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Maximal regularity of discrete and continuous
time evolution equations

by

Sönke Blunck (Cergy-Pontoise)

Abstract. We consider the maximal regularity problem for the discrete time evolu-
tion equation un+1−Tun = fn for all n ∈ N0, u0 = 0, where T is a bounded operator on a
UMD space X. We characterize the discrete maximal regularity of T by two types of condi-
tions: firstly by R-boundedness properties of the discrete time semigroup (T n)n∈N0

and of
the resolvent R(λ, T ), secondly by the maximal regularity of the continuous time evolution
equation u′(t)−Au(t) = f(t) for all t > 0, u(0) = 0, where A := T − I. By recent results
of Weis, this continuous maximal regularity is characterized by R-boundedness properties
of the continuous time semigroup (et(T−I))t≥0 and again of the resolvent R(λ, T ).

As an important tool we prove an operator-valued Mikhlin theorem for the torus T
providing conditions on a symbol M ∈ L∞(T; L(X)) such that the associated Fourier
multiplier TM is bounded on lp(X).

1. Introduction and main results. The well known problem of max-
imal Lp-regularity for continuous time evolution equations is the following.
Let X be a Banach space and T : R+ → L(X) a bounded analytic semigroup
with generator A. We consider the evolution equation

u′(t)− Au(t) = f(t) for all t ∈ R+, u(0) = 0,(1)

where f : R+ → X is given and one looks for the solution u on R+ which is
formally the convolution u := T ∗ f on R+. Then u′ = T ′ ∗ f =: Rcf and
one says that A has maximal regularity if Rc ∈ L(Lp(R+;X)) for some (and
then all [CL], [CV]) p ∈ (1,∞). Since T̂ ′(ξ) = iξR(iξ, A) − I, ξ ∈ R, the
latter is equivalent to the boundedness on Lp(R;X) of the Fourier multiplier
with the operator-valued symbol

R 3 ξ 7→ iξR(iξ, A) ∈ L(X).(2)

This is reflected by the following recent characterization of maximal regu-
larity which is due to Weis [W1].

Theorem A. Let X be a UMD space and let (etA)t≥0 be a bounded
analytic semigroup on X. Then the following are equivalent :
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(a) A has maximal regularity.
(b) {λR(λ,A) : λ ∈ iR, λ 6= 0} is R-bounded.
(c) {etA, tAetA : t > 0} is R-bounded.

We recall that a Banach space X is a UMD space if and only if the
classical Hilbert kernel defines a bounded convolution operator on Lp(R;X)
for all p ∈ (1,∞).

We use the notion of R-boundedness which was already implicitly used
in [Bou] and was introduced in [BG] . A set τ ⊂ L(X) is called R-bounded if
there is a constant C such that for all n ∈ N, T1, . . . , Tn ∈ τ and x1, . . . , xn ∈
X we have

1�

0

∥∥∥
n∑

j=1

rj(t)Tj(xj)
∥∥∥ dt ≤ C

1�

0

∥∥∥
n∑

j=1

rj(t)xj
∥∥∥ dt,

where (rj) is a sequence of independent symmetric {1,−1}-valued random
variables on [0, 1], e.g. the Rademacher functions. By R(τ) we denote the
smallest constant C such that the above condition holds.

Note that in a Hilbert space X = H every bounded set τ ⊂ L(H) is
R-bounded, hence Theorem A generalizes the well known result that, in
a Hilbert space, every generator of a bounded holomorphic semigroup has
continuous maximal regularity. The latter property is even characteristic of
Hilbert spaces, at least in the class of Banach function spaces [KL].

Now we turn to a discrete version of the maximal regularity problem
which was formulated and indicated to the author by T. Coulhon.

We replace in our evolution equation (1) the continuous time t ∈ R+ by
the discrete time n ∈ Z+. More precisely, we replace the derivative u′(t) by
the difference un+1−un and the operator A by a “discrete Laplacian” T −I.
Then T : Z+ → L(X) becomes a bounded discrete semigroup T (n) = T n for
a power-bounded operator T ∈ L(X) and the discrete version of (1) reads

un+1 − un − (T − I)un = fn for all n ∈ Z+, u0 = 0.

Hence we consider the following natural discrete time evolution equation:

un+1 − Tun = fn for all n ∈ Z+, u0 = 0.

Again the sequence f = (fn)n∈Z+ is given and the solution u is the convo-
lution un+1 := (T ∗ f)n on Z+. If we define the discrete derivative s′ of a
sequence s = (sn) by s′ := (sn+1 − sn), analogously to the continuous time
setting, the question arises if f ∈ lp(Z+;X) implies u′ ∈ lp(Z+;X). In other
words, we ask if Rdf := T ′ ∗ f or, more explicitly,

(Rdf)n :=
n∑

j=0

(T − I)T j fn−j, n ∈ Z+,(3)
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defines a bounded operator Rd ∈ L(lp(Z+;X)). This property of T ∈ L(X)
will be shown to be independent of p ∈ (1,∞) and if it holds we say that
T has discrete maximal regularity. Since T̂ ′(z) = z((z − 1)R(z, T ) − I) for
all z 6= 1 in the torus T, this is equivalent to the boundedness on lp(X) :=
lp(Z;X) of the Fourier multiplier with the operator-valued symbol

T 3 z 7→ (z − 1)R(z, T ).(4)

In analogy to the continuous time case, we show that a necessary—and in
Hilbert spaces X = H sufficient—condition for discrete maximal regularity
is that the operator T is analytic in the sense of [C-SC]:

{n(T − I)Tn : n ∈ N} is bounded.(5)

This notion is a discrete analogue of the property “{tAetA : t > 0} is
bounded”, which characterizes the analyticity of a bounded semigroup
(etA)t≥0. The following characterization of discrete analyticity is essentially
due to O. Nevanlinna; see Theorem 2.3 below. We denote by D the unit disk
in C.

