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James boundaries and σ-fragmented selectors

by

B. Cascales (Murcia), M. Muñoz (Cartagena)
and J. Orihuela (Murcia)

Abstract. We study the boundary structure for w∗-compact subsets of dual Banach
spaces. To be more precise, for a Banach space X, 0 < ε < 1 and a subset T of the dual
space X∗ such that

S
{B(t, ε) : t ∈ T} contains a James boundary for BX∗ we study

different kinds of conditions on T , besides T being countable, which ensure that

(SP) X∗ = spanT
‖·‖
.

We analyze two different non-separable cases where the equality (SP) holds: (a) if J :
X → 2BX∗ is the duality mapping and there exists a σ-fragmented map f : X → X∗

such that B(f(x), ε) ∩ J(x) 66= ∅ for every x ∈ X, then (SP) holds for T = f(X) and
in this case X is Asplund; (b) if T is weakly countably K-determined then (SP) holds,
X∗ is weakly countably K-determined and moreover for every James boundary B of BX∗

we have BX∗ = co(B)
‖·‖

. Both approaches use Simons’ inequality and ideas exploited by
Godefroy in the separable case (i.e., when T is countable). While proving (a) we show
that X is Asplund if, and only if, the duality mapping has an ε-selector, 0 < ε < 1, that
sends separable sets into separable ones. A consequence is that the dual unit ball BX∗

is norm fragmented if, and only if, it is norm ε-fragmented for some fixed 0 < ε < 1.
Our analysis is completed by a characterization of those Banach spaces (not necessarily
separable) without copies of `1 via the structure of the boundaries of w∗-compact sets
of their duals. Several applications and complementary results are proved. Our results
extend to the non-separable case results by Godefroy, Contreras–Payá and Rodé.

1. Introduction. Given a Banach space X and a w∗-compact subset
K ⊂ X∗, a James boundary for K is a subset B of K such that for every
x ∈ X there exists some b ∈ B such that b(x) = sup {k(x) : k ∈ K}. If K is
moreover convex the classical James boundary ExtK of the set of extreme
points of K allows us to recover K through the equality K = co(ExtK)

w∗
.

In general, James boundaries can even be disjoint from the set of extreme
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points. Therefore the idea of studying how properties of a given boundary
are reflected on K has been of continuous interest, with applications to the
theory of general Banach spaces, optimization, Fourier analysis, etc. Here is a
non-exhaustive list of papers and books dealing with this kind of problems:
[8, 9, 13, 16, 19, 20, 26, 27, 30, 32, 42, 44, 51]; the reference [17] offers
an excellent survey about infinite-dimensional convexity and in particular
about integral representation theorems and boundaries. Along these lines,
the so-called “boundary problem” is also worth mentioning; we comment on
it in the section “Some open problems” at the end of this paper.

Our starting point is the following result:

Theorem 1.1 ([8, 17, 20]). Let X be a Banach space, 0 < ε < 1 and
T a countable subset of X∗ such that

⋃
{B(t, ε) : t ∈ T} contains a James

boundary for BX∗. Then

X∗ = spanT ‖·‖

and therefore X∗ is separable.

Note that under the conditions in Theorem 1.1, once we know that X∗

is separable, a result by Rodé [44] can be used to deduce that for every

James boundary B of BX∗ we have BX∗ = co(B)
‖·‖X∗ . Using Fonf and

Lindenstrauss’ [16] terminology, when the last equality holds we will say
that B has property (S); here (S) stands for strong.

In this paper we aim to extend the results above to the non-separable
case (T will then be uncountable) and thus answer a question raised in [42].
We envisage two different ways of extending the previous results to the
non-separable case:

• Using ε-selectors for the duality mapping. If (X, ‖ · ‖) is a Banach
space, the duality mapping J : X → 2BX∗ is defined at each x ∈ X by

J(x) := {x∗ ∈ BX∗ : x∗(x) = ‖x‖}.
Our main result here, Theorem 4.1, states that if f : X → X∗ is a σ-
fragmented map such that B(f(x), ε) ∩ J(x) 66= ∅ for every x ∈ X then

X∗ = span f(X)
‖·‖

, and in this case X is Asplund. The notion of σ-frag-
mented map (see Definition 1) is truly wide: in particular, if we can split
X =

⋃∞
n=1Xn in such a way that for every n ∈ N and every closed set

F ⊂ Xn the restriction f|F has at least one point of norm continuity then f is
σ-fragmented. Therefore each function with countable range is σ-fragmented
and consequently Theorem 4.1 extends Theorem 1.1.

• Using descriptive properties of T . Our result here, Theorem 5.1, says
that if T ⊂ X∗ is weakly countably K-determined and there exists 0 <
ε < 1 such that

⋃
{B(t, ε) : t ∈ T} contains a James boundary for BX∗ ,
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then X∗ = spanT ‖·‖ is weakly countably K-determined and every James
boundary B of BX∗ has property (S). Since every separable metric space is
countably K-determined this second approach clearly extends Theorem 1.1
and its consequence above.

A brief description of the contents of the paper follows. Section 2 is
devoted to the study of the notion of σ-fragmentability for single-valued
and set-valued maps; in the single-valued case, this is a large class that
contains all Borel measurable maps. We use ideas from [30] to obtain a
characterization of set-valued σ-fragmented maps via ε-selectors that are ei-
ther piecewise barely constant or piecewise barely continuous (Theorem 2.1).
The σ-fragmented maps are precisely the uniform limits of piecewise barely
constants maps (Corollary 2.2); pointwise cluster points of σ-fragmented
maps are σ-fragmented (Proposition 2.3). The relationship between σ-frag-
mentability and networks is stated in one of the key results in this paper,
Theorem 2.5. Theorem 2.8, whose proof appears in [37, Theorem 2.15], states
how σ-fragmented maps send separable sets into separable ones.

In Section 3 we specialize the results of the previous section to the iden-
tity map from a Banach space equipped with its weak topology into it-
self with the norm metric. By doing so we exhibit several properties of
σ-fragmented Banach spaces following the scheme presented in [36] for the
renorming case.

In Section 4 we prove one of our main results already commented on,
Theorem 4.1. We also characterize Asplund spaces as those Banach spaces
X for which the duality mapping J has an ε-selector, 0 < ε < 1, f : X → X∗

that sends separable subsets of X into separable subsets of X∗ (Theorem 4.2
and Corollary 4.3). A consequence is that the dual unit ball BX∗ is norm
fragmented if, and only if, it is norm ε-fragmented for some fixed 0 < ε < 1
(Corollary 4.4).

Section 5 starts with the proof of Theorem 5.1 already presented above.
Theorem 5.4 offers a characterization of those Banach spaces (not necessarily
separable) without copies of `1 via the structure of the boundaries of w∗-
compact sets of their duals and the topology γ on X∗ of uniform convergence
on bounded and countable subsets of X. The paper is finished by giving our
proof in Corollary 5.6 of the fact that for a dual Banach space X∗ with
property C all boundaries for BX∗ have property (S).

