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On unconditionally saturated Banach spaces

by

Pandelis Dodos and Jordi Lopez-Abad (Paris)

Abstract. We prove a structural property of the class of unconditionally saturated
separable Banach spaces. We show, in particular, that for every analytic set A, in the
Effros–Borel space of subspaces of C[0, 1], of unconditionally saturated separable Banach
spaces, there exists an unconditionally saturated Banach space Y , with a Schauder basis,
that contains isomorphic copies of every space X in the class A.

1. Introduction

(A) An infinite-dimensional Banach spaceX is said to be unconditionally
saturated if every infinite-dimensional subspace Y of X contains an uncon-
ditional basic sequence. Although by the discovery of W. T. Gowers and
B. Maurey [GM] not every separable Banach space is unconditionally sat-
urated, this class of spaces is quite extensive, includes the “classical” ones
and has some desirable closure properties (it is closed, for instance, under
taking subspaces and finite sums). Most important is the fact that within the
class of unconditionally saturated spaces one can develop a strong structural
theory. Among the numerous results found in the literature, there are two
fundamental ones that deserve special attention. The first is due to R. C.
James [Ja1] and asserts that any unconditionally saturated space contains
either a reflexive subspace, or `1, or c0. The second is due to A. Pełczyński [P]
and provides a space U with an unconditional basis (un) with the property
that any other unconditional basic sequence (xn), in some Banach space X,
is equivalent to a subsequence of (un).

(B) The main goal of this paper is to exhibit yet another structural
property of the class of unconditionally saturated spaces which is of a global
nature. To describe this property we need first to recall some standard facts.
Quite often one needs a convenient way to treat separable Banach spaces as
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a unity. Such a way has been proposed by B. Bossard [Bos] and has proved
to be extremely useful. More precisely, let us denote by F (C[0, 1]) the set of
all closed subspaces of the space C[0, 1] and let us consider the set

(1) SB = {X ∈ F (C[0, 1]) : X is a linear subspace}.
It is easy to see that the set SB equipped with the relative Effros–Borel
structure becomes a standard Borel space (see [Bos] for more details). As
C[0, 1] is isometrically universal for all separable Banach spaces, we may
identify any class of separable Banach spaces with a subset of SB. From this
point of view, we denote by US the subset of SB consisting of all X ∈ SB
which are unconditionally saturated.

The above identification is ultimately related to universality problems in
Banach space theory (see [AD], [DF], [D]). The connection is crystalized in
the following definition, introduced in [AD].

Definition 1. A class C ⊆ SB is said to be strongly bounded if for every
analytic subset A of C there exists Y ∈ C that contains isomorphic copies of
every X ∈ A.

In [AD, Theorem 91(5)] it was shown that the class of unconditionally
saturated Banach spaces with a Schauder basis is strongly bounded. We
remove the assumption of the existence of a basis and we show the follow-
ing.

Theorem 2. Let A be an analytic subset of US. Then there exists an un-
conditionally saturated Banach space Y , with a Schauder basis, that contains
isomorphic copies of every X ∈ A. In particular , the class US is strongly
bounded.

We point out that the above result is optimal. Indeed, it follows from
a classical construction of J. Bourgain [Bou1] that there exists a co-analytic
subset B of SB consisting of reflexive and unconditionally saturated separable
Banach spaces with the following property. If Y is a separable space that
contains an isomorphic copy of every X ∈ B, then Y must contain every
separable Banach space. In particular, there is no unconditionally saturated
separable Banach space containing isomorphic copies of every X ∈ B.

(C) By the results in [AD], the proof of Theorem 2 is essentially reduced
to an embedding problem. Namely, given an unconditionally saturated sepa-
rable Banach space X one is looking for an unconditionally saturated space
Y (X), with a Schauder basis, that contains an isomorphic copy of X. In fact,
for the proof of Theorem 2, one has to know additionally that this embed-
ding is “uniform”. This means, roughly, that the space Y (X) is constructed
from X in a Borel way. In our case, the embedding problem has already been
solved by J. Bourgain and G. Pisier in [BP], while its uniform version has



Unconditionally saturated Banach spaces 177

recently been obtained in [D]. These are the main ingredients of the proof
of Theorem 2.

(D) At a more technical level, the paper also contains some results con-
cerning the structure of a class of subspaces of a certain space constructed in
[AD] and called an `2 Baire sum. Specifically, we study the class ofX-singular
subspaces of an `2 Baire sum and we show the following (see §3.1 for the
relevant definitions):

(1) Every X-singular subspace is unconditionally saturated (Theorem 11
in the main text).

(2) Every X-singular subspace contains an X-compact subspace (Corol-
lary 16). This answers a question from [AD] (see [AD, Remark 3]).

