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Minimal multi-convex projections

by

Grzegorz Lewicki (Kraków) and Michael Prophet (Cedar Falls, IA)

Abstract. We say that a function from X = CL[0, 1] is k-convex (for k ≤ L) if its
kth derivative is nonnegative. Let P denote a projection from X onto V = Πn ⊂ X,
where Πn denotes the space of algebraic polynomials of degree less than or equal to n. If
we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a
demand is impossible to fulfill for nearly every k. Indeed, only for k = n−1 and k = n does
such a projection exist. So let us consider instead a more general “shape” to preserve. Let
σ = (σ0, σ1, . . . , σn) be an (n + 1)-tuple with σi ∈ {0, 1}; we say f ∈ X is multi-convex if
f (i) ≥ 0 for i such that σi = 1. We characterize those σ for which there exists a projection
onto V preserving the multi-convex shape. For those shapes able to be preserved via a
projection, we construct (in all but one case) a minimal norm multi-convex preserving
projection. Out of necessity, we include some results concerning the geometrical structure
of CL[0, 1].

1. Introduction. When X is a Banach space and V ⊂ X a subspace,
we denote by P(X, V ) the set of all projections from X onto V ; in the cases
where there is no ambiguity, we will simply write P. We say that a projection
P0 is minimal if ‖P0‖ ≤ ‖P‖ for all P ∈ P(X, V ).

There exist a large number of papers concerning minimal projections.
The problems considered are mainly existence ([15], [18]), uniqueness ([14],
[16], [27], [39], [40]), characterization of one-complemented subspaces ([1],
[2], [29], [36], [37], [19]) concrete formulas for minimal projections ([3]–[7],
[13], [15], [23], [24], [26], [35], [41]), estimates of the relative projection con-
stants ([5], [17], [21], [25], [33], [38], [42]), construction of spaces with large
relative projection constants ([4], [5], [20], [22]). For basic information con-
cerning this topic the reader is referred to [32].

While a minimal projection will, in general, provide good approxima-
tions, it may fail to preserve particular properties of elements, as illustrated
below. We are therefore motivated to look for projections which leave invari-
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ant (or preserve) a particular functional characteristic (or “shape”). These
characteristics are often described using cones.

More precisely, a cone in X is a convex set closed under nonnegative
scalar multiplication. Assuming P 6= ∅, we may fix a cone S ⊂ X and ask if
any element from P leaves S invariant; i.e., let

PS = PS(X, V ) = {P ∈ P | PS ⊂ S}

and determine if PS 6= ∅. When P ∈ PS we say P is shape-preserving (in
the sense of S). Some basic results on the existence of shape-preserving
projections can be found in [10], [31], [12] and [34]. Not surprisingly, for
given X, V and S, the problem of determining if PS 6= ∅ is nontrivial in
general.

In this paper we first characterize, for a large collection of X, V and S,
when PS 6= ∅; then, for each setting in which PS 6= ∅, we calculate
infP∈PS

‖P‖. Moreover we construct a minimal shape-preserving projection.
Specifically, for positive integer L let X denote the L-times continuously

differentiable functions on [0, 1], CL[0, 1], normed by

‖f‖L = max
i=0,...,L

{‖f (i)‖∞}.

In this case we simply write X = (CL[0, 1], ‖·‖L). We denote by X∗ the dual
space of X. In this setting, note that δk

t , the kth derivative evaluation at t,
belongs to the unit sphere of X∗ for k = 0, . . . , L and t ∈ [0, 1]. For fixed k,
consider the cone S ⊂ X of all f ∈ X with nonnegative kth derivative on
[0, 1]. We refer to this set as the cone of k-convex functions. With V = Πn,
the nth degree algebraic polynomials, it was shown in [11] that

(1) PS 6= ∅ ⇔ k ≥ n − 1.

For example, for X = (C1[0, 1], ‖ · ‖1) and k = 1 we see that there is
no monotonicity-preserving (1-convex preserving) projection from X onto
V = Π3. There is however a projection preserving convexity (or 2-convexity)
onto V . Moreover, Theorem 4.2 in [11] constructs a minimal norm element
of PS for k = n − 1 (with norm 3/2 for every n) using techniques from
minimal projection theory found in [7].

As we will see in Section 3, the existence of a projection onto Πn pre-
serving k-convexity can be determined via geometric considerations; in the
case k = n or k = n− 1, this geometric approach reduces (respectively) to a
1-dimensional or 2-dimensional problem and is relatively easy to solve. That
is, the geometric approach quickly reveals the result in (1).

