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Factorization of sequences in discrete Hardy spaces

by

Santiago Boza (Vilanova i Geltrú)

Abstract. The purpose of this paper is to obtain a discrete version for the Hardy
spaces Hp(Z) of the weak factorization results obtained for the real Hardy spaces Hp(Rn)
by Coifman, Rochberg and Weiss for p > n/(n + 1), and by Miyachi for p ≤ n/(n + 1).
It represents an extension, in the one-dimensional case, of the corresponding result by
A. Uchiyama who obtained a factorization theorem in the general context of spaces X
of homogeneous type, but with some restrictions on the measure that exclude the case
of points of positive measure on X and, hence, Z. In order to obtain the factorization
theorem, we first study the boundedness of some bilinear maps defined on discrete Hardy
spaces.

1. Introduction. The work of Coifman and Weiss [7] established, by
means of an atomic characterization, an extension of the theory of Hardy
spaces to the general context of spaces of homogeneous type. Also the work
of Maćıas and Segovia [10] extends the study of Hardy spaces, in this case,
via the boundedness of a grand maximal function. These two references in-
cluded in their respective hypotheses the space Zn. But this is not the case
of some other works dealing with other characterizations of Hardy spaces.
In this connection, we mention [16] where a maximal characterization is
given for Hardy spaces on spaces of homogeneous type, or [8], where the
atomic decomposition of Triebel–Lizorkin spaces is studied. Both references
exclude in their assumptions the possibility of points of positive measure,
and hence Zn.

In [2], in the case of dimension one, or in [3] in the case of several vari-
ables, the equivalence of some other characterizations of Hardy spaces was
obtained in the discrete setting. In particular, the discrete Hardy space
Hp(Z), 0 < p <∞, is defined as the space of sequences c = {c(n)}n∈Z such
that

‖c‖Hp(Z) = ‖c‖p + ‖Hc‖p <∞,
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where Hc is the discrete Hilbert transform of the sequence c given by

Hc(n) =
∑
m 6=n

c(m)

n−m
, n ∈ Z.

The boundedness of H in `p(Z), 1 < p <∞, (see the work of Plancherel and
Pólya [14]) leads to the norm equivalence between Hp(Z) and `p(Z) in this
range.

In [2], as in the euclidean case, it is proved that this characterization
of the discrete Hardy spaces is equivalent to a maximal one in terms of
the discrete Poisson kernel or in terms of other maximal discrete operators,
and, most importantly, it is equivalent to the original definition of Hp(Z)
in terms of atoms that appears in the literature when we consider Z as a
space of homogeneous type (see Definition 3.2). Some other works dealing
with discrete Hardy spaces are [9], where a molecular decomposition of the
spaces was obtained, and [5], where discrete Hardy spaces appear in the
study of synthesis operators defined on Hp(Rn).

The celebrated work of Coifman, Rochberg and Weiss [6] established a
factorization theorem for the real Hardy space H1(Rn). Their result also
contains a new characterization of BMO(Rn) in terms of the boundedness
on Lp of the commutator of a singular integral operator with a multiplication
operator. Later on, in [15], A. Uchiyama proved a refinement of that result
and, in [17], the factorization theorem was extended to Hp(X), in the range
0 ≤ εX < p ≤ 1 where X is a space of homogeneous type under certain
assumptions that, as previously mentioned, exclude the discrete setting.

The works of A. Miyachi [11] and [12] deal with the extension of the
factorization results in real Hardy spacesHp(Rn) to the range p ≤ n/(n+ 1).
In [13], the boundedness of more general multilinear operators defined on
Hp(Rn) is studied. The factorization result, specified to the one-dimensional
case and in terms of the Hilbert transform, can be stated as follows:

Theorem 1.1 ([6, Theorem II], [15, Corollary to Theorem 1], [17], [11],
[12]). Let H be the Hilbert transform. For h ∈ L2 ∩ Hq(R) and g ∈ L2 ∩
Hr(R), set

PN (h, g) =

N∑
j=0

(
N

j

)
HjhHN−jg.

Then, if p, q, r > 0 satisfy 1/p = 1/q + 1/r < N + 1, there is a constant
C > 0 depending on q, r and N such that, for all h ∈ L2 ∩ Hq(R) and
g ∈ L2 ∩Hr(R),

‖PN (h, g)‖Hp(R) ≤ C‖h‖Hq(R)‖g‖Hr(R).
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Conversely, if p ≤ 1 is as above, every f ∈ Hp(R) can be decomposed as

f =

∞∑
j=1

λjPN (hj , gj),

where λj is a sequence of real numbers, hj ∈ L2∩Hq(R) and gj ∈ L2∩Hr(R),
and

‖hj‖Hq(R)‖gj‖Hr(R) ≤ C,
( ∞∑
j=1

|λj |p
)1/p

≤ C‖f‖Hp(R)

with a constant C depending on q, r and N .

