
STUDIA MATHEMATICA 188 (2) (2008)

Can B(`p) ever be amenable?

by

Matthew Daws (Leeds) and Volker Runde (Edmonton)

Abstract. It is known that B(`p) is not amenable for p = 1, 2,∞, but whether or
not B(`p) is amenable for p ∈ (1,∞) \ {2} is an open problem. We show that, if B(`p) is
amenable for p ∈ (1,∞), then so are `∞(B(`p)) and `∞(K(`p)). Moreover, if `∞(K(`p)) is
amenable so is `∞(I,K(E)) for any index set I and for any infinite-dimensional Lp-space E;
in particular, if `∞(K(`p)) is amenable for p ∈ (1,∞), then so is `∞(K(`p ⊕ `2)). We show
that `∞(K(`p ⊕ `2)) is not amenable for p = 1,∞, but also that our methods fail us if
p ∈ (1,∞). Finally, for p ∈ (1, 2) and a free ultrafilter U over N, we exhibit a closed left
ideal of (K(`p))U lacking a right approximate identity, but enjoying a certain very weak
complementation property.

Introduction. In his seminal memoir [Joh 1], B. E. Johnson initiated
the theory of amenable Banach algebras. The choice of terminology is moti-
vated by [Joh 1, Theorem 2.5]: a locally compact group G is amenable in the
usual sense (see [Pat], for instance) if and only if its group algebra L1(G) is
an amenable Banach algebra.

Ever since [Joh 1] was published, there have been ongoing efforts to de-
termine, for particular classes of Banach algebras, which algebras in them
are the amenable ones. One spectacular result in this direction is the charac-
terization of the amenable C∗-algebras: a C∗-algebra is amenable if and only
if it is nuclear (this result, mostly credited to A. Connes and U. Haagerup,
is the culmination of the efforts of many mathematicians; see [Run] or [Tak]
for self-contained accounts).

One particular class of Banach algebras for which the problem of char-
acterizing its amenable members is still wide open is the class of Banach
algebras B(E), the algebras of all bounded linear operators on a Banach
space E. From a philosophical point of view, this problem ought to be easy:
amenability can often be thought of as a weak finiteness condition, and, for
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any infinite-dimensional Banach space E, the algebra B(E) should simply
be too “large” to be amenable. Already Johnson asked in [Joh 1]:

• Is B(E) ever amenable for infinite-dimensional E? ([Joh 1, 10.4])
• Is B(H) amenable for an infinite-dimensional Hilbert space H? ([Joh 1,

10.2])

The Hilbert space case was settled relatively quickly: in [Was], S. Wasser-
mann showed that a nuclear von Neumann algebra had to be subhomo-
geneous. In view of the equivalence of amenability and nuclearity for C∗-
algebras, this means that B(H) can be amenable only if dim H <∞.

Ever since, very little progress has been made in the general Banach space
case. Until recently, it was not even known whether B(`p) was amenable or
not for any p ∈ [1,∞] other than 2. This situation changed with C. J. Read’s
paper [Rea]: making ingenious use of random hypergraphs, Read showed that
B(`1) is not amenable. Moreover, he showed that, for any p ∈ [1,∞] \ {2},
the Banach algebra `∞-

⊕∞
n=1 B(`pn) also fails to be amenable (the p = 2 case

already follows from Wassermann’s result). Subsequently, G. Pisier simpli-
fied Read’s proof by replacing the random hypergraphs of [Rea] with ex-
panders ([Pis]). Eventually, N. Ozawa simplified Pisier’s argument even fur-
ther and succeeded in giving a proof that simultaneously established the
non-amenability of B(`p) for p = 1, 2,∞ and of `∞-

⊕∞
n=1 B(`pn) for any

p ∈ [1,∞] ([Oza]); even though it is not explicitly stated in [Oza], the proof
also works for B(c0).

In the present paper, we investigate what consequences the hypothetical
amenability of B(`p) for p ∈ (1,∞) \ {2} would have.

Our first result is that, if B(`p) is amenable, then so is `∞(B(`p)). As the
much “smaller” algebra `∞-

⊕∞
n=1 B(`pn) is not amenable, this lends again

support to the belief that B(`p) is not amenable (even though, of course,
this is a far cry from a proof).

A straightforward consequence of the amenability of `∞(B(`p)) is that
`∞(K(`p)) is amenable as well, and we shall devote most of this paper to
exploring the consequences of the amenability of that particular Banach
algebra and, more generally, of `∞(K(E)) for particular Banach spaces E.
(Incidentally, the question of whether `∞(K(E)) is amenable for specific
Banach spaces E seems to have received almost no attention in the literature;
the only references known to the authors are [CS-R] and [L-L-W], where the
case E = `2 is settled in the negative.)

First, we show that, due to the separability of K(`p), the amenability of
`∞(K(`p)) already entails the amenability of `∞(I,K(`p)) for every index set
I and thus of (K(`p))U for every ultrafilter U (so that K(`p) is ultra-amenable
in the terminology of [Daw 2]).
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Next, we see that the amenability of `∞(K(`p)) forces `∞(I,K(E)) to
be amenable for every index set I and every infinite-dimensional Lp-space
E in the sense of [L-P]. In particular, if `∞(K(`p)) is amenable, the so is
`∞(K(`p ⊕ `2)), which is interesting because B(`p ⊕ `2) is known to be non-
amenable.

We then study the amenability of `∞(K(E ⊕ F )) for certain Banach
spaces E and F . Using the theory of operator ideals (see [Pie]), we show that
`∞(K(E ⊕ `2)) is not amenable for E = c0, `

∞, and `1, but we also show
that our methods fail to establish the non-amenability of `∞(B(`p ⊕ `2)) for
p ∈ (1,∞).

Finally, we take a look at a particular left ideal of (K(`p))U for p ∈ (1, 2)
and U a free ultrafilter over N. We show that this ideal lacks a right ap-
proximate identity and, at the same time, enjoys a certain complementation
property, which is unfortunately too weak to obtain a contradiction to the
amenability of (K(`p))U .

Acknowledgments. This research was initiated while the first author
was visiting the University of Alberta in the summer of 2007; the financial
support and the kind hospitality are gratefully acknowledged. Both authors
would like to thank Andreas Defant, Albrecht Pietsch, and Nicole Tomczak-
Jaegermann for valuable help with operator ideals.

1. Amenable Banach algebras. The definition of an amenable Ba-
nach algebra given in [Joh 1] is in terms of certain derivations being inner.
Throughout this paper, however, we shall not rely on that definition directly,
but rather on a more intrinsic, but equivalent characterization, also due to
Johnson ([Joh 2]).

Let A be a Banach algebra, and let E and F be a left and right Banach
A-module, respectively. We use ⊗̂ to denote the projective tensor product of
Banach spaces. The Banach space E ⊗̂F becomes a Banach A-bimodule via

a · (x⊗ y) := a ·x⊗ y and (x⊗ y) · a := x⊗ y · a (a ∈ A, x ∈ E, y ∈ F ).

In particular, A ⊗̂ A is a Banach A-bimodule in a canonical manner. With
respect to these module operatations, the diagonal map ∆ : A ⊗̂ A → A
induced by multiplication, i.e., ∆(a ⊗ b) = ab for a, b ∈ A, is a bimodule
homomorphism; if we want to emphasize the algebra A, we sometimes write
∆A for ∆.

Definition 1.1. Let A be a Banach algebra. An approximate diagonal
for A is a bounded net (dα)α in A ⊗̂ A such that

(1) a · dα − dα · a→ 0 (a ∈ A)
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and

(2) a∆dα → a (a ∈ A).

If A has an approximate diagonal bounded, we say that A is amenable.

Remarks.

1. If A is amenable and has an identity 1A, then there is an approximate
diagonal (dα)α∈A for A such that ∆dα = 1A for all α ∈ A.