(3) Every normalized basic sequence in an X-singular subspace has a
normalized block subsequence satisfying an upper `2 estimate (The-
orem 12). Hence, an X-singular subspace can contain no `p for 1 ≤
p < 2. This generalizes the fact that the 2-stopping time Banach
space (see [BO]) contains no `p for 1 ≤ p < 2.

1.1. General notation and terminology. We shall denote by N =
{0, 1, 2, . . . } the natural numbers. For every infinite subset L of N, we de-
note by [L] the set of all infinite subsets of L. Our Banach-space-theoretic
notation and terminology is standard and follows [LT], while our descriptive-
set-theoretic terminology follows [Ke]. If X and Y are Banach spaces, then
we shall denote by X ∼= Y the fact that X and Y are isomorphic.

For the convenience of the reader, let us recall the following notions.
A measurable space (X,S) is said to be a standard Borel space if there
exists a Polish topology (1) τ on X such that the Borel σ-algebra of (X, τ)
coincides with S. A subset B of a standard Borel space (X,S) is said to
be analytic if there exists a Borel map f : NN → X such that f(NN) = B.
Finally, a seminormalized sequence (xn) in a Banach space X is said to be
unconditional if there exists a constant C > 0 such that for every k ∈ N,
every F ⊆ {0, . . . , k} and every a0, . . . , ak ∈ R we have

(2)
∥∥∥∑
n∈F

anxn

∥∥∥ ≤ C∥∥∥ k∑
n=0

anxn

∥∥∥.
1.2. Trees. The concept of a tree has proved to be a very fruitful tool

in the geometry of Banach spaces. It is also decisive throughout this work.
Below we gather all the conventions concerning trees that we need.

(1) A topology τ on a set X is said to be Polish if the space (X, τ) is separable and
completely metrizable.
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Let Λ be a non-empty set. We shall denote by Λ<N the set of all non-
empty (2) finite sequences in Λ. By @ we shall denote the (strict) partial
order on Λ<N of end-extension. For every σ ∈ ΛN and every n ∈ N with
n ≥ 1 we set σ|n = (σ(0), . . . , σ(n − 1)) ∈ Λ<N. Two nodes s, t ∈ Λ<N are
said to be comparable if either s v t or t v s; otherwise they are said to be
incomparable. A subset of Λ<N consisting of pairwise comparable nodes is
said to be a chain, while a subset of Λ<N consisting of pairwise incomparable
nodes is said to be an antichain.

A tree T on Λ is a subset of Λ<N satisfying

(3) ∀s, t ∈ Λ<N (t ∈ T and s @ t⇒ s ∈ T ).

A tree T is said to be pruned if for every s ∈ T there exists t ∈ T with
s @ t. The body [T ] of a tree T on Λ is defined to be the set {σ ∈ ΛN :
σ|n ∈ T ∀n ≥ 1}. Notice that if T is pruned, then [T ] 6= ∅. A segment s of a
tree T is a chain of T satisfying

(4) ∀s, t, w ∈ Λ<N (s v w v t and s, t ∈ s⇒ w ∈ s).

If s is a segment of T , then we denote by min(s) the v-minimum node t ∈ s.
We say that two segments s and s′ of T are incomparable if for every t ∈ s
and every t′ ∈ s′ the nodes t and t′ are incomparable (notice that this is
equivalent to saying that min(s) and min(s′) are incomparable).

2. Embedding unconditionally saturated spaces into spaces
with a basis. The aim of this section is to give the proof of the follow-
ing result.

Proposition 3. Let A be an analytic subset of US. Then there exists
an analytic subset A′ of US with the following properties:

(i) For every Y ∈ A′ the space Y has a Schauder basis (3).
(ii) For every X ∈ A there exists Y ∈ A′ that contains an isometric copy

of X.

As already mentioned in the introduction, the proof of Proposition 3 is
based on a construction ofL∞-spaces due to J. Bourgain andG. Pisier [BP], as
well as on its parameterized version which has recently been obtained in [D].

Let us recall, first, some definitions. If X and Y are two isomorphic Ba-
nach spaces (not necessarily infinite-dimensional), then their Banach–Mazur
distance is defined by

(2) We should point out that in many standard textbooks, as for instance in [Ke], the
empty sequence is included in Λ<N. We do not include it for technical reasons that will
become transparent in §3.

(3) Throughout the paper, when we say that a Banach space X has a Schauder basis,
then we implicitly assume that X is infinite-dimensional.
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(5) d(X,Y ) = inf{‖T‖ · ‖T−1‖ : T : X → Y is an isomorphism}.
Let now X be an infinite-dimensional Banach space and Λ ≥ 1. The space
X is said to be an L∞,Λ-space if for every finite-dimensional subspace F
of X there exists a finite-dimensional subspace G of X with F ⊆ G and
d(G, `n∞) ≤ Λ, where n = dim(G). The space X is said to be an L∞,Λ+-
space if it is an L∞,θ-space for every θ > Λ. Finally, X is said to be an
L∞-space if it is L∞,Λ for some Λ ≥ 1. The class of L∞-spaces was defined
by J. Lindenstrauss and A. Pełczyński [LP]. For a comprehensive account of
the theory of L∞-spaces, as well as for a presentation of many remarkable
examples, we refer to the monograph of J. Bourgain [Bou2].

