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Wheeling around von Neumann–Jordan constant
in Banach spaces

by

J. Alonso (Badajoz), P. Martín (Badajoz) and P. L. Papini (Bologna)

Abstract. In recent times, many constants in Banach spaces have been defined
and/or studied. Relations and inequalities among them (sometimes very complicated)
have been indicated. But not much effort has been devoted to organize all connections,
also because the literature on the subject is growing at an always bigger rate. Here we
give some new connections which better the insight on some of them. In particular, we
improve a known inequality between the von Neumann–Jordan and James constants.

1. Introduction. Let X be a real Banach space. The so called von
Neumann–Jordan constant,

CNJ(X) = sup
{
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, not both zero

}
,

was introduced by J. A. Clarkson [3] in 1937. It was also used in [18], and
then studied intensively from 1994 [13]. The paper [12] is a good reference
for properties concerning this constant.

In recent times, many similar constants have been defined and/or stud-
ied in the literature, and some of them appear to be more tractable than
others. Properties and relations concerning them have been proved; inequal-
ities among them (sometimes very complicated) have been indicated. Our
main aim here is to connect some results and indicate some new relations
which, in our opinion, give a better understanding and clarify the role of
these constants and their relationships.

The plan of this paper is as follows. In the next section we just recall
a few basic definitions and related properties. In Section 3, we give some
new results mainly concerning a constant, which we denote by C ′NJ(X),
and which is a slight modification of CNJ(X). In Section 4 we obtain some
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facts connected with the modulus of convexity. Section 5 contains several
examples. Finally, in Section 6 we discuss some relations between the value
of the constants in a space and in its dual.

2. Definitions and notations. We shall denote by SX = {x ∈ X :
‖x‖ = 1} and BX = {x ∈ X : ‖x‖ ≤ 1} the unit sphere and the unit ball
of X. Along the paper we shall consider the following constants:

J(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX},
E(X) = sup{‖x+ y‖2 + ‖x− y‖2 : x, y ∈ SX},

CZ(X) = sup
{
‖x+ y‖ ‖x− y‖
‖x‖2 + ‖y‖2

: x, y ∈ X, not both zero
}
.

The constant J(X), often called the James constant, have been considered in
many papers (for example, [2] and [12]). The constant E(X) was introduced
and studied by J. Gao [8, 9, 10]. The last constant was introduced by G.
Zbăganu [23], who conjectured that CZ(X) and CNJ(X) always coincide,
which was disproved in [1] (see also [21]).

3. The von Neumann–Jordan constant in the unit sphere. The
constant E(X) appears in several recent papers; for example, E(X)/2 was
considered in [20] and [22], where it was denoted by γ(1).

Now we shall consider the constant

(1) C ′NJ(X) = sup
{
‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}
,

i.e., C ′NJ(X) = E(X)/4. Observe that since the function t ∈ R 7→ ‖x+ty‖2+
‖x−ty‖2 is even and convex, it is increasing in [0, 1]. Consequently, in (1) we
can change SX to BX . However, Example 1 shows that to compute C ′NJ(X)
we cannot consider only vectors x, y ∈ SX such that ‖x + y‖ = ‖x − y‖, as
is the case for J(X) [17]. It is clear that for any Banach space X,

1 ≤ C ′NJ(X) ≤ CNJ(X) ≤ 2.

The origin of the von Neumann–Jordan constant is in the well known
characterization of inner product spaces, “the parallelogram law”, from which
it follows that

(2) X is a Hilbert space ⇔ CNJ(X) = 1.

From the weaker characterization given by M. M. Day [5], “the rhombus law”,
one finds that also

(3) X is a Hilbert space ⇔ C ′NJ(X) = 1.

Recall that a space X is called uniformly non-square, (UNS) for short,
if there exists some ε > 0 such that min{‖x − y‖, ‖x + y‖} ≤ 2 − ε for all
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x, y ∈ SX ; equivalently, if J(X) < 2. It is known, and easy to see, that

(4) X is (UNS) ⇔ CNJ(X) < 2 ⇔ C ′NJ(X) < 2.

Examples 1 and 2 below (see table) show that, in general, C ′NJ(X) <
CNJ(X). So we can ask how big the difference between the two constants
can be. The next results give an answer to this question.

Theorem 1. For any Banach space X,

(5) CNJ(X) ≤ 2(1 + C ′NJ(X)−
√

2C ′NJ(X)) ≤ 2.