2. If A is amenable with an approximate diagonal bounded by C ≥ 1,
then A is also called C-amenable. It is clear from (2) that it does not
make sense to speak of C-amenability for any C ∈ (0, 1).

For modern accounts of the theory of amenable Banach algebras, see
[Dal] or [Run].

The hereditary properties of Banach-algebraic amenability are well un-
derstood. For instance, quotients of amenable Banach algebras are again
amenable ([Run, Corollary 2.3.2]), and a closed ideal of an amenable Banach
algebra is amenable if and only if it has a bounded approximate identity and
if and only if it is weakly complemented ([Run, Theorem 2.3.7]). Whether
or not a particular subalgebra of an amenable Banach algebra is amenable
is a much more delicate question and an elegant characterization is certainly
out of reach. Nevertheless, some partial results exist such as the following
([G-J-W, Theorem 6.2]):

Theorem 1.2. Let A be a Banach algebra with a bounded approximate
identity , let P1 ∈ M(A) be a projection, and let P2 := idA − P1. Suppose
further that ∆A maps P2AP1 ⊗̂ P1AP2 onto P2AP2. Then A is amenable if
and only if P1AP1 is amenable.

Here,M(A) stands for the multiplier algebra of A ([Dal, p. 60]).
The Banach algebra A in Theorem 1.2 has a matrix-like structure thanks

to the projections P1 and P2. We shall now prove a necessary condition for
the non-amenability of such algebras:

Proposition 1.3. Let A be a Banach algebra, let P1 ∈ M(A) be an
idempotent , and let P2 := idA − P1. Suppose that there is a closed ideal I of
A such that P2IP1 = P2AP1, but P1IP2 ( P1AP2. Then A is not amenable.

Proof. For j, k ∈ {1, 2}, set
Aj,k := PjAPk and Ij,k := PjIPk.

It follows that

A ∼=

[
A1,1 A1,2

A2,1 A2,2

]
and I ∼=

[
I1,1 I1,2

I2,1 I2,2

]
and thus
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A/I ∼=

[
A1,1/I1,1 A1,2/I1,2

A2,1/I2,1 A2,2/I2,2

]
=

[
A1,1/I1,1 A1,2/I1,2

0 A2,2/I2,2

]
.

Consequently,
[

0 A1,2/I1,2

0 0

]
is a non-zero, complemented, nilpotent ideal of

A/I, which is impossible if A/I is amenable.

Remark. The idea behind Proposition 1.3 is implicitly already con-
tained in [Grø, Question 4], where it is attributed to G. A. Willis. It can be
used to establish the non-amenability of B(E⊕F ) if B(F,E) = K(F,E), but
B(E,F ) ( K(E,F ); this applies, for instance, to B(`p ⊕ `q) with 1 ≤ p <
q <∞ ([L-T, Proposition 2.c.3]).

We conclude this section with the discussion of a stronger variant of
amenability also introduced by Johnson ([Joh 3]).

Given a Banach algebra A, let Σ denote the flip map on A ⊗̂ A, i.e.,
Σ(a ⊗ b) = b ⊗ a for a, b ∈ A. An element a ∈ A ⊗ A is called symmetric
if Σa = a; somewhat abusing terminology, we will also call a net in A ⊗ A
symmetric if it consists of symmetric elements of A ⊗̂ A.

Definition 1.4. A Banach algebra is called symmetrically amenable if
it has a symmetric approximate diagonal.

Remark. The group algebra L1(G) of a locally compact group G is
symmetrically amenable if and only if it is amenable ([Joh 3, Theorem 4.1])
whereas the Cuntz algebras On for n ∈ N, n ≥ 2 ([Cun]) are amenable, but
not symmetrically amenable ([Joh 3, p. 457]).

In view of how difficult it is, even for very well behaved Banach spaces
E, to show that B(E) is not amenable, it is somewhat surprising to see how
easily the corresponding question for symmetric amenability can be settled
in the negative for a large class of Banach spaces:

Proposition 1.5. Let E be a Banach space such that E ∼= E⊕E. Then
B(E) is not symmetrically amenable.

Proof. Assume that B(E) is symmetrically amenable. By [Joh 3, Corol-
lary 2.5], there is φ ∈ B(E)∗ such that 〈idE , φ〉 = 1 and 〈ST, φ〉 = 〈TS, φ〉
for S, T ∈ B(E).

For j = 1, 2, let Pj : E⊕E → E be the projection onto the jth summand.
Since E ∼= E ⊕ E, there are Uj , Vj ∈ B(E) with

UjVj = idE and VjUj = Pj (j = 1, 2).

It follows that
1 = 〈idE , φ〉 = 〈P1 + P2, φ〉 = 〈V1U1, φ〉+ 〈V2U2, φ〉

= 〈U1V1, φ〉+ 〈U2V2, φ〉 = 2〈idE , φ〉 = 2,

which is nonsense.



156 M. Daws and V. Runde

2. Amenability of B(`p) and `∞(K(`p)). We begin by establishing
some notation, part of which was already used in the introduction.

Let I be any index set, and let (Ei)i∈I be a family of Banach spaces; we
write

∏
i∈IEi for its Cartesian product. For p ∈ [1,∞), we set

`p-
⊕
i∈I

Ei :=
{

(xi)i∈I ∈
∏
i∈I

Ei :
∑
i∈I
‖xi‖p <∞

}
;

it is a linear space which becomes a Banach space if equipped with the norm

‖(xi)i∈I‖p :=
(∑
i∈I
‖xi‖p

)1/p (
(xi)i∈I ∈ `p-

⊕
i∈I

Ei

)
.

Furthermore, we define

`∞-
⊕
i∈I

Ei :=
{

(xi)i∈I ∈
∏
i∈I

Ei : sup
i∈I
‖xi‖ <∞

}
;

it, too, becomes a Banach space with the norm

‖(xi)i∈I‖∞ := sup
i∈I
‖xi‖

(
(xi)i∈I ∈ `∞-

⊕
i∈I

Ei

)
.

We use c0-
⊕

i∈IEi to denote the closure of those (xi)i∈I ∈ `∞-
⊕

i∈IEi
for which xi = 0 for all but finitely many i ∈ I. We note that, if (Ai)i∈I is
a family of Banach algebras, then `∞-

⊕
i∈I Ai is a Banach algebra (which

contains c0-
⊕

i∈I Ai as a closed ideal). If Ei = E for all i ∈ I, we simply
write `p(I, E) or c0(I, E) instead of `p-

⊕
i∈IE and c0-

⊕
i∈IE, respectively.

We apply the usual conventions: if Ei = C for all i ∈ I or I = N, we
suppress the symbol for the space or the index set, respectively. For instance,
if p ∈ [1,∞] and E is any Banach space, then `p(E) stands for `p(N, E), and
if I is any index set, then c0(I) means c0(I,C). Also, we write `pn instead of
`p({1, . . . , n},C). Finally, for i ∈ I, we let δi : I → C denote the point mass
at i; it is clear that δi ∈ `p(I) for any p ∈ [1,∞].

Given any Banach space E, we have isometric isomorphisms between
`p(`p(E)) = `p(N2, E) and `p(E) for p ∈ [1,∞) and between c0(c0(E)) =
c0(N2, E) and c0(E) (simply due to the fact that N and N2 have the same
cardinality). This simple observation lies at the heart of the proof of our first
theorem:

Theorem 2.1. Let E be a Banach space. Then:

(i) for p ∈ [1,∞), the Banach algebra B(`p(E)) is amenable if and only
if `∞(B(`p(E))) is amenable;

(ii) B(c0(E)) is amenable if and only if `∞(B(c0(E))) is amenable.

Proof. We only prove (i); (ii) is proven analogously.
Set A := `∞(B(`p(E))). It is elementary that B(`p(E)) is amenable if A

is ([Run, Corollary 2.3.2]).
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For the converse, suppose that B(`p(E)) is amenable, and let (dα)α∈A be
an approximate diagonal for it; we may suppose that ∆dα = id`p(E) for all
α ∈ A.