Theorem B. Let X be a Banach space and let T ∈ L(X) be power-
bounded , in particular σ(T ) ⊂ D. Then the following are equivalent :

(i) {(λ− 1)R(λ, T ) : |λ| = 1, λ 6= 1} is bounded.
(ii) {Tn, n(T − I)Tn : n ∈ N} is bounded.

(iii) {et(T−I), t(T − I)et(T−I) : t > 0} is bounded and σ(T ) ⊂ D ∪ {1}.
Roughly speaking, our main result below is a combination of an R-

boundedness version of Theorem B and an application of Theorem A to
the operator A := T − I.

Theorem 1.1. Let X be a UMD space and let T ∈ L(X) be power-
bounded and analytic. Then the following conditions are equivalent :

(a) T has discrete maximal regularity.
(b) {(λ− 1)R(λ, T ) : |λ| = 1, λ 6= 1} is R-bounded.
(c) {Tn, n(T − I)Tn : n ∈ N} is R-bounded.
(d) A := T − I has maximal regularity.
(e) {(λ− 1)R(λ, T ) : λ ∈ 1 + iR, λ 6= 1} is R-bounded.
(f) {et(T−I), t(T − I)et(T−I) : t > 0} is R-bounded.

As an application of Theorem 1.1 we obtain the following discrete ana-
logue of a result due to Weis [W2] and (in a slightly weaker version) Lam-
berton [L] saying that the operator A on Lp has maximal regularity if (etA)
is a subpositive analytic contractive semigroup.

Theorem 1.2. Let p ∈ (1,∞) and T ∈ L(Lp) be a subpositive analytic
contraction. Then T has discrete maximal regularity.
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Here the subpositivity of a contraction T [resp. of a contractive C0-
semigroup (etA)] on Lp is defined by the existence of a dominating posi-
tive contraction S [resp. of a dominating positive contractive C0-semigroup
(etB)], i.e.

|Tf | ≤ S|f | [resp. ∀t > 0 : |etAf | ≤ etB|f |] for all f ∈ Lp.
Proof of Theorem 1.2. Theorem A yields that (et(T−I)) is a subpositive

analytic contractive semigroup on Lp, hence A := T − I has maximal reg-
ularity due to the result of Lamberton and Weis we just mentioned. Thus
condition (d) of Theorem 1.1 is satisfied and we deduce the discrete maximal
regularity of T .

Our Theorem 1.2 shows that e.g. all Markov operators T have discrete
maximal regularity on Lp for all p ∈ (1,∞). This includes random walks on
graphs as considered in [H-SC], [CG], [C] and the references given there.

Further applications of Theorem 1.1 for discrete maximal regularity on
Lp-spaces are given in [B].

The implications (b)⇒(a) of Theorem A and Theorem 1.1 are applica-
tions of operator-valued Mikhlin theorems to the Fourier multipliers for the
symbols in (2) and (4). The version for multipliers on R is due to Weis [W1];
here we will prove the following version for multipliers on T by adapting the
proof in [W1].

Theorem 1.3. Let p ∈ (1,∞) and X be a UMD space. Let I := (−π, 0)
∪ (0, π) and M : I → L(X) be a differentiable function such that the collec-
tion

τ := {M(t), (eit − 1)(eit + 1)M ′(t) : t ∈ I} is R-bounded.(6)

Then TM ∈ L(lp(X)) for the following Fourier multiplier TM :

F(TMf)(eit) :=M(t)Ff(eit), t∈ I, Ff ∈L∞(T;X) of compact support.

Moreover , there exists a constant Cp,X independent of M such that

‖TM‖L(lp(X)) ≤ Cp,X R(τ).

The converse implications (a)⇒(b) of Theorem A and Theorem 1.1 are
seen from the following general criterion for the R-boundedness of Fourier
multipliers.

Proposition 1.4. Let p ∈ (1,∞) and G be a LCA group with Haar
measure µ. Let the dual group (Ĝ, µ̂) be equipped with a translation invariant
metric d̂ such that

(7) sup
n∈N

µ̂(BĜ(e, n−1))−1‖F−1(χBĜ(e,n−1))‖Lp(G)

× ‖F−1(χBĜ(e,n−1))‖Lp′ (G) <∞,
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where BĜ(e, n−1) denotes the ball in Ĝ around its identity e of radius n−1.
Let X be a Banach space and M ∈ L1,loc(Ĝ; L(X)) be such that

F(TMf) := MFf, Ff ∈ L∞(Ĝ;X) of compact support ,

defines a bounded operator TM ∈ L(Lp(G;X)). Then the collection {M(%) :
% ∈ L} is R-bounded , where L denotes the set of Lebesgue points of M .

It is easily seen that condition (7) holds e.g. if G ∈ {RN ,TN ,ZN } for
some N ∈ N (see Section 5). Proposition 1.4 is motivated by Proposition 1
of [CP] where the case G = R is treated.

2. Generalities on discrete maximal regularity. In this section,
X denotes a Banach space and T ∈ L(X) a power-bounded operator. We
associate with T the L(X)-valued kernel

kT : Z→ L(X), n 7→
{

(T − I)Tn for n ∈ N0,
0 otherwise,

and the corresponding operator on Z+,

KT : l1(Z+;X)→ l∞(Z+;X), f 7→
( m∑

n=0

kT (n)fm−n
)
m∈Z+

.