Proof. In the definition of CNJ(X) we can assume without loss of gen-
erality that 0 ≤ ‖y‖ ≤ ‖x‖ = 1. Let us first consider the case where
0 < ‖y‖ ≤ ‖x‖ = 1. Since∥∥∥∥x± y

‖y‖

∥∥∥∥ =
∥∥∥∥ x

‖y‖
± y

‖y‖
+ x− x

‖y‖

∥∥∥∥ ≥ ∣∣∣∣‖x± y‖+ ‖y‖ − 1
‖y‖

∣∣∣∣,
we obtain

C ′NJ(X) ≥

∥∥x+ y
‖y‖
∥∥2 +

∥∥x− y
‖y‖
∥∥2

4

≥ (‖x+ y‖+ ‖y‖ − 1)2 + (‖x− y‖+ ‖y‖ − 1)2

4‖y‖2
,

and from the inequality

‖x+ y‖+ ‖x− y‖ ≤
√

2
√
‖x+ y‖2 + ‖x− y‖2

we obtain

4‖y‖2C ′NJ(X) ≥ (‖x+ y‖+ ‖y‖ − 1)2 + (‖x− y‖+ ‖y‖ − 1)2

= ‖x+ y‖2 + ‖x− y‖2 + 2(‖y‖ − 1)2

+ 2(‖y‖ − 1)(‖x+ y‖+ ‖x− y‖)

≥ ‖x+ y‖2 + ‖x− y‖2 + 2(‖y‖ − 1)2

+ 2(‖y‖ − 1)
√

2
√
‖x+ y‖2 + ‖x− y‖2

= (
√
‖x+ y‖2 + ‖x− y‖2 +

√
2(‖y‖ − 1))2.

Therefore,

2‖y‖
√
C ′NJ(X) ≥

√
‖x+ y‖2 + ‖x− y‖2 +

√
2(‖y‖ − 1),

and so

(6)
‖y‖
√

2C ′NJ(X) + 1− ‖y‖√
1 + ‖y‖2

≥

√
‖x+ y‖2 + ‖x− y‖2

2(1 + ‖y‖2)
.
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Since the function

f(t) =
t
√

2C ′NJ(X) + 1− t
√

1 + t2
, 0 ≤ t ≤ 1,

attains its maximum at t̄ =
√

2C ′NJ(X)− 1, from (6) we get√
2(1 + C ′NJ(X)−

√
2C ′NJ(X)) = f(t)

≥ f(‖y‖) ≥

√
‖x+ y‖2 + ‖x− y‖2

2(1 + ‖y‖2)
.

The last inequality is also true for ‖y‖ = 0. So, since x and y are arbitrary, we
obtain the left inequality in (5). The right one is equivalent to C ′NJ(X) ≤ 2.

Corollary 1. For any Banach space X,

(7) CNJ(X)/2 +
√
CNJ(X)− 1 ≤ C ′NJ(X).

Proof. Let us consider the polynomial g(t) = 2−CNJ(X)− 2
√

2 t+ 2t2,
whose roots are (1 ±

√
CNJ(X)− 1)/

√
2. From Theorem 1 we know that

g(
√
C ′NJ(X)) ≥ 0. Therefore, either√

C ′NJ(X) ≤ (1−
√
CNJ(X)− 1)/

√
2

or √
C ′NJ(X) ≥ (1 +

√
CNJ(X)− 1)/

√
2.

The first case is impossible because (1−
√
CNJ(X)− 1)/

√
2 < 1. The second

case gives (7).

Corollary 2. For any Banach space X,

(8) CNJ(X)− C ′NJ(X) ≤ 3− 2
√

2.

Proof. Let h(t) = 2− 2
√

2t+ t. From Theorem 1 we know that

CNJ(X)− C ′NJ(X) ≤ 2− 2
√

2C ′NJ(X) + C ′NJ(X)
= h(C ′NJ(X)).

Since h(t) is decreasing in [1, 2], we have h(C ′NJ(X)) ≤ h(1) = 3 − 2
√

2,
which proves (8).

We note that the estimates given by Theorem 1 and Corollary 1 are
sharp. The inequalities in (5) and (7) are equalities if X is not (UNS). The
left inequality in (5) and inequality in (7) are also equalities if X is the space
of Example 2 below. However, note that the estimate (7) is weak for CNJ(X)
small; in fact, if CNJ(X) ≤ 4−2

√
2 then CNJ(X)/2+

√
CNJ(X)− 1 ≤ 1 and

the inequality (7) is obvious. We do not know if the estimate in Corollary 2
is sharp.
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It is immediate to see that CNJ(X) can also be defined as

(9) CNJ(X) = sup
{
‖x+ ty‖2 + ‖x− ty‖2

2(1 + t2)
: x, y ∈ SX , t ∈ [0, 1]

}
,

or, following S. Saejung [19], as CNJ(X) = sup{CNJ(t,X) : t ∈ [0, 1]}, where

CNJ(t,X) = sup
{
‖x+ ty‖2 + ‖x− ty‖2

2(1 + t2)
: x, y ∈ SX

}
.