A bit of terminology. Most of our notation and terminology is standard,
otherwise it is either explained here or whenever it is needed; unexplained
concepts and terminology can be found in our standard references for Ba-
nach spaces [9, 13] and topology [11, 34]. By letters T,E,X, . . . we denote
topological spaces. Sometimes the topological spaces we use are assumed to
be metric and then the letters d, %, . . . denote metrics on them. If (E, %) is
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a metric space, x ∈ E and δ > 0 we denote by B%(x, δ) (or B(x, δ) if no
confusion arises) the open %-ball centered at x of radius δ; if A ⊂ E we write

%-diam(A) := sup{%(x, y) : x, y ∈ A}.
All vector spaces E,X, . . . are assumed to be real. Sometimes E is as-

sumed to be a normed space with the norm ‖ · ‖; the letter X is reserved
to denote a Banach space. Given a subset S of a vector space, we write
co(S), aco(S) and span(S) to denote, respectively, the convex, absolutely
convex and linear hull of S. In the normed space (E, ‖ · ‖) the unit ball
{x ∈ E : ‖x‖ ≤ 1} is denoted by BE . Thus the unit ball of E∗ is BE∗ .
If S is a subset of E∗, then σ(E,S) denotes the weakest topology for E
that makes each member of S continuous, or equivalently, the topology of
pointwise convergence on S. Dually, if S is a subset of E, then σ(E∗, S) is
the topology for E∗ of pointwise convergence on S. In particular σ(E,E∗)
and σ(E∗, E) are the weak (w) and weak∗ (w∗) topologies on E and E∗

respectively. Of course, σ(E,S) is always a locally convex topology and it
is Hausdorff if and only if E∗ = spanSw

∗
, and similarly for σ(E∗, S). Given

x∗ ∈ E∗ and x ∈ E, we write 〈x∗, x〉 and x∗(x) for the evaluation of x∗ at x.

2. σ-fragmented maps. Our main tool is the notion of σ-fragmented
map that was introduced in [30] in order to deal with selection problems.
Since its introduction this notion has been used in different settings by
different authors as for instance in [40]. In this section we will present a
detailed study of σ-fragmented maps which is close in spirit to the properties
studied for σ-continuous maps in connection with renorming properties of
Banach spaces in [37].

Definition 1 ([30]). Let f be a map from a topological space (T, τ) into
a metric space (E, %). Let S be a subset of T . We say that f |S is %-fragmented
down to ε or ε-fragmented for some ε > 0 if whenever C is a non-empty
subset of S, there exists a τ -open subset V in T such that C ∩ V 6= ∅ and
%-diam(f(C ∩ V )) < ε; we simply use fragmented instead of %-fragmented
when % is understood. Given ε > 0 we say that f is ε-σ-fragmented if there
exists a countable family of subsets {T εn : n ∈ N} that covers T such that
f |T εn is ε-fragmented for every n ∈ N.

The map f is said to be σ-fragmented if it is ε-σ-fragmented for each
ε > 0.

For set-valued maps the corresponding notion of σ-fragmentability is
recalled below:

Definition 2 ([30]). Let F be a set-valued map from a topological space
(T, τ) into the subsets of a metric space (E, %). Let S be a subset of T . We
say that F |S is fragmented down to ε for some ε > 0 if whenever C is a
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non-empty subset of S, there exists a τ -open subset V of S with V ∩C 6= ∅
and a subset D of E with %-diam(D) < ε such that F (t) ∩D 6= ∅ for every
t ∈ V ∩ C. Given ε > 0 we say that F is ε-σ-fragmented if there exists a
countable family of subsets {T εn : n ∈ N} that covers T such that F |T εn is
ε-fragmented for every n ∈ N.

The set-valued map F is said to be σ-fragmented if it is ε-σ-fragmented
for each ε > 0.

It is easily proved that in the above definitions of ε-fragmentability for
f and F the sets C can be taken to be closed without loss of generality. The
easiest but non-trivial examples of σ-fragmented maps are provided by the
class of maps introduced in the following definition; we refer to [35] for the
concept of barely continuous function.

Definition 3. A map f from a topological space (T, τ) into a metric
space (E, %) is said to be barely continuous (resp. barely constant) if for
every non-empty closed set A ⊂ T the restriction f |A has at least one point
of continuity (resp. there exists an τ -open set W ⊂ T such that W ∩A 6= ∅
and f |A∩W is constant).

We say that f is piecewise barely continuous (resp. piecewise barely con-
stant) if there exists a countable family of subsets {Tn : n ∈ N} that covers
T such that f |Tn is barely continuous (resp. barely constant) for each n ∈ N.

Baire’s Great Theorem establishes that a map f from a complete metric
space T into a Banach space E is barely continuous if, and only if, f is
the pointwise limit of a sequence of continuous functions, i.e., f is a Baire
one map (see [9, Theorem I.4.1]). It was proved in [30, Corollary 7] that
a map f from a perfectly paracompact space T into a Banach space X
is σ-fragmented with closed sets T εn in Definition 1 if, and only if, it is a
Baire one map. Corollary 7 in [30] is based upon the approximation result
[30, Theorem 5] that is established there for σ-fragmented maps by closed
sets T εn; if we drop off the closedness of the T εn’s and only care about σ-
fragmentability we can prove the following:

Theorem 2.1. Let F be a set-valued map from a topological space (T, τ)
into the subsets of a metric space (E, %). The following statements are equiv-
alent :

(i) F is σ-fragmented ;
(ii) for every ε > 0 there exists a piecewise barely constant map fε :

T → E such that %-dist(fε(t), F (t)) < ε for every t ∈ T ;
(iii) for every ε > 0 there exists a piecewise barely continuous map fε :

T → E such that %-dist(fε(t), F (t)) < ε for every t ∈ T .

Proof. (i)⇒(ii). Fix ε > 0. According to Definition 1 let us decompose
T as T =

⋃∞
n=1 T

ε
n in such a way that for each non-empty subset C of T εn
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there exists an open subset V of T and a subset D of E with %-diam(D) < ε
such that V ∩ C 6= ∅ and

F (t) ∩D 6= ∅ for every t ∈ V ∩ C.
Without any loss of generality we can assume that the sets {T εn : n ∈ N}
are pairwise disjoint. Now we will construct for every n a barely constant
function f εn : T εn → E with

%-dist(f εn(t), F (t)) < ε for every t ∈ T εn.
Once the above has been proved, statement (ii) is satisfied if we define

fε(t) := f εn(t) for t ∈ T εn, n ∈ N.
Let us fix n ∈ N and construct f εn. Since F |T εn is ε-fragmented, a transfinite
induction argument provides us with well ordered families {Gγ : γ < Γnε }
of open subsets of T εn together with subsets {Dγ : γ < Γnε } of E with
%-diam(Dγ) < ε, γ < Γnε , such that for each µ < Γnε we have

Mµ := Gµ \
⋃
{Gγ : γ < µ} 6= ∅ and F (t) ∩Dµ 6= ∅ for every t ∈Mµ

and
T εn =

⋃
{Gγ : γ < Γnε }.

For each γ < Γnε we pick a point yγ in Dγ and define f εn(t) := yγ whenever
t ∈Mγ . The map f εn : T εn → E is barely constant. Indeed, if for a non-empty
subset A of T εn we define γ0 to be the first ordinal with A∩Gγ0 6= ∅ then f εn
is constant on A ∩Gγ0 because

A ∩Gγ0 ⊂Mγ0 = Gγ0 \
⋃
{Gβ : β < γ0}

and f εn(t) = yγ0 for every t ∈ Mγ0 . On the other hand, since γ < Γnε and
t ∈Mγ imply that f εn(t) = yγ with

yγ ∈ Dγ , %-diam(Dγ) < ε and F (t) ∩Dγ 6= ∅,
we conclude that

%-dist(f εn(t), F (t)) < ε for every t ∈ T εn,
and the proof for (i)⇒(ii) is complete.

