtain (iii). m
Let us state the main result of this section.

THEOREM 7.2. Suppose 0 < p1,p2 < oo and 1/pg = 1/p1 + 1/p2. Let
N=2n+11i4 pp>1and N =n+2+[n/py] if po < 1. Then for any

|(N)

CN symbol o such that |lo|};’ < co we have ||o||m,, . < 0. Furthermore,

N
< Cllollyy”-
Proof. This follows directly from Lemma 7.1 and (7.9). Indeed, we have
1772 My sy < CQ A ] + o]

there is a constant C = C(p1,p2) so that ||o||m

P1,P2 —

If t = min(py, 1) we have

m— N
013ty < (3320 + 10+ 1)) o 2.

VEZ €L
Since (N — 2m)t > n this gives the result. m

We next show that in a certain sense the preceding theorem is best
possible.

THEOREM 7.3. Suppose 1 < p1,p2 < o0 and 1/pg = 1/p1 +1/p2 < 1.
Suppose o is a C* symbol. Then the following are equivalent:

(1) ||U||5\]4V21’p2 < oo for every N > 0.
(ii) HUHgV) < oo for every N > 0.

Proof. Assume (i); then it follows from Lemma 7.1 that for any N > 0
we have an estimate H(A(v,0)) < On(1+ |v| + |o])™". Now it is clear
from the definition and from Theorem 6.5 and Lemma 6.3 that we have an
estimate

HEN'10g ¢l < Ca(1+ [v])* H(A(v, 0)).
Hence we can easily deduce that
€[ O ol < oo
for each multi-index . Repeating the same reasoning with the second vari-
able 7 gives (ii).
Now assume (ii). Then for any multi-indices «, 5 one can easily see by

differentiation that (ii) is satisfied by the symbols |£| “"'8?0 and \77||f8|850 in
place of o. Applying Theorem 7.2 gives (i). m
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Now let us recast Theorem 7.2 in terms of estimates on the symbol o
using the results of Section 3.

THEOREM 7.4. Suppose 0 < p1,p2 < oo and 1/pg = 1/p1 + 1/p2. Let
N=2n+1if po >1and N =n+2+[n/po] if po < 1. Suppose that 6 > 1
and o is a ON symbol such that for any multi-indices o, 3 with 0 < |a| < N
and 0 < || < N there exist constants C,, Cg with

(7.13) 1[0 (€, m)| < Ca(log(1 + [log[€]/In]])) ™,

(7.14) [0, o (€,m)| < Cp(log(1 + [log [€]/In] ) ~°-
Then |o|lm,, ,, < 0o

REMARK. We have already seen in (7.2) that this is false when 0 < 0 <
1/2. However the arguments of Section 3 show that we can improve (7.13)
and (7.14) somewhat. For example, we can replace (log(1+ |log |¢|/|n]||)) ¢

where 6 > 1 by (log(1 + [log[¢|/In|[)) ™' (log(1 + log(1 + [log[¢]/n[]))) ™"
where v > 1.

Proof of Theorem 7.4. This follows immediately from Theorems 7.2 and
3.4 which yield the estimate
H(A) < CSUE |ajkl/wij k|11
]7

with wy = (log(1+k))~%. =

It is possible to “mix and match” the estimates in Section 3: for example,
in the following theorem we remove the conditions for ||, |3] = 0 but insist
on a stronger condition for |a| = |3| = 1:

THEOREM 7.5. Suppose 0 < p1,p2 < oo and 1/pg = 1/p1 + 1/pa. Let
N=2n+11i po >1and N =n+2+ [n/po] if po < 1. Suppose that
0 > 1 and o is a CN symbol which satisfies conditions (7.13) and (7.14) for
2 <|al,|B| < N, and if |o| = |6 =1,

(7.15) €110g o (€,m)| < Ca(1 + [log |€]/|n| )7,
(7.16) nPNole (&, m)| < Cs(1 + log [€]/In] )7
Then ||lo||m,, ,, < oo

Proof. Tt is only necessary to show that |||z < oo. Note first that
Proposition 3.1 can be used to give the following estimate for any infinite
matrix:

H(A) < C (|| Al +5p Y a3 = ajuea| +5up Y la = ajennl ).

I k<j koik
Now suppose 1 < ||, |n] < 2. Then if k < j,
|0(27¢,2%n) — o(27¢, 2 )| < Ck°
by (7.16). Combining with a similar estimate from (7.15) gives the theo-
rem. m
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We conclude this section with a theorem of the type of Theorem 7.2 for
operators on Lj.