In this paper we shall deal with the corresponding result for the dis-
crete Hardy spaces Hp(Z), 0 < p ≤ 1. In Section 2, the boundedness of
some bilinear maps acting on discrete Hardy spaces is proved. The starting
point is the characterization of Hp(Z) in terms of the boundedness of the
discrete Hilbert transform. In Section 3, the factorization result is shown in
the discrete setting. The proof consists in adapting Miyachi’s result to our
context and it combines the decomposition of sequences in Hp(Z) in terms
of atoms (see Definition 3.2 and Theorem 3.3) with the decomposition in
terms of those sequences whose periodic Fourier transform vanishes in a zero
neighborhood and which have a controlled `2-norm (see Lemma 3.6).

In Section 4, we conclude with an application of the main result to a new
proof of the boundedness in `p(Z) of the commutator of the discrete Hilbert
transform with multiplication by a sequence in BMO(Z).

We will use C to denote constants that may change from one occurrence
to the next. We shall write ? for convolution of sequences. For a given set I
of integers, #I will denote the cardinality of I.

2. Product of sequences in discrete Hardy spaces. Let us start
with the following result that states the boundedness of some discrete con-
volution operators and which is a direct consequence of the characterization
of Hp(Z) in terms of the discrete Hilbert transform.

Proposition 2.1. Let j ≥ 1 be an integer, and define the discrete con-
volution operator Cj by

(Cja)(n) =
∑
m 6=0

a(n−m)

mj
.

Then Cj is a bounded operator from Hp(Z) to `p(Z) for any j ≥ 1 and all
0 < p <∞.

Proof. In the range 1 < p < ∞ the result is well known, since Hp = `p

and, for j ≥ 2, Cj is a convolution operator whose kernel is in `1(Z), and
hence bounded in `p(Z) for p > 1. For j = 1, C1 is the discrete Hilbert
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transform which is also bounded in `p for p > 1. Therefore, we restrict our
attention to 0 < p ≤ 1.

We proceed by induction on j. For j = 1, the discrete operator C1 is the
discrete Hilbert transform which acts from Hp(Z) to `p(Z).

Assume that the conclusion holds for all 1 ≤ j ≤ j0, and consider Cj0+1.

Let k be a positive integer, and consider the kernel

Kk(m) =
1

mj0(m− 1) · · · (m− k)
for m ∈ Z, m 6= 0, 1, . . . , k,

and Kk(m) = 0 otherwise. Let us see that {Kk(m)}m∈Z is the convolution
kernel of an operator that sends Hp(Z) into `p(Z). By decomposing the
kernel {Kk(m)}m∈Z into partial fractions, we find that for any sequence a,

(Kk ? a)(n) =

j0−1∑
i=0

αi
∑
m 6=0

a(n−m)

mj0−i +

k∑
i=1

βi
∑
m 6=i

a(n−m)

m− i
+

k∑
i=0

γia(n− i)

for some constants α, β and γ. Hence the discrete operator with kernel Kk is
the sum of the operators Cj , 1 ≤ j ≤ j0, plus some translates of the discrete
Hilbert transform and also translates of the identity operator. Then, by the
induction hypothesis, Kk ? a ∈ `p(Z) for a ∈ Hp(Z).

Similarly, for any integer k ≥ 1, define

Jk(m) =
1

mj0+1(m− 1) · · · (m− k)
for m ∈ Z, m 6= 0, 1, . . . , k,

and Jk(m) = 0 otherwise.

For m 6= 0, 1, . . . , k, we have

(2.1) Kk(m)− Jk−1(m) = kJk(m).

The sequence Jk is a convolution kernel in `p(Z) for p > 1/(k + j0 + 1).
Using (2.1), we obtain

(Jk−1 ? a)(n) = (Kk ? a)(n)− k(Jk ? a)(n) +
a(n− k)

k!kj0
.

For this reason, if p > 1/(k + j0 + 1), there exists a constant C depending
on k such that

‖Jk−1 ? a‖p ≤ ‖Kk ? a‖p + k‖Jk ? a‖p +
1

k!kj0
‖a‖p ≤ C‖a‖Hp(Z).