The implication (ii)⇒(iii) being obvious, we prove (iii)⇒(i). Fix ε > 0
and take fε : T → E such that we can decompose T =

⋃
{T εn : n ∈ N} and

fε|T εn is barely continuous for each n ∈ N with

%-dist(fε(t), F (t)) < ε/3 for every t ∈ T.
If C is a non-empty closed subset of T εn, then there exists an open subset V
of T such that V ∩ C 6= ∅ and %-diam(fε(V ∩ C)) < ε/3. If we define

D := {y ∈ E : %-dist(y, fε(V ∩ C)) < ε/3}
then %-diam(D) < ε and F (t) ∩D 6= ∅ for every t ∈ V ∩ C.
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When we deal with a single-valued map the above result is the key to
proving that the barely constant maps together with countable splitting and
limit points produce all σ-fragmented maps.

Corollary 2.2. A map f from a topological space (T, τ) into a met-
ric space (E, %) is σ-fragmented if , and only if , there exists a sequence
{fn : T → E : n ∈ N} of piecewise barely constant maps that uniformly
converges to f .

Proof. By Theorem 2.1 the map f : T → E is σ-fragmented if, and
only if, for ε = 1/n, n ∈ N, there exists a piecewise barely constant map
fn : T → E with %(fn(t), f(t)) < 1/n for all t ∈ T .

Next we show that σ-fragmentability is in fact preserved when taking
pointwise cluster points of sequences of σ-fragmented maps:

Proposition 2.3. Let f be a map from a topological space (T, τ) into a
metric space (E, %). If there exists a sequence {fn : T → E : n = 1, 2, . . .} of
σ-fragmented maps with

f(t) ∈ {fn(t) : n = 1, 2, . . .}% for every t ∈ T,
then f is σ-fragmented.

Proof. Let us fix ε > 0 and define

Sεn := {t ∈ T : %(f(t), fn(t)) < ε/3}, n = 1, 2, . . . .

Clearly T =
⋃∞
n=1 S

ε
n and for every n we can also decompose T =

⋃∞
m=1 T

n,ε
m

in such a way that fn|Tn,εm
is ε/3-fragmented for every m = 1, 2, . . . . Observe

that

Sεn =
∞⋃
m=1

Sεn ∩ Tn,εm and T =
∞⋃

n,m=1

Sεn ∩ Tn,εm .

Now, for every pair of n,m ∈ N if we take a non-empty subset C of Sεn ∩
Tn,εm , then there exists a non-empty open set V of T with V ∩ C 6= ∅ and
%-diam(fn(V ∩C)) < ε/3; the last inequality and the fact that C ⊂ Sεn lead
to

%-diam(f(V ∩ C)) < ε,

if we bear in mind the definition of Sεn.

For maps with values in a normed space (E, ‖ · ‖) the term σ-fragmented
will always refer to σ-fragmentability with respect to ‖ · ‖.

Corollary 2.4. Let f be a map from a topological space (T, τ) into a
normed space (E, ‖·‖). If there exists a sequence {fn : T → E : n = 1, 2, . . .}
of σ-fragmented maps with

f(t) ∈ {fn(t) : n = 1, 2, . . .}w for every t ∈ T,
then f is σ-fragmented.
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Proof. It is easily checked that linear combinations of σ-fragmented maps
are σ-fragmented. Hence the Q-linear combinations of {fn : n = 1, 2, . . .}
form a countable family {gn : T → E : n = 1, 2, . . .} of σ-fragmented maps
for which the Hahn–Banach theorem [13, Theorem 3.19] gives

f(t) ∈ {gn(t) : n = 1, 2, . . .}‖·‖ for every t ∈ T.
We now apply Proposition 2.3 to finish the proof.

The following definition can be found in [23].

Definition 4 (Hansell, [23]). A family E of subsets in a topological
space T is said to be scattered if E is disjoint and there exists a well ordering
≤ of E such that for every E ∈ E the set

⋃
{M ∈ E : M ≤ E} is open relative

to
⋃
E . The family E is said to be σ-scattered if it can be decomposed into

a countable union E =
⋃∞
n=1 En such that every family En is scattered.

Given a map f : T → E between topological spaces, we say that a family
B of subsets of T is a function base for f if, whenever V is open in E, then
f−1(V ) is a union of sets of B, i.e., B is a function base for f if it is a network
in T for the topology given by

{
f−1(V ) : V is open in E

}
(see [11, p. 170])

for the notion of network. We recall that a family {Fi : i ∈ I} of subsets of a
topological space (T, τ) is said to be discrete if for every point x ∈ T there
exists a neighborhood U of x such that U meets at most one Fi [11, p. 33].
Recall also that a family {Dj : j ∈ J} of subsets of T is a refinement of a
family {Cl : l ∈ L} if

⋃
j∈J Dj =

⋃
l∈LCl and each Dj is contained in some

Cl [11, p. 165].
We note that the next result already appeared in [23, Theorem 1.10]

for the very particular case of f being the identity map id : (T, τ)→ (T, %)
where % is a metric on T whose associated topology is finer than τ . The next
theorem exhibits the relationship between the notion of σ-fragmented map
and the earlier concept of map with σ-scattered function base introduced
by Hansell (see [22] and the references therein).

Theorem 2.5. Let f be a map from a topological space (T, τ) into a
metric space (E, %). The following statements are equivalent :

(i) f is σ-fragmented ;
(ii) if {Di : i ∈ I} is a discrete family of subsets in (E, %) then the

family {f−1(Di) : i ∈ I} has a σ-scattered refinement ;
(iii) f has a σ-scattered function base.

Proof. (i)⇒(ii). Let {Di : i ∈ I} be a discrete family in (E, %) and define

Di,p := {x ∈ Di : B%(x, 1/p) ∩Dj = ∅ for each j ∈ I, j 6= i}
for every positive integer p. We clearly have Di =

⋃∞
p=1Di,p for every

i ∈ I and the family {Di,p : i ∈ I} is 1/p-discrete (meaning that the
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distance between two different elements of the family is at least 1/p) for
every p = 1, 2, . . . . Fix the positive integer p and use the fact that f is
1/p-σ-fragmented to produce a decomposition T =

⋃∞
n=1 T

1/p
n such that for

every n we have a well ordered family {Gn,pγ : γ < Γ
1/p
n } of relatively open

subsets of T 1/p
n which covers T 1/p

n and provides us with the scattered family{
Mn,p
µ := Gn,pµ \

⋃
{Gn,pβ : β < µ} : µ < Γ 1/p

n

}
such that

%-diam(f(Mn,p
µ )) < 1/p for every µ < Γ 1/p

n .