THEOREM 7.6. Suppose N = 2n + 3 and that o is a CN symbol with
HO’H%V) < o0o. Then Wy : L1 x L1 — Ly /3 o is bounded.
Proof. Let @ be the cube {z : maxy |z;| < 1} and consider the bilinear

operator W, o(f,9) = xoWs(f, g). We will show that if » < 1/2 is such that
n+2+[n/(2r)] = N, then W, ¢ : L1(2Q) x L1(2Q) — L,(Q) is bounded and

Wool <C ||0Hgv) where C' is a constant depending only on dimension.

Suppose that f,g € S are functions with support contained in 2¢Q) and
such that { f(z) dz = { g(z) dz = 0. Then f,g € Ho, with || f||m,, < C||f]|L,
and ||g|| ., < C|lgllz,. Applying Theorem 7.2 we obtain

(7.17) IWo(£.9) 1z, < Cllols 1112 Nl 2,
where C' is an absolute constant. It follows that W, extends unambiguously
to any f,g € L1(2Q) with §{ f(z) dx = {g(x) dz = 0 and (7.17) holds.

Next fix ¢ € S so that Sw(m) x = 1 and 1 has support contained in Q.
Now for any f, g € L1(3Q) let fo = f—(§ f(z) dz)y and go = g—(§ g(x) dx )
Then (7.17) gives

IWo.a(fo,90)lz, < Cllollyy” 1.l
We also note that ||We, g (v, )1, < C’||0Hgv). Now consider the linear map
Tf = Wy(f,v). Since ¢p € Ly we see that, if 1/s = 1/(2r) + 1/2, then
T : Hyy — L is bounded with norm controlled by C’||0||%V) (again using
Theorem 7.2). Hence since r < s,

1Woo(for ). < CllolS N1 £l
Similarly,
N
IWoo(w, 90) e, < Clloll 9]z, -

Combining these estimates gives

N
(7.18) IWea(f.9)llz, < Clolli” Il 9] 2.
We now use a Nikishin type argument as earlier in Lemrr}]a 2.3. Suppose
(fj)j , and (gj)j 1 satisfy || f;llz,, lgjlle, < 1 and that ZJ 1 |b~\1/2 =1.

Then if (5])‘],1 and (e )3] , are two independent sequences of Bernoulli

random Varlables we have

J
r /r
(]E<HZZ€j5;<;|bj‘1/2|bk’1/2Wo,Q(fjagk)HL ))1 < O,

j=1k=1

Again by using the result of Bonami [1], we obtain an estimate

(Sl el W)

j=1k=1

N
< Cllo]| %",
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Extracting the diagonal gives

(V)
max b [Waalf )1, < Cllol

We now use [17] as before. There is a weight function w € L1(Q) with w > 0
a.e. and {w(z)dz = 1 so that for any f,g € L1(3Q) with || f||z,,]lgllz, <1
and any measurable £ C () we have

(Y Watral dax) " < Clol@( §wiaaz) "
E E

Now suppose f,g are supported in Q and A > 0. Let £ = {z € Q :
[Ws(f,9)| > A. Then the above equation yields

1/r—2
(7.19) NEMT < cuaug“( [ wz) dx) .
E

On the other hand, if we apply (7.19) to fi(x) = f(z —t) where t € ) and
note that W, (fi,9) = (W, (f,g)): we also obtain

1/r—2
NEN(Q+ )Y < o||a|\§§>( Jw(@ 1) dx) .
E

Raising to the power (1/r —2)~! and averaging gives
NEM < Ollollyy | B[,
Thus W, @ maps L1(2Q) x L1(2Q) into L;/s (@) with norm at most

Clla]ly”
PR
Now let A > 1. If we define ox(£,17) = o(A71, A1), then we have
n n
||a)\||(hz,v) = HJ,\H%V) and we can apply this result to o). Notice that

Wo, (f,9)(x) = Wo(fx,g92)(Ax) where fi(z) = f(Az) and gi(z) = g(Az).
This implies that for any A > 0 we have the estimate

N
a@Wa (£ 9l e < Cllolli IF 1z, 9|y
for f, g supported in AQ. Letting A — oo gives the result. m

8. Discussion on paraproducts. Paraproducts are bilinear operators
of the type o4 for some specific upper (or lower) triangular matrices A of
zeros and ones. Paraproducts are important tools which have been used on
several occasions in harmonic analysis, such as in the proof of the 71 theorem
of David and Journé [6]. We define the lower and upper paraproducts as the
bilinear operators I11, and HU with symbols

mEM =23 6;(©dc(n) and (&) =D Y 6,

JEZ k<j-—3 k€eZ j<k—3
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respectively. It is easy to see that |7vl|m,, ., [ITUllMm,, ,, < oo for all 0 <
p1,p2 < oo. This can be deduced in several ways, e.g. from Proposition
5.4 using Lemma 6.3 or directly from Theorem 7.2 and Proposition 3.1.
We conclude that for all 0 < p,q < oo, IIt, maps H,, x H,, to H,, when
1/p1+1/p2 =1/pg and to Hy = L, when 1 < g < co. We now turn to some
endpoint cases regarding the paraproduct operator IIy,.