Definition 2.1. (a) T is called analytic if {nkT (n) : n ∈ N} is bounded.
(b) Let p ∈ (1,∞). We say that T has maximal lp-regularity if KT ∈

L(lp(Z+;X)).

Remark 2.2. Let p ∈ (1,∞). Then the following are equivalent :

(a) T has maximal lp-regularity.
(b) The convolution operator f 7→ kT ∗ f is bounded on lp(Z;X).

Proof. This follows from the translation invariance of convolution oper-
ators and the fact that

∀m ∈ Z : (kT ∗ f)(m) =
{∑m

n=0 kT (n)fm−n, m ≥ 0,
0, m < 0,

for all f ∈ lp(Z;X) supported in Z+ , since their translates are dense in
lp(Z;X).

The following theorem containing Theorem B relates the analyticity of
the operator T to the analyticity of the semigroup (et(T−I)), which is (cf. [P])
equivalent to

{(λ− 1)R(λ, T ) : λ ∈ 1 +Σδ} is bounded for some δ > π/2,(8)

where Σδ denotes the open sector {z : |arg(z)| < δ}.
Theorem 2.3. Let T ∈ L(X). Then the following are equivalent :

(a) T is power-bounded and analytic.
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(b) (et(T−I) ) is a bounded analytic semigroup and σ(T ) ⊂ D ∪ {1}.
(c) {(λ− 1)R(λ, T ) : λ ∈ Dc ∪ (1 +Σδ)} is bounded for some δ > π/2.

Here D is the unit disk in C. Theorem 2.3 is essentially due to O. Nevan-
linna [N1], [N2]. Related results can be found in [B], [Ly], [NZ].

Proof. (b)⇒(a). Follows from [N1, Thm. 4.5.4] since (b) implies (8) by
well known semigroup theory [P].

(a)⇒(b). Let ‖T n‖ ≤ M and ‖(n + 1)(T − I)T n‖ ≤ M for all n ∈ N0.
Then (b) is seen from

‖et(T−I)‖ ≤ e−t
∞∑

n=0

tn

n!
‖Tn‖ ≤M, t ≥ 0,

‖(T − I)et(T−I)‖ ≤ e−t
∞∑

n=0

tn

n!
‖(T − I)Tn‖ ≤M/t, t > 0,

and the fact that ‖(T − I)T n‖ ≥ |z− 1| · |z|n for all z ∈ σ(T ), n ∈ N, by the
spectral mapping theorem (the last argument is taken from [KT]).

(a)⇒(c). If ‖Tn‖ ≤M for all n ∈ N0, then

‖R(λ, T )‖ =
∥∥∥
∞∑

n=0

λ−n−1Tn
∥∥∥ ≤M(|λ| − 1)−1

≤M ′R|λ− 1|−1 for all |λ| ≥ R > 1.

Since the implication (a)⇒(b) is already established, we have (8) as men-
tioned above, and the fact that σ(T ) ⊂ D∪{1} yields the remaining estimate

‖(λ− 1)R(λ, T )‖ ≤M ′′R,δ for all R ≥ |λ| > 1 with λ 6∈ 1 +Σδ.

(c)⇒(b). Condition (c) obviously implies σ(T ) ⊂ D ∪ {1} as well as (8),
and as mentioned above, the latter is equivalent to the fact that (et(T−I) is
a bounded analytic semigroup.

The continuous time analogue of the following observation is the fact that
every closed densely defined operator in X having maximal Lp-regularity
generates a bounded analytic semigroup.

Proposition 2.4. Let p ∈ (1,∞). If T ∈ L(X) is power-bounded and
has maximal lp-regularity then T is analytic.

Proof. Let ‖Tn‖ ≤ M for all n ∈ N0. Similarly to the continuous time
argument [CL], we consider for all b ∈ N, x ∈ X the sequence f = fb,x ∈
lp(Z+;X) defined by

fj :=
{
T jx for j = 1, . . . , b,
0 otherwise.
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Then for all n ∈ N we have

(KT f)n =
n∑

j=1

kT (n− j)fj =
n∑

j=1

(T − I)Tn−jfj = (n ∧ b)(T − I)Tnx.

The fact that ‖f‖p ≤Mb1/p‖x‖ combines with

‖KT f‖p ≥
( b∑

n=1

‖(KT f)n‖p
)1/p

=
( b∑

n=1

np‖(T − I)Tnx‖p
)1/p

≥M−1
( b∑

n=1

np
)1/p
‖(T − I)T bx‖ ≥ (2M)−1b1+1/p‖(T − I)T bx‖

to give the estimate ‖(T − I)T bx‖ ≤ 2M2‖KT ‖p,pb−1‖x‖.
With the aid of the following well known vector-valued Benedek–

Calderón–Panzone Theorem [BCP], we obtain the same p-independence of
maximal regularity as in the continuous time version.

Theorem 2.5. Let k ∈ l∞(L(X)) and q ∈ [1,∞]. Let S ∈ L(lq(X)) be
such that

(Sf)n =
∑

m∈Z
k(n−m)fm for all n ∈ Z

and for all f ∈ l1(X) ∩ lq(X). If the Hörmander condition

sup
m∈Z

∑

|n|>2|m|
‖k(n−m)− k(n)‖ <∞(9)

is satisfied then S ∈ L(lp(X)) for all p ∈ (1,∞).

Corollary 2.6. Let p, q ∈ (1,∞). If T has maximal lq-regularity then
T has maximal lp-regularity.

Proof. Let T have maximal lq-regularity. Then T is analytic by Propo-
sition 2.4, which implies easily

‖(T − I)2Tn‖ ≤ C/n2 for all n ∈ N.
Now the proof of the Hörmander condition (9) is a simple modification of
the corresponding proof for the continuous time situation as given e.g. in
[D, p. 32].