Let us also recall that a Banach spaceX is said to have the Schur property
if every weakly convergent sequence in X is automatically norm convergent.
It is an immediate consequence of Rosenthal’s dichotomy [Ro] that every
space X with the Schur property is hereditarily `1; that is, every subspace
Y of X has a further subspace isomorphic to `1 (hence, every space with the
Schur property is unconditionally saturated).

The following theorem summarizes some of the basic properties of the
Bourgain–Pisier construction.

Theorem 4 ([BP, Theorem 2.1]). Let Λ > 1 and X be a separable Ba-
nach space. Then there exists a separable L∞,Λ+-space, denoted by LΛ[X],
which contains X isometrically and is such that the quotient LΛ[X]/X has
the Radon–Nikodym and the Schur properties.

The parameterized version of Theorem 4 reads as follows.

Theorem 5 ([D, Theorem 16]). For every Λ > 1, the set LΛ ⊆ SB×SB
defined by

(X,Y ) ∈ LΛ ⇔ Y is isometric to LΛ[X]

is analytic.

We will also need the following Ramsey-type lemma. Although it is well-
known, we sketch its proof for completeness.

Lemma 6. Let X be a Banach space and Y be a closed subspace of X.
Then for every subspace Z of X there exists a further subspace Z ′ of Z such
that Z ′ is either isomorphic to a subspace of Y , or isomorphic to a subspace
of X/Y . In particular , if Y and X/Y are both unconditionally saturated ,
then so is X.

Proof. Let Q : X → X/Y be the natural quotient map.

Case 1: The operator Q : Z → X/Y is not strictly singular. Then, by
definition, there exists a subspace Z ′ of Z such that Q|Z′ is an isomorphic
embedding.
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Case 2: The operator Q : Z → X/Y is strictly singular. In this case
our hypothesis implies that for every subspace Z ′ of Z and every ε > 0 we
may find a normalized vector z ∈ Z ′ such that ‖Q(z)‖ ≤ ε. Hence, for every
subspace Z ′ of Z and every ε > 0 there exist a normalized vector z ∈ Z ′ and
a vector y ∈ Y such that ‖z − y‖ < ε. So, we may construct a normalized
Schauder basic sequence (zn) in Z with basis constant 2 and a sequence (yn)
in Y such that ‖zn − yn‖ < 1/8n for every n ∈ N. It follows that (yn) is
equivalent to (zn) (see [LT]). Setting Z ′ = span{zn : n ∈ N}, we see that Z ′
is isomorphic to a subspace of Y .

Proof of Proposition 3. Let A be an analytic subset of US. Let also L2

be the subset of SB × SB obtained by applying Theorem 5 for Λ = 2. We
define A′ ⊆ SB by the rule

Y ∈ A′ ⇔ ∃X [X ∈ A and (X,Y ) ∈ L2].

As both A and L2 are analytic and the class of analytic sets is closed under
projections, we see that A′ is analytic. We claim that A′ is the desired set.
Indeed, notice that property (ii) is an immediate consequence of Theorem 4.
To see (i), let Y ∈ A′. There exists X ∈ A such that Y is isometric to
L2[X]. By Theorem 4, we know that L2[X]/X is unconditionally saturated.
Recalling that X is also unconditionally saturated, by Lemma 6, we see that
Y ∈ US. Finally, our claim that Y has a Schauder basis is an immediate
consequence of the fact that Y is L∞ and of a classical result due to W. B.
Johnson, H. P. Rosenthal and M. Zippin [JRZ] asserting that every separable
L∞-space has a Schauder basis.

3. Schauder tree bases and `2 Baire sums

3.1. Definitions and statements of the main results. Let us begin by
recalling the following notion.

Definition 7 ([AD, Definition 13]). Let X be a Banach space, Λ a
countable set and T a pruned tree on Λ. Let also (xt)t∈T be a normalized
sequence in X indexed by the tree T . We say that X = (X,Λ, T, (xt)t∈T ) is
a Schauder tree basis if the following are satisfied:

(a) X = span{xt : t ∈ T}.
(b) For every σ ∈ [T ] the sequence (xσ|n)n≥1 is a (normalized) bi-mono-

tone Schauder basic sequence.

Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. For every σ ∈ [T ] we
set

(6) Xσ = span{xσ|n : n ≥ 1}.
Notice that in Definition 7 we do not assume that the subspace Xσ of X is
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complemented. Notice also that if σ, τ ∈ [T ] with σ 6= τ , then this does not
necessarily imply that Xσ 6= Xτ .