We now look to generalize k-convexity. Using notation similar to that of
[30], for a fixed positive integer n let σ = (σ0, σ1, . . . , σn) be an (n+1)-tuple
with σi ∈ {0, 1}; let M = maxσi=1 i. With X = CL[a, b] (L ≥ M), define

Sσ := {f ∈ X | σif
(i) ≥ 0, i = 0, . . . , n}.
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We say f ∈ X is multi-convex if f belongs to the cone Sσ. In this paper we
fix V = Πn and consider projections from X onto V leaving invariant a cone
of multi-convex functions, so-called multi-convex projections. We denote this
set of projections by PSσ

and look to construct minimal norm elements from
this set.

This paper is organized into five sections. Following these introductory
remarks, the main content of this paper is described in Section 2. There we
characterize those σ for which PSσ

6= ∅, where PSσ
⊂ X = (CL[0, 1], ‖ · ‖L).

Furthermore, we develop an iterative, norm-preserving construction of multi-
convex projections from X onto (n+1)-dimensional subspaces V , where the
iteration is with respect to n. This construction yields minimal norm multi-
convex projections in the case V = Πn. Sections 3 and 5 provide proofs of
the results of Section 2. The proofs in Section 5 require basic, nontrivial
facts about the unit ball of X = (CL[0, 1], ‖ · ‖L). For completeness, we
prove the needed results in Section 4 (indeed we found no single source
which described the geometry of this ball and thus hope that Section 4 may
be of independent utility to others).

As a summary of notation used in the following, the dual space of Banach
space X is denoted by X∗; we denote by B(X) and S(X), respectively, the
unit ball of X and the unit sphere of X. For a convex set K ⊂ X, we
denote by ext(K) the set of extreme points of K. The convex hull of a
subset A ⊂ X is denoted by coA while the convex cone generated by A is
cone(A) = {̺a | ̺ ∈ [0,∞) and a ∈ A}.

2. Main results. Let L and n denote positive integers such that L ≥
n − 1 (the reason for this inequality will be made clear). Let σ = (σ0, σ1,
. . . , σn) with σi ∈ {0, 1}; let

M = max
σi=1

i and m = min
σi=1

i.

We say that σ is 1-connected if whenever σi = σj = 1 for i < j, we have
σk = 1 for all k = i, i + 1, . . . , j.

Theorem 2.1. Let X = (CL[0, 1], ‖ · ‖L). Then PSσ
(X, Πn) 6= ∅ iff

M ≥ n − 1 and σ is 1-connected.

The next theorems describe minimal norm multi-convex projections. But
first a few comments are in order. By definition we always have m ≤ M .
Whenever M = n, we automatically assume L ≥ n. Theorem 2.1 indicates
that there are two possible situations (of interest to us) in which m = M ,
namely m = M = n − 1 and m = M = n. These cases are actually “k-
convex” shapes (regarded as specific multi-convex shapes); moreover these
situations constitute somewhat extreme cases in the multi-convex realm.
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The case m = M = n − 1 has been handled in [11]. For completeness, we
give the result on minimality for this case in Theorem 2.2.

In the case m = M = n, the minimal shape-preserving projection prob-
lem is completely unsolved for n ≥ 2 (the projection given in [8] partially
solves the problem in the n = 2 case). Indeed, it is conjectured in [11]
that a minimal norm projection from X = CL[0, 1] onto V = Πn preserves
n-convexity for every L = 0, 1, . . . . That is, in the case of n-convexity, the
minimal shape-preserving projection problem is perhaps equivalent to the
minimal projection problem. Therefore, this paper does not address this
case.

There is one more exceptional case: m = n − 1 and M = n. It turns
out that the results concerning minimal shape-preserving projections in this
case are similar to those for m = M = n− 1 but the method of proof differs
substantially from the approach in [11] as well as from that adopted here.
Consequently, the m = n − 1, M = n case is handled in [28]. However,
Theorem 2.2 below states the result for this case.

Throughout the remainder of this paper we will assume n ≥ 2. In the
n = 1 case, there is a projection of norm one in PSσ

(X, Π1).

Theorem 2.2 (see [11] and [28]). Let X = (CL[0, 1], ‖ · ‖L). For fixed

n let m = n − 1 ≤ M . Then there exists Pm ∈ PSσ
(X, Πn) such that

‖Pm‖ = 3/2 and ‖Pm‖ ≤ ‖P‖ for every P ∈ PSσ
(X, Πn).