PROPOSITION 8.1. Let 0 < g < oco. Then the paraproduct operator I,
1s bounded on the following products of spaces:

(1) BMO x Hy(R™) — Hy(R™), where Hy = L, when 1 < g < oc;
(2) BMO x H;(R™) — Ll(R")
(3) BMO x Lo (R") — BMO;
(4) Hy(R™) X Loo(R™) — Hy(R™), where Hy = Ly when 1 < ¢ < o0;
(5) L1(R™) x Loo(R™) — L1 o (R™);
(6) BMO x L1(R"™) — L1 o (R™);
(7) L1(R") x L1 (R™) — L1/3,00(R").

Proof. Statement (1) is a classical result on paraproducts when 1 <
q < oo and we refer the reader to [19], p. 303 for a proof. Note that for
a fixed f € BMO, the map g — IIL(f,g) is a Calderén-Zygmund singular
integral. The extension of (1) to H, for ¢ < 1 is a consequence of the fact
that if a convolution type singular integral operator maps Lo — Lo with
bound a multiple of || f||gmo, then it also maps H, into itself with bound
a multiple of this constant. (2) follows from a sumlar observation while (3)

is a dual statement to (2). To prove (4) set Sjg =D k<)o 3Akg We have

II,(f,9) = ZjeZ ANjfgjg and the Fourier transform of Aijjg is supported
in the annulus 2772 < [¢] < 2772, Tt follows that

=\ 1/2
M (f ), < O (0 185£801) || < 10, Mgl
JEL !
where M is the Hardy—Littlewood maximal operator, which is certainly
bounded on L. To prove (5) we freeze g and look at the linear operator
f = I(f,g) whose kernel is K(z,y) = >,z ¢j(x —y)S;(g)(x). It is easy
to see that
VyK(z,y)] < Cllgllz. |z -y

This estimate together with the fact that the linear operator f +— IIL(f,g)
maps Ly into Lo entails that f +— II,(f,g) maps Ly into L; o using the
Calderén—Zygmund decomposition. This proves (5). To obtain (6) we use
(1) (with ¢ = 2) and we apply the Calderén—Zygmund decomposition to the
operator g — II1,(f,g) for fixed f € BMO. Finally, (7) is a consequence of
Theorem 7.6. m



156

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
18]
[19]

[20]

L. Grafakos and N. J. Kalton

References

A. Bonami, Ensembles A(p) dans le dual D, Ann. Inst. Fourier (Grenoble) 18
(1968), no. 2, 193-204.

D. L. Burkholder, A proof of Pelczynski’s conjecture for the Haar system, Studia
Math. 91 (1988), 79-83.

R. R. Coifman, A real variable characterization of HP, ibid. 51 (1974), 269-274.
R. R. Coifman et Y. Meyer, Commutateurs d’intégrales singulieres et opérateurs
multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177-202.

—, —, Au-dela des opérateurs pseudo-différentiels, Astérisque 57 (1978).

G. David and J.-L. Journé, A boundedness criterion for generalized Calderdn—
Zygmund operators, Ann. of Math. 120 (1984), 371-397.

C. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129 (1972),
137-193.

A. M. Garsia, Martingale Inequalities, Benjamin, Reading, MA, 1973.

L. Grafakos and R. Torres, Multilinear Calderén—Zygmund theory, submitted.

N. J. Kalton, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84
(1986), 297-324.

C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math.
Res. Lett. 6 (1999), 1-15.

M. T. Lacey and C. M. Thiele, On Calderdn’s conjecture, Ann. of Math. 149 (1999),
683-724.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I. Sequence Spaces,
Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.

—, —, Classical Banach Spaces, II. Function Spaces, Ergeb. Math. Grenzgeb. 97,
Springer, Berlin, 1979.

B. Muckenhoupt, On inequalities of Carleson and Hunt, in: Proc. Conf. on Harmonic
Analysis in honor of Antoni Zygmund (Chicago, IL, 1981), Vol. I, Wadsworth Math.
Ser., Wadsworth, Belmont, CA, 1983, 179-185.

E. M. Nikishin, A resonance theorem and series in eigenfunctions of the Laplace
operator, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 795-813.

G. Pisier, Factorization of operators through Lposo or Lp1 and noncommutative gen-
eralizations, Math. Ann. 276 (1986), 105-136.

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Prince-
ton Univ. Press, Princeton, NJ, 1970.

—, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory In-
tegrals, Princeton Univ. Press, Princeton, NJ, 1993.

A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San
Diego, 1986.

Department of Mathematics
University of Missouri-Columbia
Columbia, MO 65211, U.S.A.
E-mail: loukas@math.missouri.edu

nigel@math.missouri.edu

Received May 22, 2000 (4534)