Analogously, for m 6= 0, 1, . . . , k − 1, we have

Kk−1(m)− Jk−2(m) = (k − 1)Jk−1(m),

and hence the operator with kernel Jk−2 is bounded from Hp(Z) into `p(Z)
for any p > 1/(k + j0 + 1). Iterating this process, we deduce that the oper-
ator with kernel J1 also sends Hp(Z) into `p(Z) continuously. Moreover, if
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we denote also by Cj0+1 the kernel of Cj0+1, we see that for m 6= 0, 1,

K1(m)− Cj0+1(m) =
1

mj0(m− 1)
− 1

mj0+1
=

1

mj0+1(m− 1)
= J1(m).

Hence, the convolution operator Cj0+1 is also bounded from Hp(Z) to `p(Z)
for any p > 1/(k + j0 + 1). Taking the integer k large enough shows that
the result holds for any 0 < p ≤ 1.

Corollary 2.2. For 0 < p ≤ 1 the discrete Hilbert operator is bounded
from Hp(Z) into itself.

Proof. Due to the characterization of Hp(Z) in terms of the boundedness
of the discrete Hilbert transform, it is enough to prove that

‖H2a‖p ≤ C‖a‖Hp(Z).

We observe that, for any n ∈ Z,

H2a(n) =
∑
m∈Z

(K ?K)(m)a(n−m),

where {K(n)}n∈Z is the sequence that corresponds to the kernel of the dis-
crete Hilbert transform. Easy calculations show that

(K ?K)(0) = −
∑
n6=0

1

n2
= −π

2

3
,

(K ?K)(m) = −
∑
n6=0,m

1

n(n−m)
= − 2

m2
, m 6= 0.

Therefore,

H2a(n) = −2(C2a)(n)− π2

3
a(n),

and applying Proposition 2.1 to the operator C2, we conclude that

‖H2a‖p ≤ C(‖C2a‖p + ‖a‖p) ≤ ‖a‖Hp(Z).

The following proposition establishes the boundedness of some bilinear
maps defined on discrete Hardy spaces; it will be fundamental to obtaining
Theorem 2.4.

Proposition 2.3. Let j0 ≥ 1 be an integer, and let q, r > 0. Let Γj0 be
the bilinear operator defined as

Γj0(a, b) := Cj0 [(Ha)b+ a(Hb)], a ∈ Hq(Z), b ∈ Hr(Z).

Then Γj0 : Hq(Z) ×Hr(Z) → `p(Z) for 1/p = 1/q + 1/r < j0 + 1, that is,
there exists a constant C depending on q, r, j0 such that

‖Γj0(a, b)‖p ≤ C‖a‖Hq(Z)‖b‖Hr(Z).
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Proof. We can restrict ourselves to sequences a ∈ Hq(Z) and b ∈ Hr(Z)
of finite support. We observe that, for any n ∈ Z,

Γj0(a, b)(n) =
∑
m 6=n

b(m)

(n−m)j0

∑
k 6=m

a(k)

m− k
+
∑
k 6=n

a(k)

(n− k)j0

∑
m6=k

b(m)

k −m
(2.2)

=
∑
m 6=n

∑
k 6=m,n

a(k)b(m)
1

m− k

(
1

(n−m)j0
− 1

(n− k)j0

)
− a(n)(Cj0+1b)(n)− b(n)(Cj0+1a)(n)

=
∑
m 6=n

∑
k 6=m,n

a(k)b(m)

j0∑
j=1

1

(n−m)j0+1−j(n− k)j

− a(n)(Cj0+1b)(n)− b(n)(Cj0+1a)(n)

=

j0∑
j=1

(Cja)(n)(Cj0+1−jb)(n)− j0(Cj0+1(ab))(n)

− a(n)(Cj0+1b)(n)− b(n)(Cj0+1a)(n).

As the product of a and b is in `p(Z) and p(j0 + 1) > 1, we have

‖Cj0+1(ab)‖p ≤ C‖a‖q‖b‖r.

We use this last estimate in expression (2.2), and the result follows as a
consequence of Hölder’s inequality and Proposition 2.1.

The main result of this section is the following:

Theorem 2.4. Let N ≥ 1 be an integer, and let q, r > 0. For a ∈ Hq(Z)
and b ∈ Hr(Z), define the bilinear operator ΛN by

ΛN (a, b) =
N∑
j=0

(
N

j

)
(Hja)(HN−jb).

Then ΛN : Hq(Z)×Hr(Z)→ Hp(Z) for 1/p = 1/q + 1/r < N + 1, that is,
there exists a constant C depending on q, r,N such that

‖ΛN (a, b)‖Hp(Z) ≤ C‖a‖Hq(Z)‖b‖Hr(Z).

