On the statistical and σ-cores

by

HÜSAMETTİN ÇOŞKUN (Malatya), CELAL ÇAKAN (Malatya)
and MURSALEEN (Aligarh)

Abstract. In [11] and [7], the concepts of σ-core and statistical core of a bounded number sequence x have been introduced and also some inequalities which are analogues of Knopp’s core theorem have been proved. In this paper, we characterize the matrices of the class $(S \cap m, V_\sigma)_{\text{reg}}$ and determine necessary and sufficient conditions for a matrix A to satisfy σ-core$(Ax) \subseteq \text{st-core}(x)$ for all $x \in m$.

1. Introduction. Let K be a subset of \mathbb{N}, the set of positive integers. The natural density δ of K is defined by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \leq n : k \in K\}|,$$

where the vertical bars indicate the number of elements in the enclosed set. The number sequence $x = (x_k)$ is said to be statistically convergent to the number l if for every ε, $\delta\{k : |x_k - l| \geq \varepsilon\} = 0$ (see [7]). In this case, we write $\text{st-lim} x = l$. We shall also write S and S_0 to denote the sets of all statistically convergent sequences and of all sequences statistically convergent to zero. The statistically convergent sequences were studied by several authors (see [2], [7] and others).

Let m and c be the Banach spaces of bounded and convergent sequences $x = (x_k)$ with the usual supremum norm. Let σ be a one-to-one mapping from \mathbb{N} into itself. An element $\Phi \in m'$, the conjugate space of m, is called an invariant mean or a σ-mean if (i) $\Phi(x) \geq 0$ when the sequence $x = (x_k)$ has $x_k \geq 0$ for all k, (ii) $\Phi(e) = 1$, where $e = (1, 1, 1, \ldots)$, (iii) $\Phi((x_{\sigma(k)})) = \Phi(x)$ for all $x \in m$.

Throughout this paper we consider the mapping σ such that $\sigma^p(k) \neq k$ for all positive integers $k \geq 0$ and $p \geq 1$, where $\sigma^p(k)$ is the pth iterate of σ at k. Thus, a σ-mean extends the limit functional on c in the sense that $\Phi(x) = \lim x$ for all $x \in c$ (see [12]). Consequently, $c \subset V_\sigma$ where V_σ is the set of bounded sequences all of whose σ-means are equal.

2000 Mathematics Subject Classification: Primary 40C05; Secondary 26A03, 11B05.

Key words and phrases: statistical convergence, core theorems and σ-regular matrices.
In case $\sigma(k) = k+1$, a σ-mean is often called a Banach limit and V_σ is the set of almost convergent sequences, introduced by Lorentz [9]. If $x = (x_n)$, write $Tx = (Tx_n) = (x_{\sigma(n)})$. It can be shown [15] that

$$V_\sigma = \{ x \in m : \lim_{p} t_{pn}(x) = s \text{ uniformly in } n, \ s = \sigma\text{-lim} \ x \}$$

where

$$t_{pn}(x) = (x_n + Tx_n + \ldots + T^px_n)/(p + 1), \quad t_{-1,n}(x) = 0.$$

We say that a bounded sequence $x = (x_k)$ is σ-convergent if $x \in V_\sigma$. By Z, we denote the set of σ-convergent sequences with σ-limit zero. It is well known [14] that $x \in m$ if and only if $Tx - x \in Z$.

Let A be an infinite matrix of real entries a_{nk} and $x = (x_k)$ be a real number sequence. Then $Ax = ((Ax)_n) = (\sum_{k} a_{nk} x_k)$ denotes the transformed sequence of x. If X and Y are two non-empty sequence spaces, then we use (X,Y) to denote the set of all matrices A such that Ax exists and $Ax \in Y$ for all $x \in X$. Throughout, \sum_k will denote summation from $k = 1$ to ∞.

A matrix A is called (i) regular if $A \in (c,c)$ and $\lim Ax = \lim x$ for all $x \in c$, (ii) σ-regular if $A \in (c,V_\sigma)$ and $\sigma\text{-lim} Ax = \lim x$ for all $x \in c$, and (iii) σ-coercive if $A \in (m,V_\sigma)$. The regularity conditions for A are well known [10].

