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An estimation for a family of oscillatory integrals

by

Magali Folch-Gabayet (México) and James Wright (Edinburgh)

Abstract. Let K be a Calderón–Zygmund kernel and P a real polynomial defined on
Rn with P (0) = 0. We prove that convolution with K exp(i/P ) is continuous on L2(Rn)
with bounds depending only on K, n and the degree of P , but not on the coefficients of P .

1. Introduction. In [5] Stein showed that if P is a polynomial on Rn
of degree d with real coefficients and K is a Calderón–Zygmund kernel, then∣∣∣

�
Rn
eiP (x)K(x) dx

∣∣∣ ≤ Cd,n,K(1)

where Cd,n,K is independent of the coefficients of P (the integral in (1) is
taken as a principal value integral). This extends the corresponding one-
dimensional estimate due to Stein and Wainger [6].

As a consequence, if one defines the principal value tempered distribution
L by

L(φ) = lim
ε→0

�
ε≤|x|

φ(x)eiP (x)K(x) dx, φ ∈ S,

then the translation-invariant operator f 7→ f ∗ L is bounded on L2(Rn)
uniformly over all polynomials of degree at most d. More generally if Q :
Rn → Rm is another polynomial, the same L2 boundedness follows for con-
volution with the distribution

Λ(φ) = p.v.
�
Rn
φ(Q(x))eiP (x)K(x) dx, φ ∈ S(Rm).

These L2 bounds can be extended to Lp bounds, 1 < p <∞ (see [3] and [4]).
One cannot extend the estimate in (1) to phases which are general ra-

tional functions. For example, suppose n = 2 and K = Ω(θ)/r2 in polar
coordinates. Then the oscillatory integral

�
R2

eiy/xK(x, y) dx dy =
2π�
0

ei tan θΩ(θ)
∞�
0

1
r
dr dθ(2)

2000 Mathematics Subject Classification: Primary 42B15.

[89]



90 M. Folch-Gabayet and J. Wright

does not converge even as a principal value integral if � 2π
0 ei tan θΩ(θ) dθ 6= 0.

For a counterexample where the principal value integral exists, one simply
modifies the phase function to be y/(1 + x). A simple computation shows
that

�
x2+y2≤N2

eiy/(1+x)K(x, y) dx dy = logN
2π�
0

ei tan θΩ(θ) dθ +O(1).

When n ≥ 2, similar examples to the ones considered above show that
oscillatory integrals of the form � exp(iP (x)/Q(x))K(x) dx can never be
bounded for general K uniformly in the coefficients of P and Q if P is
allowed to vary over all polynomials of degree at most d and Q varies over
polynomials of degree d′ and both d, d′ ≥ 1. This seems to be a higher
dimensional phenomenon. We suspect the corresponding one-dimensional
statement is true.

In this short note, we shall extend (1) to rational phases of the form
P (x) + 1/Q(x) where P and Q are real polynomials with Q(0) = 0. We con-
sider Calderón–Zygmund kernelsK(x) =Ω(x)/|x|n whereΩ ∈L logL(Sn−1)
is homogeneous of degree zero with mean value zero, i.e., � Sn−1 Ω dσ = 0.

Theorem 1.1. With K, P and Q as above,∣∣∣p.v.
�
Rn
ei(P (x)+1/Q(x))K(x) dx

∣∣∣ ≤ A(3)

where A depends on ‖Ω‖L logL(Sn−1), n and the degrees of P and Q but not
otherwise on the coefficients of P and Q.

Remarks 1.2. (i) Nagel and Wainger observed (see [5]) that for odd K,
one could prove (3) from the corresponding one-dimensional version by the
method of rotations.

(ii) As an immediate consequence of Theorem 1.1 we have

Corollary 1.3. With K and Q as in Theorem 1.1 but now P :
Rn → Rm being a polynomial mapping , convolution with the distribution

L(φ) = p.v.
�
Rn
φ(P (x))ei/Q(x)K(x) dx, φ ∈ S(Rm),

is bounded on L2(Rm).