Theorem 2.3. Let X = (CL[0, 1], ‖·‖L). For fixed n, assume M ≥ n−1
and σ is 1-connected. Suppose m = 0 and define P0,n =

∑n
i=0 ui ⊗ vi where

ui = δi
0 for i 6= n, un = δn−1

1 ,

vi =
xi

i!
for i 6= n − 1, vn−1 =

xn−1

(n − 1)!
−

xn

n!
;

i.e.,

(2) P0,n = δ0 ⊗ 1 + δ1
0 ⊗

x

1!
+ · · · + δn−1

0 ⊗

(
xn−1

(n − 1)!
−

xn

n!

)
+ δn−1

1 ⊗
xn

n!
.

Then P0,n has minimal norm in PSσ
(X, Πn) and

(3) ‖P0,n‖ =
n−1∑

k=0

1

k!
.

Moreover , in the case that M = n − 1, we have {P0,n} = PSσ
(X, Πn).

Theorem 2.4. Let X = (CL[0, 1], ‖ ·‖L) and X1 = (CL+1[0, 1], ‖ ·‖L+1).
For fixed integer n, assume 0 < m < n − 1 ≤ M and σ is 1-connected. Let

Y ⊂ X denote the (n+1)-dimensional subspace spanned by {w0, w1, . . . , wn},
i.e., Y = [w0, w1, . . . , wn]. Let Pm,n =

∑n
i=0 qi ⊗ wi be a projection from X

onto Y which preserves Sσ, i.e., Pm,n ∈ PSσ
(X, Y ). Define the operator
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Pm+1,n+1 on X1 by

(Pm+1,n+1f)(x) =
f(0) + f(1)

2
+

x\
0

(Pm,nf ′)(t) dt(4)

−
1

2

1\
0

(Pm,nf ′)(t) dt

where f ′ denotes the derivative of f . Then

Pm+1,n+1 ∈ PS
σ̂

(X1, [1, W0, W1, . . . , Wn])

where

Wi(t) =

t\
0

wi(s) ds

and σ̂ is the 1-connected (n + 2)-tuple such that maxσ̂i=1 i = M + 1 and

minσ̂i=1 i = m + 1. Moreover , if ‖Pm,n‖ ≥ 2 then

(5) ‖Pm+1,n+1‖ = ‖Pm,n‖.

Theorem 2.5. Let k be a nonnegative integer. Let X = (CL+k[0, 1], ‖·‖)
where ‖ · ‖ is any norm such that

‖ · ‖2,L+k ≤ ‖ · ‖ ≤ ‖ · ‖L+k

where

‖f‖2,L+k = max{ max
j=0,...,L+k−1

{|f (j)(0)|, |f (j)(1)|}, ‖f (L+k)‖∞},

‖f‖L+k = max
i=0,...,L+k

{‖f (i)‖∞}.

Let Pk,n+k denote the operator obtained by k applications of (4) beginning

with P0,n given in Theorem 2.3. Then Pk,n+k is a minimal norm element

of PSσ
(X, Πn+k) where σ is the 1-connected (n + k + 1)-tuple such that

maxσi=1 i ≥ n + k − 1 and minσi=1 i = k.

In general, given two norms that are equivalent (but not proportional),
we should not expect a projection that has minimal operator norm with
respect to the first norm to be minimal in the operator norm determined by
the second. From this viewpoint, Theorem 2.5 is quite surprising.

The proofs of Theorems 2.1, 2.3, 2.4 and 2.5 are contained in the sections
that follow. We first verify the existence in Section 3. Then, in Section 4,
we show how to calculate the norms of functionals from a particular family.
This calculation will play a crucial role in Section 5, where we verify the
shape-preserving properties and norm minimality of the constructed projec-
tions.
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3. Proof of existence. We employ results from [31] to establish exis-
tence. The relevant material from that paper is included below.

A cone K in a Banach space is defined to be a convex set which is
closed under nonnegative scalar multiplication. K is said to be pointed if K
contains no lines through 0.

For φ ∈ K, let [φ]+ := {αφ | α ≥ 0}. We say [φ]+ is an extreme ray of K
if φ = φ1 + φ2 with φ1, φ2 ∈ K implies φ1, φ2 ∈ [φ]+. Let E(K) denote the
union of all extreme rays of K. When K is a closed, pointed cone of finite
dimension we always have K = co(E(K)).