The following two lemmas which were established in [15] will enable us to prove our results:

Lemma 1.1 ([15, Th. 3]). The matrix A is σ-coercive if and only if

\[(1.1) \quad \|A\| = \sup_{n} \sum_{k} |a_{nk}| < \infty, \]

\[(1.2) \quad \sigma\text{-lim} a_{nk} = \alpha_k \quad \text{for each } k, \]

\[(1.3) \quad \lim_{p} \sum_{k} \frac{1}{p + 1} \left| \sum_{i=0}^{p} (a_{\sigma^i(n),k} - \alpha_k) \right| = 0 \quad \text{uniformly in } n. \]

Lemma 1.2 ([15, Th. 2]). The matrix A is σ-regular if and only if the conditions (1.1) and (1.2) hold with $\alpha_k = 0$ for each k and

\[(1.4) \quad \sigma\text{-lim} \sum_{k} a_{nk} = 1. \]

A matrix A is called normal if $a_{nk} = 0 \ (k > n)$ and $a_{nn} \neq 0$ for all n. If A is normal, then it has its reciprocal.

For any real number λ we write $\lambda^- = \max\{-\lambda,0\}$, $\lambda^+ = \max\{0,\lambda\}$. Then $\lambda = \lambda^+ - \lambda^-$. We recall (see [11]) that a matrix A is said to be σ-uniformly positive if

$$\lim_{p} \sum_{k} a^-_{(p,n,k)} = 0 \quad \text{uniformly in } n$$
where

\[a(p, n, k) = \frac{1}{p + 1} \sum_{i=0}^{p} a_{\sigma^i(n)}. \]

It is known [11] that a \(\sigma \)-regular matrix \(A \) is \(\sigma \)-uniformly positive if and only if

\[
\lim_p \sum_k |a(p, n, k)| = 1 \quad \text{uniformly in} \ n.
\]

Let us consider the following functionals defined on \(m \):

\[
l(x) = \lim \inf x, \quad L(x) = \lim \sup x, \quad q_\sigma(x) = \lim \sup \sup_t t_{pn}(x),
\]

\[
L^*(x) = \lim \sup \sup_p \frac{1}{p + 1} \sum_{i=0}^{p} x_{n+i}.
\]

In [11], the \(\sigma \)-core of a real bounded number sequence \(x \) has been defined as the closed interval \([-q_\sigma(-x), q_\sigma(x)]\) and also the inequalities \(q_\sigma(Ax) \leq L(x) \) (\(\sigma \)-core of \(Ax \subseteq K \)-core of \(x \)), \(q_\sigma(Ax) \leq q_\sigma(x) \) (\(\sigma \)-core of \(Ax \subseteq \sigma \)-core of \(x \)), for all \(x \in m \), have been studied. Here the \(K \)-core of \(x \) (or Knopp core of \(x \)) is the interval \([l(x), L(x)]\) (see [3]).

When \(\sigma(n) = n + 1 \), since \(q_\sigma(x) = L^*(x) \), the \(\sigma \)-core of \(x \) is reduced to the Banach core of \(x \) (B-core) defined by the interval \([-L^*(-x), L^*(x)]\) (see [13]).

The concepts of B-core and \(\sigma \)-core have been studied by many authors [4, 5, 6, 11, 13].

Recently, Fridy and Orhan [7] have introduced the notions of statistical boundedness, statistical limit superior (st-lim sup) and inferior (st-lim inf), defined the statistical core (or briefly st-core) of a statistically bounded sequence as the closed interval \([\text{st-lim inf} x, \text{st-lim sup} x]\) and also determined necessary and sufficient conditions for a matrix \(A \) to yield \(K \)-core\((Ax) \subseteq \text{st-core}(x) \) for all \(x \in m \).

After all these explanations, one can naturally ask: What are necessary and sufficient conditions on a matrix \(A \) so that the \(\sigma \)-core of \(Ax \) is contained in the st-core of \(x \) for all \(x \in m ? \) Our main purpose is to find an answer to that question. To do this we need to characterize the class of matrices \(A \) such that \(Ax \in V_\sigma \) and \(\sigma \)-lim \(Ax = \text{st-lim} x \) for all \(x \in S \cap m \), i.e., \(A \in (S \cap m, V_\sigma)_{\text{reg}} \).

2. Main results

Theorem 2.1. \(A \in (S \cap m, V_\sigma)_{\text{reg}} \) if and only if \(A \) is \(\sigma \)-regular and

\[
\lim_p \sum_{k \in E} |a(p, n, k)| = 0 \quad \text{uniformly in} \ n,
\]

for every \(E \subseteq \mathbb{N} \) with natural density zero.
Proof. First, suppose that \(A \in (S \cap m, V_\sigma)_{\text{reg}} \). The \(\sigma \)-regularity of \(A \) immediately follows from the fact that \(c \subset S \cap m \). Now, define a sequence \(z = (z_k) \) for \(x \in m \) as

\[
z_k = \begin{cases} x_k, & k \in E, \\ 0, & k \notin E, \end{cases}
\]

where \(E \) is any subset of \(\mathbb{N} \) with \(\delta(E) = 0 \). By our assumption, since \(z \in S_0 \), we have \(Az \in Z \). On the other hand, since \(Az = \sum_{k \in E} a_{nk} x_k \), the matrix \(B = (b_{nk}) \) defined by

\[
b_{nk} = \begin{cases} a_{nk}, & k \in E, \\ 0, & k \notin E, \end{cases}
\]

for all \(n \), must belong to the class \((m, Z) \). Hence, the necessity of (2.1) follows from Lemma 1.1.

