On the statistical and σ -cores

by

HÜSAMETTIN ÇOŞKUN (Malatya), CELAL ÇAKAN (Malatya) and MURSALEEN (Aligarh)

Abstract. In [11] and [7], the concepts of σ -core and statistical core of a bounded number sequence x have been introduced and also some inequalities which are analogues of Knopp's core theorem have been proved. In this paper, we characterize the matrices of the class $(S \cap m, V_{\sigma})_{\text{reg}}$ and determine necessary and sufficient conditions for a matrix A to satisfy σ -core $(Ax) \subseteq$ st-core(x) for all $x \in m$.

1. Introduction. Let K be a subset of \mathbb{N} , the set of positive integers. The *natural density* δ of K is defined by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|,$$

where the vertical bars indicate the number of elements in the enclosed set. The number sequence $x = (x_k)$ is said to be *statistically convergent* to the number l if for every ε , $\delta\{k : |x_k - l| \ge \varepsilon\} = 0$ (see [7]). In this case, we write st-lim x = l. We shall also write S and S_0 to denote the sets of all statistically convergent sequences and of all sequences statistically convergent to zero. The statistically convergent sequences were studied by several authors (see [2], [7] and others).

Let m and c be the Banach spaces of bounded and convergent sequences $x = (x_k)$ with the usual supremum norm. Let σ be a one-to-one mapping from \mathbb{N} into itself. An element $\Phi \in m'$, the conjugate space of m, is called an *invariant mean* or a σ -mean if (i) $\Phi(x) \ge 0$ when the sequence $x = (x_k)$ has $x_k \ge 0$ for all k, (ii) $\Phi(e) = 1$, where $e = (1, 1, 1, \ldots)$, (iii) $\Phi((x_{\sigma(k)})) = \Phi(x)$ for all $x \in m$.

Throughout this paper we consider the mapping σ such that $\sigma^p(k) \neq k$ for all positive integers $k \geq 0$ and $p \geq 1$, where $\sigma^p(k)$ is the *p*th iterate of σ at k. Thus, a σ -mean extends the limit functional on c in the sense that $\Phi(x) = \lim x$ for all $x \in c$ (see [12]). Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequences all of whose σ -means are equal.

²⁰⁰⁰ Mathematics Subject Classification: Primary 40C05; Secondary 26A03, 11B05. Key words and phrases: statistical convergence, core theorems and σ -regular matrices.

In case $\sigma(k) = k+1$, a σ -mean is often called a *Banach limit* and V_{σ} is the set of almost convergent sequences, introduced by Lorentz [9]. If $x = (x_n)$, write $Tx = (Tx_n) = (x_{\sigma(n)})$. It can be shown [15] that

$$V_{\sigma} = \{x \in m : \lim_{p} t_{pn}(x) = s \text{ uniformly in } n, s = \sigma \text{-lim} x\}$$

where

$$t_{pn}(x) = (x_n + Tx_n + \ldots + T^p x_n)/(p+1), \quad t_{-1,n}(x) = 0.$$

We say that a bounded sequence $x = (x_k)$ is σ -convergent if $x \in V_{\sigma}$. By Z, we denote the set of σ -convergent sequences with σ -limit zero. It is well known [14] that $x \in m$ if and only if $Tx - x \in Z$.

Let A be an infinite matrix of real entries a_{nk} and $x = (x_k)$ be a real number sequence. Then $Ax = ((Ax)_n) = (\sum_k a_{nk}x_k)$ denotes the transformed sequence of x. If X and Y are two non-empty sequence spaces, then we use (X, Y) to denote the set of all matrices A such that Ax exists and $Ax \in Y$ for all $x \in X$. Throughout, \sum_k will denote summation from k = 1to ∞ .

A matrix A is called (i) regular if $A \in (c, c)$ and $\lim Ax = \lim x$ for all $x \in c$, (ii) σ -regular if $A \in (c, V_{\sigma})$ and σ -lim $Ax = \lim x$ for all $x \in c$, and (iii) σ -coercive if $A \in (m, V_{\sigma})$. The regularity conditions for A are well known [10].

