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Descriptive properties of elements
of biduals of Banach spaces

by

Pavel Ludv́ık and Jiř́ı Spurný (Praha)

Abstract. If E is a Banach space, any element x∗∗ in its bidual E∗∗ is an affine
function on the dual unit ball BE∗ that might possess a variety of descriptive properties
with respect to the weak∗ topology. We prove several results showing that descriptive
properties of x∗∗ are quite often determined by the behaviour of x∗∗ on the set of extreme
points of BE∗ , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove
a result on the relation between Baire classes and intrinsic Baire classes of L1-preduals
which were introduced by S. A. Argyros, G. Godefroy and H. P. Rosenthal (2003). Also,
several examples witnessing natural limits of our positive results are presented.

1. Introduction and main results. If E is a (real or complex) Ba-
nach space, an element x∗∗ of its bidual may possess interesting descriptive
properties if x∗∗ is understood as a function on the dual space endowed
with the weak∗ topology. Since the dual unit ball BE∗ is weak∗ compact,
the set extBE∗ of its extreme points is nonempty and its weak∗ closed con-
vex hull is the whole unit ball. Hence one might expect that the behavior
of x∗∗ on the set extBE∗ in some sense determines the behaviour of x∗∗

on BE∗ . The aim of our paper is to substantiate this general idea by pre-
senting several results on transferring descriptive properties of x∗∗|extBE∗

to x∗∗|BE∗ . To formulate our results precisely, we need to recall several no-
tions.

Since the main results are mostly formulated for Banach spaces over
the real or complex field, we need to work with vector spaces over both
real and complex numbers. So all the notions are considered, if not stated
otherwise, with respect to the field of complex numbers. All topological
spaces considered are assumed to be Tychonoff (i.e., completely regular, see
[6, p. 39]), in particular they are Hausdorff.
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If K is a compact topological space, a positive Radon measure on K
is a finite complete measure with values in [0,∞) defined at least on the
σ-algebra of all Borel sets that is inner regular with respect to compact
sets (see [8, Definition 411H]). A signed or complex measure µ on K is
a Radon measure if its total variation |µ| is Radon. We often write µ(f)
instead of

	
f dµ. We denote by M(K), M+(K) and M1(K) the sets of all

Radon measures, positive Radon measures and probability Radon measures,
respectively. Using the Riesz representation theorem we view M(K) as the
dual space to the space C(K) of all continuous functions on K. Unless stated
otherwise, we consider the space M(K) endowed with the weak∗ topology.
A function f : K → C is universally measurable if f is µ-measurable for
every µ ∈M(K). If F is a family of functions, we write Fb for the set of all
bounded elements of F .

Let X be a compact convex subset of a locally convex space. Then any
measure µ ∈ M1(X) has its unique barycenter x ∈ X, i.e., the point
x ∈ X satisfying µ(f) = f(x) for each f ∈ Ac(X) (here Ac(X) stands
for the space of all continuous affine functions on X). We write Mx(X) for
the set of all probability measures with x as the barycenter. The mapping
r : M1(X)→ X assigning to every probability measure on X its barycenter
is a continuous affine surjection (see [1, Proposition I.2.1] or [22, Proposi-
tion 2.38]). A function f : X → C is said to be strongly affine (or to satisfy
the barycentric formula) if f is universally measurable and µ(f) = f(r(µ))
for every µ ∈M1(X). It is easy to deduce that any strongly affine function
is bounded (see e.g. [22, Lemma 4.5]).

If E is Banach space, BE∗ with the weak∗ topology is a compact convex
set. We call an element f ∈ E∗∗ strongly affine if its restriction to BE∗ is a
strongly affine function. We also mention that a continuous affine function f
on BE∗ , which satisfies f(0) = 0 and f(ix∗) = if(x∗) for x∗ ∈ BE∗ , is in fact
an element of E, i.e., there exists x ∈ E with f(x∗) = x∗(x) for x∗ ∈ BE∗ .

Further we need to recall descriptive classes of functions in topological
spaces. We follow the notation of [33]. If X is a Tychonoff topological space,
a zero set in X is the inverse image of a closed set in R under a continuous
function f : X → R. The complement of a zero set is a cozero set. A count-
able union of closed sets is called an Fσ set, the complement of an Fσ set is
a Gδ set. If X is normal, it follows from Tietze’s theorem that a closed set
is a zero set if and only if it is also a Gδ set. We recall that Borel sets are
members of the σ-algebra generated by the family of all open subsets of X,
and Baire sets are members of the σ-algebra generated by the family of all
cozero sets in X. We write Bos(X) and Bas(X) for the algebras generated
by open or cozero sets in X, respectively.

A set A ⊂ X is resolvable (or an H-set) if for any nonempty B ⊂ X
(equivalently, for any nonempty closed B ⊂ X) there exists a relatively
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open U ⊂ B such that either U ⊂ A or U ∩A = ∅. It is easy to see that the
family Hs(X) of all resolvable sets is an algebra (see e.g. [20, §12, VI]). Let
Σ2(Bas(X)), Σ2(Bos(X)) and Σ2(Hs(X)) denote countable unions of sets
from the respective algebras.

Let Baf1(X) denote the family of all Σ2(Bas(X))-measurable functions
on X, i.e., the functions f : X → C satisfying f−1(U) ∈ Σ2(Bas(X)) for all
U ⊂ C open. Analogously we define the families Bof1(X) and Hf1(X).

Now we use pointwise limits to create higher hierarchies of functions.
More precisely, if Φ is a family of functions on X, we define Φ0 = Φ and,
for each countable ordinal α, Φα consists of all pointwise limits of sequences
from

⋃
β<α Φβ. Starting from Baf1(X) and creating higher families Bafα(X)

as pointwise limits of sequences contained in
⋃

1≤β<α Bafβ(X), we obtain
the hierarchy of Baire measurable functions. Analogously we define, for α ∈
[1, ω1), the families Bofα(X) and Hfα(X) of Borel measurable functions
and resolvably measurable functions. (Theorem 5.2 in [33] explains the term
“measurability” in these definitions.)

If we start the inductive process from the family Φ0 = Φ = C(X), we
obtain the families Cα(X) of Baire-α functions on X, α < ω1. Then the
union

⋃
α<ω1

Cα(X) is the family of all Baire functions. It is easy to see that
C1(X) = Baf1(X) (see Proposition 2.3) and thus Cα(X) = Bafα(X) for any
α ∈ [1, ω1).

Now we can state our first result concerning preservation of descriptive
properties. For separable Banach spaces and Baire functions, the results can
be obtained from [29, Corollaire 8].

Theorem 1.1. Let E be a (real or complex) Banach space and f ∈ E∗∗
be strongly affine. Then

• for α ∈ [1, ω1), f |extBE∗
∈ Hfα(extBE∗) if and only if f ∈ Hfα(BE∗),

• for α∈ [1, ω1), f |extBE∗
∈Bofα(extBE∗) if and only if f ∈Bofα(BE∗),

• for α ∈ [0, ω1), f |extBE∗
∈ Cα(extBE∗) if and only if f ∈ Cα(BE∗).

We remark that the assumption of strong affinity is necessary because
otherwise the transfer of properties fails spectacularly. An example wit-
nessing this phenomenon can be constructed as follows. Consider the real
Banach space E = C([0, 1]) and the function f : M([0, 1])→ R assigning to
each µ ∈ M([0, 1]) its continuous part evaluated at the function 1. Then
f is a weak∗ discontinuous element of E∗∗ contained in C2(BM([0,1])) that
vanishes on extBM([0,1]). (Details can be found e.g. in [25, Chapter 14], [2,
p. 1048] or [22, Proposition 2.63].)

The next theorem in a way extends the result of F. Jellett in [14, Theo-
rem].
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Theorem 1.2. Let E be a (real or complex) Banach space such that
extBE∗ is a Lindelöf set. Let f ∈ E∗∗ be a strongly affine element satisfying
f |extBE∗ ∈ Cα(extBE∗) for some α ∈ [0, ω1). Then

f ∈
{ Cα+1(BE∗), α ∈ [0, ω0),

Cα(BE∗), α ∈ [ω0, ω1).

Under a stronger assumption on extBE∗ we may ensure the preservation
of all classes, including the finite ones.

Theorem 1.3. Let E be a (real or complex) Banach space such that
extBE∗ is a resolvable Lindelöf set. Let f ∈ E∗∗ be a strongly affine element
satisfying f |extBE∗ ∈ Cα(extBE∗) for some α ∈ [1, ω1). Then f ∈ Cα(BE∗).

We remark that the shift of classes may really occur without the as-
sumption of resolvability, as is witnessed by Example 8.1. One may also ask
whether results analogous to the ones of Theorems 1.2 and 1.3 remain true
for functions from Bofα and Hfα. Examples 8.2 and 8.3 show that this is
not the case.

Further we observe that, for a separable space E, the topological con-
dition imposed on extBE∗ in Theorem 1.3 is equivalent to the requirement
that extBE∗ is an Fσ set. This can be seen from the following two facts: a
subset of a compact metrizable space is a resolvable set if and only if it is
both an Fσ and a Gδ (use [20, §26, X] and the Baire category theorem); the
set of extreme points in a metrizable compact convex set is a Gδ (see [1,
Corollary I.4.4] or [22, Proposition 3.43]).