First, observe that we can identify A with the block diagonal matrices in
B(`p(`p(E))). For n ∈ N, let Pn : `p(`p(E)) → `p(E) denote the projection
onto the nth coordinate. Define

Q : B(`p(`p(E)))→ B(`p(`p(E))), T 7→
∞∑
n=1

PnTPn,

where the infinite series converges in the strong operator topology (SOT).
Then Q is a projection onto A.

Since we have `p(`p(E)) ∼= `p(E), there are bounded sequences (Un)∞n=1

and (Vn)∞n=1 in B(`p(`p(E))) such that
UnVn = id`p(`p(E)) and VnUn = Pn (n ∈ N),

and consequently,
(3) Vn = PnVn and Un = UnPn (n ∈ N).
Define

QL : B(`p(`p(E)))→ B(`p(`p(E))), T 7→
∞∑
n=1

PnTUn,

QR : B(`p(`p(E)))→ B(`p(`p(E))), T 7→
∞∑
n=1

VnTPn,

where again the series are convergent in the strong operator topology. It is
obvious that QL is a left and QR a right A-module homomorphism, and with
(3) in mind, it is easy to see that both QL and QR attain their values in A.

Let S, T ∈ B(`p(`p(E))). Since multiplication is jointly continuous on
norm bounded subsets with respect to SOT, we have

(QLS)(QRT ) = SOT- lim
N→∞

( N∑
n=1

PnSUn

)( N∑
n=1

VnTPn

)
= SOT- lim

N→∞

N∑
n,m=1

PnSUnVmTPm

= SOT- lim
N→∞

N∑
n=1

PnSUnVnTPn

= SOT- lim
N→∞

N∑
n=1

PnSTPn = Q(ST ).

It follows that
(4) ∆ ◦ (QL ⊗QR) = Q ◦∆.
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Identifying B(`p(E)) and B(`p(`p(E)), we claim that ((QL⊗QR)dα)α∈A
is an approximate diagonal for A. Clearly, the net is bounded in A⊗̂A. Since
QL⊗QR is an A-bimodule homomorphism, it follows that (1) holds. Finally,
since

∆((QL ⊗QR)dα) = Q(∆dα) = Q(id`p(`p(E))) = id`p(`p(E))

by (4), condition (2) holds as well.

Specializing to E = C yields:

Corollary 2.2. Let p ∈ (1,∞) be such that B(`p) is amenable. Then
`∞(B(`p)) and `∞(K(`p)) are both amenable.

Proof. The claim for `∞(B(`p)) is an immediate consequence of Theorem
2.1. Since K(`p) has a bounded approximate identity, so does `∞(K(`p)).
Since `∞(K(`p)) is a closed ideal of the amenable Banach algebra `∞(B(`p)),
it is amenable by [Run, Proposition 2.3.3].

Remarks.

1. The analogous statement of Corollary 2.2 for `1 and c0 is also true.
Since, however, B(`1) and B(c0) are known not to be amenable by
[Oza], it would be somewhat pointless to formulate it.

2. Even though B(`1) and B(c0) are not amenable, it seems to be un-
known whether `∞(K(`1)) and `∞(K(c0)) are.

3. It is known that `∞(K(`2)) is not amenable (see [L-L-W]), but prov-
ing it is at about the same level of difficulty as a proof for the non-
amenability of B(`2).

We shall thus, from now on, focus on the (non-)amenability of `∞(K(`p))
instead of that of B(`p).

3. Ultra-amenability of K(`p). Let E be a Banach space, let I be an
index set, and let U be an ultrafilter over I. We let

NU := {(xi)i∈I : lim
i∈U
‖xi‖ = 0}.

It is immediate that NU is a closed subspace of `∞(I, E). The quotient space
`∞(I, E)/NU is called the ultrapower of E with respect to U ; we denote it by
(E)U . Whenever (xi)i∈I ∈ `∞(I, E), we write (xi)U for its equivalence class
in U . For further material on ultrapowers, we refer to the survey article [Hei]
and the somewhat more detailed treatment in [Sim].

If A is a Banach algebra, then it is straightforward that (A)U is again a
Banach algebra. The following definition is due to the first author ([Daw 2]):

Definition 3.1. A Banach algebra A is said to be ultra-amenable if
(A)U is amenable for every ultrafilter U .
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Remark. Ultra-amenability implies amenability ([Daw 2, Corollary 5.5]),
but is much stronger: a C∗-algebra is ultra-amenable if and only if it is
subhomogeneous ([Daw 2, Theorem 5.7]), and `1(G), for a discrete group G,
is ultra-amenable if and only if G is finite ([Daw 2, Theorem 5.11]).

Suppose that B(`p) is amenable for some p ∈ (1,∞). Then `∞(K(`p))
is amenable by Corollary 2.2, so that its quotient (K(`p))U is amenable for
every ultrafilter U over N. Alas, this does not allow us (yet) to say that K(`p)
is ultra-amenable because Definition 3.1 requires us to consider ultrafilters
over arbitrary index sets.

Nevertheless, the amenability of `∞(K(`p)) allows us to conclude the
ultra-amenability of K(`p) by virtue of the following theorem:

Theorem 3.2. The following are equivalent for a separable Banach al-
gebra A:

(i) `∞(A) is amenable;
(ii) `∞(I,A) is amenable for every index set I;
(iii) A is ultra-amenable.

For the proof, recall the following definitions from [Daw 2]. Let A be a
Banach algebra, and let n ∈ N. Then:

• let Sn(A) denote the collection of all subsets of the unit sphere of A of
cardinality n;
• for C ≥ 1 and ε > 0, let Dn(A, C, ε) consist of those A ⊂ Sn(A) such

that there is a sequence (tk)∞k=1 in [0,∞) with
∑∞

k=1 tk ≤ C and with
the property that, for each S ∈ A, there are sequences (ak)∞k=1 and
(bk)∞k=1 in A with ‖ak‖ ‖bk‖ ≤ tk for k ∈ N, so that

d :=
∞∑
k=1

ak ⊗ bk ∈ A ⊗̂ A,

and

‖a · d− d · a‖ ≤ ε and ‖∆A(d)a− a‖ ≤ ε (a ∈ F ).

Lemma 3.3. For a Banach algebra A consider the following statements:

(i) there is C ≥ 1 such that Sn(A) ∈ Dn(A, C, ε) for each n ∈ N and
ε > 0;

(ii) `∞(I,A) is amenable for each index set I;
(iii) `∞(A) is amenable.

Then (i)⇒(ii)⇒(iii), and (iii) implies (i) if A is separable.

Proof. (i)⇒(ii) is routine in view of the definition of Dn(A, C, ε), and
(ii)⇒(iii) is trivial.

Suppose that (iii) holds and that A is separable. Let C ≥ 1 be such that
A is C-amenable, let n ∈ N, and let ε > 0.
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Define a metric d on Sn(A) by letting

d(A,B) := max
a∈A

min
b∈B
‖a− b‖+ max

b∈B
min
a∈A
‖a− b‖ (A,B ∈ Sn(A)).

The separability of A implies that the metric space (Sn(A), d) is separable
and so contains a dense, countable subset, say {A1, A2, . . .}. For each k ∈ N,
let Ak = {a(k)

1 , . . . , a
(k)
n }. For j = 1, . . . , n, set aj := (a(k)

j )∞k=1 ∈ `∞(A). Let
(bk)∞k=1 and (ck)∞k=1 be sequences in `∞(A) with

∑∞
k=1 ‖bk‖ ‖ck‖ ≤ C such

that, for d :=
∑∞

k=1 bk ⊗ ck ∈ `∞(A) ⊗̂ `∞(A), we have

(5) ‖aj · d− d · aj‖ ≤ ε/2

and

(6) ‖∆`∞(A)(d)aj − aj‖ ≤ ε/2

for j = 1, . . . , n. (The existence of such (bk)∞k=1 and (ck)∞k=1 follows from the
C-amenability of `∞(A).)