Example 1. Let X = c0 and (en) be the standard unit vector basis
of c0. Let also T = 2<N be the Cantor tree, i.e. T is the set of all non-empty
finite sequences of 0’s and 1’s. For every t ∈ T , denoting by |t| the length of
the finite sequence t, we define xt = e|t|−1. It is easy to see that the family
(X, 2, T, (xt)t∈T ) is a Schauder tree basis. Observe that for every σ ∈ [T ]
the sequence (xσ|n)n≥1 is the standard basis of c0. Hence, the just defined
Schauder tree basis has been obtained by “spreading” the standard basis of
c0 along the branches of 2<N.

The notion of a Schauder tree basis serves as a technical vehicle for the
construction of a “tree-like” Banach space in the spirit of R. C. James [Ja2].
This is the content of the following definition.

Definition 8 ([AD, §4.1]). Let X = (X,Λ, T, (xt)t∈T ) be a Schauder
tree basis. The `2 Baire sum of X, denoted by TX

2 , is defined to be the
completion of c00(T ) equipped with the norm

(7) ‖z‖TX
2

= sup
{( l∑

j=0

∥∥∥∑
t∈sj

z(t)xt
∥∥∥2

X

)1/2}
,

where the supremum is taken over all finite families (sj)lj=0 of pairwise in-
comparable segments of T .

Example 2. Let X be the Schauder tree basis described in Example 1
and consider the corresponding `2 Baire sum TX

2 . Notice that if z ∈ TX
2 , then

its norm is given by the formula

‖z‖TX
2

= sup
{( l∑

j=0

z(tj)2
)1/2

: (tj)lj=0 is an antichain of 2<N
}
.

This space has been defined by H. P. Rosenthal and it is known in the liter-
ature as the 2-stopping time Banach space (see [BO]). It is usually denoted
by S2. A very interesting fact concerning the structure of S2 is that it con-
tains almost isometric copies of `p for every 2 ≤ p <∞. This is due to H. P.
Rosenthal and G. Schechtman (unpublished). On the other hand, the space
S2 contains no `p for 1 ≤ p < 2.

Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and consider the
corresponding `2 Baire sum TX

2 of X. Let (et)t∈T be the standard Hamel
basis of c00(T ). We fix a bijection h : T → N such that for every pair t, s ∈ T
we have h(t) < h(s) if t @ s. If (etn) is the enumeration of (et)t∈T according
to h, then it is easy to verify that the sequence (etn) defines a normalized
bi-monotone Schauder basis of TX

2 .
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For every σ ∈ [T ] consider the subspace Xσ of TX
2 defined by

(8) Xσ = span{eσ|n : n ≥ 1}.
It is easily seen that the space Xσ is isometric to Xσ, and moreover, it
is 1-complemented in TX

2 via the natural projection Pσ : TX
2 → Xσ. More

generally, for every segment s of T we set Xs = span{et : t ∈ s}. Again we see
that Xs is isometric to the space span{xt : t ∈ s} and it is 1-complemented
in TX

2 via the natural projection Ps : TX
2 → Xs.

If x is a vector in TX
2 , then supp(x) will denote its support {t ∈ T :

x(t) 6= 0}. The range of x, denoted by range(x), is defined to be the minimal
interval I of N satisfying supp(x) ⊆ {tn : n ∈ I}. We isolate, for future use,
the following consequence of the enumeration h of T .

Fact 9. Let s be a segment of T and I be an interval of N. Consider the
set s′ = s ∩ {tn : n ∈ I}. Then s′ is also a segment of T .

Let now Y be a subspace of TX
2 . Assume that there exist a subspace Y ′

of Y and a σ ∈ [T ] such that the operator Pσ : Y ′ → Xσ is an isomorphic
embedding. In such a case, the subspace Y contains information about the
Schauder tree basis X = (X,Λ, T, (xt)t∈T ). On the other hand, there are
subspaces of TX

2 which are “orthogonal” to every Xσ. These subspaces are
naturally distinguished into two categories, as follows.

Definition 10 ([AD, Definition 14]). Let X = (X,Λ, T, (xt)t∈T ) be a
Schauder tree basis and let Y be a subspace of TX

2 . We say that Y is:

(a) X-singular if Pσ : Y → Xσ is strictly singular for every σ ∈ [T ].
(b) X-compact Pσ : Y → Xσ is compact if for every σ ∈ [T ].

In this section, we focus on the structure of the class of X-singular sub-
spaces of an arbitrary `2 Baire sum. Our main results are summarized below.

Theorem 11. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and Y
be an X-singular subspace of TX

2 . Then Y is unconditionally saturated.

Theorem 12. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and
Y be an X-singular subspace of TX

2 . Then for every normalized Schauder
basic sequence (xn) in Y there exists a normalized block sequence (yn) of
(xn) satisfying an upper `2 estimate. That is, there exists a constant C ≥ 1
such that for every k ∈ N and every a0, . . . , ak ∈ R we have∥∥∥ k∑

n=0

anyn

∥∥∥
TX
2

≤ C
( k∑
n=0

|an|2
)1/2

.