We also point out that the topological assumption in Theorem 1.3 is
satisfied provided extBE∗ is an Fσ set. To see this, we first notice that
extBE∗ is then a Lindelöf space. Second, we need to check that extBE∗ is
a resolvable set in BE∗ . To this end, assume that F ⊂ BE∗ is a nonempty
closed set such that both F ∩ extBE∗ and F \ extBE∗ are dense in F . By
[37, Théorème 2], we can write

extBE∗ =

∞⋂
n=1

(Hn ∪ Vn),

where Hn ⊂ BE∗ is closed and Vn ⊂ BE∗ is open, for all n ∈ N. Thus both
F \extBE∗ and F ∩extBE∗ are comeager disjoint sets in F , in contradiction
with the Baire category theorem. Hence extBE∗ is a resolvable set.

For a particular class of Banach spaces, namely the L1-preduals, one can
obtain some information on the affine class of a function from its descriptive
class (we recall that a Banach space E is an L1-predual if E∗ is isometric to
some space L1(µ); see [15, p. 59], [21, Chapter 7] or [10, Section II.5]). The
affine classes Aα(X), α < ω1, of functions on a compact convex set X are
created inductively from A0(X) = Ac(X) (see [5] or [22, Definition 5.37]).
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We also remark that a pointwise convergent sequence of affine functions on
X is uniformly bounded, which easily follows from the uniform boundedness
principle (see e.g. [22, Lemma 5.36]), and thus any function in

⋃
α<ω1

Aα(X)
is strongly affine. If X = BE∗ is the dual unit ball of a Banach space E, the
affine classes are termed intrinsic Baire classes of E in [2, p. 1047] whereas
strongly affine Baire functions on X form the hierarchy of Baire classes of E.
Theorem 1.4 relates these classes for real L1-preduals.

We recall that, given a compact convex set X in a real locally convex
space, the real Banach space Ac(X) is an L1-predual if and only if X is
a simplex, i.e., if for any x ∈ X there exists a unique maximal measure
δx ∈M1(X) with r(δx) = x (see [7, Theorem 3.2 and Proposition 3.23]).

(A measure µ ∈M+(X) is maximal if µ is maximal with respect to the
Choquet ordering, i.e., whenever ν ∈ M+(X) satisfies µ(k) ≤ ν(k) for any
convex continuous function k on X, then µ = ν. We refer the reader to [1,
Chapter I, §3] or [22, Section 3.6] for information on maximal measures.)

Theorem 1.4. Let E be a real L1-predual and f ∈ E∗∗ be a strongly
affine function such that f ∈ Cα(BE∗) for some α ∈ [2, ω1). Then

f ∈
{
Aα+1(BE∗), α ∈ [2, ω0),

Aα(BE∗), α ∈ [ω0, ω1).

If, moreover, extBE∗ is a Lindelöf resolvable set, then f ∈ Aα(BE∗).

Let us point out that, for any Banach space E and a strongly affine
function f ∈ E∗∗ satisfying f ∈ C1(BE∗), we have f ∈ A1(BE∗). This follows
from [27, Théorème 80] (see also [2, Theorem II.1.2] or [22, Theorem 4.24]).
For higher Baire classes, there is a large gap between affine and Baire classes,
as substantiated by M. Talagrand’s example [38, Theorem] of a separable
Banach space E and a strongly affine function f ∈ E∗∗ that is in C2(BE∗)
but not in

⋃
α<ω1

Aα(BE∗). Further, [32, Theorem 1.1] shows that the shift
of classes in Theorem 1.4 for finite ordinals may occur even for separable
L1-preduals.

The strategy of the proofs of our main results is to first reduce the prob-
lem to the case of real Banach spaces and then to consider the dual unit
ball with the weak∗ topology as a compact convex subset of a real locally
convex space. Elements of the bidual are then bounded affine functions on
the dual unit ball. The key results of Sections 3–6 are thus formulated for
this setting. The proof of Theorem 1.4 is moreover based upon a result of
W. Lusky stating that any real L1-predual is complemented in a simplex
space (i.e., a space of type Ac(X) for a simplex X) and thus the above men-
tioned technique can be used only for real L1-preduals. Since it is not clear
whether Lusky’s result remains true for complex L1-preduals, the validity of
Theorem 1.4 for complex spaces remains open.



76 P. Ludv́ık and J. Spurný

The content of our paper is the following. The second section provides
a more detailed information on descriptive classes of sets and functions.
Then we prepare the proof of Theorem 1.1 in Section 3. Results necessary
for dealing with Lindelöf sets of extreme points are collected in Section 4.
They are used in Sections 5 and 6, which prepare ground for the proof of
Theorems 1.2 and 1.3. In Sections 3–6 we work with real spaces. Section 7
proves, by means of the preparatory results, the theorems stated in the
introduction. Section 8 constructs spaces witnessing some natural bounds
of our positive results.

When citing references, we try to include several sources to help the
reader find relevant results.

2. Descriptive classes of sets and functions. We recall that, for a
Tychonoff space X, Bas(X), Bos(X) and Hs(X) denote the algebras gener-
ated by cozero sets, open sets and resolvable sets in X, respectively. These
algebras serve as a starting point of an inductive definition of descriptive
classes of sets as indicated in Section 1. More precisely, if F is any of the
families above, Σ2(F) consists of all countable unions of sets from F , and
Π2(F) consists of all countable intersections of sets from F . Proceeding in-
ductively, for any α ∈ (2, ω1) we let Σα(F) consist of all countable unions of
sets from

⋃
1≤β<α Πβ(F), and Πα(F) consist of all countable intersections of

sets from
⋃

1≤β<α Σβ(F). The family Πα(F)∩Σα(F) is denoted by ∆α(F).
The union of all the additive (or multiplicative) classes defined above is then
the σ-algebra generated by F .

(These classes and their analogues were studied by several authors; see
e.g. [9], [26], [12] or [11]. We describe in [33, Remark 3.5] their relations to
our descriptive classes. We refer the reader to [11] for a recent survey on
descriptive set theory in nonseparable and nonmetrizable spaces.)

In case X is metrizable, all the resulting classes coincide (see [33, Propo-
sition 3.4]). These classes characterize in terms of measurability the classes
Bafα(X), Bofα(X) and Hfα(X) defined in the introduction. (We recall that a
mapping f : X → C is called F-measurable if f−1(U) ∈ F for every U ⊂ C
open.) Precisely, it is proved in [33, Theorem 5.2] that given a function
f : X → C on a Tychonoff space X and α ∈ [1, ω1), we have

• f ∈ Bafα(X) if and only if f is Σα+1(Bas(X))-measurable.
• f ∈ Bofα(X) if and only if f is Σα+1(Bos(X))-measurable.
• f ∈ Hfα(X) if and only if f is Σα+1(Hs(X))-measurable.

It follows easily from this characterization that all the classes Bafα(X),
Bofα(X) and Hfα(X) are stable with respect to algebraic operations and
uniform convergence (see [22, Theorem 5.10]). Also, a function f is mea-
surable with respect to the σ-algebra generated by Hs if and only if f be-
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longs to some Hfα. Analogous assertions hold true for Bos and Bas. Thus⋃
α<ω1

Cα(X) =
⋃
α<ω1

Bafα(X) is the family of all functions measurable
with respect to the σ-algebra of Baire sets.

The following characterization of functions from Hf1 follows from the
definition and the result of G. Koumoullis in [19, Theorem 2.3].

Proposition 2.1. For a function f : K → C on a compact space K, the
following assertions are equivalent:

(i) f ∈ Hf1(K),
(ii) f |F has a point of continuity for every nonempty closed F ⊂ K

(i.e., f has the point of continuity property),
(iii) for each ε > 0 and nonempty F ⊂ K there exists a relatively open

nonempty set U ⊂ F such that diam f(U) < ε (f is fragmented).

Next we need to recall a characterization of resolvable sets: a subset H
of a topological space X is resolvable if and only if there exist an ordinal κ
and an increasing sequence of open sets ∅ = U0 ⊂ U1 ⊂ · · · ⊂ Uκ = X and
I ⊂ [0, κ) such that, for a limit ordinal γ ∈ [0, κ], we have

⋃
{Uλ : λ < γ}

= Uγ and H =
⋃
{Uγ+1 \ Uγ : γ ∈ I} (see [13, Section 2] and references

therein). We call such a transfinite sequence of open sets regular and such a
description of resolvable sets a regular representation (this notion is slightly
more useful for us than the one used in [13, Section 2]).

A family U of subsets of a topological space X is scattered if it is disjoint
and for each nonempty V ⊂ U there is some V ∈ V relatively open in

⋃
V.

If (Uγ)γ≤κ is a regular sequence, then {Uγ+1 \ Uγ : γ < κ} is a scattered
partition of X.

It is not difficult to deduce that a scattered union of resolvable sets is
again a resolvable set. (Indeed, let {Hi : i ∈ I} be a scattered family of
resolvable sets. By [12, Fact 4], each Hi is a union of a scattered family Hi
of sets in Bos(X). By [9, Lemma 2.2(c)], the family

⋃
i∈I Hi is scattered,

and thus again by [12, Fact 4], the set
⋃
i∈I Hi is resolvable.)

We will also need the fact that any resolvable subset of a compact space
is universally measurable (see [19, Lemma 4.4]).