The 1/p-discreteness of the family {Di,p : i ∈ I} implies that Mn,p
µ meets at

most one member of the family {f−1(Di,p) : i ∈ I}. Thus the family formed
by all the non-void sets of the form

{Mn,p
µ ∩ f−1(Di,p)}

for i ∈ I and µ < Γ
1/p
n,p is scattered for fixed integers n and p because any

subset of ordinals is a well ordered set.
All things considered, we conclude that

∞⋃
n,p=1

{Mn,p
µ ∩ f−1(Di,p) : i ∈ I, µ < Γ 1/p

n }

is a σ-scattered refinement of {f−1(Di) : i ∈ I} and (ii) is satisfied.
(ii)⇒(iii). Stone’s theorem [11, Theorem 4.4.3] provides us with a σ-

discrete base B for the metric topology in (E, %), that is, B is a base for
the topology and it can be split as B =

⋃∞
n=1 Bn with each Bn discrete.

According to (ii) each f−1(Bn) has a σ-scattered refinement, that is, there
exist scattered families Enm in T with

⋃∞
m=1 Enm being a refinement of f−1(Bn).

Observe that
⋃∞
n,m=1 Enm is a σ-scattered refinement of f−1(B). Furthermore,

we claim that
⋃∞
n,m=1 Enm is a function base of f . Indeed, given an open set

V ⊂ E and x ∈ f−1(V ) there exists B in some Bn such that x ∈ f−1(B) ⊂
f−1(V ); from the equality⋃

B∈Bn

f−1(B) =
⋃
m

⋃
C∈Enm

C

and the facts that {f−1(B) : B ∈ Bn} are disjoint together with
⋃∞
m=1 Enm

being a refinement of f−1(Bn) we infer that there exists C in some Enm such
that

x ∈ C ⊂ f−1(B) ⊂ f−1(V ),

and the proof for this implication is complete.
(iii)⇒(i). Let E =

⋃∞
n=1 En be a function base for f with En a scattered

family for every n ∈ N, i.e., En = {Enα : α < Γn} and Enα ⊂ Unα \
⋃
{Unβ :
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β < α} for some well ordered family {Unα : α < Γn} of open sets in T . If we
fix Tn :=

⋃
{Enα : α < Γn} and for every α < Γn we choose tnα ∈ Enα, then

we can define fn(t) := f(tnα) for every t ∈ Tn when t ∈ Enα. The function fn
is barely constant on Tn: if A ⊂ Tn is non-empty and α0 is the first ordinal
with A ∩ Unα0

6= ∅ then

A ∩ Unα0
∩ Tn ⊂ Enα0

∩ Tn,
and therefore fn(t) = fn(tnα0

) for every t ∈ A∩Unα0
∩ Tn. Now we extend fn

to the whole T by defining it as an (arbitrary) constant function on T \ Tn.
Since E is a function base for f , we easily see that

f(t) ∈ {fn(t) : n = 1, 2, . . .}
for every t ∈ T : indeed, given ε > 0 there exist a positive integer m and β <
Γm such that t ∈ Emβ ⊂ f−1(B%(f(t), ε)), thus fm(t) = f(tmβ ) ∈ B%(f(t), ε).
Now Proposition 2.3 applies to conclude that f is σ-fragmented.

Remark 2.6. If a scattered function base for a map f can be constructed
with sets which are differences of closed sets, then f enjoys properties which
are close to measurability; in fact, it is Borel measurable when the domain
space is, for instance, a complete metric space or a Gulko compact (see [24,
23, 22]).

We recall that a set S ⊂ T is a Suslin-F-set in the space (T, τ) if S is
the result of the Suslin operation applied to closed sets of T , i.e., for some
collection

{Fn1,...,nk : (n1, . . . , nk) ∈ N(N)}
of closed sets indexed by the set N(N) of finite sequences of positive integers,
we have

S =
⋃
α∈NN

∞⋂
k=1

{Fα|k},

where α|k := (n1, . . . , nk) for α = (n1, n2, . . . ) ∈ NN. Every Borel set in
a metric space is a Suslin-F-set [45, Theorem 44]. A map between metric
spaces is called analytic if the preimage of every open set is a Suslin-F-set.
Bearing in mind the seminal results by R. Hansell in [21] we can now recall
the following:

Corollary 2.7 (Lemma 5.9 in [23]). Every analytic (in particular ,
Borel measurable) map from a complete metric space (T, d) into a metric
space (E, %) is σ-fragmented.

Proof. Hansell’s Theorem 3 in [21] states that every analytic map, in
particular every Borel map, from a complete metric space into a metric
space has a σ-discrete function base. Since every discrete family of sets is
clearly scattered, the desired conclusion follows directly from Theorem 2.5.
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An important property of Borel maps from complete metric spaces into
metric spaces is that they send separable subsets into separable ones (see
for instance [47, Theorem 4.3.8]). The fact that σ-fragmented maps enjoy
the same property is stated in the next theorem whose proof can be found
in [37, Theorem 2.15], where the result has been used as an important tool
for renorming in Banach spaces.

Theorem 2.8. Let (T, d) and (E, %) be metric spaces and let f : T → E
be a σ-fragmented map. Then for every t ∈ T there exists a countable set
Wt ⊂ T such that

f(t) ∈
⋃
{f(Wtn) : n = 1, 2, . . .}

%

whenever {tn} is a sequence converging to t in (T, d). In particular , f(S) is
separable whenever S is a separable subset of T .

We will use the above precise way of sending separable sets into separable
ones by σ-fragmented maps in the proof of Theorem 4.1. It should be noted
that σ-fragmented maps are not necessarily Borel measurable: for instance,
every map between metric spaces with separable range is σ-fragmented.
Let us remark that a map with domain a metric space and with values
in a normed space is Baire one if, and only if, it is σ-fragmented and the
preimages of open sets are Fσ sets (see [32, Chapter 2] and [25]).

The σ-fragmentability of maps is not only preserved by countable par-
titions. Indeed, if a map f is σ-fragmented when restricted to the sets of a
scattered partition, then f is σ-fragmented. To be more precise, we have the
following result.

Proposition 2.9. Let f be a map from a topological space (T, τ) into
a metric space (E, %). If there exists a well ordered family of open sets
{Gγ : γ < Γ} covering T such that f is σ-fragmented when restricted to every
atom

Mγ = Gγ \
⋃
{Gβ : β < γ},

then f is σ-fragmented on the whole of T .

Proof. Let us fix ε > 0 and split Mγ as

Mγ =
⋃
{Mn

γ,ε : n = 1, 2, . . . }

in such a way that f |Mn
γ,ε

is ε-fragmented. If we set Tnε :=
⋃
{Mn

γ,ε : γ < Γ},
then it is clear that T =

⋃
{Tnε : n = 1, 2, . . .}. We now prove that f |Tnε is

ε-fragmented. If we fix some non-empty set C ⊂ Tnε and choose γ0 to be the
first ordinal such that C ∩Mγ0 is non-empty, then

C ∩Gγ0 = C ∩
(
Gγ0 \

⋃
{Gβ : β < γ0}

)
= C ∩Mγ0 .
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On the other hand, since C ⊆ Tnε we have ∅ 6= C ∩Mγ0 = C ∩Mn
γ0,ε, and

therefore the ε-fragmentability of f |Mn
γ0,ε

provides an open set W in (T, τ)
such that W ∩ C ∩Mn

γ0,ε is non-empty and

%-diam(f(W ∩ C ∩Mn
γ0,ε)) < ε.

Since W ∩ C ∩Gγ0 = W ∩ C ∩Mn
γ0,ε we have

%-diam(f((W ∩Gγ0) ∩ C)) < ε,

and therefore f |Tnε is ε-fragmented.