(iii) The requirement Q(0) = 0 is most likely not necessary. For instance
when the degree of Q is 1, the condition Q(0) = 0 is easily removed. In fact:

Proposition 1.4. With K and P as in Theorem 1.1 but now Q(x) =
a+ v · x where a ∈ R and v ∈ Rn,∣∣∣p.v.

�
Rn
ei(P (x)+1/Q(x))K(x) dx

∣∣∣ ≤ A
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where A depends on ‖Ω‖L logL(Sn−1), n and the degree of P but not otherwise
on a, v and the coefficients of P .

When n = 1, Proposition 1.4 gives uniform estimates for oscillatory inte-
grals � exp(iR(t)) dt/t where R is a real rational function whose denominator
has degree at most 1.

Notation. Let A,B be complex-valued quantities. We use A . B or
A = O(B) to denote the estimate |A| ≤ C(‖Ω‖L logL,n,d,d′)|B| where d and
d′ denote the degrees of P and Q. We use A ∼ B to denote the estimate
A . B . A.

In the following section we prove some preliminary lemmas needed for
the proof of Theorem 1.1; the proof of Theorem 1.1 is then given in Section 3.
Section 4 contains the proof of Proposition 1.4.

Acknowledgements. We would like to thank Tony Carbery for several
clarifying discussions. The first author acknowledges financial support from
CONACyT (32408-E) and DGAPA-UNAM (PAPIIT IN102799).

2. Preliminaries. The proof of Theorem 1.1 is similar to the proof of
(1) given in [5] where one uses polar coordinates to reduce the integral to
an integration over the unit sphere of an oscillatory integral in the radial
variable. Stationary phase methods are used to estimate the radial integral
reducing matters to sublevel estimates for homogeneous polynomials over
the sphere Sn−1.

More precisely, the estimate relies mainly on two lemmas. The first
lemma gives an elementary decomposition of polynomials of one variable
which is in the spirit of a decomposition in [2]. The second lemma is an
integral estimate for homogeneous polymomials over the unit sphere due
to Stein [5] which can be deduced from uniform sublevel set estimates for
polynomials. To estimate one-dimensional oscillatory integrals, we use the
well-known “van der Corput” lemma, which we state as the final lemma in
this section.

Lemma 2.1. For any polynomial Q(r) =
∑d

k=1 bkr
k on R+, there is a

finite collection {Gj}Mj=1 of disjoint intervals, called “gaps”, of R+ with
M = O(1) such that

(1) The complement R+\⋃Mj=1Gj is the union of M−1 disjoint “dyadic”
intervals; that is, the ratio of the endpoints of such intervals is ∼ 1.

(2) For each Gj , there is a k = kj , 1 ≤ kj ≤ d, such that for r ∈ Gj ,
|Q(r)| ∼ |bkj |rkj and |Q′(r)| ∼ |bkj |rkj−1.

Also if Lj and Rj denote the left and right endpoints of Gj respectively ,
then
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(i) if Rj < ∞, then Rj = Cd [|bl|/|bm|]1/m−l for some 1 ≤ l < m ≤ d
and

(ii) if Lj > 0, then Lj = Cd [|br|/|bs|]1/s−r for some 1 ≤ r < s ≤ d.

Proof. We induct on the degree d. The case d = 1 is trivial since then
we have just one gap G = (0,∞) and no dyadic intervals.

Now suppose the lemma holds for all polynomials of degree ≤ d− 1 and
write

Q(r) =
d∑

i=1

bir
i = P (r) + bdr

d, bd 6= 0.

We will construct the dyadic intervals for Q, the complementary intervals
will be the gaps. Knowing the lemma holds for P we can list its gaps:
G1 = [0, R1], G2 = [L2, R2], . . . , GM = [LM ,∞). On each Gj there is a
kj , 1 ≤ kj ≤ d − 1, such that for r ∈ Gj we have |P (r)| ∼ |bkj |rkj and
|P ′(r)| ∼ |bkj |rkj−1.