For each k ∈ N, let bk = (b(k)ν )∞ν=1 and ck = (c(k)ν )∞ν=1. Then (6) yields

(7) sup
ν∈N

∥∥∥ ∞∑
k=1

b(k)ν c(k)ν a
(ν)
j − a

(ν)
j

∥∥∥ ≤ ε/2 (j = 1, . . . , n).

For ν ∈ N, let Pν : `∞(A) → A be the projection onto the νth coordinate,
and note that Pν ⊗Pν : `∞(A) ⊗̂ `∞(A)→ A ⊗̂A is a contraction. From (5),
we conclude that

(8) sup
ν∈N

∥∥∥ ∞∑
k=1

a
(ν)
j b(k)ν ⊗ c(k)ν −

∞∑
k=1

b(k)ν ⊗ c(k)ν a
(ν)
j

∥∥∥ ≤ ε/2 (j = 1, . . . , n).

Finally, it is straightforward that
∞∑
k=1

sup
ν∈N
‖b(k)ν ‖ ‖b(k)ν ‖ ≤

∞∑
k=1

‖bk‖ ‖ck‖ ≤ C.

Let A ∈ Sn(A) be arbitrary. Since {A1, A2, . . .} is dense in Sn(A), there
is ν ∈ N such that d(A,Aν) ≤ ε/4C. With Aν = {a(ν)

1 , . . . , a
(ν)
n }, this means

that, for any a ∈ A, there is j ∈ {1, . . . , n} such that ‖a(ν)
j − a‖ ≤ ε/4C.

From (8), we infer that∥∥∥ ∞∑
k=1

ab(k)ν ⊗ c(k)ν −
∞∑
k=1

b(k)ν ⊗ c(k)ν a
∥∥∥

≤ 2‖a− a(ν)
j ‖

∞∑
k=1

‖b(k)ν ‖ ‖b(k)ν ‖+
∥∥∥ ∞∑
k=1

a
(ν)
j b(k)ν ⊗ c(k)ν −

∞∑
k=1

b(k)ν ⊗ c(k)ν a
(ν)
j

∥∥∥
≤ ε

4C
· 2C +

ε

2
= ε
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and from (7) that∥∥∥ ∞∑
k=1

b(k)ν c(k)ν a− a
∥∥∥

≤ ‖a− a(ν)
j ‖+ ‖a− a(ν)

j ‖
∞∑
k=1

‖b(k)ν ‖ ‖b(k)ν ‖+
∥∥∥ ∞∑
k=1

b(k)ν c(k)ν a
(ν)
j − a

(ν)
j

∥∥∥
≤ ε

4C
(1 + C) +

ε

2
≤ ε.

All in all, we have established that Sn(A) ∈ Dn(A, C, ε).

Proof of Theorem 3.2. By Lemma 3.3, (i)⇔(ii) holds, and (ii)⇒(iii) is
trivial.

We postpone the actual proof of (iii)⇒(i) for some preliminary consider-
ations.

Let S be the set of all sequences in [0,∞). For (tk)∞k=1, (sk)
∞
k=1 ∈ S,

define (tk)∞k=1 � (sk)∞k=1 if there are (rk)∞k=1 ∈ S, a bijection σ : N→ N, and
ν, µ ∈ N such that

• sk = rσ(k) for k ∈ N,
• rk = tk for k < ν,
• rν + rν+1 + · · ·+ rν+µ−1 = tν , and
• rk+µ−1 = tk for k > ν.

(Informally, one might want to say that (rk)∞k=1 is obtained from (tk)∞k=1
by splitting up one term and from (sk)∞k=1 through rearrangement.) It is
clear from this definition that, whenever (tk)∞k=1 � (sk)∞k=1 and one of the
sequences lies in `1, then so does the other and has the same norm in `1. We
then define (tk)∞k=1 � (sk)∞k=1 if there are (r(1)

k )∞k=1, . . . , (r
(m)
k )∞k=1 ∈ S such

that
(tk)∞k=1 � (r(1)

k )∞k=1 � · · · � (r(m)
k )∞k=1 � (sk)∞k=1.

Let S0 be the collection of all sequences in S that are eventually zero, and
note that (S0,�) is a directed set.

Let n ∈ N, let F ∈ Sn(A), let ε > 0, and let (tk)∞k=1 ∈ `1 ∩ S. We
call F and (tk)∞k=1 compatible if there is d =

∑∞
k=1 ak ⊗ bk ∈ A ⊗̂ A with

‖ak‖ ‖bk‖ ≤ tk for k ∈ N and

‖a · d− d · a‖ ≤ ε and ‖∆(d)a− a‖ ≤ ε (a ∈ F ).

Note that, if (tk)∞k=1 � (sk)∞k=1 and F and (tk)∞k=1 are compatible, then so
are F and (sk)∞k=1.

Suppose now that A is ultra-amenable, let C ≥ 1 be as in [Daw 2, The-
orem 5.6], let n ∈ N, and let ε > 0. By [Daw 2, Theorem 5.6], there is a
partition of Sn(A) into finitely many sets each of which has a compatible
sequence in `1 ∩ S with `1-norm at most C. We can suppose that each of
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these sequences lies in S0 and use the directedness of (S0,�) to obtain one
single sequence in S0—still with `1-norm at most C—that is compatible with
all sets in the partition of Sn(A). But then Sn(A) itself and that sequence
are compatible, which means that Sn(A) ∈ Dn(A, C, ε). By Lemma 3.3, this
implies the amenability of `∞(A).

Remark. The proof of Theorem 3.2 can be modified to yield the fol-
lowing generalization: a Banach algebra A of density character κ is ultra-
amenable if and only if `∞(I,A) is amenable for any index set I and if and
only if it is amenable for an index set I of cardinality κ. This closes a gap in
the proof of [L-L-W, Theorem 2.5], which claims the equivalence of Theorem
3.2(ii) and (iii) in the case of a C∗-algebra.

As K(`p) for p ∈ (1,∞) and K(c0) are separable, Theorem 3.2 yields:

Corollary 3.4. Let E = `p with p ∈ (1,∞) or E = c0. Then the
following are equivalent :

(i) `∞(K(E)) is amenable;
(ii) `∞(I,K(E)) is amenable for every index set I;
(iii) K(E) is ultra-amenable.

4. Amenability of `∞(K(E)) for Lp-spaces. Whether or not the Ba-
nach algebras of the form `∞(K(E)) for a Banach space E are amenable
seems to have received very little attention in the literature so far. As Corol-
lary 2.2 shows, it is, for E = `p with p ∈ [1,∞), intimately linked to the
open problem of whether B(`p) is amenable and thus certainly a question
deserving further exploration.

In this section, we show that the (possible) amenability of `∞(K(`p))
entails the amenability of `∞(K(E)) for a large class of Banach spaces E.

For our first proposition, we denote by F(E,F ), for two Banach spaces
E and F , the bounded finite rank operators from E to F ; as usual, we write
F(E) as shorthand for F(E,E).

Proposition 4.1. Let E and F be Banach spaces such that E∗ and F ∗
have the bounded approximation property. Suppose further that the following
factorization property holds:

there is C ≥ 0 such that , for each T ∈ F(F ), there are S ∈ F(F,E)
and R ∈ F(E,F ) with ‖R‖ ‖S‖ ≤ C‖T‖ and RS = T .

Then, for any index set I, the following are equivalent :

(i) `∞(I,K(E)) is amenable;
(ii) `∞(I,K(E ⊕ F )) is amenable.