In particular , an X-singular subspace Y of TX
2 contains no `p for 1 ≤ p < 2.

We notice that in Theorem 12 one cannot expect to obtain a block se-
quence satisfying a lower `2 estimate. Indeed, as shown in [AD, Theorem 25],
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if X = (X,Λ, T, (xt)t∈T ) is a Schauder tree basis such that the tree T is not
small (precisely, if T contains a perfect (4) subtree), then one can find in TX

2

a normalized block sequence (xn) which is equivalent to the standard basis
of c0 and which spans an X-singular subspace. Clearly, no block subsequence
of (xn) has a lower `2 estimate.

The rest of this section is organized as follows. In §3.2 we provide a
characterization of the class of X-singular subspaces of TX

2 . Using this char-
acterization we show, for instance, that every X-singular subspace of TX

2

contains an X-compact subspace. This can be seen as a “tree version” of
the classical theorem of T. Kato asserting that for every strictly singular
operator T : X → Y there is an infinite-dimensional subspace Z of X such
that the operator T : Z → Y is compact. In §3.3 we give the proofs of
Theorems 11 and 12.

3.2. A characterization of X-singular subspaces. We start with the fol-
lowing definition.

Definition 13. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. The
c0 Baire sum of X, denoted by TX

0 , is defined to be the completion of c00(T )
equipped with the norm

(9) ‖z‖TX
0

= sup
{∥∥∥∑

t∈s

z(t)xt
∥∥∥
X

: s is a segment of T
}
.

We shall denote by I : TX
2 → TX

0 the natural inclusion operator.

Our characterization of X-singular subspaces of TX
2 is achieved by

considering the functional-analytic properties of the inclusion operator
I : TX

2 → TX
0 . Precisely, we have the following.

Proposition 14. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis.
Let Y be a subspace of TX

2 . Then the following are equivalent.

(i) Y is an X-singular subspace of TX
2 .

(ii) The operator I : Y → TX
0 is strictly singular.

Let us isolate two consequences of Proposition 14. The first one is simply
a restatement of Proposition 14.

Corollary 15. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and
Y be a block subspace of TX

2 . Assume that Y is X-singular. Then for every
ε > 0 we may find a finitely supported vector y ∈ Y with ‖y‖ = 1 and such
that ‖Ps(y)‖ ≤ ε for every segment s of T .

Corollary 16. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis
and Y be an infinite-dimensional subspace of TX

2 . Assume that Y is X-

(4) A tree T is perfect if every node t ∈ T has at least two incomparable successors.



184 P. Dodos and J. Lopez-Abad

singular. Then there exists an infinite-dimensional subspace Y ′ of Y which
is X-compact.

Proof. By Proposition 14, the operator I : Y → TX
0 is strictly singular.

By [LT, Proposition 2.c.4], there exists an infinite-dimensional subspace Y ′
of Y such that the operator I : Y ′ → TX

0 is compact. It is easy to see that Y ′
must be an X-compact subspace of TX

2 in the sense of Definition 10(b).

For the proof of Proposition 14 we need a couple of results from [AD].
The first one is the following (see [AD, Lemma 17]).

Lemma 17. Let (xn) be a bounded block sequence in TX
2 and ε > 0 be

such that lim sup ‖Pσ(xn)‖ < ε for every σ ∈ [T ]. Then there exists L ∈ [N]
such that for every σ ∈ [T ] we have |{n ∈ L : ‖Pσ(xn)‖ ≥ ε}| ≤ 1.

The second result is the following special case of [AD, Proposition 33].

Proposition 18. Let Y be a block X-singular subspace of TX
2 . Then for

every ε > 0 we may find a normalized block sequence (yn) in Y such that for
every σ ∈ [T ] we have lim sup ‖Pσ(yn)‖ < ε.

We are ready to proceed to the proof of Proposition 14.

Proof of Proposition 14. It is clear that (ii) implies (i). Hence we only
need to show the reverse implication. We argue by contradiction. So, assume
that Y is an X-singular subspace of TX

2 such that the operator I : Y → TX
0

is not strictly singular. By definition, there exists a further subspace Y ′ of
Y such that I : Y ′ → TX

0 is an isomorphic embedding. Using a sliding hump
argument, we may recursively select a normalized basic sequence (yn) in Y ′
and a normalized block sequence (zn) in TX

2 such that, with Z = span{zn :
n ∈ N}, the following are satisfied:

(a) The sequence (zn) is equivalent to (yn).
(b) The subspace Z of TX

2 is X-singular.
(c) The operator I : Z → TX

0 is an isomorphic embedding.

The selection is fairly standard (we leave the details to the interested reader).
By (c) above, there exists a constant C > 0 such that for every z ∈ Z we
have

(10) C‖z‖TX
2
≤ ‖z‖TX

0
≤ ‖z‖TX

2
.