The following fact will be used in the proof of Theorem 6.4.

Proposition 2.2. Let α ∈ [2, ω1) and (Uγ)γ≤κ be a regular sequence in
a Tychonoff space X. Let A ⊂ X with A∩ (Uγ+1 \Uγ) ∈ Σα(Hs(Uγ+1 \Uγ))
for each γ < κ (resp. A ∩ (Uγ+1 \ Uγ) ∈ Πα(Hs(Uγ+1 \ Uγ)), γ < κ). Then
A ∈ Σα(Hs(X)) (resp. A ∈ Πα(Hs(X))).

Proof. If α = 2, the assertion for the additive class follows from the fact
mentioned above that a scattered union of resolvable sets is again resolvable.
By taking complements we obtain the assertion for Π2(Hs). A straightfor-
ward transfinite induction then concludes the proof.
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For completeness, we include the proof of an easy observation mentioned
in the introduction.

Proposition 2.3. If X is a Tychonoff space, then C1(X) = Baf1(X).

Proof. If f ∈ C1(X), a straightforward reasoning gives f ∈ Baf1(X). On
the other hand, if f ∈ Baf1(X), it is enough to assume that f is real-valued.
If f is moreover bounded, a standard procedure (see e.g. [22, Lemma 5.7])
provides a uniform approximation of f by a sequence of simple functions,
i.e., functions of the form

∑n
i=1 ciχAi , where c1, . . . , cn ∈ R and {A1, . . . , An}

is a disjoint cover of X such that each Ai is a countable union of zero sets.
A moment’s reflection reveals that any such function is in C1(X). Hence
f ∈ C1(X) as well.

If f is unbounded, we take a homeomorphism ϕ : R → (0, 1) and apply
the procedure above to ϕ◦f ∈ Baf1(X) to infer ϕ◦f ∈ C1(X). We can then
find an approximating sequence (fn) of continuous functions on X such that
0 < fn < 1, n ∈ N. Then ϕ−1 ◦ fn → f , and f ∈ C1(X).

3. Transfer of descriptive properties from extX to X. Through-
out this section we work with real spaces. The main result is Theorem 3.5
on transferring descriptive properties of strongly affine functions from the
closure of the set of extreme points.

Lemma 3.1. Let K be a compact space and H a universally measurable
subset of K. Let H̃ : M1(K) → R be defined by H̃(µ) = µ(H) for µ ∈
M1(K). Then

• H̃ ∈ Hf1(M1(K)) if H ∈ Hs(K),

• H̃ ∈ Bof1(M1(K)) if H ∈ Bos(K).

Proof. We first assume that H is a resolvable set. We select a regular
sequence (Uγ)γ≤κ which provides a regular representation of H as mentioned
in Section 2. We prove by transfinite induction that, for every γ ≤ κ, the
function µ 7→ µ(H ∩ Uγ) is in Hf1(M1(K)).

The statement holds trivially for γ = 0.
Suppose that γ ≤ κ is of the form γ = δ+ 1 and the claim is valid for δ.

Then, for every µ ∈M1(K), we have

µ(H ∩ Uγ) = µ(H ∩ Uδ) + µ(H ∩ (Uδ+1 \ Uδ)).
The second summand is either 0 or µ(Uδ+1) − µ(Uδ). Since µ 7→ µ(U) is
lower semicontinuous on M1(K) for every open set U ⊂ K, it follows e.g.
from [19, Theorem 2.3] that µ 7→ µ(Uδ+1)− µ(Uδ) is in Hf1(M1(K)).

The function µ 7→ µ(H ∩ Uδ) is in Hf1(M1(K)) by the induction hy-
pothesis. Thus µ 7→ µ(H), as a sum of two functions in Hf1(M1(K)), is in
Hf1(M1(K)) as well.
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Assume now that γ ≤ κ is a limit ordinal and the statement holds for
each ordinal smaller than γ. Let f̃(µ) = µ(H ∩ Uγ) for µ ∈ M1(K). By

Proposition 2.1, it is sufficient to show that f̃ is fragmented. Let M ⊂
M1(K) be nonempty and ε > 0. Let

s = sup{µ(Uγ) : µ ∈M}

and choose µ0 ∈ M with µ0(Uγ) > s − ε/4. By the regularity of µ0, there
exists δ < γ with µ0(Uδ) > s− ε/4. Then the set

V = {µ ∈M1(K) : µ(Uδ) > s− ε/4}

is an open neighborhood of µ0.

Let h̃ : M1(K)→ R be defined by h̃(µ) = µ(H∩Uδ). Then for µ ∈M∩V
we have

|h̃(µ)− f̃(µ)| = |µ(H ∩ Uδ)− µ(H ∩ Uγ)|
≤ |µ(Uγ \ Uδ)| ≤ s− (s− ε/4) = ε/4,

and, by the induction hypothesis, h̃ is in Hf1(M1(K)), which means that h̃
is fragmented.

Thus there exists an open set W ⊂M1(K) intersecting M ∩V such that

diam h̃(M ∩ V ∩W ) < ε/4. Then for µ1, µ2 ∈M ∩ V ∩W we have

|f̃(µ1)− f̃(µ2)| ≤ |f̃(µ1)− h̃(µ1)|+ |h̃(µ1)− h̃(µ2)|+ |h̃(µ2)− f̃(µ2)| ≤ 3

4
ε.

Hence diam f̃(M ∩ V ∩W ) < ε and f̃ is fragmented. This proves the claim
as well as the first assertion (taking γ = κ).

Assume now that H ∈ Bos(K). Then H can be written as a finite disjoint
union of differences of closed sets (see e.g. [22, Lemma 5.12]), i.e., H =⋃n
i=1(Ei\Fi), where Fi ⊂ Ei are closed and the family {E1\F1, . . . , En\Fn}

is disjoint. Then the function µ 7→ µ(Ei \ Fi), as a difference of upper
semicontinuous functions on M1(K), is in Bof1(M1(K)) for each i.

Hence µ 7→ µ(H), µ ∈ M1(K), is a finite sum of functions contained in
Bof1(M1(K)), and thus is in Bof1(M1(K)).

Lemma 3.2. Let K be a compact space, f : K → R a bounded universally
measurable function and let f̃ : M1(K) → R be defined by f̃(µ) = µ(f) for
µ ∈M1(K). Then

• f̃ ∈ Hf1(M1(K)) if f ∈ Hf1(K),

• f̃ ∈ Bof1(M1(K)) if f ∈ Bof1(K).

Proof. Let f ∈ Hf1(K). First, if f = χA is the characteristic function of
A ∈ ∆2(Hs(K)), we write A =

⋃
nAn, where A1 ⊂ A2 ⊂ · · · are in Hs(K).
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For any c ∈ R, Lemma 3.1 shows that

{µ ∈M1(K) : f̃(µ) > c} =

∞⋃
n=1

{µ ∈M1(K) : µ(An) > c} ∈ Σ2(Hs(K)).

On the other hand, K\A ∈ Σ2(Hs(K)) and hence the above reasoning yields

{µ ∈M1(K) : f̃(µ) < c} = {µ ∈M1(K) : µ(K \A) > 1− c} ∈ Σ2(Hs(K)).

We conclude that f̃ is Σ2(Hs(M1(K)))-measurable and so f̃ ∈ Hf1(M1(K)).
If f ∈ Hf1(K) is bounded, it can be uniformly approximated by simple

functions in Hf1(K), i.e., functions of the form
∑n

i=1 ciχAi , where A1, . . . , An
∈ ∆2(Hs(K)) are pairwise disjoint and c1, . . . , cn ∈ R (this standard pro-

cedure can be found e.g. in [22, Lemma 5.7]). Hence f̃ can be uniformly

approximated by functions in Hf1(M1(K)), and thus f̃ ∈ Hf1(M1(K)).
The proof for f ∈ Bof1(K) is similar.

Lemma 3.3. Let K be a compact space and f : K → R be a bounded
universally measurable function. Let f̃ : M1(K) → R be defined by f̃(µ) =
µ(f) for µ ∈M1(K). Then:

(a) for α ∈ [1, ω1), f ∈ Hfα(K) if and only if f̃ ∈ Hfα(M1(K)),

(b) for α ∈ [1, ω1), f ∈ Bofα(K) if and only if f̃ ∈ Bofα(M1(K)),

(c) for α ∈ [0, ω1), f ∈ Cα(K) if and only if f̃ ∈ Cα(M1(K)).

Proof. The “if” parts easily follow from the fact that f = f̃ ◦φ where φ :
K →M1(K) sending x ∈ K to the Dirac measure εx at x is a homeomorphic
embedding.

The proof of the “only if” parts is by transfinite induction. If α = 1 in
(a) and (b), the assertion follows from Lemma 3.2; the case α = 0 in (c) is
obvious.

The induction step is straightforward.

Remark 3.4. It is worth noting that part (c) of the previous lemma
holds for a general completely regular topological space K if we consider the
spaceM1(K) endowed with the weak topology introduced in [40, Chapter 8].

As mentioned in the introduction, the following theorem is a generaliza-
tion of [29, Corollaire 8].