The following two lemmas which were established in [15] will enable us to prove our results:

LEMMA 1.1 ([15, Th. 3]). The matrix A is σ -coercive if and only if

(1.1)
$$||A|| = \sup_{n} \sum_{k} |a_{nk}| < \infty,$$

(1.2)
$$\sigma - \lim a_{nk} = \alpha_k \quad for \ each \ k,$$

(1.3)
$$\lim_{p} \sum_{k} \frac{1}{p+1} \left| \sum_{i=0}^{p} (a_{\sigma^{i}(n),k} - \alpha_{k}) \right| = 0 \quad uniformly \ in \ n.$$

LEMMA 1.2 ([15, Th. 2]). The matrix A is σ -regular if and only if the conditions (1.1) and (1.2) hold with $\alpha_k = 0$ for each k and

(1.4)
$$\sigma\text{-lim}\sum_{k}a_{nk}=1.$$

A matrix A is called *normal* if $a_{nk} = 0$ (k > n) and $a_{nn} \neq 0$ for all n. If A is normal, then it has its reciprocal.

For any real number λ we write $\lambda^{-} = \max\{-\lambda, 0\}, \lambda^{+} = \max\{0, \lambda\}$. Then $\lambda = \lambda^{+} - \lambda^{-}$. We recall (see [11]) that a matrix A is said to be σ -uniformly positive if

$$\lim_{p} \sum_{k} a^{-}(p, n, k) = 0 \quad \text{uniformly in } n$$

where

$$a(p, n, k) = \frac{1}{p+1} \sum_{i=0}^{p} a_{\sigma^{i}(n)}.$$

It is known [11] that a σ -regular matrix A is σ -uniformly positive if and only if

(1.5)
$$\lim_{p} \sum_{k} |a(p, n, k)| = 1 \quad \text{uniformly in } n.$$

Let us consider the following functionals defined on m:

$$l(x) = \liminf x, \quad L(x) = \limsup \sup x, \quad q_{\sigma}(x) = \limsup \sup_{p} \sup_{n} t_{pn}(x),$$
$$L^{*}(x) = \limsup_{p} \sup_{n} \frac{1}{p+1} \sum_{i=0}^{p} x_{n+i}.$$

In [11], the σ -core of a real bounded number sequence x has been defined as the closed interval $[-q_{\sigma}(-x), q_{\sigma}(x)]$ and also the inequalities $q_{\sigma}(Ax) \leq L(x)$ (σ -core of $Ax \subseteq K$ -core of x), $q_{\sigma}(Ax) \leq q_{\sigma}(x)$ (σ -core of $Ax \subseteq \sigma$ -core of x), for all $x \in m$, have been studied. Here the K-core of x (or Knopp core of x) is the interval [l(x), L(x)] (see [3]).

When $\sigma(n) = n + 1$, since $q_{\sigma}(x) = L^*(x)$, the σ -core of x is reduced to the Banach core of x (*B*-core) defined by the interval $[-L^*(-x), L^*(x)]$ (see [13]).

The concepts of *B*-core and σ -core have been studied by many authors [4, 5, 6, 11, 13].

Recently, Fridy and Orhan [7] have introduced the notions of statistical boundedness, statistical limit superior (st-lim sup) and inferior (st-lim inf), defined the *statistical core* (or briefly st-core) of a statistically bounded sequence as the closed interval [st-lim inf x, st-lim sup x] and also determined necessary and sufficient conditions for a matrix A to yield K-core $(Ax) \subseteq$ st-core(x) for all $x \in m$.

After all these explanations, one can naturally ask: What are necessary and sufficient conditions on a matrix A so that the σ -core of Ax is contained in the st-core of x for all $x \in m$? Our main purpose is to find an answer to that question. To do this we need to characterize the class of matrices A such that $Ax \in V_{\sigma}$ and σ -lim Ax = st-lim x for all $x \in S \cap m$, i.e., $A \in (S \cap m, V_{\sigma})_{reg}$.

2. Main results

THEOREM 2.1. $A \in (S \cap m, V_{\sigma})_{\text{reg}}$ if and only if A is σ -regular and (2.1) $\lim_{p} \sum_{k \in E} |a(p, n, k)| = 0 \quad uniformly \text{ in } n,$

for every $E \subseteq \mathbb{N}$ with natural density zero.

Proof. First, suppose that $A \in (S \cap m, V_{\sigma})_{reg}$. The σ -regularity of A immediately follows from the fact that $c \subset S \cap m$. Now, define a sequence $z = (z_k)$ for $x \in m$ as

$$z_k = \begin{cases} x_k, & k \in E, \\ 0, & k \notin E, \end{cases}$$

where E is any subset of \mathbb{N} with $\delta(E) = 0$. By our assumption, since $z \in S_0$, we have $Az \in Z$. On the other hand, since $Az = \sum_{k \in E} a_{nk}x_k$, the matrix $B = (b_{nk})$ defined by

$$b_{nk} = \begin{cases} a_{nk}, & k \in E, \\ 0, & k \notin E, \end{cases}$$

for all n, must belong to the class (m, Z). Hence, the necessity of (2.1) follows from Lemma 1.1.