Conversely, suppose that \(A \) is \(\sigma \)-regular and (2.1) holds. Let \(x \) be any sequence in \(S \cap m \) with \(\text{st-lim} x = l \). Write \(E = \{ k : |x_k - l| \geq \varepsilon \} \) for any given \(\varepsilon > 0 \), so that \(\delta(E) = 0 \). Now, from (1.4) we have

\[
\sigma\text{-lim}(Ax) = \sigma\text{-lim} \left(\sum_k a_{nk} (x_k - l) + l \sum_k a_{nk} \right)
= \sigma\text{-lim} \sum_k a_{nk} (x_k - l) + l
= \lim_p \sum_k a(p, n, k)(x_k - l) + l.
\]

On the other hand, since

\[
\left| \sum_k a(p, n, k)(x_k - l) \right| \leq \|x\| \sum_{k \in E} |a(p, n, k)| + \varepsilon \|A\|,
\]

the condition (2.1) implies that

\[
\lim_p \sum_k a(p, n, k)(x_k - l) = 0 \quad \text{uniformly in } n.
\]

Hence, \(\sigma\text{-lim}(Ax) = \text{st-lim} x \); that is, \(A \in (S \cap m, V_\sigma)_{\text{reg}} \), which completes the proof. \(\blacksquare \)

In the special case \(\sigma(n) = n + 1 \), we also have the following theorem:

Theorem 2.2. \(A \in (S \cap m, f)_{\text{reg}} \) if and only if \(A \) is almost regular (see [8]) and

\[
\lim_p \sum_{k \in E} \frac{1}{p+1} \left| \sum_{i=0}^p a_{n+i,k} \right| = 0 \quad \text{uniformly in } n,
\]

for every \(E \subseteq \mathbb{N} \) with natural density zero.

Theorem 2.3. \(\sigma\text{-core}(Ax) \subseteq \text{st-core}(x) \) for all \(x \in m \) if and only if \(A \in (S \cap m, V_\sigma)_{\text{reg}} \) and \(A \) is \(\sigma \)-uniformly positive.
Proof. Assume that \(\sigma\)-core\((Ax) \subseteq \text{st-core}(x) \) for all \(x \in m \). Then \(q_\sigma(Ax) \leq \beta(x) \) for all \(x \in m \) where \(\beta(x) = \text{st-lim sup } x \). Hence, since \(\beta(x) \leq L(x) \) for all \(x \in m \) (see [7]), the \(\sigma \)-uniform positivity of \(A \) follows from Theorem 2 of [11]. One can also easily see that

\[
-\beta(-x) \leq -q_\sigma(-Ax) \leq q_\sigma(Ax) \leq \beta(x),
\]
i.e.,

\[
\text{st-lim inf } x \leq -q_\sigma(-Ax) \leq q_\sigma(Ax) \leq \text{st-lim sup } x.
\]

If \(x \in S \cap m \), then \(\text{st-lim inf } x = \text{st-lim sup } x = \text{st-lim } x \) (see [7]). Thus, the last inequality implies that \(\text{st-lim } x = -q_\sigma(-Ax) = q_\sigma(Ax) = \sigma\text{-lim } Ax \), that is, \(A \in (S \cap m, V_\sigma)_{\text{reg}} \).

Conversely, assume \(A \in (S \cap m, V_\sigma)_{\text{reg}} \) and \(A \) is \(\sigma \)-uniformly positive. If \(x \in m \), then \(\beta(x) \) is finite. Let \(E \) be a subset of \(\mathbb{N} \) defined by \(E = \{ k : x_k > \beta(x) + \varepsilon \} \) for a given \(\varepsilon > 0 \). Then it is obvious that \(\delta(E) = 0 \) and \(x_k \leq \beta(x) + \varepsilon \) if \(k \notin E \).