Theorem 3.5. Let X be a compact convex set and f : X → R be a
strongly affine function. Then:

• for α ∈ [1, ω1), f |extX ∈ Hfα(extX) if and only if f ∈ Hfα(X),
• for α ∈ [1, ω1), f |extX ∈ Bofα(extX) if and only if f ∈ Bofα(X),
• for α ∈ [0, ω1), f |extX ∈ Cα(extX) if and only if f ∈ Cα(X).

Proof. It is easy to realize that all the families Hfα, Bofα and Cα are
preserved by taking restrictions to subspaces of X. This gives the “if” parts.
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For the “only if” parts, let f : X → R be a strongly affine function with
f |extX ∈ F(extX) where F is any of the classes Hfα, Bofα or Cα. Then the
function g̃ : M1(extX)→ R defined by

g̃(µ) = µ(f), µ ∈M1(extX),

is in F(M1(extX)) by Lemma 3.3.
The mapping r : M1(extX) → X which assigns to µ ∈ M1(extX)

its barycenter r(µ) ∈ X is a continuous surjection of the compact space
M1(extX) onto X (see [1, Proposition I.4.6 and Theorem I.4.8] or [22,
Theorem 3.65 and Proposition 3.64]).

From the strong affinity of f we have g̃ = f ◦ r. Now we use the fact
that g̃ ∈ F(M1(extX)) if and only if f ∈ F(X). This fact can be found in
[28, Theorem 5.9.13] and [22, Theorem 5.26] for Cα, and in [13, Theorems 4
and 10] for Bofα and Hfα (see also [22, Theorem 5.26]). Thus f is in F(X).

4. Auxiliary result on compact convex sets with extX Lindelöf.
Throughout this section we work with spaces over the field of real numbers.
We aim for the proof of Proposition 4.8, a fact to be used both in Sections 5
and 6. We recall that a topological space X is K-analytic if it is the image
of a Polish space under an upper semicontinuous compact-valued map (see
[28, Section 2.1]).

Lemma 4.1. Let ϕ : X → Y be a continuous surjection of a K-analytic
space X onto a K-analytic space Y and let g : Y → R. Hence g is a Baire
function on Y if and only if g ◦ ϕ is a Baire function on X.

Proof. If g is a Baire function Y , then g ◦ ϕ is clearly a Baire function
on X. Conversely, if f = g ◦ ϕ is a Baire function on X and U ⊂ R is an
open set, then both f−1(U) and f−1(R \U) are Baire sets in X. Hence they
are K-analytic sets in X (see [28, Section 2]), and thus

g−1(U) = ϕ(f−1(U)), g−1(R \ U) = ϕ(f−1(R \ U))

are K-analytic as well. It follows from the proof of the standard separation
theorem (see [28, Theorem 3.3.1]) that they are Baire sets. Hence g is mea-
surable with respect to the σ-algebra of Baire sets, and thus it is a Baire
function.

Lemma 4.2. Let B be a Lindelöf subset of a compact space X and f
be a bounded continuous function on B. Then there exists a bounded Baire
function on X extending f .

Proof. Without loss of generality, let 0 ≤ f ≤ 1. If

h(x) =


f(x), x ∈ B,

lim sup
y→x, y∈B

f(y), x ∈ B \B,

0, x ∈ X \B,
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then h is an upper semicontinuous function on X. Hence

h = inf{a ∈ C(X) : h ≤ a ≤ 1}.
By the Lindelöf property of B and the continuity of f (see [22, Lemma
A.54]), there exists a countable family {an : n ∈ N} of continuous functions
on X with h ≤ an ≤ 1, n ∈ N, such that f = inf{an : n ∈ N} on B.
Then g = inf{an : n ∈ N} is a Baire function on X with values in [0, 1]
extending f .

Lemma 4.3. Let f : X → R be a strongly affine function on a compact
convex set X for which there exists a Baire set B ⊃ extX such that f |B is
a Baire function. Then f is a Baire function on X.

Proof. Let

M = {µ ∈M1(X) : µ(B) = 1}.
Since the characteristic function of B is a Baire function, the function
B̃(µ) = µ(B), µ ∈ M1(X), is a Baire function on M1(X) as well, by

Lemma 3.3(c), and thus M = {µ ∈ M1(X) : B̃(µ) = 1} is a Baire and
consequently K-analytic set in M1(X).

Since f |B is a Baire function on B, it extends to a bounded Baire function
g on X by Lemma 4.2 and transfinite induction (we remark that a Baire
subset of a compact space is Lindelöf by [28, Theorem 2.7.1]). Then

g̃(µ) = µ(g), µ ∈M1(X),

is a Baire function on M1(X) by Lemma 3.3(c).

Further, the function f̃ : M → R defined by

f̃(µ) = µ(f), µ ∈M,

coincides on M with g̃. Hence f̃ is a Baire function on M .
Then r : M → X is a continuous surjective mapping satisfying f̃ = f ◦ r

(see [1, Corollary I.4.12 and the subsequent remark] or [22, Theorem 3.79]).
By Lemma 4.1, f is a Baire function.

Lemma 4.4. Let X be a compact convex set with extX Lindelöf, µ ∈
M1(X) be maximal and B ⊃ extX be µ-measurable. Then µ(B) = 1.

Proof. By the regularity of µ it is enough to show that µ(K) = 0 for
every K ⊂ X \B compact. Given such a K, for every x ∈ extX we select a
closed neighborhood Ux of x disjoint from K. By the Lindelöf property we
choose a countable set {xn : n ∈ N} ⊂ extX with extX ⊂

⋃
Uxn . By Corol-

lary I.4.12 and the subsequent remark in [1] (see also [22, Theorem 3.79]),
µ(
⋃
Uxn) = 1. Hence µ(K) = 0.

Lemma 4.5. Let X be a compact convex set with extX Lindelöf and
f ∈ Cb(extX). Then there exist a decreasing sequence (un) of continuous
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concave functions on X and an increasing sequence (ln) of continuous convex
functions on X such that

inf f(extX) ≤ inf l1(X), supu1(X) ≤ sup f(extX),

and

un ↘ f, ln ↗ f on extX.

Proof. Without loss of generality we may assume that

0 ≤ i = inf f(extX) ≤ sup f(extX) = s ≤ 1.

We construct a decreasing sequence (un) of continuous concave functions on
X with values in [0, 1] such that un ↘ f on extX. To do this, we define
h : extX → [0, 1] by

h(x) =

 f(x), x ∈ extX,

lim sup
y→x, y∈extX

f(y), x ∈ extX \ extX.

Then h is upper semicontinuous on extX and the function

h∗ = inf{a ∈ Ac(X) : a ≥ f on extX}
satisfies h = h∗ = f on extX by [1, Proposition I.4.1] (see also [22, Theo-
rem 3.24]). Hence

f = inf{a ∈ Ac(X) : a ≥ f on extX} on extX.

Since extX is a Lindelöf space, there exists a countable family H = {hn :
n ∈ N} of functions in Ac(X) majorizing f on extX such that f = infH on
extX (see [14, Lemma] or [22, Lemma A.54]). Then we obtain the desired
sequence by setting

u1 = s ∧ h1, un = s ∧ h1 ∧ · · · ∧ hn, n ∈ N.

Analogously we obtain an increasing sequence (ln) of convex continuous
functions converging to f on extX.

Lemma 4.6. Let X be a compact convex set with extX Lindelöf and let
f ∈ Cα(extX) have values in [0, 1]. Then there exist a Baire set B ⊃ extX
and a function g ∈ Cα(B) such that

• g = f on extX,
• 0 ≤ g ≤ 1 on B,
• g(r(µ)) = µ(g) for any µ ∈M1(X) with µ(B) = 1 and r(µ) ∈ B.

Proof. We proceed by transfinite induction on the class of f .

Assume first that f is continuous on extX. Using Lemma 4.5 we find
relevant sequences (un) and (ln), and define u = infn∈N un, l = supn∈N ln.
Then we observe that l ≤ u by the minimum principle (see [1, Theorem I.5.3]
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or [22, Theorem 3.16]), both functions are Baire, u is upper semicontinuous
concave and l is lower semicontinuous convex. Let

B = {x ∈ X : u(x) = l(x)} and g(x) = u(x), x ∈ B.

Then B is a Baire set containing extX and, for x ∈ B and µ ∈Mx(X) with
µ(B) = 1, we have, by [22, Proposition 4.7],

g(x) = u(x) ≥ µ(u) = µ(l) ≥ l(x) = g(x).

Since g is continuous on B, the proof is finished for the case α = 0.

Assume now that the claim holds true for all β smaller than some count-
able ordinal α. Given f ∈ Cα(extX) with values in [0, 1], let (fn) be a
sequence of functions with fn ∈ Cαn(extX) for some αn < α, n ∈ N, such
that fn → f . Without loss of generality we may assume that all functions
fn have values in [0, 1]. For each n ∈ N, we use the induction hypothesis and
find a Baire set Bn ⊃ extX along with a function gn ∈ Cαn(Bn) with values
in [0, 1] that coincides with fn on extX and satisfies gn(r(µ)) = µ(gn) for
any µ ∈M1(X) satisfying µ(Bn) = 1 and r(µ) ∈ Bn.

We set

B =
{
x ∈

∞⋂
n=1

Bn : (gn(x)) converges
}

and g(x) = lim
n→∞

gn(x), x ∈ B.