We say a finite (possibly) signed measure µ with support E ⊂ X∗ is a
generalized representing measure for φ ∈ X∗ if 〈x, φ〉 =

T
E
〈s, x〉 dµ(s) for

all x ∈ X. A nonnegative measure µ satisfying this equality is simply a
representing measure.

Definition 3.1. Let X be a Hausdorff topological vector space over R

and let X∗ be the topological dual of X. We say that a pointed closed cone
K ⊂ X∗ is simplicial if K can be recovered from its extreme rays, (i.e.,
K = co(E(K))) and the set of extreme rays of K is independent (in the
sense that any generalized representing measure for x ∈ K supported on
E(K) must be a representing measure).

Proposition 3.1. A pointed closed cone K ⊂ X∗ of finite dimension d
is simplicial iff K has exactly d extreme rays.

For given Sσ, we define its dual cone as

S∗ = {u ∈ X∗ | u(f) ≥ 0 ∀f ∈ Sσ}.

Note that for each Sσ, the cone dual S∗ is simplicial with [φ]+ ∈ E(S∗) iff
φ = ̺δk

t where ̺ > 0, t ∈ [0, 1] and k ∈ {0, 1, . . . , L}. The result we will
need is the following.

Theorem 3.1. Let X = (CL[0, 1], ‖ · ‖L). Then PSσ
(X, Πn) 6= ∅ if and

only if the cone S∗
|Πn

is simplicial.

Proof of Theorem 2.1. Throughout this proof we denote the dual cone
of Sσ by S∗, and Πn by V .

(⇐) We verify that S∗
|V

is simplicial. Note that for each t ∈ [0, 1] and

each integer j ∈ [m, M ] the functional δj
t belongs to an extreme ray of S∗.

Therefore, we need only demonstrate that a simplicial subcone of S∗
|V

con-

tains all restrictions (δj
t )|V ; this will then imply that S∗

|V
is itself simplicial.

To this end, we fix for V the basis {vi}
n
i=0 where vi = xi/i! and embed S∗

|V

into (the positive orthant of) R
n+1 via the identification
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φ|V ≡ 〈v, φ〉 =





〈v0, φ〉

〈v1, φ〉
...

〈vn, φ〉




;

with this understanding we will regard S∗
|V

⊂ R
n+1. Let us now consider

the case M = n − 1 (we will see that the M = n case follows in the
same way). Notice that, for an integer j ∈ [m, n − 1] and t ∈ [0, 1], we
have

(6) (δj
t )|V =





01

...

0j

1

t/1!
...

tk−j/(k − j)!
...

tn−j/(n − j)!





.

Denote by ei the vector (01, . . . , 0i−1, 1, 0i+1, . . . , 0n+1)
T ∈ R

n+1; from (6)

it is clear that, for every integer j ∈ [m, n− 1], ej+1 ∈ S∗
|V

(given by (δj
0)|V )

as well as en + en+1 ∈ S∗
|V

(given by (δn−1
1 )|V ). Moreover, for every integer

j ∈ [m, n − 1] we have

(δj
t )|V =

n−2∑

k=j

tk−j

(k − j)!
ek+1 +

tn−j−1

(n − j − 1)!

(
1 −

t

n − j

)
en

+
tn−j

(n − j)!
(en + en+1).

Since the coefficient functions of en + en+1 and each ek, k = j, . . . , n, are
nonnegative, we see that S∗

|V
is simplicial. In the case that M = n, we again

note from (6) that ej ∈ S∗
|V

for every integer j = m + 1, . . . , n + 1 and thus

S∗
|V

is also simplicial.

(⇒) Assume PSσ
6= ∅. By Theorem 3.1, we know S∗

|V
is simplicial. Let

E = {[x1]
+, . . . , [xd]

+} be the set of extreme rays of S∗
|V

. We first show that

M must be at least n − 1. Suppose, to the contrary, that M ≤ n − 2. For
convenience, fix for V the basis {vi}

n
i=0 where
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(7) vi =

{
xi/i!, i < M ,

(i − M)!/i!xi, i ≥ M .

For t ∈ [0, 1], let ∆t := (δM
t )|V and, via the embedding into R

n+1 described

above, notice that ∆t = (01, . . . , 0M , 1, t, t2, . . . , tn−M ). Consider the sub-
cone K of S∗

|V
⊂ R

n+1 generated by the rays [∆t]
+:

(8) K = co({[∆t]
+ | t ∈ [0, 1]}).