Conversely, suppose that A is σ -regular and (2.1) holds. Let x be any sequence in $S \cap m$ with st-lim x = l. Write $E = \{k : |x_k - l| \ge \varepsilon\}$ for any given $\varepsilon > 0$, so that $\delta(E) = 0$. Now, from (1.4) we have

$$\sigma\operatorname{-lim}(Ax) = \sigma\operatorname{-lim}\left(\sum_{k} a_{nk}(x_k - l) + l\sum_{k} a_{nk}\right)$$
$$= \sigma\operatorname{-lim}\sum_{k} a_{nk}(x_k - l) + l$$
$$= \lim_{p}\sum_{k} a(p, n, k)(x_k - l) + l.$$

On the other hand, since

$$\left|\sum_{k} a(p,n,k)(x_k-l)\right| \le \|x\|\sum_{k\in E} |a(p,n,k)| + \varepsilon \|A\|,$$

the condition (2.1) implies that

$$\lim_{p} \sum_{k} a(p, n, k)(x_k - l) = 0 \quad \text{uniformly in } n.$$

Hence, σ -lim(Ax) = st-lim x; that is, $A \in (S \cap m, V_{\sigma})_{\text{reg}}$, which completes the proof. \blacksquare

In the special case $\sigma(n) = n + 1$, we also have the following theorem:

THEOREM 2.2. $A \in (S \cap m, f)_{reg}$ if and only if A is almost regular (see [8]) and

$$\lim_{p} \sum_{k \in E} \frac{1}{p+1} \left| \sum_{i=0}^{p} a_{n+i,k} \right| = 0 \quad uniformly \ in \ n,$$

for every $E \subseteq \mathbb{N}$ with natural density zero.

THEOREM 2.3. σ -core $(Ax) \subseteq$ st-core(x) for all $x \in m$ if and only if $A \in (S \cap m, V_{\sigma})_{reg}$ and A is σ -uniformly positive.

Proof. Assume that σ -core $(Ax) \subseteq$ st-core(x) for all $x \in m$. Then $q_{\sigma}(Ax) \leq \beta(x)$ for all $x \in m$ where $\beta(x) =$ st-lim sup x. Hence, since $\beta(x) \leq L(x)$ for all $x \in m$ (see [7]), the σ -uniform positivity of A follows from Theorem 2 of [11]. One can also easily see that

$$-\beta(-x) \le -q_{\sigma}(-Ax) \le q_{\sigma}(Ax) \le \beta(x),$$

i.e.,

st-lim inf
$$x \leq -q_{\sigma}(-Ax) \leq q_{\sigma}(Ax) \leq$$
st-lim sup x .

If $x \in S \cap m$, then st-lim inf x =st-lim sup x =st-lim x (see [7]). Thus, the last inequality implies that st-lim $x = -q_{\sigma}(-Ax) = q_{\sigma}(Ax) = \sigma$ -lim Ax, that is, $A \in (S \cap m, V_{\sigma})_{reg}$.

Conversely, assume $A \in (S \cap m, V_{\sigma})_{\text{reg}}$ and A is σ -uniformly positive. If $x \in m$, then $\beta(x)$ is finite. Let E be a subset of \mathbb{N} defined by $E = \{k : x_k > \beta(x) + \varepsilon\}$ for a given $\varepsilon > 0$. Then it is obvious that $\delta(E) = 0$ and $x_k \leq \beta(x) + \varepsilon$ if $k \notin E$.

Now, we can write

$$t_{pn}(Ax) = \sum_{k \in E} a(p, n, k)x_k + \sum_{k \notin E} a^+(p, n, k)x_k - \sum_{k \notin E} a^-(p, n, k)x_k$$

$$\leq ||x|| \sum_{k \in E} |a(p, n, k)| + (\beta(x) + \varepsilon) \sum_{k \notin E} |a(p, n, k)|$$

$$+ ||x|| \sum_{k \notin E} a^-(p, n, k).$$

Using (1.5), (2.1) and σ -uniform positivity of A we have

$$\limsup_{p} \sup_{n} t_{pn}(Ax) \le \beta(x) + \varepsilon.$$

Since ε is arbitrary, we conclude that $q_{\sigma}(Ax) \leq \beta(x)$ for all $x \in m$, that is, σ -core $(Ax) \subseteq$ st-core(x) for all $x \in m$ and the proof is complete.