It was proved by C. Yang and F. Wang [22] that the function

t ∈ [0, 1] 7→ γX(t) := sup
{
‖x+ ty‖2 + ‖x− ty‖2

2
: x, y ∈ SX

}
is continuous in [0, 1]. Hence, the function

t ∈ [0, 1] 7→ CNJ(t,X) =
γX(t)
1 + t2

is also continuous in [0, 1]. Therefore there exists tX ∈ [0, 1] such that

CNJ(X) = CNJ(tX , X).

Hence CNJ(X) is always attained at some t (even if dimX = +∞). But
there are spaces where CNJ(X) is attained at several t: in Hilbert spaces it
is attained for any t ∈ [0, 1] and in the space of Example 4 it is attained for
t = 1 and t =

√
2− 1. The next proposition gives some bounds for tX .

Proposition 1. For any Banach space X,

(10) tX ≥ max
{

1−
√

2CNJ(X)− C2
NJ(X)

CNJ(X)− 1
,
CNJ(X)− 1
CNJ(X)

}
,

where the first term should be considered equal to 0 if CNJ(X) = 1.

Proof. First observe that if CNJ(X) = 1, then X is a Hilbert space
and (10) says that tX ≥ 0, as we already know. So we can assume that
CNJ(X) > 1. For any x, y ∈ SX ,

‖x+ tXy‖2 + ‖x− tXy‖2

2(1 + t2X)
≤ (1 + tX)2

1 + t2X
.

Then

CNJ(X) = CNJ(tX , X) ≤ (1 + tX)2

1 + t2X
,

from which it follows that (CNJ(X) − 1)t2X − 2tX + CNJ(X) − 1 ≤ 0. By
considering the interval where the polynomial (CNJ(X)−1)t2−2t+CNJ(X)
−1 is negative, one sees that tX ≥ (1−

√
2CNJ(X)− C2

NJ(X))/(CNJ(X)−1).
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Let now x, y ∈ SX . Since the function f(t) = ‖x + ty‖2 + ‖x − ty‖2 is
convex we see that

f(tX) = f(tX · 1 + (1− tX) · 0) ≤ tXf(1) + (1− tX)f(0)

= tX(‖x+ y‖2 + ‖x− y‖2) + 2(1− tX).

Therefore,
‖x+ tXy‖2 + ‖x− tXy‖2

2(1 + t2X)
≤ tX(‖x+ y‖2 + ‖x− y‖2) + 2(1− tX)

2(1 + t2X)

=
2tX

1 + t2X

(
‖x+ y‖2 + ‖x− y‖2

4

)
+

1− tX
1 + t2X

≤ 2tX
1 + t2X

CNJ(X) +
1− tX
1 + t2X

,

and since x and y are arbitrary,

CNJ(X) ≤ 2tX
1 + t2X

CNJ(X) +
1− tX
1 + t2X

,

which implies that CNJ(X)t2X−(2CNJ(X)−1)tX +CNJ(X)−1 ≤ 0. Similarly
to the above case, this implies that tX ≥ (CNJ(X)− 1)/CNJ(X).

Remark 1. The two functions of CNJ considered in Proposition 1 are
increasing; they meet for CNJ = 1 and CNJ = (2 +

√
2)/2; and (1 −√

2CNJ − C2
NJ)/(CNJ − 1) > (CNJ − 1)/CNJ for CNJ > (2 +

√
2)/2. Propo-

sition 1 also shows that if X is not (UNS) then tX = 1. If we also consider
C ′NJ, then the proof of Proposition 1 gives us more information about tX . In
fact, we have shown that

CNJ ≤
2tX

1 + t2X
C ′NJ +

1− tX
1 + t2X

,

which implies that CNJt
2
X − (2C ′NJ − 1)tX + CNJ − 1 ≤ 0, and so

(11) 0 ≤
2C ′NJ − 1− p

2CNJ
≤ tX ≤

2C ′NJ − 1 + p

2CNJ
≤ 1,

where p =
√

4(C ′2NJ − C2
NJ + CNJ − C ′NJ) + 1. Since C ′NJ ≤ CNJ we have

(2C ′NJ− 1− p)/(2CNJ) ≥ (CNJ− 1)/CNJ, which improves one of the bounds
in (10).

4. The role of the modulus of convexity. The modulus of convexity
of a normed space X is defined for ε ∈ [0, 2] as

δX(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ SX , ‖x− y‖ ≥ ε},
where “SX ” and “≥” can be (equivalently) replaced by “BX ” and “=” [4].
Next we recall some results depending on this modulus.
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Obviously, the modulus of convexity is a nondecreasing function in [0, 2].
Moreover, the function ε ∈ (0, 2] 7→ δX(ε)/ε is also nondecreasing [6].