Then B is a Baire set containing extX, g ∈ Cα(B) with values in [0, 1],

gn(x) = fn(x)→ f(x) for every x ∈ extX,

and, for x ∈ B and µ ∈Mx(X) with µ(B) = 1,

g(x) = lim
n→∞

gn(x) = lim
n→∞

µ(gn) = µ(g).

Lemma 4.7. Let X be a compact convex set with extX Lindelöf and let
f : X → R be a strongly affine function such that f |extX ∈ Cα(extX). Then
there exists a Baire set B ⊃ extX such that f ∈ Cα(B).

Proof. We can assume that 0 ≤ f ≤ 1. Using Lemma 4.6 we find a Baire
set B ⊃ extX together with a function g ∈ Cα(B) with values in [0, 1] such
that g = f on extX and g(x) = µ(g) for each x ∈ B and µ ∈ Mx(X) with
µ(B) = 1.

We claim that f = g on B. To verify this, pick x ∈ B and a maximal
measure µ ∈Mx(X). Then µ is supported by B and f = g µ-almost every-
where. (Indeed, the set {y ∈ X : f(y) = g(y)} is µ-measurable and contains
extX, so we can apply Lemma 4.4.) Hence

g(x) = µ(g) = µ(f) = f(x),

where the last equality follows from the strong affinity of f .
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Proposition 4.8. Let X be a compact convex set with extX Lindelöf
and let f : X → R be a strongly affine function such that f |extX is Baire.
Then f is a Baire function on X.

Proof. The assertion follows from Lemmas 4.7 and 4.3.

5. Transfer of descriptive properties on compact convex sets
with extX Lindelöf. The notions considered in this section are over the
real numbers. The following key factorization result uses a method of metriz-
able reduction for Baire functions, which can be found e.g. in [5], [28, The-
orem 5.9.13], [39, Theorem 1], [3] or [22, Theorem 9.12]. The main result in
this section, Theorem 5.2, is then a consequence of a selection theorem by
M. Talagrand (see [36]).

Lemma 5.1. Let X be a compact convex set with extX Lindelöf and
let f : X → R be strongly affine such that f |extX ∈ Cα(extX) for some
α ∈ [1, ω1). Then there exist a metrizable compact convex set Y , an affine

surjection ϕ : X → Y , a strongly affine Baire function f̃ : Y → R and g̃ ∈
Cbα(extY ) such that

g̃(ϕ(x)) = f(x), x ∈ extX ∩ ϕ−1(extY ),

and

f(x) = f̃(ϕ(x)), x ∈ X.
Proof. We may assume that 0 ≤ f ≤ 1. Let F = {gn : n ∈ N} ⊂ C(extX)

be a countable family of functions with values in [0, 1] satisfying f ∈ Fα.
For a fixed n ∈ N, using Lemma 4.5 we select finite families Ukn and Lkn,

k ∈ N, of functions in Ac(X) with values in [0, 1] such that, for

ukn = inf Ukn , lkn = supLkn,
we have

• limk→∞ l
k
n(x) = limk→∞ u

k
n = gn(x) for each x ∈ extX,

• (lkn)∞k=1 is increasing and (ukn)∞k=1 is decreasing.

Further, by Proposition 4.8, f is a Baire function on X, say of class β. Let
F ′ = {hn : n ∈ N} ⊂ C(X) be a countable family satisfying f ∈ (F ′)β. For
any n, k ∈ N, by [1, Proposition I.1.1] (or [22, Proposition 3.11]) there exist
finite families Vkn,Wk

n ⊂ Ac(X) such that, for vkn = inf Vkn, wkn = supWk
n, we

have

‖hn − (vkn + wkn)‖ < 1/k.

By setting G = {vkn, wkn : n, k ∈ N}, we obtain a family satisfying f ∈ Gβ.
We set

Φ =
⋃

n,k∈N
(Ukn ∪ Lkn ∪ Vkn ∪Wk

n)
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and define ϕ : X → RN by

ϕ(x) = (φ(x))φ∈Φ, x ∈ X.
Then Y = ϕ(X) is a metrizable compact convex set and, for each φ ∈ Φ,

there exists φ̃ ∈ Ac(Y ) with φ̃ ◦ ϕ = φ.

For fixed n, k ∈ N, let Ũkn ⊂ Ac(Y ) be such that

Ukn = {ũ ◦ ϕ : ũ ∈ Ũkn}.

Analogously we pick L̃kn, Ṽkn and W̃k
n in Ac(Y ). Then

ũkn = inf Ũkn , l̃kn = sup L̃kn, ṽkn = inf Ṽkn and w̃kn = sup W̃k
n

satisfy

ũkn ◦ ϕ = ukn, l̃kn ◦ ϕ = lkn, ṽkn ◦ ϕ = vkn and w̃kn ◦ ϕ = wkn.

Given y ∈ extY , we select x ∈ extX ∩ ϕ−1(y). Then

lim
k→∞

ũkn(y) = lim
k→∞

ũkn(ϕ(x)) = lim
k→∞

ukn(x) = gn(x),

lim
k→∞

l̃kn(y) = lim
k→∞

l̃kn(ϕ(x)) = lim
k→∞

lkn(x) = gn(x).

Thus (ũkn)∞k=1 is a decreasing sequence on extY , (l̃kn)∞k=1 is increasing on
extY and both converge to a common limit g̃n : extY → R given by

g̃n(y) = lim
k→∞

ũkn(y), y ∈ extY,

which is a continuous function on extY with values in [0, 1].
Thus, for every n ∈ N, there exists a function g̃n ∈ Cb(extY ) satisfying

g̃n ◦ ϕ = gn on extX ∩ ϕ−1(extY ). Let F̃ = {g̃n : n ∈ N}.
Now we claim that, for each γ ∈ [0, α] and h ∈ Fγ , there exists h̃ ∈ F̃γ

such that h = h̃ ◦ ϕ on extX ∩ ϕ−1(extY ). To verify this, we proceed by
transfinite induction. The claim is obvious for γ = 0. Assume that it holds
for all γ′ < γ for some γ ≤ α and that we are given h ∈ Fγ . Let γn < γ and
hn ∈ Fγn , n ∈ N, be such that h = limhn. By the inductive assumption,

there exist h̃n ∈ F̃γn satisfying hn = h̃n ◦ ϕ on extX ∩ ϕ−1(extY ). Then

the sequence (h̃n(y)) converges for every y ∈ extY . Hence we may define

h̃ ∈ F̃γ by

h̃(y) = lim
n→∞

h̃n(y), y ∈ extY,

and then, for every y ∈ extY and x ∈ ϕ−1(y) ∩ extX,

h̃(y) = lim
n→∞

h̃n(y) = lim
n→∞

hn(x) = h(x).

This proves the claim.
It follows from the claim that there exists g̃ ∈ Cα(extY ) such that

g̃(ϕ(x)) = f(x), x ∈ extX ∩ ϕ−1(extY ).
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Analogously, let G̃ be the family satisfying

G = {z̃ ◦ ϕ : z̃ ∈ G̃}.

Then, for each γ ∈ [0, β] and h ∈ Gγ , there exists h̃ ∈ G̃γ satisfying h = h̃◦ϕ.

Hence there exists f̃ ∈ G̃β satisfying f = f̃ ◦ ϕ. Obviously, f̃ is a Baire
function, and moreover it is strongly affine by [30, Proposition 3.2] (see also
[22, Proposition 5.29]).

Theorem 5.2. Let X be a compact convex set with extX Lindelöf and
f : X → R be a strongly affine function. If f |extX ∈ Cα(extX), then

f ∈
{ Cα+1(X), α ∈ [0, ω0),

Cα(X), α ∈ [ω0, ω1).

Proof. Let f be a strongly affine function f whose restriction to extX
is of Baire class α. If α = 0, i.e., f is continuous and bounded on extX,
Lemma 4.5 provides the relevant sequences (un) and (ln). For n ∈ N, x ∈ X
and µ1, µ2 ∈Mx(X), we have

µ1(ln) ≤ µ1(f) = f(x) = µ2(f) ≤ µ2(un).

If we denote
(ln)∗ = inf{h ∈ Ac(X) : h ≥ ln on X},
(un)∗ = sup{h ∈ Ac(X) : h ≤ un on X},

then by [1, Corollary I.3.6] (see also [22, Lemma 3.21]),

(ln)∗ ≤ f ≤ (un)∗.

Using an argument based upon the Hahn–Banach theorem (see e.g. [22,
Lemma 4.11]), there exists a sequence (hn) of functions in Ac(X) such that

(ln)∗ − 1/n < hn < (un)∗ + 1/n, n ∈ N.
Then f ∈ C1(X) because hn → f on extX, and thus on X. (Indeed, given
x ∈ X, let µ ∈Mx(X) be maximal. Then the set

B = {y ∈ X : hn(y)→ f(y)}
is µ-measurable and contains extX. By Lemma 4.4, µ(B) = 1. Hence f(x) =
µ(f) = limµ(hn) = hn(x).)

Assume now that α ≥ 1. Then we use Lemma 5.1 to find a contin-
uous affine surjection ϕ of X onto a metrizable compact convex set Y ,
g̃ ∈ Cbα(extY ) and a Baire function f̃ : X → R such that

(5.1) f = g̃ ◦ ϕ on extX ∩ ϕ−1(extY ) and f = f̃ ◦ ϕ on X.