Proof. Let I be an index set, and let A := `∞(I,K(E ⊕ F )). We wish to
apply Theorem 1.2.
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As both E∗ and F ∗ have the bounded approximation property, so does
(E ⊕ F )∗ ∼= E∗ ⊕ F ∗. Consequently, K(E ⊕ F ) has a bounded approximate
identity, and so does A.

For i ∈ I, let P1,i : E ⊕ F → E and P2,i : E ⊕ F → F be the canon-
ical projections; for j = 1, 2, set Pj := (Pj,i)i∈I ∈ `∞(I,B(E ⊕ F )) ⊂
M(`∞(I,K(E ⊕ F ))). It follows that P1AP1

∼= `∞(I,K(E)) and P2AP2
∼=

`∞(I,K(F )).
The restriction of ∆A to P2AP1 ⊗̂ P1AP2 induces a quotient norm, say

| · |, on its range, which dominates the given norm ‖ · ‖. By our factorization
hypothesis, the range of ∆A(P2AP1 ⊗̂ P1AP2) contains `∞(F(F )), and we
have | · | ≤ C‖ · ‖ on `∞(F(F )). As F ∗ has the approximation property,
so does F , and in particular, F(F ) is dense in K(F ), as is `∞(F(F )) in
`∞(K(F )). Every element of `∞(K(F )) is thus a limit—with respect to ‖·‖—
of a sequence in `∞(F(F )). It is a Cauchy sequence with respect to ‖ · ‖ and
thus with respect to | · |; consequently, it converges—with respect to | · |—to
an element in ∆A(P2AP1 ⊗̂P1AP2). Since ‖ · ‖ ≤ | · |, this limit with respect
to | · | is the same limit as with respect to ‖ · ‖. So, ∆A maps P2AP1 ⊗̂P1AP2

onto P2AP2.
The hypotheses of Theorem 1.2 are thus all satisfied, and the claim fol-

lows.

We shall now look at Banach spaces for which the factorization hypothesis
of Proposition 4.1 is satisfied.

Let p ∈ [1,∞] and λ ≥ 1. A Banach space E is called an Lpλ-space
if, for any finite-dimensional subspace X of E, there are n ∈ N and an
n-dimensional subspace Y of E containing X such that d(Y, `pn) ≤ λ, where
d is the Banach–Mazur distance ([L-P, Definition 3.1]). We call E simply an
Lp-space if it is an Lpλ-space for some λ ≥ 1. All Lp-spaces, i.e., spaces of
p-integrable functions on some measure space, are Lp-spaces. The Lp-spaces
were introduced in [L-P] and studied further in [L-R]. We list some of their
properties:

• Every Lp-space is isomorphic to a subspace of an Lp-space ([L-R, The-
orem I(i)]). In particular, for p ∈ (1,∞), each Lp-space is reflexive.
• If E is an Lp-space, then E∗ is an Lp′-space, where p′ ∈ [1,∞] is

conjugate to p, i.e., satisfies 1/p+ 1/p′ = 1 ([L-R, Theorem III(a)]).
• If E is an Lp-space, then there is a constant % ≥ 1 such that, for each

finite-dimensional subspace X of E, there are n ∈ N, an n-dimensional
subspace Y of E containing X with d(Y, `pn), and a projection P onto
Y with ‖P‖ ≤ % ([L-R, Theorem III(c)]). In particular, E has the
bounded approximation property.

In [G-J-W], it is mentioned without proof before [G-J-W, Theorem 6.4]
that, given any two infinite-dimensional Lp-spaces E and F , every operator
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in F(F ) factors through E with both factors being compact. Since, for our
purpose, we need control over the norms of those factors, we give a refinement
of this observation with a detailed proof:

Lemma 4.2. Let p∈ [1,∞], and let E and F be Lp-spaces with dimE=∞.
Then there is C ≥ 0 such that , for each T ∈ F(F ), there are S ∈ F(F,E)
and R ∈ F(E,F ) with ‖R‖ ‖S‖ ≤ C‖T‖ and RS = T .

Proof. Let T ∈ F(F ), and set X := TF . Let λ ≥ 1 be such that E is
an Lpλ-space. Then there are n ∈ N, a finite-dimensional subspace Y of F
containingX, and a bijective linear map τ : Y → `pn such that ‖τ‖ ‖τ−1‖ ≤ λ.

Let % ≥ 1 be the constant for E whose existence is guaranteed by [L-R,
Theorem III(c)]. Let Z0 be an n-dimensional subspace of E. (Here, we require
that dimE = ∞.) Then there are m ∈ N, an m-dimensional subspace Z of
E containing Z0, a bijective map σ : Z → `pm with ‖σ‖ ‖σ−1‖ ≤ %, and
a projection P onto Z with ‖P‖ ≤ %; note that necessarily m ≥ n. With
ι : `pn → `pm and π : `pm → `pn being the canonical embedding and projection,
we see that T = τ−1πσσ−1ιτT . Set S := σ−1ιτT and R := τ−1πσP . Then
S = RT , and we have

‖R‖ ‖S‖ ≤ ‖τ−1‖ ‖π‖ ‖σ‖ ‖P‖ ‖σ−1‖ ‖ι‖ ‖τ‖ ‖T‖
= ‖τ‖ ‖τ−1‖ ‖σ‖ ‖σ−1‖ ‖P‖ ‖T‖ ≤ λ%2‖T‖.

Hence, C := λ%2 has the desired property.

Remark. In [D-F], A. Defant and K. Floret introduced the class of Lpg-
spaces, which contains all Lp-spaces, but is somewhat better behaved. For
p = 1,∞, the Lpg-spaces are just the Lp-spaces whereas, for p ∈ (1,∞), a
space is an Lpg-space if and only if it is an Lp-space or isomorphic to a Hilbert
space ([D-F, 23.3]). Therefore, Lemma 4.2 does not hold true for Lpg-spaces
if p 6= 1,∞.

Together, Proposition 4.1 and Lemma 4.2 yield the following dichotomy
theorem:

Theorem 4.3. Let p ∈ [1,∞], and let I be an index set. Then one of the
following assertions is true:

(i) `∞(I,K(E)) is amenable for every infinite-dimensional Lp-space E;
(ii) `∞(I,K(E)) is not amenable for any infinite-dimensional Lp-space E.
Proof. Suppose that (ii) is false, i.e., there is an infinite-dimensional Lp-

spaceE such that `∞(I,K(E)) is amenable. Let F be any infinite-dimensional
Lp-space. Then Lemma 4.2 and Proposition 4.1 imply that `∞(I,K(E⊕F ))
is amenable. Interchanging the rôles of E and F , and invoking Lemma 4.2
and Proposition 4.1 again, then yields the amenability of `∞(I,K(F )). This
proves that (i) is true.
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Combining Theorems 3.2 and 4.3, we obtain:

Corollary 4.4. Let p ∈ (1,∞], let E = `p if p ∈ (1,∞) and E = c0
if p = ∞, and suppose that `∞(K(E)) is amenable. Then `∞(I,K(F )) is
amenable for every index set I and every infinite-dimensional Lp-space F .
In particular , K(F ) is ultra-amenable for every infinite-dimensional Lp-
space F .

Remark. Let p ∈ (1,∞)\{2}. Then `p(`2) and `p⊕`2 are not Lp-spaces,
but still Lp-spaces ([L-P, Example 8.2]). Hence, if `∞(K(`p)) is amenable,
then so are `∞(K(`p(`2))) and `∞(K(`p ⊕ `2)). This is remarkable because
B(`p ⊕ `2) is known not to be amenable ([Grø, Question 4]).

5. A non-amenability criterion for `∞(K(E ⊕ F )). As we just ob-
served, `∞(K(`p)) being amenable implies the amenability of `∞(K(`p⊕`2)).
In this section, we shall thus explore the amenability of `∞(K(E ⊕ F )) for
two Banach spaces E and F .