A normed space X is (UNS) (equivalently, J(X) < 2) if and only if
δX(ε) > 0 for some 0 < ε < 2; and it is strictly convex if and only if
δX(2) = 1.

Proposition 2 ([2, Remark 2.4]). If X is (UNS) then

(12) J(X) = 2(1− δ(J(X))).

Note that the equality (12) can fail to hold if X is not (UNS). Consider,
for example, the space C(I) with the norm ‖f‖ = ‖f‖2 + ‖f‖∞, which is
strictly convex but not (UNS).

Proposition 3 ([11, Theorem 3.1]). For any normed space X and 0 <
ε ≤ ε′ ≤ 2,

(13)
δX(ε′)− δX(ε)

ε′ − ε
≤ 1− δX(ε)

2− ε
.

Proposition 4. For any normed space X,

(14) C ′NJ(X) = sup{ε2/4 + (1− δX(ε))2 : 0 ≤ ε ≤ 2}.
Proof. Let K = sup{ε2/4 + (1− δX(ε))2 : 0 ≤ ε ≤ 2}. For x, y ∈ SX we

have δX(‖x− y‖) ≤ 1− ‖x+ y‖/2. Then
‖x+ y‖2 + ‖x− y‖2

4
≤ ‖x− y‖

2

4
+ (1− δX(‖x− y‖))2 ≤ K,

from which it follows that C ′NJ(X)≤K. On the other hand, let 0≤ ε≤ 2.
Then, for any µ > 0 there exist x, y ∈ S such that ‖x − y‖ = ε and 1 −
‖x+ y‖/2 ≤ δX(ε) + µ. Hence

C ′NJ(X) ≥ ‖x+ y‖2 + ‖x− y‖2

4
≥ ε2

4
+ (1− δX(ε)− µ)2.

Since µ is arbitrary, we obtain C ′NJ(X) ≥ K, which completes the proof.

With the help of the above results we are ready to prove one of our main
results.

Theorem 2. For any normed space X,

(15) C ′NJ(X) ≤ J(X).

Proof. From (14) it is enough to see that for every 0 ≤ ε ≤ 2,

(16) ε2/4 + (1− δX(ε))2 ≤ J(X).

Recall that
√

2 ≤ J(X) ≤ 2. We can assume that J(X) < 2 because other-
wise J(X) = 2 = C ′NJ(X) and (15) trivially holds. Let

α = (2
√
J(X)− 1)/J(X).
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Then
0 < αJ(X) < J(X) <

√
4J(X)− J(X)2 < 2.

To prove (16) we shall consider several cases according to the location of ε
in the subintervals of [0, 2] defined by the above inequalities. For simplicity
we shall denote C ′NJ(X), J(X) and δX by C ′, J and δ, respectively.

Case 1. Assume that 0 ≤ ε ≤ αJ . Then
ε2

4
+ (1− δ(ε))2 ≤ α2J2

4
+ (1− δ(ε))2 ≤ α2J2

4
+ 1 = J.

Case 2. Assume that αJ ≤ ε ≤ J . From (13) we know that

δ(J)− δ(αJ)
J − αJ

≤ 1− δ(αJ)
2− αJ

,

which, jointly with (12), implies that

δ(αJ) ≥ αJ(1− δ(J)) + 2δ(J)− J
2− J

=
J
√
J − 1 + 2− 2J

2− J
.

Since δX is a nondecreasing function, the above implies that

ε2

4
+ (1− δ(ε))2 ≤ J2

4
+ (1− δ(αJ))2 ≤ J2

4
+
(
J − J

√
J − 1

2− J

)2

.

Now we shall see that the last term above is less than or equal to J . Since
2J − 2 ≤

√
(2J − 2)2 + (J − 1)(J − 2)2 = J

√
J − 1, we have

0 ≤ J − J
√
J − 1

2− J
≤ 1,

and therefore
J2

4
+
(
J − J

√
J − 1

2− J

)2

≤ J2

4
+
J − J

√
J − 1

2− J

= J

(
J

4
+

1−
√
J − 1

2− J

)
.

It only remains to see that J
4 + 1−

√
J−1

2−J ≤ 1, which is equivalent to J2−6J+
4
√
J − 1 + 4 ≥ 0. But

J2 − 6J + 4
√
J − 1 + 4

= (1−
√

2 +
√
J − 1)(1 +

√
2 +
√
J − 1)(1−

√
J − 1)2 ≥ 0,

because
√
J − 1 ≥

√√
2− 1 ≥

√
2− 1.