For each j, 1 ≤ j ≤ M , consider the (possibly empty) “dyadic” interval
Dj defined as

Dj = [δ|bkj/bd|1/d−kj , C|bkj/bd|1/d−kj ] ∩Gj ,
where δ and C will be chosen to depend only on d. The dyadic intervals for
Q are now defined to be the dyadic intervals for P , together with {Dj}Mj=1.
It is clear from the construction that (1) and (i), (ii) of (2) hold for Q. To
see that the pointwise bounds for Q and Q′ hold it suffices to note that
the gaps for Q are formed by splitting each gap for P into at most two
intervals. If I = [δ|bkj/bd|1/d−kj , C|bkj/bd|1/d−kj ] is completely contained
in Gj then Gj splits into two gaps, Gj1 = [Lj, δ|bkj/bd|1/d−kj ] and Gj2 =
[C|bkj/bd|1/d−kj , Rj ]. Otherwise, depending on whether I meets Gj (or not),
Gj splits into one gap (or none) for Q.

Hence choosing δ small enough and C large enough, we then have |Q(r)|
∼ |bkj |rkj and |Q′(r)| ∼ |bkj |rkj−1 on Gj1 , and |Q(r)| ∼ |bd|rd and |Q′(r)| ∼
|bd|rd−1 on Gj2 .

Lemma 2.2 ([5]). Let K(x) = Ω(x)/|x|n be as in Theorem 1.1 and P (x)
=
∑
|α|=d cαx

α be a homogeneous polynomial of degree d on Rn. Write mP =∑
|α|=d |cα|. Then

�
Sn−1

|Ω(ω)| ·
∣∣∣∣ log

(
P (ω)
mP

)∣∣∣∣ dσ(ω) . 1.(4)

Proof. We sketch a proof for completeness. We may assume mP = 1.
The part of the integral in (4) where |P (ω)|−δ ≤ |Ω(ω)| (for any δ > 0) is
easily controlled by the L logL norm of Ω and so matters are reduced to
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estimating �
{ω:|Ω(ω)|≤|P (ω)|−δ}

|Ω(ω)| · |log(|P (ω)|)| dσ(ω).

This integral is controlled by�
Sn−1

|P (ω)|−δ|log(|P (ω)|)| dσ(ω)

.
1�

1/2

rn−1
�

Sn−1

|P (ω)|−δ|log(|P (ω)|)| dσ(ω) dr

.
∑

k≥1

k2δk
1�

1/2

rn−1 dr
�

{ω∈Sn−1:|P (ω)|rd≤2−k}
dσ(ω)

≤
∑

k≥1

k2δk|{|x| ≤ 1 : |P (x)| ≤ 2−k}|,

which reduces matters to obtaining uniform sublevel set estimates for P
under the normalisationmP = 1. Using the fact that all norms are equivalent
on the space of polynomials of degree at most d, we can find a derivative
∂α, 0 ≤ |α| ≤ d, such that 1 . |∂αP (x)| on |x| ≤ 1. If α = 0, then the
above sublevel sets are empty for large k and so we may assume |α| > 0.
In this case, using the mean value theorem, one can show that |{|x| ≤ 1 :
|P (x)| ≤ 2−k}| . 2−k/|α| (see e.g. [1]). This establishes the lemma if we
choose δ < 1/d.

The last lemma is a very useful estimate for one-dimensional oscillatory
integrals, known as van der Corput’s lemma. A proof can be found in [5].

Lemma 2.3. Suppose φ is real-valued and smooth on (a, b), and that
|φ(k)(t)| ≥ λ > 0 for all t ∈ (a, b). Then

∣∣∣
b�
a

eiφ(t) dt
∣∣∣ ≤ Ckλ−1/k

when either k ≥ 2, or k = 1 and φ′(t) is monotonic.