Now, since $q_{\sigma}(Ax) = L^*(Ax)$ whenever $\sigma(n) = n + 1$, we have the following result:

THEOREM 2.4. B-core $(Ax) \subseteq$ st-core(x) for all $x \in m$ if and only if $A \in (S \cap m, f)_{reg}$ and

$$\lim_{p} \sum_{k} \frac{1}{p+1} \left| \sum_{i=0}^{p} a_{n+i,k} \right| = 1 \quad uniformly \ in \ n.$$

The next theorem is a slight generalization of our main theorem as well as an analogue of Theorem 2 of [1]:

THEOREM 2.5. Let B be a normal matrix and A be any matrix. In order that whenever Bx is bounded Ax should exist and be bounded and satisfy

(2.2)
$$\sigma$$
-core $(Ax) \subseteq$ st-core (Bx) ,

it is necessary and sufficient that

- $(2.3) C = (c_{nk}) = AB^{-1} \ exists,$
- $(2.4) C \in (S \cap m, V_{\sigma})_{\text{res}},$

(2.5)
$$C \text{ is } \sigma\text{-uniformly positive},$$

(2.6) for any fixed
$$n$$
, $\sum_{k=0}^{N} \left| \sum_{j=N+1}^{\infty} a_{nj} \gamma_{jk} \right| \to 0$ as $N \to \infty$,

where γ_{jk} are the entries of the matrix B^{-1} .

Proof. Let (2.2) hold and suppose $A_n(x)$ exists for every n whenever $Bx \in m$. Then by Lemma 2 of Choudhary [1] it follows that conditions (2.3) and (2.6) hold. Further by the same lemma, we obtain Ax = Cy, where y = Bx. Since $Ax \in m$, we have $Cy \in m$. Therefore (2.2) implies that

$$\sigma$$
-core $(Cy) \subseteq$ st-core (y) .

Hence using Theorem 2.3, we see that conditions (2.4) and (2.5) hold.

Conversely, let conditions (2.3)–(2.6) hold. Then obviously the assumptions of Lemma 2 of [1] are satisfied and so $Cy \in m$. Hence $Ax \in m$ and by Theorem 2.3, we obtain

$$\sigma\text{-core}(Cy) \subseteq \text{st-core}(y),$$

and consequently

$$\sigma\text{-core}(Ax) \subseteq \text{st-core}(Bx),$$

since y = Bx and Cy = Ax. This completes the proof.

Finally, from Theorem 2.5 we have the following result:

THEOREM 2.6. Let B be a normal matrix and A be any matrix. In order that whenever Bx is bounded Ax should exist and be bounded and satisfy

$$(2.7) B-\operatorname{core}(Ax) \subseteq \operatorname{st-core}(Bx),$$

it is necessary and sufficient that (2.3) and (2.6) hold and

$$(2.8) C \in (S \cap m, f)_{\text{reg}},$$

(2.9)
$$\limsup_{p \to n} \sup_{k} \sum_{k} \frac{1}{p+1} \left| \sum_{i=0}^{p} c_{n+i,k} \right| = 1.$$

Acknowledgements. We would like to express our thanks to the referee for his valuable suggestions improving our paper.

References

 B. Choudhary, An extension of Knopp's core theorem, J. Math. Anal. Appl. 132 (1988), 226–233.

- J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), 47–63.
- [3] R. G. Cooke, Infinite Matrices and Sequence Spaces, McMillan, 1950.
- [4] H. Çoşkun and C. Çakan, *Infinite matrices and σ-core*, Demonstratio Math. 34 (2001), 825–830.
- [5] G. Das, Sublinear functionals and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106.
- S. L. Devi, Banach limits and infinite matrices, J. London Math. Soc. 12 (1976), 397–401.
- J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), 3625–3631.
- [8] J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 26 (1972), 75–83.
- G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- [10] I. J. Maddox, *Elements of Functional Analysis*, Cambridge Univ. Press, 1970.
- [11] S. Mishra, B. Satapathy and N. Rath, Invariant means and σ-core, J. Indian Math. Soc. 60 (1994), 151–158.
- Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34 (1983), 77–86.
- C. Orhan, Sublinear functionals and Knopp's core theorem, Internat. J. Math. Math. Sci. 13 (1990), 461–468.
- [14] R. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81–94.
- [15] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104–110.

İnönü Üniversitesi Eğitim Fakültesi 44100-Malatya, Turkey E-mail: hcoskun@inonu.edu.tr ccakan@inonu.edu.tr Department of Mathematics Aligarh Muslim University Aligarh-202-002, India E-mail: mursaleen@postmark.net

Received July 12, 2001 Revised version April 18, 2002

(4778)