Case 3. Assume that J ≤ ε ≤
√

4J − J2. Then
ε2

4
+ (1− δ(ε))2 ≤ ε2

4
+ (1− δ(J))2 =

ε2

4
+
J2

4
≤ 4J − J2

4
+
J2

4
= J.
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Case 4. Assume that
√

4J − J2 ≤ ε ≤ 2. Then, since

2− J
2J

=
δ(J)
J
≤ δ(

√
4J − J2)√
4J − J2

,

we obtain
ε2

4
+ (1− δ(ε))2 ≤ 1 + (1− δ(ε))2 ≤ 1 + (1− δ(

√
4J − J2))2

≤ 1 +
(

1− (2− J)
√

4J − J2

2J

)2

,

and the last term above is less than or equal to J if and only if

(2− J)(J2 − 2J + 8− 4
√

4J − J2) ≤ 0.

Finally, J2−2J+8−4
√

4J − J2 = (J2−3J+2)+(J+6−4
√

4J − J2) ≤ 0
because t2− 3t+ 2 ≤ 0 for t ∈ [1, 2] and t+ 6− 4

√
4t− t2 ≤ 0 for t ∈ [18

17 , 2],
and J belongs to both intervals.

Question 1. In all examples we know , the inequality CNJ(X) ≤ J(X)
holds. Does it hold for any space? Does equality hold only when both constants
are equal to 2?

It is not difficult to see that the inequality

(17) C ′NJ(X) ≤ 1 + J(X)2/4

holds for any normed space X, and it has been an open problem if the
analogous inequality is valid for CNJ(X) instead of C ′NJ(X). Some weaker
inequalities have been proved in [16], while a solution of the problem has
been claimed in [19], but with a doubtful proof. The next theorem answers
the problem in the affirmative, giving an even sharper inequality. It is based
on the inequality (5), which in fact improves (17).

Theorem 3. For any normed space X,

(18) CNJ(X) ≤ 2(1 + J(X)−
√

2J(X)).

Proof. From (5) we know that CNJ(X) ≤ 2(1 + C ′NJ(X)−
√

2C ′NJ(X)).
The function t ∈ (1, 2) 7→ 2(1 + t −

√
2t) is increasing, so (18) follows

from (15).

Remark 2. Since J = J(X) ≥
√

2, we have

2(1 + J −
√

2J) = 1 +
J2

4
− 1

4
(
√
J − 2 +

√
2)(
√
J + 2 +

√
2)(
√

2−
√
J)2

≤ 1 +
J2

4
as anticipated. Also note that the bound in (18) is sharp in non-(UNS)
spaces.
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With regard to the lower bounds of CNJ(X) it is well known (see [12])
that J(X)2/2 ≤ CNJ(X). The next proposition shows that the same bound
is valid for C ′NJ(X), and is also sharp in non-(UNS) spaces.

Proposition 5. For any normed space X,

J(X)2/2 ≤ C ′NJ(X).

Proof. From (14) and (12) it follows that

C ′NJ(X) ≥ J(X)2/4 + (1− δX(J(X)))2 = J(X)2/2.

With regard to CZ(X), recall that for any normed space X one has
1 ≤ CZ(X) ≤ CNJ(X) ≤ 2, but it seems that there is no apparent relation
between this constant and C ′NJ(X). In fact, for inner product spaces and for
non-(UNS) spaces one has CZ(X) = C ′NJ(X); for the space in Example 2,
CZ(X) > C ′NJ(X); and for the space in Example 3, CZ(X) < C ′NJ(X).

We now point out another difference concerning the behaviour of CNJ(X)
and C ′NJ(X). By replacing x and y by (x+ y)/2 and (x− y)/2, respectively,
one sees that for any normed space X the well known equality

inf
{
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, not both zero

}
=

1
CNJ(X)

holds. Hence it is natural to wonder if inf{(‖x+y‖2+‖x−y‖2)/4 : x, y ∈ SX}
coincides with 1/C ′NJ(X). This is true if X is an inner product space or a
non-(UNS) space. Example 2 shows that, in general, the equality is false: for
x = (−1/3, 1) and y = (−1, 1/3) one gets (‖x + y‖2 + ‖x − y‖2)/4 = 2/3
< 4/(3 + 2

√
2) = 1/C ′NJ(X).

The characteristic of convexity of a Banach spaceX is defined as ε0(X) =
sup{ε : δX(ε) = 0}. E. M. Mazcuñán-Navarro [15] proved that for any Ba-
nach space X, CNJ(X) ≥ 1 + ε0(X)2/4. From (14) it follows immediately
that also

C ′NJ(X) ≥ 1 + ε0(X)2/4.