Proof. Let a and b be sequences in Hq(Z) and Hr(Z), respectively. Then
Hölder’s inequality and Corollary 2.2 imply

‖ΛN (a, b)‖p ≤
N∑
j=0

(
N

j

)
‖Hja‖q‖HN−jb‖r ≤ C‖a‖Hq(Z)‖b‖Hr(Z).

To estimate the p-norm of H(ΛN (a, b)) we will prove that

(2.3) H[ΛN (a, b)] = ON (a, b) + (−1)N−1(N − 1)! ΓN (a, b),
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where ON is a bilinear operator defined recursively such that, for any
p = (1/q + 1/r)−1,

(2.4) ‖ON (a, b)‖p ≤ C‖a‖Hq(Z)‖b‖Hr(Z),

and, as a consequence of Proposition 2.3, since (N + 1)p > 1,

‖ΓN (a, b)‖p ≤ C‖a‖Hq(Z)‖b‖Hr(Z).

Thus, we reduce the proof to (2.3). We proceed by induction on N . For
N = 1, we observe that

H[Λ1(a, b)] = H[(Ha)b+ a(Hb)] = Γ1(a, b),

and from Proposition 2.3 the result follows.

Assume (2.3) holds for an integer N . By Corollary 2.2, Ha ∈ Hq(Z) and
Hb ∈ Hr(Z), and using the recursive formula

ΛN+1(a, b) = ΛN (Ha, b) + ΛN (a,Hb),

which can be easily checked, we see that

H[ΛN+1(a, b)] = H[ΛN (Ha, b) + ΛN (a,Hb)] = ON (Ha, b) +ON (a,Hb)
+ (−1)N−1(N − 1)! (ΓN (Ha, b) + ΓN (a,Hb)).

From this last equation, substituting the expression for ΓN given by (2.2),
we obtain

H[ΛN+1(a, b)] = ON+1(a, b) + (−1)NN !ΓN+1(a, b),

where the bilinear operator ON+1 is defined in terms of ON as follows:

ON+1(a, b)

= (−1)N−1(N − 1)!
[ N∑
j=1

(Cj(Ha))(CN+1−jb) + (Cja)(CN+1−j(Hb))

− (Ha)(CN+1b)− (Hb)(CN+1a)− a(CN+1(Hb))− b(CN+1(Ha))
]

+ON (Ha, b) +ON (a,Hb).

ON+1 also satisfies the estimate (2.4) by the induction hypothesis applied
to ON , Hölder’s inequality, Proposition 2.1 and Corollary 2.2.

3. Factorization in Hp(Z). We denote by m the periodic multiplier
corresponding to H. By computing the corresponding Fourier series we ob-
serve that

m(ξ) = −πi sign(ξ)(1− 2|ξ|), ξ ∈ [−1/2, 1/2].
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By using the Fourier transform, the discrete bilinear operator of Theorem 2.4
can be expressed as follows:

Λ̂N (a, b)(ξ) =

1/2�

−1/2

â(θ)b̂(ξ − θ)(m(ξ − θ) +m(θ))N dθ,

where for the sequence a ∈ `2(Z), â denotes the periodic function whose
Fourier coefficients are {a(n)}n, that is

â(ξ) =
∑
n∈Z

a(n)e−2πinξ.

We observe that for a ∈ Hp(Z), 0 < p ≤ 1, since a is also in `1(Z), its
Fourier transform â is a continuous 1-periodic function. Note that, in the
definitions above, we are identifying the one-dimensional torus T with the
interval [−1/2, 1/2].

The converse of Theorem 2.4 can be formulated as follows.

Theorem 3.1. Let N ≥ 1 be an integer and let p, q, r > 0 satisfy 1 ≤
1/p = 1/q + 1/r < N + 1. Then every c ∈ Hp(Z) can be decomposed as

c =
∞∑
j=1

λjΛN (aj , bj),

where {λj}j ∈ `p(Z), aj ∈ Hq(Z) ∩ `2(Z), bj ∈ Hr(Z) ∩ `2(Z) and

‖aj‖Hq‖bj‖Hr ≤ C,
( ∞∑
j=1

|λj |p
)1/p

≤ C‖c‖Hp(Z),

with a constant C depending only on p, q, r.

As already mentioned in the introduction, the proof of Theorem 3.1 con-
sists in adapting the proof given by Miyachi in [12] to the discrete situation.
As in [12], the theorem is obtained by using the expression in terms of the
Fourier transform of the bilinear operators involved and will be based on
the decomposition of sequences in discrete Hardy spaces into atoms.