Recall that an operator ideal A is a rule that assigns to each pair (E,F ) of
Banach spaces a subspace A(E,F ) of B(E,F ) containing F(E,F ) such that
RTS ∈ A(X,Y ) for any Banach spaces X and Y and any T ∈ A(E,F ),
S ∈ B(X,E), and R ∈ B(F, Y )); if E = F , we convene again to simply
write A(E). The seminal reference on operator ideals is [Pie]. More recent
treatments can be found in [D-F], [D-J-T], or [T-J]. Following [D-J-T], we
call [A, α] a Banach operator ideal if, for each pair (E,F ) of Banach spaces,
there is a norm α on A(E,F ) turning it into a Banach space such that

α(y � φ) = ‖y‖ ‖φ‖ (y ∈ F, φ ∈ E∗),
where y � φ ∈ F(E,F ) is the rank one operator corresponding to the ele-
mentary tensor y ⊗ φ, and

α(RTS) ≤ ‖R‖α(T )‖S‖ (T ∈ A(E,F ), S ∈ B(X,E), R ∈ B(F, Y ))

for any Banach spaces X and Y . Given a Banach operator ideal [A, α], its
maximal hull [Amax, αmax] is defined as follows. For two Banach spaces E
and F , let F(E) denote the finite-dimensional subspaces of E, and let Fc(F )
stand for the closed subspaces of F with finite co-dimension; for X ∈ F(E)
and Y ∈ Fc(F ), let ιX : X → E and πY : F → F/Y be the inclusion and
quotient map, respectively. We define

αmax(T ) := sup{α(πY TιX) : X ∈ F(E), Y ∈ Fc(F )} ∈ [0,∞]
(T ∈ B(E,F ))

and
Amax(E,F ) := {T ∈ B(E,F ) : αmax(T ) <∞}.

It is routinely checked that [Amax, αmax] is again a Banach operator ideal,
and we call [A, α] maximal if [Amax, αmax] = [A, α].
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An immediate consequence of [D-F, 17.5, Representation Theorem for
Maximal Operator Ideals] is: if [A, α] is a maximal Banach operator ideal,
then A(E,F ∗) is a dual Banach space for any two Banach spaces E and F
such that the weak∗ topology of A(E,F ∗) coincides with the weak∗ topology
of B(E,F ∗) = (E ⊗̂ F )∗ on norm bounded subsets.

In particular, we have (cf. [D-F, 17.21, Proposition]):

Lemma 5.1. Let [A, α] be a maximal Banach operator ideal , let E and F
be Banach spaces, and let (Ti)i∈I be a bounded net in A(E,F ∗) that converges
to T ∈ B(E,F ∗) with respect to the weak∗ topology of B(E,F ∗). Then T lies
in A(E,F ∗).

Proposition 5.2. Let E and F be Banach spaces, let I be an index set ,
and suppose that there are (Ti)i∈I ∈ `∞(I,K(F,E)) and an ultrafilter U over
I such that weak∗- limi∈U Ti /∈ K(F,E∗∗), where the limit is with respect to
the weak∗ topology of B(E,F ∗∗). Suppose further that there is a maximal
operator ideal [A, α] with the following properties:

(a) K(E,F ) ⊂ A(E,F ) such that the inclusion is continuous;
(b) A(F,E∗∗) ⊂ K(F,E∗∗).

Then `∞(I,K(E ⊕ F )) is not amenable.

Proof. Let P1 and P2 be the projections in `∞(I,B(E ⊕ F )) induced by
the canonical projections onto E and F , respectively (compare the proof of
Proposition 4.1). We wish to apply Proposition 1.3.

Letting
I := `∞(I,A(E ⊕ F )) ∩ `∞(I,K(E ⊕ F )),

with the closure taken in the norm topology of `∞(I,K(E ⊕ F )), defines a
closed ideal of A := `∞(I,K(E ⊕ F )).

From (a), it is obvious that P2IP1 = P2AP1.
To see that P1IP2 ( P1AP2, let (Ti)i∈I ∈ `∞(I,K(F,E)) and an ultra-

filter U over I be as specified in the hypotheses. We claim that (Ti)i∈I ∈
P1AP2 \ P1IP2. Define

QU : `∞(I,K(F,E))→ B(F,E), (Si)i∈I 7→ weak∗- lim
i∈U

Si,

so that T := QU ((Ti)i∈I) /∈ K(F,E∗∗). Assume that (Ti)i∈I ∈ P1IP2, and
let ε > 0 be arbitrary. By the definition of I, there is thus (Ri)i∈I ∈
`∞(I,A(F,E)) ∩ `∞(I,K(F,E)) such that supi∈I ‖Ri − Ti‖ < ε. Since QU
is a contraction, this means that ‖R − T‖ < ε, where R := QU ((Ri)i∈I).
By Lemma 5.1, R ∈ A(F,E∗∗) holds, so that R ∈ K(F,E∗∗) by (b). Since
ε > 0 was arbitrary, this means that T ∈ K(F,E∗∗), which contradicts our
hypotheses.
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The hypotheses of Proposition 5.2 appear to be technical and somewhat
contrived, but as our next theorem shows, they do, in fact, occur naturally
in certain situations:

Theorem 5.3. The Banach algebra `∞(K(E ⊕ `2)) is not amenable for
any of the following spaces E: c0, `∞, and `1.

Proof. We first consider the case E = c0.
For n ∈ N, let πn : c0 → c0 denote the projection onto the first n

coordinates, and let ι : `2 → c0 ↪→ `∞ be the natural inclusion. Then
(πnι)∞n=1 ∈ `∞(K(`2, c0)), and weak∗- limn∈U πnι = ι /∈ K(`2, `∞) for any
free ultrafilter U over N.

Let [Π2, π2] be the ideal of 2-summing operators (see [D-J-T, p. 31], for
instance); then [Π2, π2] is maximal (by [D-J-T, Theorem 6.16]). By [D-J-T,
Theorem 3.7] we have Π2(c0, `2) = B(c0, `2), so that Proposition 5.2(a)
is satisfied. On the other hand, every 2-summing operator is completely
continuous ([D-J-T, Theorem 2.17]). Since `2 is reflexive, this means that
Π2(`2, `∞) ⊂ K(`2, `∞), so that Proposition 5.2(b) holds as well.

The E = `∞ case has an almost identical proof.
Suppose now that E = `1. We shall apply Proposition 5.2 to the Banach

algebra `∞(K(`2⊕ `1)), which is isomorphic to `∞(K(`1⊕ `2)). With ι : `1 →
`2 being the canonical inclusion and πn : `2 → `2 for n ∈ N denoting the
projection onto the first n coordinates, we have weak∗- limn∈U πnι = ι /∈
K(`1, `2) for any free ultrafilter U over N—just as in the case E = c0. Let
[Πd

2 , π
d
2 ] be the dual ideal of [Π2, π2] (see [D-J-T, p. 186]), so that [Πd

2 , π
d
2 ]

is maximal by [D-J-T, Corollary 9.4]. Using the definition of [Πd
2 , π

d
2 ] and

arguing as in the E = c0 case, we see that Proposition 5.2(a) and (b) are
satisfied.

Remark. Even though `∞(K(`2)) is known not to be amenable, there
seems to be no way—by means of Theorem 1.2, for instance—to conclude
directly from its non-amenability that the Banach algebras considered in
Theorem 5.3 are not amenable.

Having established the non-amenability of `∞(K(`p ⊕ `2)) for p = 1,∞
with the help of Proposition 5.2, one might be tempted to try to extend this
result to general p ∈ [1,∞] \ {2} through the choice of a suitable maximal
Banach operator ideal [A, α]. Alas, as we shall see now, this attempt is futile:

Proposition 5.4. Let p ∈ (1,∞) \ {2}, let A := `∞(K(`p⊕ `2)), and let
P1, P2 ∈ `∞(B(`p ⊕ `2)) be the projections induced by the canonical projec-
tions onto `p and `2, respectively. Then there is no closed ideal I of A with
P2IP1 = P2AP1 and P1IP2 ( P1AP2.
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Proof. We use the fact ([L-T, p. 73]) that we have an isomorphism

(9) `p ∼= `p-
∞⊕
n=1

`2n.