The previous result leads to the following one (see [29, Theorem 4.1] for
the identity map). We use the following terminology: a subset A of a metric
space (E, %) is said to be ε-separable (ε > 0) if there exists some countable
subset H in E such that

A ⊂
⋃
{B%(h, ε) : h ∈ H}.

Proposition 2.10. Let f be a map from a topological space (T, τ) into
a metric space (E, %). If for every ε > 0 there exists a countable family of
subsets {T εn : n ∈ N} that covers T such that for every n ∈ N and every
non-empty subset C ⊂ T εn there exists a τ -open subset V in T with V ∩ C
non-empty and with f(V ∩ C) ε-separable, then f is σ-fragmented.

Proof. For a fixed ε > 0 we shall construct a sequence

{f εn : (T, τ)→ (E, %) : n = 1, 2, . . .}
of σ-fragmented maps such that

%-dist(f(t), {f εn(t) : n = 1, 2, . . .}) < ε.

Therefore f(t) ∈ {f1/p
n (t) : n, p = 1, 2, . . .}

%

for every t ∈ T , and an appeal
to Proposition 2.3 will ensure that f is σ-fragmented. For a fixed ε > 0 let
us split T =

⋃∞
n=1 T

ε
n as in our hypothesis. It is easily proved that in every

T εn we can produce a well ordered family {Gnγ : γ < Γn,ε} of open sets with⋃
{Gnγ : γ < Γn,ε} = T εn,

and for every atom
Mn
γ = Gnγ \

⋃
{Gnβ : β < γ}

there exists a countable set Hn
γ in E such that

f(Mn
γ ) ⊂

⋃
{B%(h, ε) : h ∈ Hn

γ }.

If Hn
γ = {hnγ (j) : j = 1, 2, . . .} we now define the maps f εn,j : T εn → E by

f εn,j(t) := hnγ (j) if t ∈Mn
γ .

Since f εn,j is constant on the atoms of a well ordered family of open sets in
T εn, it is σ-fragmented on the whole piece T εn by Proposition 2.9. We now
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define f εn,j to be arbitrary but constant on T \ T εn. The new f εn,j defined on
the whole T is still σ-fragmented. On the other hand, it is clear that

%-dist(f(t), {f εn,j(t) : j, n = 1, 2, . . . }) < ε

for every t ∈ T , and the proof is complete.

We stress that the previous result for f = id has been used in [28] where
it is proved that Cp(K) is σ-fragmented when K is a Rosenthal compactum
of functions with at most countably many discontinuities.

3. σ-fragmented normed spaces. Let (E, ‖ · ‖) be a normed space,
τ a topology on E coarser than the norm topology, and H a subset of X.
(H, τ) is said to be fragmented (resp. σ-fragmented) by the norm of E if the
inclusion i : (H, τ) → (E, ‖ · ‖) is fragmented (resp. σ-fragmented); when
τ = w we simply say that E is σ-fragmented [29]. Recall that a subspace F
of E∗ is said to be norming if the function p on E given by

p(x) = sup{|x∗(x)| : x∗ ∈ F ∩BE∗}

is a norm equivalent to ‖ · ‖; if this is the case then F
w∗ = E∗.

The next result is the counterpart for σ-fragmentability of [36, Theo-
rem 8] that has been proved for LUR renorming.

Theorem 3.1. Let (E, ‖ · ‖) be a normed space and F ⊂ X∗ a norming
subspace. The following statements are equivalent :

(i) (E, σ(E,F )) is σ-fragmented by the norm;
(ii) the identity id : E → E is the uniform limit for the norm of a

sequence {In : E → E : n = 1, 2, . . .} of maps which are piecewise
barely constant for the topology σ(E,F );

(iii) there exists a sequence {In : E → E : n = 1, 2, . . .} of maps which
are piecewise barely constant for σ(E,F ) such that

x ∈ {In(x) : n = 1, 2, . . .}w for every x ∈ E;

(iv) there exists a sequence {In : E → E : n = 1, 2, . . .} of maps which
are piecewise barely constant for σ(E,F ) such that

x ∈ span{In(x) : n = 1, 2, . . .}‖·‖ for every x ∈ E.
Proof. The equivalence between (i) and (ii) follows directly from Corol-

lary 2.2. Clearly (ii)⇒(iii). The rest of the proof uses ideas that already
appeared in Corollary 2.4.

(iii)⇒(iv). If x ∈ {In(x) : n = 1, 2, . . .}w for every x ∈ E, then the
Hahn–Banach theorem [13, Theorem 3.19] implies that

x ∈ span{In(x) : n = 1, 2, . . .}‖·‖ for every x ∈ E
and thus condition (iv) is satisfied.
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(iv)⇒(i). If condition (iv) holds then the set of all rational linear com-
binations of {In : E → E : n = 1, 2, . . .} is a countable set of maps that
we denote by {Jn : E → E : n = 1, 2, . . .}, which are σ-fragmented for the
σ(E,F )-topology, and such that for every x ∈ E we have

x ∈ {Jn(x) : n = 1, 2, . . .}‖·‖.

Proposition 2.3 now allows us to conclude that (i) is satisfied.

4. σ-fragmented ε-selectors for the duality mapping. This sec-
tion is devoted to proving our main results. The notion below will be used
repeatedly.

Definition 5. Let F be a set-valued map from a set T into the subsets of
a metric space (E, %) and ε > 0. An ε-selector for F is a function f : T → E
such that

%-dist(f(t), F (t)) < ε for every t ∈ T .

Each selector for F is clearly an ε-selector for every ε > 0, but not
vice versa. Note that ε-selectors have appeared in Theorem 2.1. Sometimes
ε-selectors are the first step when finding a real selector (see for instance [30,
32, 49]).

Godefroy’s result quoted in Theorem 1.1 can be rephrased in the follow-
ing way that suits well our purposes.

Lemma 1. Let (X, ‖ · ‖) be a Banach space, J : X → 2BX∗ the duality
mapping , and let f be an ε-selector of J , 0 < ε < 1. If Z ⊂ X is a subspace
such that f(Z) is separable for the norm of X∗, then

(4.1) Z∗ = span f(Z)|Z
‖·‖Z∗

,

and consequently Z∗ is norm separable.

Proof. See [9, Proposition 3.2, p. 50].

Our main result below is proved using a reduction to separable Banach
spaces similar to the one used in [30, Theorem 26]; this argument goes back
to [12]. Nonetheless, we note that our situation here is more complicated
that the one in [30, Theorem 26], because we now deal with maps which are
only σ-fragmented instead of Baire one maps used in [30]; to overcome the
extra difficulties we will make use of the precise description of how separable
sets are sent into separable ones via σ-fragmented maps (see Theorem 2.8
above).

Theorem 4.1. Let (X, ‖ · ‖) be a Banach space and let J : X → 2BX∗

denote the duality mapping. If for some fixed 0 < ε < 1 there exists a
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σ-fragmented ε-selector f : X → X∗ of J , then

span f(X)
‖·‖X∗ = X∗.

Proof. Take any linear form g ∈ X∗. The idea is to construct a subspace
Z ⊂ X satisfying the assumption in Lemma 1, i.e., with f(Z) ⊂ X∗ norm
separable, in such a way that from the condition

g|Z ∈ span{f(Z)|Z}
‖·‖Z∗ (= Z∗)

it follows that
g ∈ span{f(X)}‖·‖X∗ .