The atomic decomposition which yields the original definition of Hp(Z)
(see [7]) consists in the following:

Definition 3.2. Let 0 < p ≤ 1. We say that the finite sequence a is a
p-atom in Z if:

(a) The support of a is contained in a ball B in Z centered at an inte-
ger m0; denote its cardinality by #B.

(b) ‖a‖∞ ≤ 1/(#B)1/p.
(c)

∑
nαa(n) = 0 for all integers α satisfying 0 ≤ α ≤ p−1 − 1.
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We define the atomic space Hp
at(Z) as the set of sequences a that admit the

decomposition

(3.1) a =
∞∑
j=0

λjaj ,

where aj is a p-atom and
∑∞

j=0 |λj |p <∞. For a ∈ Hp
at(Z), define the p-norm

‖a‖Hp
at(Z) = inf

{(∑
j≥0
|λj |p

)1/p}
,

where the infimum is taken over all the representations of a in the form
(3.1).

Theorem 3.3 (see [2, Theorems 3.10 and 3.14]). Let 0 < p ≤ 1. Then

‖a‖Hp(Z) ' ‖a‖Hp
at(Z).

Also, let us now introduce the following class of sequences whose continu-
ous counterpart was already introduced by Miyachi [12] and which represents
the main ingredient to obtain the factorization result (Theorem 3.1).

Definition 3.4 (see [12]). For p > 0, t > 2 and a nonnegative integerM ,
we denote by Ap,M (t) the set of sequences a ∈ `2(Z) such that

â(ξ) = 0 for |ξ| ≤ 1/t

and

‖Dαâ‖L2(T) ≤ tα−1/p+1/2 for any integer 0 ≤ α ≤M.

Let us prove that Ap,M (t) is a subset of Hp(Z) with uniformly bounded
Hp-norm.

Lemma 3.5. Let 0 < p ≤ 2 and M > 1/p− 1/2. Then Ap,M (t) ⊂ Hp(Z)
and there is a constant C > 0 depending on p such that

‖a‖Hp(Z) ≤ C for all a ∈ Ap,M (t), t > 2.

Proof. We assume M = [1/p− 1/2] + 1. We shall prove

‖Ha‖p ≤ C for all a ∈ Ap,M (t), t > 2.

Since the multiplier m trivially satisfies the estimate, valid for ξ∈[−1/2, 1/2],
|Dαm(ξ)| ≤ C|ξ|−α, 0 ≤ α ≤ M , as a consequence of the Leibnitz formula,
for any a ∈ Ap,M (t), we obtain

‖DαĤa‖L2(T) = ‖Dα(mâ)‖L2(T) ≤ Ctα−1/p+1/2 for α ≤M,

and, then, by Parseval’s identity,∥∥|n|kHa∥∥
2
≤ Ctk−1/p+1/2, k = 0, 1, . . . ,M.
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From this estimate, if 0 < p ≤ 2 and 1/p = 1/2 + 1/q we conclude by
Hölder’s inequality that∑

|n|<t

|Ha(n)|p ≤ ‖Ha‖p2 t
p/q ≤ Ct−1+p/2+p/q = C,

and ∑
|n|≥t

|Ha(n)|p ≤
∥∥|n|MHa∥∥p

2

(∑
|n|≥t

|n|−Mq
)p/q

≤ CtMp−1+p/2t(1−Mq)p/q = C,

where the last inequality holds since Mq > 1.

Lemma 3.6. Let 0 < p ≤ 2 and M > 1/p − 1/2. Then any sequence
a ∈ Hp(Z) can be decomposed as

a =

∞∑
j=1

λjaj(· − nj),

where λj ∈ R, aj ∈ Ap,M (tj) for some tj > 2, and nj ∈ Z, and( ∞∑
j=1

|λj |p
)1/p

≤ A′‖a‖Hp(Z),

with the constant A′ depending on M and p.

Proof. Let a ∈ Hp(Z). By Theorem 3.3,

a(n) =
∞∑
j=1

λjaj(n)

where every aj is a p-atom centered at an integer nj , and there exists a
positive constant A such that

(3.2)
( ∞∑
j=1

|λj |p
)1/p

≤ A‖a‖Hp(Z).

Let us prove the lemma for any p-atom a centered at n0. We will prove that
we can take A′′ depending on p and M , and c ∈ Ap,M (t), t > 2, such that

(3.3) ‖a−A′′c(· − n0)‖Hp(Z) ≤ A/2,

where A corresponds to the constant appearing in (3.2).

For the moment, let us assume (3.3). Applying it to each atom aj gives

a(n) =
∞∑
j=1

λjA
′′cj(n− nj) + a(1)(n)
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where cj ∈ Ap,M (tj), for some tj > 2 and

‖a(1)‖Hp(Z) ≤ 1
2‖a‖Hp(Z).