Then K has infinitely many extreme rays since each ∆t is an extreme point
of C = co({∆t | t ∈ [0, 1]}) (C is a translate of the convex hull of the moment
curve (t, t2, . . . , tn−M)). If m = M then we have an immediate contradiction;
assume then that 0 ≤ m < M . Consequently, E cannot lie entirely in K;
without loss assume {[x1]

+, . . . , [xk]
+} = E − (E ∩ K). Since each such ray

is extreme, for each i = 1, . . . , k we must have [xi]
+ = [(δj

t )|V ]+ for some
t ∈ [0, 1] and some integer j ∈ [m, M − 1]. But because j < M , we see that
every (nonzero) element (a1, . . . , an+1)

T from co({[x1]
+, . . . , [xk]

+}) has at
least one nonzero entry in the first M coordinates, i.e., there exists an integer
s ∈ [0, M ] such that as 6= 0. This implies co({[x1]

+, . . . , [xk]
+}) ∩ K = ∅.

Thus K ⊂ S∗
|V

cannot be contained in a simplicial subcone of S∗
|V

, and this

contradicts the fact that S∗
|V

simplicial. Therefore M ≥ n − 1.

We now show σ is 1-connected. Suppose it is not; let Z := max{i |
σi+1 = 0 and i < M} (Z marks the location of the last 1 in σ before
the last break of the sequence of 1’s). For convenience fix for V the basis
in (7) using Z rather than M . Similar to the above, define ∆t := (δZ

t )|V
and K as in (8). Then K has infinitely many extreme rays and thus, as
before, the set of extreme rays of S∗

|V
, E = {[x1]

+, . . . , [xd]
+}, cannot lie

entirely in K. Every xi must be of the form (δj
t )|V for some t ∈ [0, 1] and

some integer j as prescribed by σ. The convex hull of {[xi]
+ | xi = (δj

t )|V
for j ≥ Z + 2} misses every (nonzero) element of K since every element
(a1, . . . , an+1) of this convex hull has aZ+1 = 0. Similarly, the convex hull

of {[xi]
+ | xi = (δj

t )|V for j ≤ Z − 1} misses every (nonzero) element of K
since every element (a1, . . . , an+1) of this convex hull has as 6= 0 for some
integer s ∈ [m, Z − 1]. If σ is not 1-connected then we have exhausted all
possible choices for xi (in particular, there is not xi of the form (δZ+1

t )|V )
and we find that S∗

|V
cannot be simplicial. This contradiction shows that σ

is 1-connected.

4. Results on the geometry of B(CL[0, 1], ‖ · ‖L). We start with two
well known lemmas, whose straightforward proofs are omitted.

Lemma 4.1. Let (X, ‖ · ‖) be a normed space. Suppose that (‖ · ‖k) is a

sequence of equivalent norms on X such that
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(9) ‖x‖k(1 − ak) ≤ ‖x‖ ≤ (1 + ak)‖x‖k

for any x ∈ X. Assume ak → 0. Let Lk(X) denote the space of linear

operators defined on X, continuous with respect to ‖ · ‖, with the operator

norm induced by ‖ · ‖k. Then for any T ∈ L(X),

‖T‖k → ‖T‖,

where ‖T‖ denotes the operator norm of T induced by ‖ · ‖.

Lemma 4.2. Let (X, ‖ · ‖) be a normed space and let ‖ · ‖k be a sequence

of norms on X satisfying (9) such that ak → 0. Let X∗
k denote the dual space

X∗ equipped with the norm induced by ‖ · ‖k. Then for any f ∈ X∗,

‖f‖k → ‖f‖,

where ‖f‖ denotes the norm of f in X∗.

Definition 4.1. Let {ti} be a countable, dense subset of [0, 1] such that
t0 = 0 and t1 = 1. For k ∈ N define a norm ‖ · ‖k,L on CL[0, 1] by

‖f‖k,L = max
i=0,...,L

Aik(f),

where
Aik(f) = max

j=1,...,k
|f (i)(tj)| for i = 0, . . . , L − 1,

ALk(f) = ‖f (L)‖∞.

Lemma 4.3. Let ‖·‖k,L be as in Definition 4.1. Then for any ε > 0 there

exists k0 ∈ N such that for any f ∈ CL[0, 1] and k ≥ k0,

(10) ‖f‖k,L ≤ ‖f‖L ≤ (1 + ε)‖f‖k,L,

where

‖f‖L = max
i=0,...,L

{‖f (i)‖∞}.