From now on we will say that T has discrete maximal regularity if T has
maximal lp-regularity for some p ∈ (1,∞).

Proposition 2.7. Let H be a Hilbert space and T ∈ L(H) be power-
bounded and analytic. Then T has discrete maximal regularity.

Proof. By the p-independence just established, it suffices to show that
T has maximal l2-regularity. But due to Remark 2.2 and the Hilbert space
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situation, this is equivalent to

F(kT ) ∈ L∞(T;L(H)).

Hence we have to show that

gT : D→ L(H), z 7→
∞∑

n=0

znkT (n),

has a bounded extension to D. But the latter follows from Theorem 2.3 and

gT (z) = (T − I)
∞∑

n=0

(zT )n = z−1((z−1 − 1)R(z−1, T )− I).

3. R-boundedness. The notion of R-boundedness was already implic-
itly used in [Bou] and was introduced in [BG]. It is fundamental for our
purposes since it allows us to generalize many classical results on (scalar-
valued) Fourier multipliers to the operator-valued setting on UMD spaces;
see e.g. [Bou], [BG], [W1], [SW].

In this section we collect some examples and some operations (e.g. clo-
sures, products, sums, means) on R-bounded sets which, roughly speaking,
modify their R-bound in the same way as their norm-bound.

Let X be a Banach space and (rj)j∈N be a sequence of independent
symmetric {1,−1}-valued random variables on [0, 1], e.g. the Rademacher
functions.

Definition 3.1. A set τ ⊂ L(X) is called R-bounded if
1�

0

∥∥∥
n∑

j=1

rj(t)Tj(xj)
∥∥∥
p
dt ≤ Cpp

1�

0

∥∥∥
n∑

j=1

rj(t)xj
∥∥∥
p
dt(10)

for some p ∈ [1,∞), Cp > 0 and for all n ∈ N, T1, . . . , Tn ∈ τ and
x1, . . . , xn ∈ X. Recall that, by Kahane’s inequality [LT], this property
is independent of p ∈ [1,∞). The smallest constant Cp for which (10) holds
is denoted by Rp(τ), and furthermore we set R(τ) := R1(τ).

For the following basic examples and facts we refer to [W1, §2] and [SW,
§2] and the references given there.

Example 3.2. (a) If H is a Hilbert space then τ ⊂ L(H) is R-bounded
if and only if τ is bounded.

(b) If Λ ⊂ C is bounded by M ≥ 0 then R({λIX : λ ∈ Λ}) ≤ 2M .

Remark 3.3. Let τ, σ ⊂ L(X).

(a) If τ is R-bounded then the closure of τ in the strong operator topology
is also R-bounded.

(b) Let τ be R-bounded with R-bound M . Then the closure of the complex
absolute convex hull of τ is also R-bounded with R-bound at most 2M .
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(c) If σ and τ are R-bounded then σ ∪ τ and στ are also R-bounded ;
more precisely :

R(σ ∪ τ) ≤ R(σ) +R(τ), R({ST : S ∈ σ, T ∈ τ}) ≤ R(σ)R(τ).

(d) Let G ⊂ C be a simply connected Jordan region such that C \ G
has interior points. Let F ∈ L∞(G; L(X)) be analytic in G and F (∂G) be
R-bounded. Then F (G) is also R-bounded.

(e) Let Ω be a measure space and p ∈ [1,∞). For all T ∈ L(X) we
define the operator T̃ ∈ L(Lp(Ω;X)) by (T̃ f)(ω) := T (f(ω)), f ∈ Lp(Ω;X),
ω ∈ Ω. Then there exists a constant Cp independent of X and τ ⊂ L(X)
such that

R({T̃ : T ∈ τ}) ≤ CpR(τ).

(f) Let X = Lp(Ω;E) for some measure space Ω, Banach space E and
p ∈ [1,∞). If τ ⊂ L(X) is R-bounded then

{φTψ : ‖φ‖∞, ‖ψ‖∞ ≤ 1, T ∈ τ} is R-bounded.

3.1. R-boundedness and power series

Lemma 3.4. Let τ ⊂ L(X) be R-bounded and C > 0, q ∈ [0, 1). Then for
A := {a ∈ l∞ : ∀n ∈ N : |an| ≤ C(q/R(τ))n} the set M := {∑∞n=1 anT

n :
a ∈ A, T ∈ τ} is R-bounded.

Proof. By Remark 3.3(a) it suffices to show
1�

0

∥∥∥
m∑

j=1

rj(t)
N∑

n=1

a(j)
n Tnj xj

∥∥∥ dt ≤ 2Cq
1− q

1�

0

∥∥∥
m∑

j=1

rj(t)xj
∥∥∥ dt

for all m,N ∈ N, a(1), . . . , a(m) ∈ A, T1, . . . , Tm ∈ τ and x1, . . . , xm ∈ X.
For σn := {anIX : a ∈ A} we have, by 3.2(b),

R(σn) ≤ 2 sup
a∈A
|an| ≤ 2C(q/R(τ))n,

hence we can estimate as follows:
1�

0

∥∥∥
m∑

j=1

rj(t)
N∑

n=1

a(j)
n Tnj xj

∥∥∥ dt ≤
N∑

n=1

R(τ)n
1�

0

∥∥∥
m∑

j=1

rj(t)a(j)
n xj

∥∥∥ dt

≤
N∑

n=1

R(τ)nR(σn)
1�

0

∥∥∥
m∑

j=1

rj(t)xj
∥∥∥ dt

≤ 2Cq
1− q

1�

0

∥∥∥
m∑

j=1

rj(t)xj
∥∥∥ dt.