For every x ∈ X we use Theorem 2.8 to pick a countable subset Wx in
X such that

f(x) ∈ {f(Wxn) : n = 1, 2, . . .}‖·‖X∗

whenever (xn)n converges to x in the Banach space (X, ‖ · ‖).
Let us choose a countable Q-linear subspace {0} 6= Z1 ⊂ X. Define

D1 :=
⋃
{Wx : x ∈ Z1}, which is also a countable set, and write

C1 := Q-span{f(Wx) : x ∈ D1} =: {h1,j : j ∈ N}.
We now find vectors {v1,j : j ∈ N} ⊂ BX such that

〈g − h1,j , v1,j〉 ≥ ‖g − h1,j‖ − 1,

and we collect the v’s as F1 := {v1,j : j ∈ N}.
An induction process produces, for every n ∈ N, countable sets Cn ⊂ X∗,

Zn, Dn ⊂ X and
Fn := {vn,j : j = 1, 2, . . . , } ⊂ BX

such that

(i) each Zn is Q-linear subspace with Zn ∪ Fn ⊂ Zn+1;
(ii) Dn :=

⋃
{Wx : x ∈ Zn};

(iii) if we enumerate Cn := Q-span{f(Wx) : x ∈ Dn} := {hn,j : j ∈ N},
then

(4.2) 〈g − hn,j , vn,j〉 ≥ ‖g − hn,j‖ − 1/n for every j ∈ N.
Indeed, if Zi, Di and Fi have been constructed for 1 ≤ i ≤ n, then we define
the countable sets

Zn+1 := Q-span{Zn ∪ Fn}, Dn+1 :=
⋃
{Wx : x ∈ Zn+1},

and once we have enumerated

Cn+1 := Q-span{f(Wx) : x ∈ Dn+1} =: {hn+1,j : j ∈ N}
we simply find vectors

Fn+1 := {vn+1,j : j = 1, 2, . . .}
satisfying the corresponding inequality (4.2).
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Define Z :=
⋃
{Zn : n = 1, 2, . . .}‖·‖. Our construction tells us that

f(
⋃∞
n=1Dn) =

⋃
{f(Wx) : x ∈

⋃∞
n=1 Zn}. Given z ∈ Z there exists a se-

quence (zm)m in
⋃
{Zn : n = 1, 2, . . .} such that limm zm = z. Hence, by the

choice of the sets Wx we conclude that

f(z) ∈
⋃
{f(Wzm) : m = 1, 2, . . .}

‖·‖X∗
⊂ f

(⋃
{Dn : n = 1, 2, . . . }

)‖·‖X∗
.

In other words, f(Z) ⊂ f(
⋃
{Dn : n = 1, 2, . . . })‖·‖X∗ and we can apply

Lemma 1 to Z to conclude that

g|Z ∈ Z∗ = span{f(Z)|Z}
‖·‖Z∗ ⊂ span f

(⋃
{Dn : n = 1, 2, . . . }

)∣∣∣
Z

‖·‖Z∗
.

To prove that g ∈ span{f(X)}‖·‖X∗ , fix δ > 0 and pick h ∈ span f(
⋃
{Dn :

n = 1, 2, . . . }) such that

‖g|Z − h|Z‖Z∗ < δ/2.

On the one hand, since Dj ⊂ Dj+1, j ∈ N, we can write

h =
p∑
i=1

qif(di)|Z , qi ∈ Q, di ∈ Dn, i = 1, . . . , p,

for some n ∈ N. On the other hand, since h =
∑p

i=1 qif(di) ∈ Cn we have
h = hn,j for some j ∈ N and without loss of generality we can and do assume
that n is large enough to have δ > 2/n. All things considered, we conclude
that

‖g − h‖X∗ = ‖g − hn,j‖X∗
(4.2)

≤ 1/n+ 〈g − hn,j , vn,j〉

≤ δ/2 + 〈g − hn,j , vn,j〉
vn,j∈Z
≤ δ/2 + ‖(g − hn,j)|Z‖Z∗

= δ/2 + ‖g|Z − h|Z‖Z∗ ≤ δ/2 + δ/2 = δ.

Letting δ → 0 shows that g ∈ span f(X)
‖·‖X∗

.

Another consequence of Lemma 1 is the following improvement of a
result by C. Stegall (see, for instance, [9, Theorem I.5.9 and Remark I.5.11],
[49, Corollary 9] and [51]). Unless otherwise explicitly stated, the notions of
Baire one, Borel measurability, fragmentability, etc. when used for selectors
f : X → X∗ always refer to the norm in X and X∗.

Theorem 4.2. Let (X, ‖ · ‖) be a Banach space and let J : X → 2BX∗

be the duality mapping. The following statements are equivalent :

(i) X is Asplund ;
(ii) J has a Baire one selector ;
(iii) J has a σ-fragmented selector ;
(iv) for some 0 < ε < 1, J has a σ-fragmented ε-selector ;
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(v) for some 0 < ε < 1, J has an ε-selector that sends norm separable
subsets of X into norm separable subsets of X∗.

Proof. For (i)⇒(ii) we use the fact that if X is Asplund, then Theorem 8
in [31] provides a Baire one selector for J . For (ii)⇒(iii) refer for instance
to Proposition 2.3. The implication (iii)⇒(iv) is clear and (iv)⇒(v) follows
from Theorem 2.8.

To finish, if we assume that (v) holds, then Lemma 1 shows that each
separable subspace of Z ⊂ X has separable dual Z∗. Therefore (i) holds.

We note that to prove (i)⇒(iv) there is no need to use the full power
of the Jayne–Rogers theorem, [31, Theorem 8]. Indeed, if X is an Asplund
space, then Proposition 11 in [30] implies that J : X → 2BX∗ is σ-fragmented
as a set-valued map; to obtain now a σ-fragmented ε-selector for J (as
desired in (iv)) we can just apply Theorem 2.1 of this paper.

Corollary 4.3. Let (X, ‖ · ‖) be a Banach space and let J : X → 2BX∗

be the duality mapping. The following statements are equivalent :

(i) X is Asplund ;
(ii) J has a Borel measurable selector ;
(iii) J has an analytic selector.

Proof. This is a consequence of Theorem 4.2 and Corollary 2.7.

The equivalences in the above corollary can also be obtained from [6,
Theorem A], where the techniques used come from vector integration.

We next prove that if X is a Banach space then the unit ball (BX∗ , w∗)
is fragmented by the norm of X∗ if, and only if, it is ε-fragmented for some
fixed 0 < ε < 1.

Corollary 4.4. The following conditions are equivalent for a Banach
space X:

(i) X is an Asplund space;
(ii) there exists 0 < ε < 1 such that (BX∗ , w∗) is ε-fragmented , i.e., for

every non-empty subset C ⊂ BX∗ there exists some w∗-open set V
in BX∗ such that C ∩ V 6= ∅ and ‖ · ‖-diam(C ∩ V ) < ε;

(iii) there exists 0 < ε < 1 such that the duality mapping J is ε-σ-
fragmented.