Since extY is a Gδ set and α ≥ 1, we can extend g̃ to the whole Y (and
denote it likewise) with preservation of class (see [20, §31, VI, Théorème]).
By [36, Théorème 1] (see also [22, Theorem 11.41]), there exists a mapping
y 7→ νy, y ∈ Y , such that
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(a) νy is a maximal measure in My(Y ),
(b) y 7→ νy(h) is Baire-one on Y for every h ∈ C(Y ).

Let

h̃(y) = νy(g̃), y ∈ Y.

Then

h̃ ∈
{ Cα+1(Y ), α ∈ [1, ω0),

Cα(Y ), α ∈ [ω0, ω1).

Indeed, if α < ω0, the claim follows from (b) by induction. If α = ω0, let
(g̃n) be a bounded sequence of functions such that g̃n ∈ Cαn(Y ) for some

αn < ω0 and g̃n → g̃. Then the functions h̃n(y) = νy(g̃n) are in Cαn+1(Y )

and converge to h̃. Hence h̃ ∈ Cω0(Y ). For α > ω0, the claim follows by
transfinite induction.

Next we prove that h̃ = f̃ . Fix y ∈ Y . Using [22, Proposition 7.49] we find
a maximal measure µ ∈ M1(X) satisfying ϕ]µ = νy (here ϕ] : M1(X) →
M1(Y ) denotes the mapping induced by ϕ : X → Y , see [8, Theorem 418I]).
Then it is easy to check (see e.g. the proof of Proposition 5.29 in [22]) that

(5.2) ϕ(r(µ)) = r(ϕ]µ) = r(νy) = y.

Further, µ(ϕ−1(extY )) = 1 and

{x ∈ X : f(x) = g̃(ϕ(x))} ⊃ extX ∩ ϕ−1(extY ).

From these facts and Lemma 4.4 it follows that f = g̃ ◦ ϕ µ-almost every-
where. Thus from (5.2) and (5.1) we get

h̃(y) =
�

extY

g̃ dνy =
�

extY

g̃ d(ϕ]µ) =
�

X

g̃ ◦ ϕdµ =
�

X

f dµ

= f(r(µ)) = f̃(ϕ(r(µ))) = f̃(y).

Hence f̃ = h̃ on Y .

By (5.1), f is of the same class as f̃ = h̃.

6. Transfer of descriptive properties on compact convex sets
with extX a resolvable Lindelöf set. Again in this section we work
with real spaces. The first important ingredient is a result on separation of
Lindelöf sets in Tychonoff spaces.

Lemma 6.1 (see [17, Proposition 11]). Let X1 and X2 be disjoint Lindelöf
sets in a Tychonoff space X. Assume that there is no set G ⊂ X satisfying
X1 ⊂ G ⊂ X \ X2 which is a countable intersection of cozero sets. Then
there exists a nonempty closed set H ⊂ X with H ∩X1 = H ∩X2 = H.

The following lemma is a kind of selection result.
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Lemma 6.2. Let ϕ : X → Y be a continuous surjective mapping of a
compact space X onto a compact space Y and let f : X → R be a bounded
Σα(Bos(X))-measurable function for some α ∈ [2, ω1). Then there exists a
mapping φ : Y → X such that

• ϕ(φ(y)) = y, y ∈ Y ,
• f ◦ φ is a Σα(Bos(Y ))-measurable function.

Proof. Using a standard approximation technique and [33, Proposition
2.3(f)] (see also [22, Lemma 5.7]) we construct a bounded sequence (fn) of
Σα(Bos(X))-measurable simple functions uniformly converging to f . More
precisely, each fn is of the form

fn =

kn∑
k=1

cnkχAnk
, cnk ∈ R, Ank ∈ ∆α(Bos(X)) for k = 1, . . . , kn,

where {Ank : k = 1, . . . , kn} is a disjoint cover of X. For every Ank we
consider a countable family Ank ⊂ Bos(X) satisfying Ank ∈ Σα(Ank). We
include all these families in a single family A.

By [13, Lemma 8], there exists a mapping φ : Y → X such that ϕ(φ(y)) =
y for every y ∈ Y and φ−1(A) ∈ Bos(Y ) for every A ∈ A. Then both
φ−1(Ank) and φ−1(X \Ank) are in Σα(Bos(Y )) for every set Ank. Thus the
functions fn ◦ φ are Σα(Bos(Y ))-measurable and consequently, since they
converge uniformly to f ◦φ, the function f ◦φ is Σα(Bos(Y ))-measurable as
well.

The next assertion provides an inductive step needed in the proof of
Theorem 6.4.

Lemma 6.3. Let X be a compact convex set with extX a resolvable
Lindelöf set and let f : X → R be a strongly affine function such that
f |extX ∈ Cα(extX) for some α ∈ [1, ω0). Let K ⊂ X be a nonempty com-
pact set and ε > 0. Then there exists a nonempty open set U in K and a
Σα+1(Hs(U))-measurable function g on U such that |g − f | < ε on U .

Proof. We assume that 0 ≤ f ≤ 1. Let K be a compact set in X and
ε > 0. By Lemma 4.7, there exists a Baire set B ⊃ extX such that f ∈
Cα(B). We claim that there exists a Gδ set G with

(6.1) X \B ⊂ G ⊂ X \ extX.

Indeed, if there were no such set, Lemma 6.1 applied to X1 = X \ B and
X2 = extX (observe that X \ B is Lindelöf since it is a Baire set; see [28,
Theorem 2.7.1]) would provide a nonempty closed set H ⊂ X satisfying
H ∩ (X \B) = H ∩ extX = H. But this would contradict the fact that
extX is a resolvable set.
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We pick a Gδ set G satisfying (6.1) and write F = X \G =
⋃
Fn, where

the sets F1 ⊂ F2 ⊂ · · · are closed in X. Then extX ⊂
⋃
Fn ⊂ B.

For each n ∈ N, we set

Mn = {µ ∈M1(X) : µ(Fn) ≥ 1− ε/2},
Xn = {x ∈ X : there exists µ ∈Mn such that r(µ) = x} (= r(Mn)).

Then each Xn is a closed set by the upper semicontinuity of the function
µ 7→ µ(Fn) onM1(X) and X =

⋃
Xn. Indeed, for any x ∈ X there exists a

maximal measure µ ∈Mx(X) which is carried by F (see [1, Corollary I.4.12
and the subsequent remark] or [22, Theorem 3.79]), and thus µ(Fn) ≥ 1−ε/2
for n ∈ N large enough.

Since K ⊂
⋃
Xn, by the Baire category theorem there exists m ∈ N

such that Xm ∩K has nonempty interior in K. Let U denote this interior.
Since f |Fm ∈ Cα(Fm), we can extend f |Fm to a function h ∈ Cα(X) satisfy-
ing h(X) ⊂ co f(Fm) (see [31, Corollary 3.5] or [22, Corollary 11.25]). Let

h̃, f̃ : M1(X)→ R be defined by

h̃(µ) = µ(h), f̃(µ) = µ(f), µ ∈M1(X).

Then

(6.2) |f̃(µ)− h̃(µ)| < ε, µ ∈Mm.

Indeed, for µ ∈Mm we have

|µ(f)− µ(h)| =
∣∣∣ �

Fm

(f − h) dµ+
�

X\Fm

(f − h) dµ
∣∣∣

≤
�

X\Fm

|h− f | dµ ≤ µ(X \ Fm) ≤ ε/2 < ε.

By Lemma 3.3(c), h̃ ∈ Cα(M1(X)), and thus it is Σα+1(Bos(M1(X)))-
measurable on M1(X).

We consider the mapping r : Mm → r(Mm) and use Lemma 6.2 to find
a selection φ : r(Mm)→Mm such that

• r(φ(x)) = x, x ∈ r(Mm),

• h̃ ◦ φ is Σα+1(Bos(r(Mm)))-measurable on r(Mm).

By setting g = h̃ ◦ φ we obtain the desired function. Indeed, for a given
x ∈ r(Mm), the measure φ(x) is contained in Mx(X) ∩Mm, and hence by
(6.2) and the strong affinity of f , we have

|g(x)− f(x)| = |h̃(φ(x))− f̃(φ(x))| < ε.

Thus g|U is as required because Σα+1(Bos)-measurability implies Σα+1(Hs)-
measurability.
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Theorem 6.4. Let X be a compact convex set with extX a resolvable
Lindelöf set. Let f : X → R be a strongly affine function such that f |extX ∈
Cα(extX) for some α ∈ [1, ω1). Then f ∈ Cα(X).

Proof. We assume that 0 ≤ f ≤ 1. Also we may assume that α ∈
[1, ω0) since other cases are covered by Theorem 5.2. We claim that f is
Σα+1(Hs(X))-measurable.

Let ε > 0. We construct a regular sequence ∅ = U0 ⊂ U1 ⊂ · · · ⊂ Uκ = X
and functions

gγ ∈ Σα+1(Hs(Uγ+1 \ Uγ)), γ < κ,

satisfying |g − f | < ε on Uγ+1 \ Uγ as follows.
Let U0 = ∅. Using Lemma 6.3 we select a nonempty open set U of X

along with a Σα+1(Hs(U))-measurable function g on U with |g − f | < ε
on U . We set U1 = U and g0 = g.