3. Proof of Theorem 1.1. We may assume P (0) = 0. Using polar
coordinates write the integral in (3) as

I =
�

Sn−1

Ω(ω)
∞�
0

ei[1/Qω(r)+Pω(r)] 1
r
dr dσ(ω)

where Q(x) = Qω(r) =
∑d′

j=1 qj(ω)rj, P (x) = Pω(r) =
∑d

k=1 pk(ω)rk and
qj , pk are homogeneous polynomials of degree j and k. Using Lemma 2.1,
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we may write I =
∑
Ij,k + O(1) where

Ij,k =
�

Sn−1

Ω(ω)
�

Gj∩Fk
ei[1/Qω(r)+Pω(r)] 1

r
dr dσ(ω).

Here {Gj} and {Fk} are the “gaps” of Qω(r) and Pω(r) respectively. Note
that although the inner integral of Ij,k depends on ω in a complicated way,
we know the form of the endpoints of Gj and Fk as given by Lemma 2.1
and so it is at least measurable as a function of ω. It suffices to bound each
Ij,k separately.

We have |Qω(r)| ∼ |qjl(ω)|rjl and |Q′ω(r)| ∼ |qjl(ω)|rjl−1 on Gj , for some
1 ≤ jl ≤ d′, and |Pω(r)| ∼ |pkm(ω)|rkm and |P ′ω(r)| ∼ |pkm(ω)|rkm−1 on Fk
for some 1 ≤ km ≤ d.

Therefore away from where rjl+km ∼ (|pkm(ω)| · |qjl(ω)|)−1 the size of the
phase φω(r) = Pω(r) + 1/Qω(r) and its derivative is understood. In fact, on
Rj,k = Gj ∩ Fk ∩ [C(|pkm(ω)| · |qjl(ω)|)−1/(km+jl),∞) (for C large enough),
we have

|φω(r)| ∼ |pkm(ω)|rkm and |φ′ω(r)| ∼ |pkm(ω)|rkm−1.

An application of van der Corput’s Lemma 2.3 shows
�

{r∈Rj,k:r≥Θ}
eiφω(r) 1

r
dr = O(1)

where Θ = |pkm(ω)|−1/km. Since we are applying Lemma 2.3 with k = 1, we
need to first split the integration of the above integral into O(1) intervals
where φ′ω(r) is monotone. In the complementary interval, r ≤ Θ, due to the
size of φω(r) on Rj,k, we see that

�
{r∈Rj,k:r≤Θ}

[eiφω(r) − 1]
dr

r
= O(1).

Therefore for the part of Ij,k over Rj,k,
�

Sn−1

Ω(ω)
�

Rj,k

eiφω(r) 1
r
dr dσ(ω) =

�
Sn−1

Ω(ω)
�

{r∈Rj,k: r≤Θ}

dr

r
dσ(ω) +O(1).

Similarly for Lj,k = Gj ∩ Fk ∩ (−∞, δ(|pkm(ω)| · |qjl(ω)|)−1/(km+jl)], we
have

�
Sn−1

Ω(ω)
�

Lj,k

eiφω(r) 1
r
dr dσ(ω) =

�
Sn−1

Ω(ω)
�

{r∈Lj,k:r≥Λ}

dr

r
dσ(ω) +O(1)

where Λ = |qjl(ω)|−1/jl. Therefore



A family of oscillatory integrals 95

Ij,k =
�

Sn−1

Ω(ω)
�

Gj∩Fk
ei[Pω(r)+1/Qω(r)] 1

r
dr dσ(ω)(5)

=
�

Sn−1

Ω(ω)
�

{r∈Rj,k: r≤Θ}

dr

r
dσ(ω)

+
�

Sn−1

Ω(ω)
�

{r∈Lj,k:r≥Λ}

dr

r
dσ(ω) +O(1)

and these two last integrals can be shown to be O(1) by repeatedly applying
Lemma 2.2.