Proof. The implication (i)⇒(ii) is classical: see for instance [39, 48].
The implication (ii)⇒(iii) follows from [30, Proposition 11]. To prove that
(iii)⇒(i) we read again the proof of (i)⇒(ii) in Theorem 2.1 and observe that
for our given ε and J we can construct a σ-fragmented map fε : (X, ‖ · ‖)→
(X∗, ‖ · ‖X∗) such that ‖ · ‖-dist(fε(x), J(x)) < ε for every x ∈ X; now
Theorem 4.2 completes the proof of (iii)⇒(i).



114 B. Cascales et al.

As far as we know, the above corollary appeared first in [38]; results in
the same spirit have been proved in [14, 18].

5. Approximation of boundaries by descriptive sets. Let us re-
call now the combinatorial principle that underlies the James compactness
theorem as it was found by S. Simons [46], and described in the famous
lemma:

Lemma 2 (Simons). Let (zn)n be a uniformly bounded sequence in `∞(C)
and let W be its convex hull. If B is a subset of C such that for every sequence
(λn)n of positive numbers with

∑∞
n=1 λn = 1 there exists b ∈ B such that

(5.1) sup
{ ∞∑
n=1

λnzn(y) : y ∈ C
}

=
∞∑
n=1

λnzn(b),

then

(5.2) sup
b∈B
{lim sup

n→∞
zn(b)} ≥ inf{sup

C
w : w ∈W}.

A topological space T is said to be angelic if, whenever A is a relatively
countably compact subset of T , its closure A is compact and each element
of A is a limit of a sequence in A; good references for angelic spaces are [15]
and [41]. Cp(T ) stands for the space of real continuous functions endowed
with the topology of pointwise convergence on T .

Lemma 3. Let X be a Banach space, B a James boundary for BX∗ , and
ε ≥ 0 and T ⊂ X∗ such that B ⊂

⋃
t∈T B(t, ε). Assume that for each

y∗ ∈ X∗ all compact subsets of Cp(T ∪ {y∗}, w) are angelic. The following
statements hold :

(i) if ε < 1, then X∗ = spanT ‖·‖;

(ii) if ε = 0, then X∗ = spanT ‖·‖ and BX∗ = co(B)
‖·‖

.

Proof. Statement (ii) follows directly from Theorem I.2 in [19]. State-
ment (i) can be proved exactly with the same ideas of Lemma 4 in [20].
The proof is by contradiction. Fix ε < ε′ < 1. If spanT ‖·‖  X∗, then there
exists x∗∗ ∈ X∗∗ with ‖x∗∗‖ = 1 and x∗∗|T = 0. Take y∗ ∈ BX∗ such that
x∗∗(y∗) > (1 + ε′)/2. Consider the restrictions

BX |T∪{y∗} ⊂ BX∗∗ |T∪{y∗} ⊂ Cp(T ∪ {y∗}, w).

Since BX is w∗-dense in BX∗∗ , our hypothesis ensures the existence of a
sequence (xk)k in BX such that

(5.3) lim
k
x∗(xk) = x∗∗(x∗) = 0
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for every x∗ ∈ T , and

lim
k
y∗(xk) = x∗∗(y∗) >

1 + ε′

2
.

We can assume that

(5.4) y∗(xk) >
1 + ε′

2
for every k ∈ N.

It follows from (5.3) and the inclusion B ⊂
⋃
t∈T B(t, ε) that for every b∗ ∈ B

we have
lim sup
k→∞

b∗(xk) ≤ ε.

Simon’s inequality (Lemma 2) applied to C := BX∗ , B and the sequence
(xk)k ensures the existence of x ∈ co({xk : k ∈ N}) with ‖x‖ < ε′. On the
other hand,

ε′ > ‖x‖ ≥ y∗(x)
(5.4)
>

1 + ε′

2
.

The inequality ε′ > (1 + ε′)/2 implies that ε′ > 1, a contradiction that
finishes the proof.

Recall that a topological space (T, τ) is said to be countably K-deter-
mined (resp. K-analytic) if there exists an upper semicontinuous set-valued
map F : M → 2T for some separable metric space (resp. Polish space) M
such that F (M) = T and F (m) is compact for each m ∈ M . Notice that
this class of spaces properly contains the classes of K-analytic and (so) σ-
compact spaces. The paper [50] is a milestone in the study of Banach spaces
which are countably K-determined when endowed with their weak topolo-
gies. The main result in [41] states that if T is a countably K-determined
space then Cp(T ) is angelic.

The next theorem is the outcome of the previous preparations.

Theorem 5.1. Let X be a Banach space, B a James boundary for BX∗ ,
and 0 ≤ ε < 1 and T ⊂ X∗ such that B ⊂

⋃
t∈T B(t, ε). If (T,w) is countably

K-determined (resp. K-analytic) then:

(i) X∗ = spanT ‖·‖ and X∗ is weakly countably K-determined (resp.
weakly K-analytic).

(ii) Every James boundary for BX∗ has property (S). In particular ,

BX∗ = co(B)
‖·‖

.

Proof. The equality in (i) follows from Lemma 3 if we bear in mind that
T ∪ {y∗} is countably K-determined for every y∗ ∈ X∗ and therefore the
space Cp(T ∪{y∗}) is angelic [41]. If (T,w) is countably K-determined (resp.

K-analytic) then spanT ‖·‖ is again weakly countably K-determined (resp.
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K-analytic) by a result of [50] and thus (i) is proved. Statement (ii) follows
from Lemma 3(ii) applied for T = X∗.

We stress that weakly countably K-determined spaces are weakly Lin-
delöf. Furthermore, if X is a Banach space such that X∗ is weakly Lin-
delöf, then X is Asplund (see [10, Proposition 1.8]). In particular, a fortiori
the Banach spaces we deal with in Theorem 5.1 are Asplund spaces. We
might think that for an Asplund space X and any boundary B of BX∗ we
must have BX∗ = co(B)

‖·‖
. This is not true in general as the following ex-

ample taken from [19] shows. Let ω1 be the first uncountable ordinal and
let X = C([0, ω1]) be the space of continuous functions on [0, ω1] equipped
with the supremum norm. Then X is an Asplund space and if δα denotes
the Dirac measure at α then the set B := {±δα : 0 ≤ α < ω1} is a boundary

for BX∗ for which δω1 ∈ BX∗ \ co(B)
‖·‖

. The best positive results in this
setting that we include below are due to Haydon and Godefroy.

Theorem 5.2 (Haydon, [27]). Let X be a Banach space. The following
statements are equivalent :

(i) `1 6⊂ X;
(ii) for every w∗-compact convex subset C of X∗,

C = co(ExtC)
‖·‖

;

(iii) for every w∗-compact subset K of X∗,

co(K)
w∗

= co(K)
‖·‖
.

Theorem 5.3 (Godefroy, [19]). Let X be a separable Banach space. The
following statements are equivalent :

(i) `1 6⊂ X;
(ii) for every w∗-compact subset K of X∗ and every James boundary B

of K we have co(K)
w∗

= co(B)
‖·‖

;
(iii) for every w∗-compact convex subset C of X∗ and every James

boundary B of C we have C = co(B)
‖·‖

.