For the space in Example 1, C ′NJ(X) = 5/4, and it is easy to see that
ε0(X) = 1. This shows that the above inequality is sharp.

5. Some examples. In this section we shall compute the value of C ′NJ(X)
for some spaces X. We shall complete the section with a table where the
values of CNJ(X) and J(X), and the respective references, are also included.

For x = (x1, x2) ∈ R2, let

‖x‖∞ = max{|x1|, |x2|}, ‖x‖1 = |x1|+ |x2|, ‖x‖2 =
√
x2

1 + x2
2.

Example 1. Let X be R2 endowed with the norm

‖x‖ =
{ ‖x‖∞ if x1x2 ≤ 0,
‖x‖1 if x1x2 ≥ 0,
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Then C ′NJ(X) = 5/4 and it is attained only at the points ±x and ±y when x
and y are two adjacent vertices of SX (that is affine to a regular hexagon).

Proof. To compute C ′NJ(X) we can consider only the following two cases
according to the position of x = (x1, x2) and y = (y1, y2) in SX .

Case 1: Assume that x = (x1, 1) and y = (y1, 1) with 0 ≤ x1 ≤ y1 ≤ 1.
Then ‖x+ y‖2 + ‖x− y‖2 = 4 + |x1 − y1|2 ≤ 5, and the equality is attained
only at the points x = (0, 1), y = (1, 1).

Case 2: Assume that x = (x1, 1) and y = (1, y2) with 0 ≤ x1 ≤ y2 ≤ 1.
Then ‖x+y‖2 +‖x−y‖2 = (1+y2)2 +(2−x1−y2)2 = 5+2(x1 +y2)(y2−1)
+ x1(x1 − 2) ≤ 5, and the equality is attained only at the points x = (0, 1),
y = (1, 1).

Example 2. Let X be R2 endowed with the norm

‖x‖ =
{ ‖x‖2 if x1x2 ≥ 0,
‖x‖∞ if x1x2 ≤ 0.

Then C ′NJ(X) = (3 + 2
√

2)/4 ≈ 1.457, and it is attained only at the points
x = ±(1/

√
2, 1/
√

2), y = ±(−1, 1).

Proof. First, observe that for x ∈ X,
1√
2
‖x‖ ≤ ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖2 ≤

√
2 ‖x‖.

To compute C ′NJ(X) we can consider only the following four cases according
to the position of x = (x1, x2) and y = (y1, y2) in SX .

Case 1: Assume that x1x2, y1y2 ≥ 0. Then ‖x‖2 = ‖y‖2 = 1 and

‖x+ y‖2 + ‖x− y‖2 ≤ ‖x+ y‖22 + ‖x− y‖22 = 4 < 3 + 2
√

2.

Case 2: Assume that x1, x2 ≥ 0 and y = (y1, 1) with −1 ≤ y1 ≤ 0. Then
‖x‖2 = ‖y‖∞ = 1 and ‖x − y‖ = ‖x − y‖∞ = x1 − y1. If x1 + y1 ≥ 0 then
‖x+ y‖ = ‖x+ y‖2 and therefore

‖x+ y‖2 + ‖x− y‖2 = x2
1 + x2

2 + 2y2
1 + 1 + x2

1 + 2x2 = 2 + 2y2
1 + x2

1 + 2x2

≤ 2 + 3x2
1 + 2x2 = 5− 3x2

2 + 2x2 < 3 + 2
√

2.

Conversely, if x1 + y1 < 0 then ‖x+ y‖ = ‖x+ y‖∞ = x2 + 1 and therefore

‖x+ y‖2 + ‖x− y‖2 = x2
1 + x2

2 + 1 + 2x2 − 2x1y1 + y2
1

= 2 + 2x2 − 2x1y1 + y2
1 ≤ 2 + 2x2 + 2x1 + y2

1

≤ 3 + 2(x1 + x2) ≤ 3 + 2
√

2.

Case 3: Assume that x = (x1, 1), y = (y1, 1) with −1 ≤ x1, y1 ≤ 0.
Then ‖x+ y‖ = ‖x+ y‖∞ = 2 and ‖x− y‖ = |x1 − y1| and therefore

‖x+ y‖2 + ‖x− y‖2 = 4 + |x1 − y1|2 ≤ 5 < 3 + 2
√

2.
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Case 4: Assume that x = (x1, 1), y = (−1, y2) with −1 ≤ x1 ≤ 0 and
0 ≤ y2 ≤ 1. Then ‖x+ y‖ = ‖x+ y‖∞ and ‖x− y‖ = ‖x− y‖2 and therefore

‖x+ y‖2 + ‖x− y‖2 = max{(1− x1)2, (1 + y2)2}+ (1 + x1)2 + (1− y2)2

= max{2(1 + x2
1) + (1− y2)2, 2(1 + y2

2) + (1 + x1)2}
≤ 4 + max{(1− y2)2, (1 + x1)2} ≤ 5 < 3 + 2

√
2.