Proof. Fix k ∈ N, k ≥ 3. Without loss of generality, we can assume that

1 = t0 < t2 < · · · < tk < t1 = 1.

Set
∆k = max{t2 − t0, t1 − tk, tj − tj−1 | j = 3, . . . , k}.

By the density of {tj}, ∆k → 0. Fix k0 ∈ N such that

(1 + ∆k)
L+1 < 1 + ε

for k ≥ k0. Take any k ≥ k0. Fix f ∈ X. First we show that

(11) ‖f (L−1)‖∞ ≤ (1 + ∆k)‖f‖k,L.

Let t ∈ [0, 1] be so chosen that ‖f (L−1)‖∞ = |f (L−1)(t)|. Then t ∈ [t0, t2] or
t ∈ [tk, t1] or t ∈ [ti, ti+1] for some i = 2, . . . , k. Hence by the definition of
∆k and the mean value theorem, for properly chosen ti, i = 0, . . . , k,

|f (L−1)(t) − f (L−1)(ti)| ≤ ‖f (L)‖∞|t − ti|.
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Hence

‖f (L−1)‖∞ = |f (L−1)(t)| ≤ |f (L−1)(ti)| + ‖f (L)‖∞∆k ≤ ‖f‖k,L(1 + ∆k),

which proves (11). Analogously, by the mean value theorem,

‖f (L−j)‖∞ ≤ (1 + ∆k)
j‖f‖k,L

for j = 0, . . . , L. Hence

max
i=0,...,L

{‖f (i)‖∞} ≤ (1 + ∆k)
L+1‖f‖k,L,

which gives ‖f‖L ≤ (1 + ε)‖f‖k,L for k ≥ k0, as required.

Theorem 4.1. Let X = (CL[0, 1], ‖ · ‖L) and Xk = (CL[0, 1], ‖ · ‖k,L).
Then

ext(B(X∗)) ⊂ {±δi
t | i = 0, . . . , L, t ∈ [0, 1]},

ext(B(X∗
k)) ⊂ {±δi

tj
| i = 0, . . . , L − 1, j = 0, . . . , k} ∪ {δL

t | t ∈ [0, 1]}.

Proof. Note that X can be isometrically embedded in Z = (C[0, 1])L+1

with the norm

‖(f1, . . . , fL+1)‖ = max
i=1,...,L+1

‖fi‖∞.

The embedding is given by the formula

T (f) = (f, f (1), . . . , f (L)).

Note that

ext(B(Z∗)) = {(0, . . . ,±δt, 0, . . . , 0) : t ∈ [0, 1]}.

To show our claim we prove that X is a weakly separating subspace of Z.
Recall that a linear subspace V of a Banach space W is called weakly sep-

arating if any point from ext(B(V ∗)) has only one Hahn–Banach extension
in B(W ∗).

So assume x∗ ∈ ext(B(X∗)). Set

K = {f ∈ B(Z∗) : f|X = x∗}.

We show that K consists of exactly one element from ext(B(Z∗)). It is
easy to see that K is a convex, weak∗ closed subset of B(Z∗). By the
Banach–Alaoglu theorem K is weak∗ compact. By the Krein–Milman the-
orem ext(K) 6= ∅. First we show that ext(K) ⊂ ext(B(Z∗)). Take any
g ∈ ext(K) and assume g = (g1 + g2)/2, where g1, g2 ∈ B(Z∗). Then

f = gX =
(g1)|X + (g2)|X

2
.

Since f ∈ ext(B(X∗)), we have (g1)|X = f and (g2)|X = f. Hence g1, g2 ∈ K.
Since g ∈ ext(K), it follows that g1 = g2, as required.
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Now assume on the contrary that K consists of more than one element.
Then we can find at least two different points of ext(B(Z∗)),

z1 = ±(0, . . . , (δs)i, 0, . . . , 0), z2 = ±(0, . . . , (δt)j, 0, . . . , 0),

belonging to ext(K). Hence (z1)|X = (z2)|X . But if i < j then taking fi(t) =

ti we get (via isometric embedding) z1(fi) = 1 and z2(fi) = 0. Hence i = j.
If s 6= t then taking fi(t) = ti+1 we also get z1(fi) 6= z2(fi). Finally, if

z1 = (0, . . . , (δt)i, 0, . . . , 0), z2 = −(0, . . . , (δt)i, 0, . . . , 0),

then also z1(fi) 6= z2(fi), where fi(t) = ti. Consequently, z1 = z2; a contra-
diction. Hence K consists of exactly one element z. By the previous reasoning
z ∈ ext(B(Z∗)). Consequently, (via isometric embedding) x∗ = ±δi

t for some
t ∈ [0, 1] and i = 0, . . . , L, as required.