We fix k0 ∈ N and ε > 0 satisfying

(11) k0 > 64/C4 and ε < min{C/2, 1/k0}.
By (b) above, we may apply Proposition 18 to the block subspace Z of TX

2

and the chosen ε. It follows that there exists a normalized block sequence
(xn) in Z such that lim sup ‖Pσ(xn)‖ < ε for every σ ∈ [T ]. By Lemma 17
and by passing to a subsequence of (xn) if necessary, we may additionally
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assume that for every σ ∈ [T ] we have |{n ∈ N : ‖Pσ(xn)‖ ≥ ε}| ≤ 1. As the
basis of TX

2 is bi-monotone, we may strengthen this property to the following
one:

(d) For every segment s of T we have |{n ∈ N : ‖Ps(xn)‖ ≥ ε}| ≤ 1.

By Fact 9 and (10), for every n ∈ N we may select a segment sn of T such
that:

(e) ‖Psn(xn)‖ ≥ C.
(f) sn ⊆ {tk : k ∈ range(xn)}.

As (xn) is a block sequence, we see that such a selection guarantees that

(g) ‖Psn(xm)‖ = 0 for all n,m ∈ N with n 6= m.

We set tn = min(sn). Applying the classical Ramsey theorem we find an
infinite subset L = {l0 < l1 < · · · } of N such that one of the following
(mutually exclusive) cases must occur.

Case 1: The set {tn : n ∈ L} is an antichain. In this case our hypothesis
implies that for every n,m ∈ L with n 6= m the segments sn and sm are
incomparable. We define z = xl0 + · · ·+ xlk0

. As the family (sli)
k0
i=0 consists

of pairwise incomparable segments of T , we get

(12) ‖z‖ ≥
( k0∑
i=0

‖Psli
(z)‖2

)1/2 (g)
=
( k0∑
i=0

‖Psli
(xli)‖

2
)1/2 (e)

≥ C
√
k0 + 1.

Now we set w = z/‖z‖ ∈ Z. Invoking (d) above, inequality (12) and the
choice of k0 and ε made in (11), for every segment s of T we have

‖Ps(w)‖ ≤ 1 + k0ε

C
√
k0 + 1

<
C

2
.

It follows that
‖w‖TX

0
≤ C/2,

which contradicts inequality (10). Hence this case is impossible.

Case 2: The set {tn : n ∈ L} is a chain. Let τ ∈ [T ] be the branch of T
determined by the infinite chain {tn : n ∈ L}. By (d) above and by passing
to an infinite subset of L if necessary, we may assume that ‖Pτ (xn)‖ < ε for
every n ∈ L. The basis of TX

2 is bi-monotone, and so we have the following
property.

(h) If s is a segment of T with s ⊆ τ , then ‖Ps(xn)‖ < ε for every n ∈ L.
We set s′n = sn \ τ . Observe that s′n is a subsegment of sn. Notice that sn
is the disjoint union of the successive segments sn ∩ τ and s′n. Hence, by
properties (e) and (h) above and the choice of ε, we see that

(13) ‖Ps′n(xn)‖ ≥ C − ε ≥ C/2
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for every n ∈ L. Notice also that if n,m ∈ L with n 6= m, then the segments
s′n and s′m are incomparable. We set

z = xl0 + · · ·+ xlk0
and w = z/‖z‖.

Arguing precisely as in Case 1 and using the estimate in (13), we conclude
that

‖w‖TX
0
≤ C/2.

This is again a contradiction.

3.3. Proof of Theorems 11 and 12. We start with the following lemma.

Lemma 19. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. Let (wn)
be a normalized block sequence in TX

2 such that for every n ∈ N with n ≥ 1
and every segment s of T we have

(14) ‖Ps(wn)‖ ≤
1∑n−1

i=0 |supp(wi)|1/2
· 1
2n+2

.

Then the following are satisfied.

(i) The sequence (wn) is unconditional.
(ii) The sequence (wn) satisfies an upper `2 estimate.

Proof. We will only give the proof of (i). For a proof of (ii) we refer to
[AD, Proposition 21].

So, let k ∈ N and a0, . . . , ak ∈ R be such that ‖
∑k

n=0 anwn‖ = 1. Let
also F ⊆ {0, . . . , k} with F = {n0 < · · · < np} its increasing enumeration.
We will show that ‖

∑
n∈F anwn‖ ≤

√
3. This will clearly finish the proof.

For notational simplicity, we set

w =
k∑

n=0

anwn and z =
∑
n∈F

anwn.