Assume now that Uδ and gδ are chosen for all δ less than some γ. If γ is
limit, we set Uγ =

⋃
δ<γ Uδ.

Let γ = λ + 1. If Uλ = X, we set κ = λ and stop the procedure.
Otherwise we apply Lemma 6.3 to K = X \ Uλ and obtain an open set
U ⊂ X intersecting K along with a Σα+1(Hs(U ∩K))-measurable function
g on U ∩K satisfying |g−f | < ε on U ∩K. We set Uγ = Uλ∪U and gλ = g.
This finishes the construction.

Let g : X → R be defined as g = gγ on Uγ+1 \ Uγ , γ < κ. By Proposi-
tion 2.2, g is a Σα+1(Hs(X))-measurable function.

By using the procedure above we can approximate f uniformly by
Σα+1(Hs(X))-measurable functions, so f itself is Σα+1(Hs(X))-measurable.
But f is a Baire function by Proposition 4.8. Thus Theorem 5.2 and Corol-
lary 5.5 in [33] imply f ∈ Cα(X).

7. Proofs of the main results. Before proving the main results we
recall a simple observation.

Lemma 7.1. Let E be a complex Banach space and let f ∈ E∗∗. Then f
is strongly affine on BE∗ if and only if Re f is strongly affine on BE∗.

Proof. If f is strongly affine on BE∗ and µ∈M1(BE∗) has barycenter x∗,
then

Re f(x∗) + i Im f(x∗) = f(x∗) = µ(f) = µ(Re f) + iµ(Im f),

and thus µ(Re f) = Re f(x∗) and µ(Im f) = Im f(x∗).
Conversely, assuming that Re f is strongly affine on BE∗ , we infer that

so is Im f . To see this, consider the affine surjective homeomorphic mapping
ϕ : BE∗ → BE∗ defined by

ϕ(y∗) = iy∗, y∗ ∈ BE∗ .
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Since Im f(y∗) = −Re f(iy∗) for y∗ ∈ E∗, the function Im f is a composition
of an affine homeomorphism and a strongly affine function, and hence it is
strongly affine as well. Thus, for µ ∈M1(BE∗) with barycenter x∗,

µ(f) = µ(Re f) + iµ(Im f) = Re f(x∗) + i Im f(x∗) = f(x∗),

and f is strongly affine.

Proofs of Theorems 1.1–1.3. Let E be a (real or complex) Banach space
and f be an element of E∗∗ whose restriction to BE∗ is strongly affine.
By forgetting multiplication by complex numbers, we can regard BE∗ as
a compact convex set in a real locally convex space. The function Re f is
then a strongly affine function on a compact convex set BE∗ that inherits all
descriptive properties from f . Thus if f |extBE∗

∈ Hfα(extBE∗), then Re f

is a strongly affine real-valued function with Re f |extBE∗
∈ Hfα(extBE∗).

An application of Theorem 3.5 gives Re f ∈ Hfα(BE∗). Thus both Re f and
Im f are in Hfα(BE∗), and so f = Re f + i Im f is in Hfα(BE∗). Similarly
we prove the other assertions of Theorem 1.1.

Apparently, this procedure also verifies Theorems 1.2 and 1.3.

Proof of Theorem 1.4. From now on we will be working with real spaces.
We start with the following assertion which shows the required result for
Banach spaces of continuous affine functions on simplices. The general result
will then be obtained by applying a result of W. Lusky [23].

Proposition 7.2. Let f : X → R be a strongly affine function on a
simplex X such that f ∈ Cα(X) for some α ≥ 2. Then

f ∈
{
Aα+1(X), α ∈ [2, ω0),

Aα(X), α ∈ [ω0, ω1).

If, moreover, extX is a Lindelöf resolvable set, then f ∈ Aα(X).

Proof of Proposition 7.2. If X is a general simplex, the assertion for
finite ordinals is proved in [5, Théorème 2], and for infinite ordinals in [16,
Theorem 1.2].

Assume now that X is a simplex with extX a Lindelöf resolvable set.
For each x ∈ X, let δx denote the unique maximal measure in Mx(X). By
[34, Theorem 1] and [22, Theorem 4.24], the function Tg(x) = δx(g), x ∈ X,
is in A1(X) for any bounded g ∈ C1(X). By induction, Tg ∈ Aβ(X) for any
bounded function g ∈ Cβ(X) and finite ordinal β ∈ [2, ω0). Thus, for any
α ∈ [2, ω0) and any strongly affine function f ∈ Cα(X), f = Tf ∈ Aα(X).

Let E be a real L1-predual and f ∈ E∗∗ be a strongly affine function
satisfying f ∈ Cα(BE∗) for some α ∈ [2, ω1). By [23, Theorem], there exist
a simplex X, an isometric embedding j : E → Ac(X) and a projection
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P : Ac(X) → j(E) of norm 1. Further, it is proved in [23, Corollary III]
that there exists an affine continuous surjection ϕ : X → BE∗ such that

(1) ϕ(extX) = extBE∗ ∪ {0} and ϕ−1(extBE∗) ⊂ extX,
(2) ϕ|extX is injective,
(3) extX \ ϕ−1(extBE∗) is a singleton,
(4) j(e)(x) = (e ◦ ϕ)(x), e ∈ E, x ∈ X.

(In the notation of [23], the embedding j is denoted by T and ϕ is denoted
by q. Conditions (1)–(3) are explicitly stated in [23, Corollary III], condition
(4) follows from the definitions of T on p. 175 and q on p. 176.)

The projection P provides for each x ∈ X a measure µx ∈ BM(X) such
that

(7.1) Pg(x) = µx(g), g ∈ Ac(X).

Since P is the identity on j(E), from (4) we obtain

µx(e ◦ ϕ) = (e ◦ ϕ)(x), x ∈ X, e ∈ E.
We use equality (7.1) to extend the domain of P to any bounded universally
measurable function on X.

We claim that

(7.2) µx(f ◦ ϕ) = f(ϕ(x)), x ∈ X.
To verify this, let x ∈ X. We write

µx = a1µ1 − a2µ2, a1, a2 ≥ 0 with a1 + a2 ≤ 1, µ1, µ2 ∈M1(X),

and let x1, x2 ∈ X be the barycenters of µ1 and µ2, respectively. Then

(7.3) ϕ(x) = a1ϕ(x1)− a2ϕ(x2).

Indeed, let e ∈ E. Then

e(ϕ(x)) = µx(e ◦ ϕ) = a1µ1(e ◦ ϕ)− a2µ2(e ◦ ϕ)

= a1e(ϕ(x1))− a2e(ϕ(x2)) = e(a1ϕ(x1)− a2ϕ(x2)).

Hence (7.3) holds.

Since f ◦ ϕ is strongly affine on X by [32, Lemma 2.3] (see also [22,
Proposition 5.29]), from (7.3) we get

µx(f ◦ ϕ) = a1µ1(f ◦ ϕ)− a2µ2(f ◦ ϕ) = a1f(ϕ(x1))− a2f(ϕ(x2))

= f(a1ϕ(x1)− a2ϕ(x2)) = f(ϕ(x)).

This verifies (7.2).

Now we prove by induction that Pg ∈ (j(E))β provided g ∈ Aβ(X)
for some β ≥ 1. First consider the case β = 1, i.e., there exists a bounded
sequence (gn) in Ac(X) with gn → g. Then Pgn ∈ j(E) and, by the Lebesgue
dominated convergence theorem, Pgn → Pg.



94 P. Ludv́ık and J. Spurný

Assuming the validity of the assertion for all ordinals β̃ smaller than
some β, we consider g ∈ Aβ(X). Let (gn) be a bounded sequence converging
pointwise to g, where gn ∈ Aβn(X) for some βn < β. Then Pgn ∈ (j(E))βn
and, as above, Pgn → Pg.

Now we get back to the function f . Since f ◦ϕ ∈ Cα(X), Proposition 7.2
implies that f ◦ ϕ ∈ Aβ(X), where either β = α + 1 if α < ω0, or β = α
otherwise. By the reasoning above and (7.2),

f ◦ ϕ = P (f ◦ ϕ) ∈ (j(E))β.

Since j(e) = e◦ϕ for each e ∈ E, it follows that f ∈ Aβ(BE∗). This concludes
the proof of the first part of the theorem.

If, moreover, we assume that extBE∗ is a Lindelöf resolvable set, then
extX is a Lindelöf resolvable set as well. To show this, we first notice that
extX differs from the resolvable set ϕ−1(extBE∗) by a singleton (see (1)
and (3)), and thus it is resolvable. Second, let F ⊂ X \ extX be a compact
set. By (1), ϕ(F ) is disjoint from extBE∗ . Since extBE∗ is Lindelöf, [34,
Lemma 14] provides an Fσ set A with

extBE∗ ⊂ A ⊂ BE∗ \ ϕ(F ).

If x0 ∈ X denotes the singleton extX \ϕ−1(extBE∗), then ϕ−1(A) is an Fσ
set in X satisfying

extX ⊂ ϕ−1(A) ∪ {x0} ⊂ X \ F.
By [34, Lemma 15], extX is a Lindelöf space.

Now we can conclude the proof as in the first part; the only difference is
that we use the second part of Proposition 7.2.

8. Examples. Banach spaces constructed in this section are real L1-
preduals and they are created using the notion of a simplicial function space.
In order to illuminate the construction, we need to recall several definitions
and facts.