Now we consider the case of Xk. Note that Xk can be isometrically
embedded into

C = R
(k+1)L × C[0, 1]

equipped with the norm

‖(r1, . . . , r(k+1)L, f)‖ = max{|ri| (i = 1, . . . , (k + 1)L), ‖f‖∞}.

The embedding is given by

T (f) = (f(tj)
(i) (i = 0, . . . , L − 1, j = 0, . . . , k), f (L)).

Reasoning in the same way as in the case of X we get our result.

Theorem 4.2. Let Xk = (CL[0, 1], ‖ · ‖k,L), L ≥ 2. Set

g =

∑L−1
i=0 δi

0

L
∈ (Xk)

∗.

Then ‖g‖ = 1.

Proof. Without loss of generality, we can assume that

0 = t0 < t1 < · · · < tk = 1.

It is clear that ‖g‖ ≤ 1. Assume that ‖g‖ < 1. Then ‖bg‖ = 1 for some
b > 1, since g 6= 0. By Theorem 4.1 and the Krein–Milman theorem,

(12) bg =
L−1∑

i=0

k∑

j=0

aijδ
i
tj

+ u.

Here u is a Radon measure on [0, 1] acting as a functional on Xk as

û(f) =
\

[0,1]

f (L)(t) du(t)
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and

(13)
L−1∑

i=0

k∑

j=0

|aij| + ‖u‖ = 1,

where ‖u‖ denotes the total variation of u.
First we show that u = 0. Assume that u 6= 0. Then

u = bg −
L−1∑

i=0

k∑

j=0

aijδ
i
tj

.

Note that u =
∑k−1

l=0 ul, where ul is the Radon measure defined by ul(A) =
u(A ∩ El) for l = 0, . . . , k − 1, where El = [tl, tl+1) for l = 0, . . . , k − 2 and
Ek−1 = [tk−1, 1].

Let us first assume that for every l = 0, . . . , k − 1, ul = clml, where ml

is the Lebesgue measure on El and cl ∈ R. By the fundamental theorem of
calculus,

ml(f) = cl

\
El

f (L)(s) ds = cl(f
(L−1)(tl+1) − f (L−1)(tl))

for l = 0, . . . , k − 1. By the Hermite interpolation theorem there exists a
polynomial p such that

p(i)(0) = 0 for i = 0, . . . , L − 1,

p(i)(tj) = sgn(aij) for i = 0, . . . , L − 2, j = 1, . . . , k,

p(L−1)(tj) = sgn(aL−1,j − cj−1 + cj) for j = 1, . . . , k.

Observe that

0 = (bg)(p) =
L−2∑

i=0

k∑

j=1

|aij | +
k∑

j=1

|aL−1,j + cj−1 − cj |.

Hence all coefficients in the above sum are 0. But this implies that

bg =

L−2∑

i=0

ai,0δ
i
0 + (aL−1,0 − c0)δ

L−1
0 .

Since b > 1 and the set {δi
0 : i = 0, . . . , L − 1} is linearly independent, this

leads to a contradiction with (13).
So assume that there exists l ∈ {0, . . . , k − 1} such that ul 6= 0 and ul is

not a constant multiple of ml. By (12),

(14) u(f) =
\

[0,1]

f (L)(t) du(t) = 0

for any f ∈ Xk satisfying

(15) f (i)(tj) = 0 for i = 0, . . . , L − 1, j = 0, . . . , k.
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Fix any f ∈ Xk satisfying (14). Suppose there exist D1 ⊂ El and D2 ⊂ El

such that

(16) u(D1) · u(D2) < 0.

Assume u(D1) > 0. Modifying D1 and D2 if necessary, we can assume that
D1 ∩ D2 = ∅. By the properties of Radon measures there exist two disjoint
subintervals (denote them also by D1, D2) of El of the same length c > 0
satisfying (16). Set

(17) hL = χD1 − χD2 .

We now modify hL to a continuous function hl
L on [0, 1] with support con-

tained in D1 ∪ D2. To do this fix l ∈ N such that c − 2/l > 0. Assume that
D1 = (s1, s2), D2 = (w1, w2) and s2 < w1. Set hl

L(t) = hL(t) if t /∈ D1 ∪D2,
hl

L(t) = 1 if t ∈ (s1 + 1/l, s2 − 1/l), hl
L(t) = −1 if t ∈ (w1 + 1/l, w2 − 1/l)

and extend it linearly for other t. Note that, for Lebesgue measure m,

(18)
\

[0,1]

hl
L(t) dm(t) = 0,

and l can be taken so large that

(19)
\

[0,1]

hl
L(t) du(t) > 0.