The example given on C([0, ω1]) above shows that neither Theorem 5.2
holds for boundaries different from the extreme points ((i)⇒(ii) fails) nor
Theorem 5.3 holds for all boundaries when X is not separable ((i)⇒(ii)
fails). Nonetheless, it is possible to have the best of the above two theorems
for general Banach spaces and arbitrary James boundaries if we replace ‖ · ‖
in X∗ by the topology γ of uniform convergence on bounded and countable
subsets of X.

Theorem 5.4. Let X be a Banach space. The following statements are
equivalent :
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(i) `1 6⊂ X;
(ii) for every w∗-compact subset K of X∗ and any James boundary B

of K we have co(K)
w∗

= co(B)
γ
;

(iii) for every w∗-compact subset K of X∗, co(K)
w∗

= co(K)
γ
.

Proof. (i)⇒(ii). We have to prove that for each ε > 0, x∗ ∈ co(K)
w∗

,
and D ⊂ BX bounded and countable, there exists b∗ ∈ co(B) such that

(5.5) |x∗(d)− b∗(d)| < ε for every d ∈ D.

Define Y := spanD. Let r : X∗ → Y ∗ be the restriction map. Then r(B)
is a boundary for the w∗-compact set r(K) ⊂ Y ∗. Since r is linear and
w∗-w∗-continuous we find that

x∗|Y = r(x∗) ∈ r(co(K)
w∗

) ⊂ co(r(K))
w∗
.

Since Y is separable and does not contain `1, Theorem 5.3 shows that
co(r(K))

w∗
= co(r(B))

‖·‖Y . Therefore

x∗|Y = r(x∗) ∈ co(r(B))
‖·‖Y

,

which clearly implies (5.5).
The implication (ii)⇒(iii) is obvious. Our proof by contradiction for

(iii)⇒(i) is almost the same, with a little extra remark, as the proof for
(iii)⇒(i) in Theorem 5.2 as presented in [27, Theorem 3.3]. Assume that
there exists an isomorphism T : `1 → X onto its image. Then the adjoint
map S := T ∗ : X∗ → (`1)∗ is onto. If we let (en)n denote the canonical basis
in `1 and we identify (`1)∗ = `∞ then S is nothing else than the map

S : X∗ → `∞, x∗ 7→ (x∗(Ten))n.

Notice that S is w∗-w∗-continuous and also γ-‖ · ‖∞-continuous. Choose a
w∗-compact subset C ⊂ `∞ such that

(5.6) co(C)
‖·‖∞  co(C)

w∗

(see the proof of [27, Proposition 3.2]). We now take a w∗-compact subset
K of X∗ such that S(K) = C. Then co(K)

γ  co(K)
w∗

, because otherwise
the equality would imply

co(C)
w∗

= co(S(K))
w∗

= S(co(K))
w∗

= S(co(K)
w∗

)

= S(co(K)
γ
) ⊂ S(co(K))

‖·‖∞ = co(C)
‖·‖∞

,

which contradicts (5.6) and finishes the proof.

We note that the implication (i)⇒(ii) in the last result is indeed the
James compactness theorem for the w∗-topology.
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Corollary 5.5. Let X be a Banach space such that `1 6⊂ X. If K ⊂ X∗
is bounded , γ-closed , convex and for every x ∈ X there exists some k∗ ∈ K
such that

k∗(x) = sup{y∗(x) : y∗ ∈ K}
then K is a w∗-compact subset of X∗.

Proof. Since K is a James boundary for Kw∗ , Theorem 5.4 applies to

yield co(Kw∗)
w∗

= co(K)
γ

= K, which implies that K is w∗-compact.

A Banach space X or more generally a convex subset M of X is said to
have property C (after Corson) if each collection of relatively closed convex
subsets of M with empty intersection has a countable subcollection with
empty intersection. Since closed convex sets in X are also weakly closed, if
(M,w) is Lindelöf then M has property C. A good reference for property C
is [43].

The following lemma follows from [4, Lemma 9] and also from the main
result in [43].

Lemma 4. Let X be a Banach space. If X∗ has property C, then γ is
stronger than the weak topology of X∗.

When X∗ has property C the above results lead to the following conse-
quence.

Corollary 5.6. Let X be a Banach space such that X∗ has property C.
Then for every w∗-compact subset K of X∗ and any James boundary B of
K we have

co(K)
w∗

= co(B)
‖·‖
.

In particular , every boundary for BX∗ has property (S).

Proof. On the one hand, if X∗ has property C then `1 6⊂ X. On the
other hand, if X∗ has property C, Lemma 4 implies that the dual of (X∗, γ)
is X∗∗, and therefore for any convex set C ⊂ X∗ we have Cγ = C

‖·‖. The
corollary now follows from Theorem 5.4.

Theorem 5.7. Let X be a Banach space. Then for every w∗-compact
weakly Lindelöf subset K of X∗ and any James boundary B of K we have

co(K)
w∗

= co(B)
‖·‖
.

Proof. Theorem 4.5 in [5] ensures that

co(K)
w∗

= co(K)
‖·‖X∗

.

Now, we apply [5, Corollary 6.4] to find that spanK‖·‖X∗ contains co(K)
w∗

and it is a weakly Lindelöf determined Banach space, i.e., its dual unit ball
is Corson compact and in particular angelic when endowed with the w∗
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topology. Therefore, every element in the bidual unit ball BX∗∗ is the limit
in the topology of pointwise convergence on co(K)

σ(X∗,X)
of a sequence

in BX . The conclusion now follows from Theorem I.2 in [19].

Some open problems

P.1. The boundary problem. The main question in this area is the so-
called boundary problem that despite significant efforts is still open (see
[19, question V.2] and [9, Problem I.2]): Given a Banach space X and a
boundary B ⊂ BX∗ let σ(X,B) be the topology on X defined by the point-
wise convergence on B. If H is any norm bounded and σ(X,B) compact
subset of X, is it always true that H is weakly compact? For boundaries
with property (S) it is easily seen that the answer to the boundary problem
is positive. It is also known that the answer is positive in the following cases:

(i) if H is convex [46];
(ii) if B = Ext(BX∗) [1];
(iii) if X does not contain an isomorphic copy of `1(Γ ) with |Γ | = c

[3, 7];
(iv) if K compact and X = C(K) with its natural norm ‖ · ‖∞ [2].

We observe that the solution to the boundary problem in full general-
ity without using James’ theorem about weak compactness would imply an
alternative proof of the following version of James’ theorem itself: a Ba-
nach space X is reflexive if, and only if, each element x∗ ∈ X∗ attains its
maximum in BX .

P.2. Topological properties versus property (S). Let X be a Banach space,
let K be a w∗-compact convex subset of X∗ and B any James boundary of
K. If B is weakly Lindelöf, does it have property (S)? We know that the
answer is yes when B is w∗-compact (see [5, Theorem 4.5]). More generally:
Is there a topological property for B that characterizes property (S)?

P.3. Selectors of prescribed Borel class. Let X be a separable Asplund
space. What can be said of the complexity (in the sense of Kechris–Louveau
[33]) of the first Baire class selectors (provided by Theorem 4.2) of duality
mappings of equivalent norms on X?
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Studia Math. 154 (2003), 165–192.

[6] B. Cascales y A. J. Pallarés, La propiedad de Radon–Nikodym en espacios de Banach

duales, Collect. Math. 45 (1994), 263–270.

[7] B. Cascales and R. Shvydkoy, On the Krein–Šmulian theorem for weaker topologies,
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