In the first step we used Remark 3.3(c) in the form

R({Tn : T ∈ τ}) ≤ R(τ)n for all n ∈ N.
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While part (b) of the following corollary is a trivial application of [W1,
Prop. 2.6], its part (a) is implicitly shown in the proof of [W1, Thm. 4.2].

Corollary 3.5. Let A be a closed and densely defined operator in X.

(a) If {λR(λ,A) : λ ∈ Σπ/2} is R-bounded then there exists δ > π/2
such that {λR(λ,A) : λ ∈ Σδ} is R-bounded.

(b) If G ⊂ %(A) is compact then {R(λ,A) : λ ∈ G} is R-bounded.

Proof. (a) By well known semigroup theory [P] there exists δ′ > π/2
such that

{λR(λ,A) : λ ∈ Σδ′} is bounded.

Hence τ := {λR(λ,A) : λ ∈ Σπ/2, λ 6= 0} is R-bounded by Remark 3.3(a).
Now we choose q ∈ (0, 1) arbitrary, C :=

√
1 + (R(τ)/q)2 and A,M as in

Lemma 3.4. Since τ ⊂M it suffices to show

|s|/|t| ≤ q/R(τ) ⇒ (s+ it)R(s+ it, A) ∈ M
But this follows directly from

(s+ it)R(s+ it) = (s+ it)
∞∑

n=0

R(it, A)n+1(−s)n

=
∞∑

n=1

(s+ it)(−s)n−1

(it)n
(itR(it, A))n

and the elementary implication

|s|/|t| ≤ q/R(τ) ⇒
(

(s+ it)(−s)n−1

(it)n

)

n∈N
∈ A.

(b) follows directly from [W1, Prop. 2.6].

3.2. R-boundedness and functional calculus. Let X be a Banach space
and T ∈ L(X). Let E be the set of all entire C-valued functions. For all
f ∈ E we define

f(T ) :=
�

Γf

f(λ)R(λ, T ) dλ

where Γf is an arbitrary path in %(T ) around σ(T ). Note that this definition
is independent of the chosen path Γf .

Lemma 3.6. Let M ⊂ %(T ) and g : M → C \ {0} be continuous such
that {g(λ)R(λ, T ) : λ ∈ M} is R-bounded. Let F ⊂ E be such that Γf ⊂M
for all f ∈ F and

sup
f∈F

�

Γf

|f(λ)g(λ)−1| |dλ| <∞.

Then the set {f(T ) : f ∈ F} is R-bounded.
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Proof. If we write τ := {g(λ)R(λ, T ) : λ ∈ M} and

Cf :=
�

Γf

|f(λ)g(λ)−1| |dλ|, f ∈ F ,

then obviously the operators C−1
f f(T ) belong to the closure of the complex

absolute convex hull of τ , which is R-bounded by Remark 3.3(b). Hence the
assertion follows from 3.2(b):

R({f(T ) : f ∈ F}) ≤ 2(sup
f∈F

Cf )R({C−1
f f(T ) : f ∈ F}).

The following proposition is the implication (b)⇒(c) of Theorem 1.1.

Proposition 3.7. Let T ∈ L(X) be power-bounded and analytic. Then
{Tn, n(T − I)Tn : n ∈ N} is R-bounded if {(λ− 1)R(λ, T ) : |λ| = 1, λ 6= 1}
is R-bounded.

Proof. By Nevanlinna’s Theorem 2.3 and the “maximum principle” Re-
mark 3.3(d), the hypotheses imply that {(λ−1)R(λ, T ) : λ ∈ Dc, λ 6=1}
is R-bounded. Hence, due to the “sector extension” Corollary 3.5(a), we
find some δ > 0 such that {(λ − 1)R(λ, T ) : λ ∈ Dc ∪ (1 + Σδ), λ 6= 1}
is R-bounded. Moreover, there exists ε > 0 such that K := {λ : dist(λ, ∂D \
(1 + Σδ)) ≤ ε} ⊂ %(T ). Since K is compact, we see from Corollary 3.5(b)
for M := Dc ∪ (1 +Σδ) ∪K that {(λ− 1)R(λ, T ) : λ ∈ M} is R-bounded.

Now, roughly speaking, Nevanlinna’s functional calculus argument in
[N1, p. 102] establishing

{(λ− 1)R(λ, S) : λ ∈ M} bd ⇒ {Sn, n(S − I)Sn : n ∈ N} bd(11)

for any S ∈ L(X) and our Lemma 3.6 show that (11) remains true if “bd” =
bounded is replaced by “R-bounded”. For the convenience of the reader we
give a detailed proof. One checks that for sufficiently small t0, c0 > 0 the
map

[0, t0]→ R+, t 7→ |1 + s+ tei(δ+π)/2| |1− c0t|−1,

is decreasing for all s ∈ [0, 1]. Hence we have

|1 + s+ tei(δ+π)/2| ≤ (1 + s)(1− c0t) for all t ∈ [0, t0], s ∈ [0, 1].(12)

Now choose t∞ ∈ [0, t0/2] such that z0 := 1 + t∞ei(δ+π)/2 satisfies r := |z0|
< 1 and

A := {z : |z| = r, |arg(z)| ≥ arg(z0)} ⊂ M.

Then we find k0 > 0 such that for all k ≥ k0 we have

∃tk ∈ [0, t0] : 1 + k−1 + tke
i(δ+π)/2 ∈ A.
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For all such k ≥ k0 we construct a path Γk as follows:

Γk = Γk,1 ∪ Γk,2 ∪ Γk,3,
Γk,1 := 1 + k−1 + [0, tk]ei(δ+π)/2,

Γk,2 ⊂ A,
Γk,3 := 1 + k−1 + [0, tk] e−i(δ+π)/2.