For n ∈ N, let Jn : `2n → `p and Qn : `p → `2n be the embedding of and
projection onto the nth summand in (9), respectively; note that the maps Jn
and Pn are uniformly bounded. Furthermore, let ιn : `2n → `2 and πn : `2 → `2n
be the canonical embedding and projection, respectively, for n ∈ N.

Assume that there is a closed ideal I of A with P2IP1 = P2AP1. Note
that, since A has a bounded approximate identity, I is also a closed ideal of
`∞(B(`p ⊕ `2)), so that, in particular, PjIPk ⊂ I for j, k = 1, 2.

Let (Tn)∞n=1 ∈ `∞(K(`2, `p)), and let ε > 0 be arbitrary. For each n ∈ N,
we can find Sn ∈ F(`2, `p) with ‖Tn − Sn‖ ≤ ε as well as Nn ∈ N such that
SnιNnπNn = Sn. Define (Un)∞n=1 ∈ `∞(K(`2, `p)) and (Vn)∞n=1 ∈ `∞(K(`p))
by letting

Un := ιNnQNn and Vn := JNnπNn (n ∈ N),

so that [
0 (Sn)∞n=1

0 0

]
=

[
0 (Sn)∞n=1

0 0

][
0 0

(Un)∞n=1 0

][
0 (Vn)∞n=1

0 0

]
.

As
[ 0 0

(Un)∞n=1 0

]
∈ P2AP1 = P2IP1 ⊂ I and I is an ideal, it follows that[

0 (Sn)∞n=1
0 0

]
∈ I as well. Since ε > 0 was arbitrary, this entails that (Tn)∞n=1 ∈

P1IP2, and since (Tn)∞n=1 ∈ `∞(K(`2, `p)) was arbitrary, this means that
P1IP2 = P1AP2.

Remarks. 1. Even though Proposition 5.4 shows that the (still hypo-
thetical) non-amenability of `∞(K(`p⊕`2)) cannot be established in the same
way as for B(`p⊕`2), it naturally leads to the question if, for sufficiently nice
Banach spaces E, the amenability of `∞(K(E)) forces B(E) to be amenable.
Since K(E)∗∗ = B(E) via trace duality for any reflexive Banach space with
the approximation property, this question can, for such spaces, be put into
a more general framework: If `∞(A) is amenable for some Banach algebra
A, does this imply that A∗∗, equipped with one of the Arens products (see
[Dal]), is amenable? Partial answers, which do not apply to the case where
A = K(`p ⊕ `2), are given in [CS-R].

2. In [CS-R, Theorem 1], the following is claimed to be a consequence
of [G-I]: For a unital C∗-algebra A, there are an index set I, which can be
chosen as N if A∗ is separable, and an algebra homomorphism from `∞(I,A)
onto A∗∗. An inspection of the proof of [CS-R, Theorem 1] shows that the
alleged algebra homomorphism is
(10) `∞(I,A)→ A∗∗, (ai)i∈I 7→ weak∗- lim

i∈U
ai
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for a suitable ultrafilter U over I. Let A be the unitization of K(`2), and let
U be a free ultrafilter over N. Then we have

weak∗- lim
n∈U

δ1 � δn = weak∗- lim
n∈U

δn � δ1 = 0

whereas
weak∗- lim

n∈U
(δ1 � δn)(δn � δ1) = δ1 � δ1 6= 0,

which means that (10) cannot be multiplicative, contrary to what is claimed
in [CS-R].

6. A left ideal in (K(`p))U without bounded right approximate
identity. If A is an amenable Banach algebra, then a closed ideal of A has
a bounded approximate identity if and only if it is weakly complemented.
By finding a closed, weakly complemented ideal of A that lacks a bounded
approximate identity, one can thus show that A is not amenable, as was
done in [D-G-H] in the case of the measure algebra of a non-discrete, locally
compact group. More generally, a closed left ideal of A has a bounded right
approximate identity if and only if it is weakly complemented (see [Run,
Lemma 2.3.6], for instance).

In this section, for p ∈ (1, 2) and a free ultrafilter U over N, we shall
exhibit a closed left ideal of (K(`p))U that lacks a right approximate identity
(bounded or not) and present some, albeit circumstantial, evidence for it
being weakly complemented.

For p ∈ (1, 2), let ι : `p → `2 be the natural inclusion map, and note that
the adjoint ι∗ : `2 → `p

′ is the canonical inclusion of `2 in `p′ . Let U be a free
ultrafilter over N, and define

(11) L2 := {(Tnι)U : (Tn)U ∈ (B(`2, `p))U}
(B(`p))U

.

Obviously, L2 is a closed left ideal of (B(`p))U . By Pitt’s theorem ([L-T,
Proposition 2.c.3]), we have B(`2, `p) = K(`2, `p), so that L2 is, in fact, a
closed ideal of (K(`p))U .

Recall that, for ε > 0, a (1 + ε)-isometry from a Banach space E into a
Banach space F is a linear map T : E → F satisfying

(1− ε)‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖ (x ∈ E).

By [D-J-T, Dvoretzky’s Theorem 19.1], there is, for each infinite-dimensional
Banach space E, for each n ∈ N, and for each ε > 0, a (1+ ε)-isometry from
`2n into E. We shall use this theorem to obtain particular elements of L2. For
each n ∈ N, let πn : `2 → `2n denote the canonical projection onto the first n
coordinates, and let, for each n ∈ N, τn : `2n → `p be a (1 + 1/n)-isometry,
which exists by Dvoretzky’s theorem. Then (τnπnι)U lies in L2.

The following is our technical main result in this section:
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Lemma 6.1. Let p ∈ (1, 2), let U be a free ultrafilter over N, and let L2

and (τnπnι)U be defined as above. Then

‖(τnπnι)U (Tn)U − (τnπnι)U‖ ≥ 1 ((Tn)U ∈ L2).

Proof. Assume towards a contradiction that there are θ ∈ [0, 1) and
(Tn)U ∈ (B(`2, `p))U such that

θ > ‖(τnπnι)U (Tnι)U − (τnπnι)U‖(12)
= lim

n∈U
‖τnπnιTnι− τnπnι‖ = lim

n∈U
‖πnιTnι− πnι‖,

where the last equality is due to the fact that τn is a (1 + 1/n)-isometry for
each n ∈ N.

Let T := weak- limn∈U Tn ∈ K(`2, `p). (The limit exists by [Hei, Proposi-
ton 1.45] because K(`2, `p) is reflexive, so that its closed unit ball is weakly
compact.) Let x ∈ `p and ξ ∈ `2. Then
|〈ξ, (ιT ι− ι)(x)〉|

= |〈ι∗(ξ), (Tι)(x)〉 − 〈ξ, ι(x)〉|

= lim
n∈U
|〈ι∗(ξ), (Tnι)(x)〉 − 〈ξ, ι(x)〉| = lim

n∈U
|〈ξ, (ιTnι− ι)(x)〉|

= lim
n∈U
|〈π∗n(ξ), (ιTnι− ι)(x)〉| (because lim

n→∞
‖π∗n(ξ)− ξ‖2 = 0)

= lim
n∈U
|〈ξ, (πnιTnι− πnι)(x)〉| ≤ lim

n∈U
‖πnιTnι− πnι‖ ‖x‖ ‖ξ‖

< θ‖x‖ ‖ξ‖ (by (12)).
It follows that

(13) ‖ιT ι− ι‖ ≤ θ.
Since T is compact, so is ιT ι. Hence, there is a strictly increasing sequence

(nk)∞k=1 in N such that ((ιT ι)(δnk
))∞k=1 is norm convergent in `2 with limit η,

say. It follows that

(14) lim
k→∞
〈δnk

, (ιT ι)(δnk
)〉 = lim

k→∞
〈δnk

, η〉 = 0.