Finally, it follows from the above that the equality ‖x + y‖2 + ‖x − y‖2
= 3 + 2

√
2 is only possible in Case 2 and when x = (1/

√
2, 1/
√

2) and
y = (−1, 1).

Example 3. Let X be R2 endowed with the norm

‖x‖ =
{ ‖x‖2 if x1x2 ≥ 0,
‖x‖1 if x1x2 ≤ 0.

Then C ′NJ(X) = 3/2, and it is attained only at the points x = (±1, 0),
y = (±0, 1).

Proof. Note that for x ∈ X,
1√
2
‖x‖ ≤ ‖x‖2 ≤ ‖x‖ ≤ ‖x‖1 ≤

√
2 ‖x‖.

Since SX is symmetric with respect to the lines x2 = ±x1, to compute
C ′NJ(X) we can consider only the following three cases according to the
position of x = (x1, x2) and y = (y1, y2) in SX .

Case 1: Assume that x1, x2, y1, y2 ≥ 0. Then ‖x‖2 = ‖y‖2 = 1, ‖x+y‖ =
‖x+ y‖2 and ‖x− y‖ = ‖x− y‖1. Therefore

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖22 + (|x1 − y1|+ |x2 − y2|)2

= ‖x+ y‖22 + ‖x− y‖22 + 2|x1 − y1| |x2 − y2|
= 4 + 2|x1 − y1| |x2 − y2| ≤ 6.

Case 2: Assume that 1/
√

2 ≤ x2 ≤ x1 ≤ 1 and 1/2 ≤ −y1 ≤ y2 ≤ 1.
Then ‖x‖ = ‖x‖2, ‖y‖ = ‖y‖1. Since x1 + y1 = x1 + y2 − 1 ≥ x1 − 1/2 > 0
and x2 + y2 > 0, we have ‖x+ y‖ = ‖x+ y‖2. If x2 − y2 ≥ 0, then

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖22 + ‖x− y‖22 = 2(‖x‖22 + ‖y‖22)

≤ 2(‖x‖2 + ‖y‖2) ≤ 4 < 6.

Conversely, if x2 − y2 ≤ 0, then

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖22 + ‖x− y‖21
= 2(x2

1 + x2
2) + 2(y2

1 + y2
2 + |x1 − y1| |x2 − y2|)

= 4 + 2x1(1− x2) + 2y1(y2 + x1 + x2)
≤ 4 + 2x1(1− x2) ≤ 6.
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Case 3: Assume that x1 ≤ 0 ≤ x2 and y1 ≤ 0 ≤ y2. Then

‖x+ y‖2 + ‖x− y‖2 = ‖x+ y‖21 + ‖x− y‖22
≤ 4 + ‖x− y‖22
= 4 + 2(x1 − y1)2 ≤ 6.

Checking, in the above cases, when the inequalities can be equalities it
follows that the value ‖x+ y‖2 + ‖x− y‖2 = 6 is attained only at the points
x = (±1, 0) and y = (0,±1).

Example 4. Let X be R2 endowed with the norm

‖(x1, x2)‖ = max{|x1|+ (
√

2− 1)|x2|, |x2|+ (
√

2− 1)|x1|}.

Then C ′NJ(X) = 4 − 2
√

2, and it is attained only at the points ±x and ±y,
where x and y are two adjacent vertices of SX (that is a regular octagon).

Proof. It is known that CNJ(X) = 4 − 2
√

2 (see [1]). Then, taking x =
(1, 0) and y = (1/

√
2, 1/
√

2) we have

4− 2
√

2 =
‖x+ y‖2 + ‖x− y‖2

4
≤ C ′NJ(X) ≤ CNJ(X)

= 4− 2
√

2.

A detailed study similar to that in the preceding examples shows that C ′NJ(X)
is attained only at the points x and y that are adjacent vertices of SX .
On the contrary, CNJ(X) is attained at other points (e.g., x = (1, 0), y =
(0,
√

2− 1)).

Example 5. Let X be the space `p. Then

C ′NJ(X) = CNJ(X) =
{

22/p−1 if 1 ≤ p ≤ 2,
21−2/p if p ≥ 2.

Proof. The value of CNJ(X) is well known. Since C ′NJ(X) ≤ CNJ(X) and
X contains an isometric copy of `(2)

p = (R2, ‖ ‖p), to prove the equality it is
enough to see that there exist unit vectors x, y ∈ `(2)

p such that

‖x+ y‖2p + ‖x− y‖2p
4

=
{

22/p−1 if 1 ≤ p ≤ 2,
21−2/p if p ≥ 2.