If K is a compact topological space, then H ⊂ C(K) is a function space
if H is a subspace of C(K), contains the constant functions and separates
the points of K. For simplicity, we will construct real Banach spaces, and
thus we will deal in this section only with real spaces C(K). For x ∈ K, we
write Mx(H) for the set of all measures µ ∈ M1(K) with µ(h) = h(x) for
all h ∈ H. Let ChH(K) be the Choquet boundary of H, i.e., the set of those
points x ∈ K withMx(H) = {εx}. By defining Ac(H) = {f ∈ C(K) : µ(f) =
f(x) for all x ∈ K and µ ∈ Mx(H)} we obtain a closed function space
satisfying H ⊂ Ac(H) (see [22, Definition 3.8]) and ChH(K) = ChAc(H)(K)
(this follows easily from the definitions).

Let
S(H) = {s ∈ H∗ : s ≥ 0, ‖s‖ = 1}
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denote the state space of H. Then S(H), endowed with the weak∗ topology,
is a compact convex set and K is homeomorphically embedded in S(H) via
the mapping φ : K → S(H) assigning to each x ∈ K the point evaluation
at x. Moreover, φ(ChH(K)) = extS(H) (see [25, Proposition 6.2] or [22,
Proposition 4.26]).

The function space H is called simplicial if S(Ac(H)) is a simplex (see
[22, Theorem 6.54]).

Further, letH⊥⊥ denote the space of all universally measurable functions
f : K → R satisfying µ(f) = 0 for every µ ∈ H⊥ ⊂M(K). It is proved in [32,
Theorem 2.5] (see also [22, Corollary 5.41]) that for any f ∈ H⊥⊥ there exists

a strongly affine function f̃ : S(H)→ R with f = f̃ ◦φ. Moreover, f̃ inherits
from f all descriptive properties considered in this paper; more precisely, for
any α ∈ [1, ω1) we have f ∈ Cα(K), f ∈ Bofα(K) and f ∈ Hfα(K) if and

only if f̃ ∈ Cα(S(H)), f̃ ∈ Bofα(S(H)) and f̃ ∈ Hfα(S(H)), respectively (the
first two assertions are proved in [22, Corollary 5.41], the last one follows
from Theorem 3.5).

A standard construction from [4, Section VII] of a simplicial function
space H satisfying H = Ac(H) goes as follows. Take a compact space L and
a subset B of L and define

K = (L× {0}) ∪ (B × {−1, 1})
with the “porcupine topology”, i.e., points of K \ (L×{0}) are isolated and
a point (x, 0) ∈ K has a basis of neighborhoods consisting of the sets of the
form

K ∩ (U × {−1, 0, 1}) \ F,
where U ⊂ L is a neighborhood of x and F ⊂ K \ (L× {0}) is finite. Then
K is a compact space and

H = {f ∈ C(K) : f(x, 0) = 1
2(f(x, 1) + f(x,−1)), x ∈ B}

is a simplicial function space satisfying H = Ac(H) and

ChH(K) = K \ (B × {0})
(see [35] or [22, Definition 6.13 and Lemma 6.14]).

If f : K → R is a bounded universally measurable function satisfying
f(x, 0) = 1

2(f(x, 1) + f(x,−1)) for each x ∈ B, it is easy to verify that

f ∈ H⊥⊥ (see [22, Corollary 6.12]), and thus f induces a strongly affine

function f̃ : S(H) → R which satisfies f = f̃ ◦ φ and shares with f all
descriptive properties.

By this procedure we obtain a simplex X = S(H) and a strongly affine
function on X with the desired descriptive properties. It is well known (see
e.g. [22, Propositions 4.31 and 4.32]) that, given a compact convex set X,
the dual space (Ac(X))∗ can be identified with spanX and the dual unit
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ball with co(X∪(−X)), whereas the second dual (Ac(X))∗∗ equals the space
of all affine bounded functions on X. Hence the construction of a simplex
X along with a strongly affine function f with the prescribed descriptive
properties yields the resulting L1-predual E: we set E = Ac(X) and the
element x∗∗ ∈ E∗∗ is the function f .

This general construction is now used in the following examples.

Example 8.1. There exist a separable L1-predual E and a strongly
affine function f ∈ E∗∗ such that f |extBE∗ ∈ C1(extBE∗) and f /∈ C1(BE∗).

Proof. Let L = [0, 1] and let B denote the set of all rational numbers
in L. Let K, H and X be constructed as above. Then K is metrizable, and
thus E = Ac(X) is a separable space. Let f : K → R be defined by

f(x, t) =

{
1, x ∈ B,

0, x /∈ B,
(x, t) ∈ K.

Then f |ChH(K) ∈ C1(ChH(K)) since f |ChH(K) is the characteristic function
of an open set in ChH(K). On the other hand, f has no point of continuity
on L× {0}, and thus f /∈ C1(K).

Example 8.2. There exist anL1-predualE and a strongly affine function
f ∈ E∗∗ such that extBE∗ is an open set in extBE∗ (hence extBE∗ ∈
Bos(BE∗)), f |extBE∗ ∈ C(extBE∗) and f is not resolvably measurable onBE∗ .

Proof. Let L = B = [0, 1] and A be an analytic non-Borel set in L (see
[18, Theorem 14.2]) and let K, H and X be constructed as above. Then
ChH(K) = K \ (L × {0}) is an open set in ChH(K) = K. Further, let
f : K → R be defined by

f(x, t) =

{
1, x ∈ A,

0, x /∈ A,
(x, t) ∈ K.

Then f |ChH(K) ∈ C(ChH(K)) since f |ChH(K) is the characteristic function
of a clopen set in ChH(K). Since A is µ-measurable for any Radon measure
µ on [0, 1], f is universally measurable on K (see [18, Theorem 21.10]).
Obviously, f |L×{0} is not Borel on L × {0}. Since the σ-algebra of Borel
sets in L coincides with the σ-algebra generated by the resolvable sets in L
(see [33, Proposition 3.4]), f is not measurable on K with respect to the
σ-algebra generated by resolvable sets.

Example 8.3. Assuming (CH), there exist an L1-predualE with extBE∗

Lindelöf and a strongly affine function f ∈ E∗∗ such that f is not a resolvably
measurable function and f |extBE∗ ∈ Bof1(extBE∗).

Proof. Let L = [0, 1] and let Q stand for the set of all rational numbers
in L. Assuming the continuum hypothesis, by the method of proof of [24,
Proposition 4.9] we construct an uncountable set B disjoint from Q that
concentrates around Q (i.e., B \U is countable for any open U ⊃ Q). Let K,
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H and X be as above. Then ChH(K) = K \ (B×{0}) is Lindelöf. Indeed, if
U is an open cover of ChH(K), we select a countable family V ⊂ U satisfying

(L× {0}) \ (B × {0}) ⊂ V =
⋃
{U ∩ (L× {0}) : U ∈ V}.

Then V is an open set in L × {0} containing Q × {0}, and thus B \ V is
countable. Hence we may extract a countable family W ⊂ U which covers
that part of ChH(K) not already contained in V . Thus V ∪W is a countable
subcover of ChH(K).

Define a function f : K → R by

f(x, t) =

{
1, x ∈ B,

0, x /∈ B,
(x, t) ∈ K.

Then f is universally measurable on K. To see this, it is enough to verify that
B is universally measurable. If µ ∈M1([0, 1]) is a continuous measure (i.e.,
µ({x}) = 0 for each x ∈ [0, 1]), let (Un) be a sequence of open sets satisfying
µ(Un) < 1/n and Un ⊃ Q. Then µ(

⋂
Un) = 0 and B\

⋂
Un is countable, and

thus µ-measurable. Hence B is µ-measurable for every continuous measure.
Obviously, B is µ-measurable for any discrete probability measure µ, and
hence B is universally measurable.

On the other hand, B is not Borel, because otherwise, as an uncountable
set, it would contain a copy of the Cantor set (see [18, Theorem 13.6]), which
would contradict its concentration around Q.

Since f |ChH(K) is the characteristic function of an open set in ChH(K),
we have f |ChH(K) ∈ Bof1(ChH(K)). On the other hand, f is not resolvably
measurable on K because f is not Borel on L × {0} and the σ-algebra of
Borel sets in L×{0} coincides with the σ-algebra generated by the resolvable
sets in L×{0} (see [33, Proposition 3.4]). Thus f is the required function.
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[5] M. Capon, Sur les fonctions qui vérifient le calcul barycentrique, Proc. London Math.
Soc. (3) 32 (1976), 163–180.

[6] R. Engelking, General Topology, 2nd ed., Sigma Ser. Pure Math. 6, Heldermann,
Berlin, 1989.

[7] V. P. Fonf, J. Lindenstrauss, and R. R. Phelps, Infinite dimensional convexity, in:
Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam,
2001, 599–670.

[8] D. H. Fremlin, Measure Theory. Vol. 4, Topological Measure Spaces. Parts I, II,
corrected 2nd printing, Torres Fremlin, Colchester, 2006.

[9] R. W. Hansell, Descriptive sets and the topology of nonseparable Banach spaces,
Serdica Math. J. 27 (2001), 1–66.

[10] P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach
Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
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J. Math. Oxford Ser. (2) 30 (1979), 469–482.
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