Next apply the same process to a(1) to obtain a smaller error and so on.
Eventually we obtain, for each N ,

a(n) =
N∑
k=0

∞∑
j=1

λkjA
′′ckj (n− nkj ) + a(N+1)(n),

where ckj ∈ Ap,M (tkj ) for some tkj > 2, and( ∞∑
j=1

|λkj |p
)1/p

≤ 2−kA‖a‖Hp(Z), ‖a(N+1)‖Hp(Z) ≤
1

2N+1
‖a‖Hp(Z).

The decomposition of the lemma is obtained by letting N →∞ since( ∞∑
k=0

∞∑
j=1

|λkjA′′|p
)1/p

≤
( ∞∑
k=0

2−kp
)1/p

A′′A‖a‖Hp(Z) = A′‖a‖Hp(Z).

Let us see, then, the approximation (3.3). We can assume that a is a
p-atom with cardinality ρ and centered at 0. The Fourier transform of a
satisfies

(3.4) ‖Dαâ‖L2(T) ≤ Cαρα−1/p+1/2,

as a consequence of Parseval’s identity and the size condition (b) in Defini-
tion 3.2. Also,

(3.5) |Dαâ(ξ)| ≤ Cαρ[1/p]+1−1/p|ξ|[1/p]−α for |ξ| ≤ ρ−1.

If α ≤ [1/p − 1], this last inequality holds by Taylor’s formula and the fol-
lowing facts that are consequences of the cancelation and the size properties
of a, respectively:

DβDαâ(0) = 0 for β ≤ [1/p− 1]− α,
‖DβDαâ‖∞ ≤ Cρ[1/p]+1−1/p for β = [1/p− 1]− α+ 1.

For α > [1/p − 1], we use the fact that ‖Dαâ‖∞ ≤ Cαρ
α+1−1/p; then, for

ρ ≤ |ξ|−1, (3.5) follows.

For T large enough, let us consider the 1-periodic function defined in
[−1/2, 1/2] as Φ(Tρ ·)â(·), where Φ is a C∞ function such that Φ ≡ 1 for
|ξ| ≥ 2 and Φ ≡ 0 for |ξ| ≤ 1.

Let bT be the sequence defined in terms of its Fourier transform as

b̂T (ξ) = Φ(Tρ ξ)â(ξ), ξ ∈ [−1/2, 1/2].
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From estimates (3.4) and (3.5) we will deduce

‖Dαb̂T ‖L2(T) ≤ CαTαρα−1/p+1/2,(3.6)

‖a− bT ‖Hp(Z) ≤ CT−[1/p]−1+1/p,(3.7)

with constants independent on T , ρ and a. Once we have proved (3.6) and
(3.7), the approximation (3.3) follows by considering

c =
1

A′′
bT ∈ Ap,M (Tρ),

with A′′ and T large enough depending on M and p. The inequality (3.6)
follows from (3.4), and (3.7) is obtained by decomposing

a− bT =

∞∑
j=0

aj ,

where for each j ≥ 0, the sequence aj is defined in terms of its Fourier
transform as

âj(ξ) = (Φ(2j+1Tρ ξ)− Φ(2jTρ ξ))â(ξ), ξ ∈ [−1/2, 1/2].

We observe that the Fourier transform of each aj is a 1-periodic function
with support in [2−1−j(Tρ)−1, 21−j(Tρ)−1], and hence from (3.5) we have

‖Dαâj‖L2(T) ≤ Cα(2jT )−[1/p]−1+1/p(2jTρ)α−1/p+1/2.

Thus, using Lemma 3.5,

‖aj‖Hp(Z) ≤ C(2jT )−[1/p]−1+1/p.

Finally,

‖a− bT ‖Hp(Z) ≤
( ∞∑
j=0

‖aj‖pHp(Z)

)1/p
≤ CT−[1/p]−1+1/p,

which is inequality (3.7).

Proof of Theorem 3.1. Since 1 ≤ 1/p = 1/q + 1/r, one of the exponents
q or r is less than or equal to 2. Let us assume r ≤ 2. We will prove that
for all c ∈ Ap,M (t), t > 2, and M = [1/p − 1/2] + 2 there exist sequences
aj ∈ Hq(Z) ∩ `2(Z), bj ∈ Hr(Z) ∩ `2(Z) and numbers λj such that∥∥∥c− ∞∑

j=1

λjΛN (aj , bj)
∥∥∥
Hp(Z)

≤ 1

2A′
,

‖aj‖Hq‖bj‖Hr ≤ C,
( ∞∑
j=1

|λj |p
)1/p

≤ C,

where A′ is the constant appearing in Lemma 3.6 corresponding to M =
[1/p−1/2]+2 and the constant C depends only on N, p, q, r. Once this esti-
mate is proved, the result follows from Lemma 3.6 using an approximation



Factorization in discrete Hardy spaces 65

argument in a similar way as applied there, where the corresponding result
was obtained from the atomic decomposition.