Indeed, take x = (1, 0), y = (0, 1) if 1 ≤ p ≤ 2, and x = (2−1/p, 2−1/p),
y = (−2−1/p, 2−1/p) if p ≥ 2.
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X C′NJ(X) CNJ(X) J(X) CZ(X)

non-(UNS) spaces 2 2 2 2

Hilbert spaces 1 1
√

2 1

Example 1: `∞ − `1

5

4
= 1.25

3 +
√

5

4
≈ 1.309 [1]

3

2
= 1.5 [12]

5

4
= 1.25 [1]

Example 2: `2 − `∞

3 + 2
√

2

4
≈ 1.457

3

2
= 1.5 [1]

1 +
√

2√
2

≈ 1.707 [1]

3

2
= 1.5 [1]

Example 3: `2 − `1

3

2
= 1.5

3

2
= 1.5 [1]

√
8√
3

≈ 1.633 [12]

√
2

≈ 1.414 [1]

Example 4: Octagon
4− 2

√
2

≈ 1.172

4− 2
√

2

≈ 1.172 [1]

√
2

≈ 1.414 [1]

4− 2
√

2

≈ 1.172 [1]

Example 5: `p

1 ≤ p ≤ 2

p ≥ 2

22/p−1

21−2/p

22/p−1
[3]

21−2/p
[3]

21/p
[2]

21−1/p
[2]

22/p−1
[1]

21−2/p
[1]

6. Passing to the dual. The examples in the previous section are
relevant because they imply some interesting facts. Let X∗ denote the dual
space of X. It is well known that CNJ(X) = CNJ(X∗) (see, e.g., [14]). On the
contrary, the value on a space is in general different from that on its dual for
the constants J(X) [12] and CZ(X) [1]. This is the case for the spaces (dual to
each other) in Examples 2 and 3; this also shows that, in general, C ′NJ(X) 6=
C ′NJ(X∗). Since those spaces are reflexive (in fact, two-dimensional) they
show that passing to the dual the value of the three constants can increase
and decrease as well.

We can ask how big the difference can be for the different constants.
Concerning J(X) no sharp inequality seems to be known. We can only deduce
an estimate by using the inequalities (see [12, Theorem 1])

(19) 2J(X)− 2 ≤ J(X∗) ≤ J(X)
2

+ 1.

From (19) we obtain the estimate J(X∗)−J(X) ≤ 1−J(X)/2 ≤ 1−
√

2/2,
and a similar one for J(X)−J(X∗). But probably this estimate is not sharp.

Now we shall give an estimate concerning the difference of the values of
the constant C ′NJ on X and on X∗.
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Theorem 4. For any normed space X,
C ′NJ(X)/2 +

√
C ′NJ(X)− 1 ≤ C ′NJ(X∗)(20)

≤ 2(1 + C ′NJ(X)−
√

2C ′NJ(X)).

Proof. From the inequalities C ′NJ(X) ≤ CNJ(X), (7) and (5), we obtain

C ′NJ(X)/2 +
√
C ′NJ(X)− 1 ≤ CNJ(X)/2 +

√
CNJ(X)− 1

= CNJ(X∗)/2 +
√
CNJ(X∗)− 1

≤ C ′NJ(X∗) ≤ CNJ(X∗) = CNJ(X)

≤ 2(1 + C ′NJ(X)−
√

2C ′NJ(X)).

Note that both inequalities in (20) are sharp if X is non-(UNS), the left
one is sharp for the space in Example 3, and the right one is sharp for the
space in Example 2.

Corollary 3. For any normed space X,
(21) |C ′NJ(X)− C ′NJ(X∗)| ≤ 3− 2

√
2.

Proof. From (20) it follows that
C ′NJ(X)− C ′NJ(X∗) ≤ C ′NJ(X)−max{1, C ′NJ(X)/2 +

√
C ′NJ(X)− 1}

= min{C ′NJ(X)− 1, C ′NJ(X)/2−
√
C ′NJ(X)− 1}.

Now, since the functions f1(t) = t − 1 and f2(t) = t/2 −
√
t− 1 are, re-

spectively, increasing and decreasing in [1, 2], we see that for t = 4 − 2
√

2,
f1(t) = f2(t) = 3 − 2

√
2 ≥ min1≤t≤2{f1(t), f2(t)}, and we conclude that

C ′NJ(X)− C ′NJ(X∗) ≤ 3− 2
√

2. On the other hand, (20) yields

C ′NJ(X∗)− C ′NJ(X) ≤ 2 + C ′NJ(X)− 2
√

2C ′NJ(X) ≤ 3− 2
√

2.
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