Observe that Γk ⊂ M. Hence we will apply Lemma 3.6 to g(λ) := λ − 1,
F := {fn, f̃n : n ∈ N} and Γfn := Γn+k0 =: Γf̃n , where fn(λ) := λn and

f̃n(λ) := n(λ − 1)λn. This yields the R-boundedness of {T n, n(T − I)Tn :
n ∈ N} once we show

sup
n∈N

�

Γn+k0

|λ|n(n+ |λ− 1|−1) |dλ| <∞.

The integrals over Γn+k0,1 are estimated as follows by using (12):

�

Γn+k0,1

|λ|n |dλ| ≤
t0�

0

(1 + (n+ k0)−1)n(1− c0t)n dt

≤ e
t0�

0

(1− c0t)n dt ≤ C1/n for all n ∈ N,

�

Γn+k0,1

|λ|n|λ− 1|−1 |dλ| ≤
t0�

0

(1 + (n+ k0)−1)n (1− c0t)n

|(n+ k0)−1 + tei(δ+π)/2| dt

≤ e
∞�

0

e−c0τ/(1+k0)

|1 + τei(δ+π)/2| dτ for all n ∈ N.

For the integrals over Γn+k0,2 we even have exponential decay in n:
�

Γn+k0,2

|λ|n |dλ| ≤
�

|λ|=r
rn |dλ| = C2r

n for all n ∈ N,

�

Γn+k0,2

|λ|n|λ− 1|−1 |dλ| ≤
�

|λ|=r
rn(1− r)−1 |dλ| = C3r

n for all n ∈ N.

Since the integrals over Γn+k0,3 are symmetric to Γn+k0,1, the proof is com-
plete.

4. Fourier multipliers on the torus. The aim of this section is the
proof of the Mikhlin Theorem 1.3 for operator-valued Fourier multipliers on
the torus T. It is an adaptation of the corresponding proof for multipliers
on R as given by Weis [W1].
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4.1. Dyadic decomposition

Definition 4.1. (a) We first decompose (0, π) “dyadically” into the fol-
lowing family (Ij)j∈Z of intervals:

Ij :=

{
[π − 2−(j+1)π, π − 2−(j+2)π), j ≥ 0,

[2j−1π, 2jπ), j < 0.

(b) Now we denote by aj , bj,∆j the endpoints and the corresponding
arcs of Ij :

Ij = [aj, bj ) and ∆j := {eit : t ∈ −Ij ∪ Ij}.
The following lemma will be useful later. Its proof is elementary and

therefore omitted.

Lemma 4.2. There exists a constant D1 such that

|1−ei[aj+r(bj−aj)]|−1|1+ei[aj+r(bj−aj)]|−1 ≤ D1 2|j| for all j ∈ Z, r ∈ [0, 1].

4.2. A Marcinkiewicz-type Multiplier Theorem

Theorem 4.3. Let X be a UMD space and p ∈ (1,∞). Then, for all
M : T → L(X) of the form M =

∑
j∈Z χ∆jmMj , where m : T → C has

uniformly bounded variations over the (∆j)j∈Z and {Mj : j ∈ Z} ⊂ L(X) is
R-bounded , we have

‖TM‖L(lp(X)) ≤ Cp,XR({Mj : j ∈ Z}) sup
j∈Z

Var∆j m.

Here we write Var∆jm := max(var∆j m, ‖m‖L∞(∆j)), where var∆j m is
the usual variation of m over ∆j.

Proof. From the so-called Littlewood–Paley property of the dyadic de-
composition {(−2j+1,−2j ]∪ [2j , 2j+1) : j ∈ Z} of R (see [W1, Thm. 3.1]), we
obtain by a standard transference argument [BG, Thm. 3.6(iii)] the Little-
wood–Paley property of our dyadic decomposition of T:

C−1‖f‖lp(X) ≤
1�

0

∥∥∥
∑

j∈Z
rj(t)Sj(f)

∥∥∥
lp(X)

dt ≤ C‖f‖lp(X).

Here the Sj are the Fourier multipliers F(Sjf) := χ∆jFf , which are often
called “partial sum operators”. In combination with the extension result
Remark 3.3(e) we can estimate as follows, using the symbol � to express
domination up to constants depending only on p and X:

‖TMf‖lp(X) �
1�

0

∥∥∥
∑

j∈Z
rj(t)Sj(TMf)

∥∥∥
lp(X)

dt

=
1�

0

∥∥∥
∑

j∈Z
rj(t)M̃j(Sj(Tmf))

∥∥∥
lp(X)

dt
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� R({Mj : j ∈ Z})
1�

0

∥∥∥
∑

j∈Z
rj(t)Sj(Tmf)

∥∥∥
lp(X)

dt

� R({Mj : j ∈ Z})‖Tmf‖lp(X)

≤ R({Mj : j ∈ Z})‖Tm‖L(lp(X)) ‖f‖lp(X)

� R({Mj : j ∈ Z})‖Tm‖L(lp) ‖f‖lp(X)

� R({Mj : j ∈ Z}) sup
j

Var∆j m‖f‖lp(X).

For the last two steps we used [BG, Thm. 4.5] and the Marcinkiewicz Mul-
tiplier Theorem for T in its classical, i.e. scalar-valued version [EG].