Take then c ∈ Ap,M (t), t > 2, M = [1/p−1/2]+2, and consider, for δ > 0
to be fixed, the points ν1 = δt−1 and ν2 = −δt−1 belonging to the intervals
I1 and I2 respectively in such a way that I1 ∪ I2 covers the fundamental
interval [−1/2, 1/2]. We observe that there exists a constant C > 0 such
that

(3.8) inf
ξ∈Ik
|m(ξ) +m(νk)| > C, k = 1, 2.

Decompose c = c1+c2, where c1 and c2 are defined in terms of their periodic
Fourier transforms by

ĉk(ξ) = ϕk(ξ)ĉ(ξ), ξ ∈ [−1/2, 1/2], k = 1, 2,

and {ϕ1, ϕ2} is a smooth partition of unity on [−1/2, 1/2] associated to the
covering I1, I2.

It is enough to prove that for k = 1, 2 there exist sequences ak ∈ Hq(Z)∩
`2(Z), bk ∈ Hr(Z) ∩ `2(Z) such that

(3.9) ‖ck − ΛN (ak, bk)‖Hp(Z) ≤ (2A′)−1, ‖ak‖Hq‖bk‖Hr ≤ C.
To prove (3.9), let us define bk and ak via

b̂k(ξ) = (m(ξ) +m(νk))
−N ĉk(ξ),

âk(ξ) = (t/ε)θ((t/ε)(ξ − νk)),
where θ is a C∞ function with support in (−1, 1) and

	
θ(x) dx = 1, and ε

is a small positive number with ε < δ/2 and δ + ε < 1/2.

We shall prove that

‖bk‖Hr(Z) ≤ Ct−1/p+1/r,(3.10)

‖ak‖Hq(Z) ≤ C(t/ε)1/q,(3.11)

‖ck − ΛN (ak, bk)‖Hp(Z) ≤ C(δ + δ−1ε),(3.12)

where C depends only on the multiplier m and the exponents p, q and r. The
estimates in (3.9) are obtained by taking δ and ε small enough depending
also on m, p, q and r.

Let us prove (3.10). By (3.8), the function

B(ξ) = (m(ξ) +m(νk))
−N

satisfies |DαB(ξ)| ≤ Cα|ξ|−α on the support of ĉk. This estimate guarantees,
due to the multiplier theorem (see [9, Theorem 3]), that B is an Hr(Z)-
multiplier, and hence

‖bk‖Hr(Z) ≤ C‖ck‖Hr(Z) ≤ C‖c‖Hr(Z) ≤ Ct1/r−1/p,
where the last inequality is a consequence of Lemma 3.5.
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To see (3.11), we observe that if q > 2,

‖ak‖Hq(Z) = ‖ak‖q ≤ C(t/ε)1/q,

whereas for q ≤ 2, (3.11) is again a consequence of Lemma 3.5, since

‖Dαâk‖L2(T) ≤ Cα(t/ε)α+1/2,

and âk(ξ) = 0 for |ξ| ≤ ε/t.
Finally, to see (3.12) we write, using

	
θ(x) dx = 1,

(ck − ΛN (ak, bk))̂(ξ)

=

1/2�

−1/2

âk(η)
(
ĉk(ξ)− b̂k(ξ − η)(m(ξ − η) +m(η))N

)
dη

=

1/2�

−1/2

âk(η)

(
ĉk(ξ)−

ĉk(ξ − η)

(m(ξ − η) +m(νk))N
(m(ξ − η) +m(η))N

)
dη

=

1/2�

−1/2

âk(η)(ĉk(ξ)− ĉk(ξ − η)) dη

+

1/2�

−1/2

âk(η)ĉk(ξ − η)

(
1− (m(ξ − η) +m(η))N

(m(ξ − η) +m(νk))N

)
dη = Î(ξ) + ÎI (ξ).

The supports, relative to the fundamental interval [−1/2, 1/2], of the

periodic functions Î and ÎI are contained in the set

{ξ ∈ [−1/2, 1/2] : dist(ξ, supp(ĉk)) ≤ (δ + ε)t−1} ⊂ {1/(2t) < |ξ| ≤ 1/2}.