Let (sj)lj=0 be an arbitrary collection of pairwise incomparable segments
of T . We want to estimate the sum

∑l
j=0 ‖Psj (z)‖2. To this end, we may

assume that for every j ∈ {0, . . . , l} there exists i ∈ {0, . . . , p} with sj ∩
supp(wni) 6= ∅. We define recursively a partition (∆i)

p
i=0 of {0, . . . , l} by the

rule

∆0 = {j ∈ {0, . . . , l} : sj ∩ supp(wn0) 6= ∅},
∆1 = {j ∈ {0, . . . , l} \∆0 : sj ∩ supp(wn1) 6= ∅},
...

∆p =
{
j ∈ {0, . . . , l} \

p−1⋃
i=0

∆i : sj ∩ supp(wnp) 6= ∅
}
.
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The segments (sj)lj=0 are pairwise incomparable and a fortiori disjoint. It
follows that

(15) |∆i| ≤ |supp(wni)| for every i ∈ {0, . . . , p}.

Notice also that for every 0 ≤ i < q ≤ p we have

(16)
∑
j∈∆q

‖Psj (wni)‖ = 0.

Let j ∈ {0, . . . , l}. There exists a unique i ∈ {0, . . . , p} such that j ∈ ∆i.
By Fact 9, we may select a segment s′j of T such that:

(a) s′j ⊆ sj .
(b) s′j ⊆ {tm : m ∈ range(wni)}.
(c) ‖Psj (aniwni)‖ = ‖Ps′j

(aniwni)‖.

The above selection guarantees the following properties:

(d) The family (s′j)
l
j=0 consists of pairwise incomparable segments of T .

This is a straightforward consequence of (a) above and of our as-
sumptions on the family (sj)lj=0.

(e) We have ‖Psj (aniwni)‖ = ‖Ps′j
(aniwni)‖ = ‖Ps′j

(w)‖. This is a con-
sequence of (b) and (c) above and of the fact that (wn) is a block
sequence.

We are ready for the final part of the argument. Let i ∈ {0, . . . , p} and
j ∈ ∆i. Our goal is to estimate the quantity ‖Psj (z)‖. First we notice that

‖Psj (z)‖
(16)
= ‖Psj (aniwni + · · ·+ anpwnp)‖

≤ ‖Psj (aniwni)‖+
p∑

q=i+1

|anq | · ‖Psj (wnq)‖.

Invoking (14) and the fact that the Schauder basis (et)t∈T of TX
2 is bi-

monotone, we see that for every q ∈ {i + 1, . . . , p} we have ‖Psj (wnq)‖ ≤
|supp(wni)|−1/2 · 2−(q+2) and |anq | ≤ 1. Hence, the previous estimate yields

‖Psj (z)‖ ≤ ‖Psj (aniwni)‖+
1

|supp(wni)|1/2
·

p∑
q=i+1

1
2q+2

(15)

≤ ‖Psj (aniwni)‖+
1

|∆i|1/2
· 1
2i+2

(e)
= ‖Ps′j

(w)‖+
1

|∆i|1/2
· 1
2i+2

.
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The above inequality, in turn, implies that if ∆i is non-empty, then∑
j∈∆i

‖Psj (z)‖2 ≤ 2
∑
j∈∆i

‖Ps′j
(w)‖2 + 2

∑
j∈∆i

1
|∆i|

· 1
2i+2

(17)

≤ 2
∑
j∈∆i

‖Ps′j
(w)‖2 +

1
2i+1

.

Summarizing, we see that
l∑

j=0

‖Psj (z)‖2 =
p∑
i=0

∑
j∈∆i

‖Psj (z)‖2
(17)

≤ 2
l∑

j=0

‖Ps′j
(w)‖2 +1

(d)

≤ 2‖w‖2 +1 ≤ 3.

The family (sj)lj=0 was arbitrary, and so ‖z‖ ≤
√

3.

Proof of Theorem 11. Let Y be an X-singular subspace of TX
2 . Clearly,

every subspace Y ′ of Y is also X-singular. Hence, it is enough to show that
every X-singular subspace contains an unconditional basic sequence. So, let
Y be one. Using a sliding hump argument, we may additionally assume that
Y is a block subspace of TX

2 . Recursively and with the help of Corollary 15,
we may construct a normalized block sequence (wn) in Y such that for every
n ∈ N with n ≥ 1 and every segment s of T we have

‖Ps(wn)‖ ≤
1∑n−1

i=0 |supp(wi)|1/2
· 1
2n+2

.

By Lemma 19(i), the sequence (wn) is unconditional.

We proceed to the proof of Theorem 12.

Proof of Theorem 12. Let Y be an X-singular subspace of TX
2 . Let also

(xn) be a normalized Schauder basic sequence in Y . A standard sliding hump
argument allows us to construct a normalized block sequence (vn) of (xn)
and a block sequence (zn) in TX

2 such that, with Z = span{zn : n ∈ N}, the
following are satisfied:

(a) The sequences (vn) and (zn) are equivalent.
(b) The subspace Z of TX

2 is X-singular.