Together, (13) and (14) yield

1 = lim
k→∞
〈δnk

, ι(δnk
)〉

= lim
k→∞

|〈δnk
, (ιT ι)(δnk

)〉 − 〈δnk
, ι(δnk

)〉| = lim
k→∞

|〈δnk
, (ιT ι− ι)(δnk

)〉| ≤ θ,

which is impossible because θ ∈ [0, 1).

The following is now immediate:

Proposition 6.2. Let p ∈ (1, 2), let U be a free ultrafilter over N, and
let L2 be the closed left ideal of (K(`p))U defined in (11). Then L2 does not
have a right approximate identity.
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Remark. Both Lemma 6.1 and Proposition 6.2 remain true in the slight-
ly more general situation where U is a countably incomplete ultrafilter over
an arbitrary index set.

If we could establish that L2 is weakly complemented, i.e., has a com-
plemented annihilator in (K(`p))∗U , then we would know that (K(`p))U—and
thus, by Theorem 2.1, B(`p)—cannot be amenable. Unfortunately, such a
proof eludes us, mostly due to the lack of a suitable description of (K(`p))∗U .
Nevertheless, we are able to show that the annihilator of L2 in a certain
closed subspace of (K(`p))∗U is indeed complemented.

We achieve this as a by-product of a general complementation result for
ultrapowers of vector-valued `p-spaces.

Given a set S and an ultrafilter U over some index set I, we use 〈S〉U for
the corresponding set-theoretic ultrapower (see [Hei] for the definition). For
(si)i∈I ∈ SI, we denote its image in 〈S〉U by 〈si〉U .

The following lemma relates the spaces `p(〈N〉U , (E)U ) and (`p(E))U for
p ∈ [1,∞), a Banach space E, and an ultrafilter U (over an arbitrary index
set). We identify the finitely supported functions in `p(〈N〉U , (E)U ) with the
algebraic tensor product c00(〈N〉U )⊗ (E)U , where c00(〈N〉U ) are the finitely
supported functions from 〈N〉U into C.

Lemma 6.3. Let p ∈ [1,∞), let E be a Banach space, and let U be an
ultrafilter. Then there is a unique isometry Jp : `p(〈N〉U , (E)U ) → (`p(E))U
given by

(15) Jp(δ〈ni〉U ⊗ (xi)U ) = (δni ⊗ xi)U (δ〈ni〉U ∈ 〈N〉U , (xi)U ∈ (E)U ).

Proof. It is routinely checked that (15) defines an isometry from c00(〈N〉U )
⊗ (E)U into (`p(E))U , which then extends to all of `p(〈N〉U , (E)U ) by conti-
nuity.

Lemma 6.3 enables us to canonically identify `p(〈N〉U , (E)U ) with a closed
subspace of (`p(E))U .

Given a Banach space E and an ultrafilter U , there is a canonical duality
between (E)U and (E∗)U , which induces an isometric embedding of (E∗)U
into (E)∗U ; for countably incomplete U , this embedding is an isomorphism if
and only if (E)U is reflexive ([Hei, Proposition 7.1]). Recall that E is called
superreflexive if every Banach space that can be finitely represented in E is
reflexive; equivalently, E is superreflexive if and only if (E)U is reflexive for
each ultrafilter U ([Hei, Proposition 6.4]). Also, if E is superreflexive and
p ∈ (1,∞), then `p(E) is superreflexive as well ([Daw 1, Proposition 4]).
All this guarantees that the map Πp in the following proposition is well
defined.

Proposition 6.4. Let p ∈ (1,∞), let E be a superreflexive Banach
space, let U be an ultrafilter , and let Jp : `p(〈N〉U , (E)U ) → (`p(E))U and
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Jp′ : `p
′
(〈N〉U , (E∗)U ) → (`p

′
(E∗))U be as in Lemma 6.3. Then Πp := JpJ

∗
p′

is a norm one projection onto `p(〈N〉U , (E)U ). Moreover , for any q ∈ (p,∞]
we have

(16) kerΠp = {(xi)U ∈ (`p(E))U : lim
i∈U
‖xi‖`q(E) = 0}.

Proof. It is easy to see that Πp is indeed a norm one projection onto
`p(〈N〉U , (E)U ).

Let I be the index set over which U is defined. For (ni)i∈I ∈ NI, let
Pni : `p(E) → E denote the projection onto the nith coordinate. From the
definition of Πp, it is clear that (xi)U ∈ (`p(E))U belongs to kerΠp if and
only if limi∈U ‖Pnixi‖E = 0 for any (ni)i∈I ∈ NI. It follows that

kerΠp ⊃ {(xi)U ∈ (`p(E))U : lim
i∈U
‖xi‖`∞(E) = 0}

For the converse inclusion, let (xi)U ∈ (`p(E))U be such that limi∈U ‖xi‖`∞(E)

=: δ > 0. Let U ∈ U be such that ‖xi‖`∞(E) = supn∈N ‖Pnxi‖ > δ/2 for each
i ∈ U . For each i ∈ U , choose ni ∈ N such that ‖Pnixi‖`∞(E) > δ/2. It follows
that limi∈U ‖Pnixi‖`∞(E) ≥ δ/2 > 0, whence (xi)U ∈ (`p(E))U /∈ kerΠp. All
in all, we have

(17) kerΠp = {(xi)U ∈ (`p(E))U : lim
i∈U
‖xi‖`∞(E) = 0}.

Let q ∈ (p,∞). In view of (17), it is clear that

kerΠp ⊃ {(xi)U ∈ (`p(E))U : lim
i∈U
‖xi‖`q(E) = 0}.

For the converse inclusion, note that, for any x = (xn)∞n=1 ∈ `p(E), we have

‖x‖q`q(E) =
∞∑
n=1

‖xn‖q =
∞∑
n=1

‖xn‖q−p‖xn‖p ≤ ‖x‖q−p`∞(E)

∞∑
n=1

‖xn‖p

≤ ‖x‖q−p`∞(E)‖x‖
p
`p(E).

Consequently, if (xi)U ∈ kerΠp, that is, if limi∈U ‖xi‖`∞(E) = 0, then
limi∈U ‖xi‖`q(E) = 0 as well. This proves (16).

Let p ∈ (1, 2), and let U be a free ultrafilter over N. We can canonically
represent (B(`p))U on (`p)U by letting

(Tn)U (xn)U = (Tnxn)U ((Tn)U ∈ (B(`p))U , (xn)U ∈ (`p)U ).

Clearly, (Tn)U (xn)U = 0 holds for all (Tn)U ∈ L2 if and only if limn∈U ‖xn‖2
= 0, i.e., (xn)U ∈ kerΠp by Proposition 6.4.

The Banach space B((`p)U ) has the canonical predual (`p)U ⊗̂ (`p
′
)U ,

which, by [Daw 2, Proposition 4.7], embeds isometrically into (`p ⊗̂ `p′)U =
(K(`p)∗)U and thus into (K(`p))∗U (see [Hei, p. 87]). It therefore makes sense
to speak of the annihilator of L2 in (`p)U ⊗̂ (`p

′
)U .

In view of the foregoing we have:
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Corollary 6.5. Let p ∈ (1, 2), and let U be a free ultrafilter. Then the
annihilator of L2 in (`p)U ⊗̂ (`p

′
)U is its complemented subspace kerΠp ⊗̂

(`p
′
)U , where Πp is the canonical projection from (`p)U onto `p(〈N〉U ).
Remark. It would be interesting to know whether the annihilator of

L2 in (K(`p)∗)U is complemented: as (K(`p))∗U can be finitely represented in
(K(`p)∗)U ([Hei, Theorem 7.3]), this would further support our belief that
L2 is weakly complemented.
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