For Î, the mean value theorem implies, for α ≤M − 1 = [1/p− 1/2] + 1,

‖DαÎ‖L2(T) ≤ ‖Dα+1ĉk‖L2(T)

1/2�

−1/2

|âk(η)| |η| dη

≤ Cαtα+1−1/p+1/2

(
ε

t

�
|θ(r)| |r| dr +

δ

t

�
|θ(r)| dr

)
≤ Cαδtα−1/p+1/2.

For ÎI , we observe that for ξ − η ∈ supp(ĉk) and z ∈ (νk − ε/t, νk + ε/t),

(3.13)

∣∣∣∣ ∂∂z
(
∂

∂ξ

)α (m(ξ − η) +m(z))N

(m(ξ − η) +m(νk))N

∣∣∣∣
≤ Cα|ξ − η|−α|z|−1 ≤ Cαδ−1t|ξ − η|−α.

As a consequence, if ξ − η ∈ supp(ĉk) and η ∈ supp(âk), the mean value
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theorem implies that∣∣∣∣( ∂

∂ξ

)α(
1− (m(ξ − η) +m(η))N

(m(ξ − η) +m(νk))N

)∣∣∣∣ ≤ Cαδ−1t|ξ − η|−α|νk − η|
≤ Cαεδ−1|ξ − η|−α ≤ Cαεδ−1tα.

Again taking into account that c ∈ Ap,M (t) and this last inequality, we find
that for all α ≤M ,

‖DαÎI ‖L2(T) ≤ Cαεδ−1tα−1/p+1/2.

Finally, the use of Lemma 3.5 leads to

‖ck − ΛN (ak, bk)‖Hp(Z) ≤ C(‖I‖Hp(Z) + ‖II ‖Hp(Z)) ≤ C(δ + δ−1ε),

as we wanted to prove.

4. Application: the commutator on sequence spaces. Let b =
{b(n)}n∈Z and consider the commutator of the discrete Hilbert transform
with multiplication by the sequence b given by

[b,H]a(n) := b(n)Ha(n)−H(ba)(n) =
∑
k 6=0

b(n)− b(n− k)

k
a(n− k).

In [1] (see also [4] for a proof in the context of spaces of homogeneous type)
it is proved that the set of sequences b for which [b,H] is a bounded operator
on `p(Z), 1 < p <∞, coincides with BMO(Z), defined as

BMO(Z) =

{
b = {b(n)}n∈Z : sup

I

1

#I

∑
k∈I
|b(k)− bI | = ‖b‖BMO(Z) <∞

}
,

where the supremum above is taken over all finite intervals in Z and bI =
(#I)−1

∑
k∈I b(k).

The use of the H1(Z)-BMO(Z) duality (see [7]) and the results of The-
orems 2.4 and 3.1 allow us to obtain another proof of this fact.

Corollary 4.1.

(a) Let b ∈ BMO(Z) and 1 < p <∞. Then there exists a constant C > 0
such that, for all a ∈ `p(Z),

‖[b,H]a‖p ≤ C‖b‖BMO(Z)‖a‖p.

(b) Conversely, if [b,H] is bounded on `p(Z) for some p such that 1 <
p <∞, then b is in BMO(Z) and we have, for some C > 0,

‖b‖BMO(Z) ≤ C‖[b,H]‖`p(Z)→`p(Z).

Proof. To see (a), just observe that for a1 ∈ `p(Z) and a2 ∈ `p
′
(Z) we

can write, making use of Theorem 2.4 for N = 1,
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|〈[b,H]a1, a2〉| = |〈b, a1Ha2 + a2Ha1〉| = |〈b, Λ1(a1, a2)〉|
≤ ‖b‖BMO(Z)‖Λ1(a1, a2)‖H1(Z) ≤ C‖b‖BMO(Z)‖a1‖p‖a2‖p′ .

For the proof of (b), let c ∈ H1(Z). Then by the factorization result of
Theorem 3.1,

|〈b, c〉| ≤
∑
k

|λk| |〈b, akHbk + bkHak〉|

=
∑
k

|λk| |〈bk, bHak −H(bak)〉|

≤
∑
k

|λk| ‖bk‖p′‖[b,H]ak‖p ≤ C
∑
k

|λk| ‖bk‖p′‖ak‖p

≤ C‖c‖H1(Z).

By the duality theorem between H1(Z) and BMO(Z), the sequence b is in
BMO(Z) and ‖b‖BMO(Z) is bounded by the norm of the commutator as a
bounded operator in `p(Z).
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