As in the proof of Theorem 11, using (b) above and Corollary 15, we construct
a normalized block sequence (wn) of (zn) such that for every n ∈ N with
n ≥ 1 and every segment s of T inequality (14) is satisfied for the sequence
(wn). By Lemma 19(ii), the sequence (wn) satisfies an upper `2 estimate.
Let (bn) be the block sequence of (vn) corresponding to (wn). Observe that,
by (a) above, (bn) is seminormalized and satisfies an upper `2 estimate. The
property of being a block sequence is transitive, and so (bn) is a normalized
block sequence of (xn) as well. Hence, setting yn = bn/‖bn‖ for every n ∈ N,
we see that the sequence (yn) is as desired.
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Finally, to see that an X-singular subspace of TX
2 can contain no `p for

1 ≤ p < 2, we argue by contradiction. So, assume that Y is an X-singular
subspace of TX

2 containing an isomorphic copy of `p0 for some 1 ≤ p0 < 2.
There exists, in such a case, a normalized basic sequence (xn) in Y which
is equivalent to the standard unit vector basis (en) of `p0 . Let (yn) be a
normalized block subsequence of (xn) satisfying an upper `2 estimate. As
any normalized block subsequence of (en) is equivalent to (en) (see [LT]), we
see that there must exist constants C ≥ c > 0 such that for every k ∈ N and
any a0, . . . , ak ∈ R we have

c
( k∑
n=0

|an|p0
)1/p0

≤
∥∥∥ k∑
n=0

anyn

∥∥∥
TX
2

≤ C
( k∑
n=0

|an|2
)1/2

.

This is clearly a contradiction.

We close this section by recording the following consequence of Theo-
rem 12.

Corollary 20. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. Let
1 ≤ p < 2. Then the following are equivalent.

(i) The space TX
2 contains an isomorphic copy of `p.

(ii) There exists σ ∈ [T ] such that Xσ contains an isomorphic copy of `p.

Proof. It is clear that (ii) implies (i). Conversely, assume that `p em-
beds into TX

2 and let Y be a subspace of TX
2 which is isomorphic to `p. By

Theorem 12, we see that Y is not X-singular. Hence, there exist σ ∈ [T ]
and an infinite-dimensional subspace Y ′ of Y such that Pσ : Y ′ → Xσ is an
isomorphic embedding. Recalling that every subspace of `p contains a copy
of `p and that the spaces Xσ and Xσ are isometric yields the result.

4. The main result. This section is devoted to the proof of Theorem 2
stated in the introduction. To this end, we will need the following correspon-
dence principle between analytic classes of separable Banach spaces and
Schauder tree bases (see [AD, Proposition 83] or [D, Lemma 32]):

Lemma 21. Let A′ be an analytic subset of SB such that every Y ∈ A′ has
a Schauder basis. Then there exist a separable Banach space X, a pruned tree
T on N×N and a normalized sequence (xt)t∈T in X such that the following
are satisfied.

(i) The family X = (X,Λ, T, (xt)t∈T ) is a Schauder tree basis.
(ii) For every Y ∈ A′ there exists σ ∈ [T ] with Y ∼= Xσ.
(iii) For every σ ∈ [T ] there exists Y ∈ A′ with Xσ

∼= Y .

Proof of Theorem 2. Let A be an analytic subset of US. We apply Propo-
sition 3 and we get a subset A′ of SB with the following properties:
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(a) The set A′ is analytic.
(b) Every Y ∈ A′ has a Schauder basis.
(c) Every Y ∈ A′ is unconditionally saturated.
(d) For every X ∈ A there exists Y ∈ A′ such that Y contains an

isometric copy of X.

By (a) and (b) above, we can apply Lemma 21 to the set A′ to get a Schauder
tree basis X = (X,Λ, T, (xt)t∈T ) satisfying the following.

(e) For every Y ∈ A′ there exists σ ∈ [T ] with Y ∼= Xσ.
(f) For every σ ∈ [T ] there exists Y ∈ A′ such that Xσ

∼= Y .

Consider the `2 Baire sum TX
2 of this Schauder tree basis X. We claim that

the space TX
2 is as desired. Indeed, recall first that TX

2 has a Schauder basis.
Moreover, by (d) and (e) above we see that TX

2 contains an isomorphic copy
of every X ∈ A.

What remains is to check that TX
2 is unconditionally saturated. To this

end, let Z be an arbitrary subspace of TX
2 . We have to show that Z contains

an unconditional basic sequence.

Case 1: The subspace Z is not X-singular. In this case, by definition,
there exist σ ∈ [T ] and a further subspace Z ′ of Z such that the operator
Pσ : Z ′ → Xσ is an isomorphic embedding. By (f) and (c) above, Z ′ must
contain an unconditional basic sequence.

Case 2: The subspace Z is X-singular. By Theorem 11, in this case Z
must also contain an unconditional basic sequence.

By the above, TX
2 is unconditionally saturated.
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