In fact, the integrals in (5) are of the form
�

Sn−1

Ω(ω)
�

E(ω)

dr

r
dσ(ω)

where E(ω) is the intersection of O(1) intervals of the form [a(ω),∞) or
(−∞, a(ω)] where

a(ω) ∈ {(|pk1(ω)|/|pk2(ω)|)1/(k2−k1), (|qj1(ω)|/|qj2(ω)|)1/(j2−j1),

|pk(ω)|−1/k, |qj(ω)|−1/j, (|qj(ω)| · |pk(ω)|)−1/(j+k)}.
Let us write E(ω) = [a(ω),∞) ∩ E ′(ω) where a(ω), say, is (|qj(ω)| ·

|pk(ω)|)−1/(j+k) and E′(ω) is the intersection of one less intervals. We can
then use Lemma 2.2 to write

�
Sn−1

Ω(ω)
�

E(ω)

dr

r
dσ(ω) =

�
Sn−1

Ω(ω)
�

[A,∞)∩E′(ω)

dr

r
dσ(ω) +O(1)

where A = (mqjmpk)−1/(j+k). In fact,
�

Sn−1

Ω(ω)
�

[a(ω),∞)∩E′(ω)

dr

r
dσ(ω)

=
�

Sn−1

Ω(ω)
�

[A,∞)∩E′(ω)

dr

r
dσ(ω)−

�
Sn−1

Ω(ω)
�

[A,a(ω)]∩E′(ω)

dr

r
dσ(ω)

and the second integral is O(1) by Lemma 2.2. Iterating this O(1) times
(the argument is similar for the other forms of a(ω)) reduces the problem
to an integral of the form

�
Sn−1

Ω(ω)
�
E

dr

r
dσ(ω)

where E no longer depends on ω and so this integral vanishes from the mean
value of Ω being zero. This concludes the proof of Theorem 1.1.
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4. Proof of Proposition 1.4. Recall that now Q(x) = a+ v ·x. Again
we write the integral (3) in polar coordinates

�
Sn−1

Ω(ω)
∞�
0

ei(Pω(r)+1/[a+(v·ω)r]) 1
r
dr dσ(ω)

where we continue to use the notation Pω(r) as before. There are just two
“gaps” for Q now: (0, δ|a|/|v ·ω|] and [C|a|/|v ·ω|,∞). The difficulty occurs
when the r integration is restricted to the first gap. The argument over the
second gap is the same as before and so we will only concern ourselves with
the first gap; let us call this interval G. If we denote by φω(r) the phase as
before, then on G,

|φ(k)
ω (r)| ∼ |v · ω|k/|a|k+1

for any k strictly larger than the degree of P . Fix such a k. We may apply
van der Corput’s lemma to see that

�
Sn−1

Ω(ω)
�

{r∈G:r≥Θk}
eiφω(r) 1

r
dr dσ(ω) = O(1)

where Θk = |a|1+1/k/|v · ω|. Hence we may assume |a| < 1 and restrict our-
selves to the subinterval G′ = (0, Θk] of G. Considering the Taylor expansion
of 1/[a+ (v · ω)r] in r, we see that on G (and hence on G′),

φω(r) = P̃ω(r) +O

( |v · ω|k
|a|k+1 rk

)

where P̃ (x) is some polynomial of degree at most k. Thus
�

Sn−1

Ω(ω)
�
G′

[eiφω(r) − eiP̃ω(r)]
1
r
dr dσ(ω) = O(1)

and the proof of Proposition 1.4 is reduced to showing that
�

Sn−1

Ω(ω)
�
G′
eiP̃ω(r) 1

r
dr dσ(ω) =

�
|x·v|≤N

exp(iP̃ (x))K(x) dx

is uniformly bounded in v, N and the coefficients of P̃ (here N = |a|1+1/k).
We may assume |v| = 1. By (1),�

|x|≤N
exp(iP̃ (x))K(x) dx = O(1),

which reduces the problem to estimating�
N≤|x|, |x·v|≤N

exp(iP̃ (x))K(x) dx.

But this is trivially bounded as K is uniformly integrable over this region.
This completes the proof of Proposition 1.4.
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