4.3. Proof of the Mikhlin Multiplier Theorem 1.3. We approximate the
given symbol M by linear combinations Mk, k ∈ N, of symbols of the type
considered in our Marcinkiewicz-type Theorem 4.3: For all t ∈ (−π, 0)∪(0, π)
we define

Mk(eiθ) :=
∑

j∈Z, σ=±1

χσIj(t)
(
M(σaj) + σ

2k∑

l=1

χσ[aj ,bj,k,l)(t)δj,kM
′(σbj,k,l)

)
.

Here we choose bj,k,l := aj + (l − 1)δj,k and

δj,k := 2−k(bj − aj) =

{
2−k−|j|−2π, j ≥ 0,

2−k−|j|−1π, j < 0.
(13)

By condition (6) and Lemma 4.2, the Mk are uniformly bounded on T\{±1}.
Moreover, for all j ∈ Z and for all t ∈ σIj = σ[aj, bj) we have

Mk(eit) = M(σaj) + σ

2k∑

l=1

χσ[aj ,bj,k,l)(t)δj,kM
′(σbj,k,l)

k→M(σaj) +
t�

σaj

M ′(s) ds = M(t).

Hence, in order to show TM ∈ L(lp(X)) and the desired estimate in the
norm of L(lp(X)), it suffices to show

‖TMk
‖L(lp(X)) ≤ Cp,XR(τ) for all k ∈ N.(14)

For this purpose, we decompose the symbols Mk as

Mk =
∑

σ=±1

(
Mk,0,σ + 2−kσ

2k∑

l=1

Mk,l,σ

)
,(15)



Maximal regularity of evolution equations 171

where the Mk,l,σ are symbols of the type considered in our Marcinkiewicz-
type Multiplier Theorem 4.3:

Mk,l,σ :=
∑

j∈Z
χ∆jm

(k,l,σ)M
(k,l,σ)
j , k ∈ N, l = 0, . . . , 2k, σ = ±1,

where the m(k,l,σ) and the M (k,l,σ)
j are given by

m(k,l,σ)(eiθ) :=

{
1, l = 0,∑

r∈Z χσ[ar,br,k,l)(t), l = 1, . . . , 2k,

M
(k,l,σ)
j :=

{
M(σaj), l = 0,

2kδj,kM ′(σbj,k,l), l = 1, . . . , 2k.

Our aim (14) is clear once we show

(16) R({M (k,l,σ)
j : j ∈ Z}) ≤ CR(τ)

for all k ∈ N, l = 0, . . . , 2k, σ = ±1.

Indeed, the fact that Var∆jm
(k,l,σ) ≤ 1 for all j, k, l, σ under consideration,

the line (16) and Theorem 4.3 combine to

‖TMk,l,σ
‖L(lp(X)) ≤ C ′p,XR(τ) for all k ∈ N, l = 0, . . . , 2k, σ = ±1,

so that ‖TMk
‖ ≤ 4C ′p,XR(τ) by the decomposition (15). For the case l = 0,

the estimate (16) holds trivially for C = 1, for the other cases it is seen from

sup
k∈N, l∈{1,...,2k}, σ=±1

R({M (k,l,σ)
j : j ∈ Z})

= sup
k∈N, l∈{1,...,2k}, σ=±1

R({(bj−aj)M ′(σaj + σ2−k(l − 1)(bj − aj)) : j∈Z})

≤ sup
r∈[0,1], σ=±1

R({(bj − aj)M ′(σaj + σr(bj − aj)) : j ∈ Z})

≤ πD1 sup
r∈[0,1], σ=±1

R({(1− eiσ[aj+r(bj−aj)])(1 + eiσ[aj+r(bj−aj)])

×M ′(σaj + σr(bj − aj)) : j ∈ Z})
≤ πD1R(τ).

Here we used (13), Lemma 4.2 and 3.2(a) for the third step.

5. Necessity of R-boundedness. Recall that G is a LCA group with
Haar measure µ and character group (Ĝ, µ̂), equipped with a translation
invariant metric d̂. By e and B(%, r) we denote the identity and balls in Ĝ.

Proof of Proposition 1.4. Setting

un := µ̂(B(e, n−1))−1χB(e,n−1),
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for all %0 ∈ Ĝ we have

(un ∗M)(%0) =
�

Ĝ

un(%0 %
−1)M(%) dµ̂(%)

= µ̂(B(%0, n
−1))−1

�

B(%0,n−1)

M(%) dµ̂(%)

n→M(%0) if %0 is a Lebesgue point of M .

Now we write un = F(φn)ψn, where

φn := µ̂(B(e, n−1))−1F−1(χB(e,n−1)) and ψn := χB(e,n−1).

For all Lebesgue points %0 of M and all x ∈ X we obtain

M(%0)x n← (M ∗ un)(%0)x

=
�

Ĝ

M(%)τ%0un(%) dµ̂(%)x

=
�

Ĝ

M(%)τ%0F(φn)(%)τ%0ψn(%) dµ̂(%)x

=
�

Ĝ

M(%)F(%0φn ⊗ x)(%)τ%0ψn(%) dµ̂(%)

=
�

G

TM (%0φn ⊗ x)(g)F−1(τ%0ψn)(g) dµ(g)

=
�

G

(%0TM %0)(φn ⊗ x)(g)F−1(ψn)(g) dµ(g).