Now, we can write

\[
t_{pn}(Ax) = \sum_{k \in E} a(p, n, k)x_k + \sum_{k \notin E} a^+(p, n, k)x_k - \sum_{k \notin E} a^-(p, n, k)x_k
\]

\[
\leq ||x|| \sum_{k \in E} |a(p, n, k)| + (\beta(x) + \varepsilon) \sum_{k \notin E} |a(p, n, k)|
\]

\[+ ||x|| \sum_{k \notin E} a^-(p, n, k).
\]

Using (1.5), (2.1) and \(\sigma \)-uniform positivity of \(A \) we have

\[
\limsup_p \sup_n t_{pn}(Ax) \leq \beta(x) + \varepsilon.
\]

Since \(\varepsilon \) is arbitrary, we conclude that \(q_\sigma(Ax) \leq \beta(x) \) for all \(x \in m \), that is, \(\sigma\text{-core}(Ax) \subseteq \text{st-core}(x) \) for all \(x \in m \) and the proof is complete. \(\blacksquare \)

Now, since \(q_\sigma(Ax) = L^*(Ax) \) whenever \(\sigma(n) = n + 1 \), we have the following result:

Theorem 2.4. \(B\text{-core}(Ax) \subseteq \text{st-core}(x) \) for all \(x \in m \) if and only if \(A \in (S \cap m, f)_{\text{reg}} \) and

\[
\lim_p \sum_k \frac{1}{p+1} \left| \sum_{i=0}^p a_{n+i,k} \right| = 1 \quad \text{uniformly in } n.
\]

The next theorem is a slight generalization of our main theorem as well as an analogue of Theorem 2 of [1]:

Theorem 2.5. Let \(B \) be a normal matrix and \(A \) be any matrix. In order that whenever \(Bx \) is bounded \(Ax \) should exist and be bounded and satisfy

\[
(2.2) \quad \sigma\text{-core}(Ax) \subseteq \text{st-core}(Bx),
\]
it is necessary and sufficient that
\begin{align}
(2.3) & \quad C = (c_{nk}) = AB^{-1} \text{ exists}, \\
(2.4) & \quad C \in (S \cap m, V_\sigma)_{\text{reg}}, \\
(2.5) & \quad C \text{ is } \sigma\text{-uniformly positive}, \\
(2.6) & \quad \text{for any fixed } n, \sum_{k=0}^{N} \sum_{j=N+1}^{\infty} a_{nj}\gamma_{jk} \to 0 \text{ as } N \to \infty,
\end{align}

where \(\gamma_{jk} \) are the entries of the matrix \(B^{-1} \).

Proof. Let (2.2) hold and suppose \(A_n(x) \) exists for every \(n \) whenever \(Bx \in m \). Then by Lemma 2 of Choudhary [1] it follows that conditions (2.3) and (2.6) hold. Further by the same lemma, we obtain \(Ax = Cy \), where \(y = Bx \). Since \(Ax \in m \), we have \(Cy \in m \). Therefore (2.2) implies that
\[\sigma\text{-core}(Cy) \subseteq \text{st-core}(y). \]

Hence using Theorem 2.3, we see that conditions (2.4) and (2.5) hold.

Conversely, let conditions (2.3)–(2.6) hold. Then obviously the assumptions of Lemma 2 of [1] are satisfied and so \(Cy \in m \). Hence \(Ax \in m \) and by Theorem 2.3, we obtain
\[\sigma\text{-core}(Cy) \subseteq \text{st-core}(y), \]

and consequently
\[\sigma\text{-core}(Ax) \subseteq \text{st-core}(Bx), \]

since \(y = Bx \) and \(Cy = Ax \). This completes the proof. \(\blacksquare \)

Finally, from Theorem 2.5 we have the following result:

Theorem 2.6. Let \(B \) be a normal matrix and \(A \) be any matrix. In order that whenever \(Bx \) is bounded \(Ax \) should exist and be bounded and satisfy
\begin{align}
(2.7) & \quad B\text{-core}(Ax) \subseteq \text{st-core}(Bx),
(2.8) & \quad C \in (S \cap m, f)_{\text{reg}},
(2.9) & \quad \lim sup_{p} \sup_{n} \frac{1}{p+1} \left| \sum_{i=0}^{p} c_{n+i,k} \right| = 1.
\end{align}

Acknowledgements. We would like to express our thanks to the referee for his valuable suggestions improving our paper.

References

İnönü Üniversitesi
Eğitim Fakültesi
44100-Malatya, Turkey
E-mail: lcoskun@inonu.edu.tr
ccakan@inonu.edu.tr

Department of Mathematics
Aligarh Muslim University
Aligarh-202-002, India
E-mail: mursaleen@postmark.net

Received July 12, 2001
Revised version April 18, 2002 (4778)