Here τ%0 denotes the translation operator τ%0f(%) := f(%%−1
0 ). Since TM ∈

L(Lp(G;X)) by hypothesis, from Remark 3.3(f) we deduce that

σ := {gTMh : ‖g‖L∞(G), ‖h‖L∞(G) ≤ 1} is R-bounded(17)

in L(Lp(G;X)). Thus for all N ∈ N, x1, . . . , xN ∈ X and Lebesgue points
%1, . . . , %N of M we get

1�

0

∥∥∥
N∑

j=1

rj(t)M(%j)xj
∥∥∥
p
dt

= lim
n

1�

0

∥∥∥
�

G

N∑

j=1

rj(t)(%jTM%j)(φn ⊗ xj)(g)F−1(ψn)(g) dµ(g)
∥∥∥
p
dt

≤ sup
n

1�

0

�

G

∥∥∥
N∑

j=1

rj(t)(%jTM%j)(φn ⊗ xj)(g)
∥∥∥
p
dµ(g) dt ‖F−1(ψn)‖pp′



Maximal regularity of evolution equations 173

≤ Rp(σ)p sup
n

1�

0

�

G

∥∥∥
N∑

j=1

rj(t)φn(g)xj
∥∥∥
p
dµ(g) dt‖F−1(ψn)‖pp′

= Rp(σ)p
1�

0

∥∥∥
N∑

j=1

rj(t)xj
∥∥∥
p
dt sup

n
‖φn‖pp ‖F−1(ψn)‖pp′

The proof is finished in view of our hypothesis supn ‖φn‖p‖F−1(ψn)‖p′
<∞.

Remark 5.1. If p ∈ (1,∞) and G ∈ {RN ,TN ,ZN } for some N ∈ N,
then hypothesis (7) of Proposition 1.4 is satisfied , i.e.

sup
n∈N

µ̂(BĜ(e, n−1))−1‖F−1(χBĜ(e,n−1))‖Lp(G)‖F−1(χBĜ(e,n−1))‖Lp′ (G) <∞.

Proof. Let fn := F−1(χBĜ(e,n−1)). For the case G = TN we observe that
BZd(0, n

−1) = {0} and thus fn(z) ≡ CN for all n ≥ 2 and z ∈ G.
For the case G = RN note that fn(ξ) = n−Nf1(n−1ξ) by dilation, hence

‖fn‖q = n−N(1−1/q)‖f1‖q, and the assertion follows from

|BRN (0, n−1)|−1 = C ′Nn
N for all n ∈ N.

For the case G = ZN we consider the metric d̂ on TN defined by

d̂(e, exp(ix)) := ‖x‖∞, x ∈ (−π, π]N ,

and the requirement of translation invariance. Then for all k ∈ ZN we have

fn(k) = C ′′N
�

[−π,π]N

exp(−ikx)χ[−n−1,n−1]N (x) dx

= C ′′N

N∏

j=1

n−1�

−n−1

exp(−ikjt) dt = 2C ′′N

N∏

j=1

k−1
j sin(kjn−1).

Thus the assertion follows as above from the following estimate, where �
means domination up to constants depending only on N and q:

‖fn‖q �
( ∑

k∈NN

N∏

j=1

k−qj |sin(kjn−1)|q
)1/q

=
(∑

m∈N
m−q|sin(mn−1)|q

)N/q

≤
( n∑

m=1

n−q +
∞∑

m=n+1

m−q
)N/q

� n−N(1−1/q).

6. Proof of Theorem 1.1. By hypothesis, T ∈ L(X) is power-bounded
and analytic, hence (et(T−I)) is a bounded analytic semigroup by Nevan-
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linna’s Theorem 2.3. Therefore, (d)⇔(e)⇔(f) follow directly from Weis’
Corollary 4.4 in [W1], cited as Theorem A in our Introduction.

(a)⇔(b). By definition, T has discrete maximal regularity if and only if
the “convolution operator” on Z+,

f 7→
( m∑

n=0

kT (n)fm−n
)
m∈Z+

, where

kT : Z→ L(X), n 7→
{

(T − I)Tn for n ∈ N0,

0 otherwise,

is bounded on lp(Z+;X) for some p ∈ (1,∞). By Remark 2.2 and

k̂T (z) = z((z − 1)R(z, T )− I), z ∈ T,
the latter can be expressed equivalently in terms of Fourier multipliers:

TM ∈ L(lp(X)), where F(TMf)(z) := (z − 1)R(z, T )f̂(z).(18)

But, by Proposition 1.4, (18) implies that

{(z − 1)R(z, T ) : z ∈ T, z 6= 1} is R-bounded,(19)

hence (a)⇒(b) is already established. Conversely, (19) implies that the sets
{M(t) : t ∈ (0, 2π)} and {(eiθ − 1)M ′(t) : t ∈ (0, 2π)} are R-bounded for
M(t) := (eiθ − 1)R(eiθ, T ) and that (18) holds by the Mikhlin Theorem 1.3.
Therefore, also (b)⇒(a) is established.

(c)⇒(f). Let τ := {T n, (n+ 1)(T − I)T n : n ∈ N0} be R-bounded. Since

et(T−I) = e−t
∞∑

n=0

tn

n!
Tn, t(T−I)et(T−I) = e−t

∞∑

n=0

tn+1

(n+ 1)!
(n+1)(T−I)Tn,

the operators et(T−I) and t(T − I)et(T−I) for t > 0 belong to the closure of
the absolute convex hull of τ , which is R-bounded by Remark 3.3(b).

(e)⇒(b). Let the set {(λ−1)R(λ, T ) : λ ∈ 1+ iR, λ 6= 1} be R-bounded.
Then {(λ−1)R(λ, T ) : λ ∈ 1+Σδ} is R-bounded for some δ > 0 by the “max-
imum principle” Remark 3.3(d) and the “sector extension” Corollary 3.5(a).
Since {R(λ, T ) : |λ| = 1, |arg(λ)| ≥ ε} is R-bounded for all ε > 0 by Corol-
lary 3.5(b), we obtain the R-boundedness of {(λ−1)R(λ, T ) : |λ| = 1, λ 6= 1}.

(b)⇒(c) is shown in Proposition 3.7.
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