Set HL(t) = hl
L(t), where l is so chosen that (16) and (19) are satisfied. Set

Hj−1(t) =
\

[0,t]

Hj(s) dm(s) for j = L, L − 1, . . . , 1.

Define

G = f + H0.

By the construction of HL,\
El

Hj(s) dm(s) = 0 for j = 1, . . . , L.

Consequently,

G(i)(tj) = 0 for i = 0, . . . , L − 1, j = 0, . . . , k

and thus G satisfies (15). Hence it should satisfy (14)—but this contra-
dicts (19).

To end the proof that u = 0, assume that ul does not satisfy (16). Hence
ul or −ul is a nonzero measure on El which is not a constant multiple of the
Lebesgue measure of El. Without loss of generality we can assume that ul

is a measure. By the above condition ul is not a Haar measure of El. Hence
there exist an open interval D1 ⊂ El and t > 0 such that

ul(D1) 6= ul(D1 + t).
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It follows that there exist two open disjoint intervals D1, D2 ⊂ El of the
same length c > 0 satisfying

(20) ul(D1) 6= ul(D2).

Since obviously m(D1) = m(D2) = c, reasoning as above and replacing (16)
by (20) we get a contradiction with (19). This finally shows that u = 0.

Hence (12) reduces to

(21) bg =
L−1∑

i=0

k∑

j=0

aijδ
i
tj

.

By the Hermite interpolation theorem there exists a polynomial p such that

p(i)(0) = 0 for i = 0, . . . , L − 1,

p(i)(tj) = sgn(aij) for i = 0, . . . , L − 1, j = 1, . . . , k.

Observe that

0 = (bg)(p) =
L−1∑

i=0

k∑

j=1

|aij |.

Hence aij = 0 for j = 1, . . . , k and i = 0, . . . , L − 1. By (21),

L−1∑

i=0

(b/n − ai,0)δ
i
0 = 0.

By the linear independence of the functionals δi
0, i = 0, . . . , L − 1, we get

ai,0 = b/n for i = 0, . . . , L − 1. Hence

L−1∑

i=0

ai,0 = b > 1,

contrary to (13). The proof is complete.

Corollary 4.1. Let X = (CL[0, 1], ‖ · ‖L). Set

g =

∑L
i=0 δi

0

L + 1
∈ X∗.

Then ‖g‖ = 1.

Proof. Applying Theorem 4.2 to Yk = (CL+1[0, 1], ‖ · ‖k,L+1) and g we
get ‖g‖Y ∗

k
= 1. By Lemma 4.2, Lemma 4.3 and Theorem 4.2,

‖g‖Y ∗ = 1,

where Y = (CL+1[0, 1], ‖ · ‖L+1). Hence, by the weak∗ density of Y in Y ∗∗,
there exists a sequence {fk} ⊂ Y with

‖fk‖L+1 = max
i=0,...,L+1

‖f
(i)
k ‖∞ = 1
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such that g(fk) → 1. Note that fk ∈ X and

‖fk‖L = max
i=0,...,L

‖f (i)‖∞ ≤ ‖fk‖L+1 = 1.

Hence ‖g‖ = 1, as required.

Lemma 4.4. Let X = (CL[0, 1], ‖ · ‖L). Fix an integer k ∈ [0, L] and set

g =
k∑

i=0

δi
0 + δk

1 ∈ X∗.

Set

W = {F ∈ X∗∗ | F (g) = k + 2 and ‖F‖ = 1}.

Then W 6= ∅.

Proof. First consider the case k = L. By Corollary 4.1, there exists
F ∈ (XL)∗∗ with ‖F‖ = 1 such that F (δi

0) = 1 for i = 0, . . . , k. By the
weak∗ density of X in X∗∗, there exists a sequence {fj} ⊂ X with ‖fj‖L ≤ 1

such that f
(i)
j (0) → 1 for i = 0, . . . , k. Define a sequence {g

(k)
j } of continuous

functions by g
(k)
j (t) = f

(k)
j (t) if t ∈ [0, 1−1/j], g

(k)
j (1) = 1, extended linearly

onto the interval [1 − 1/j, 1]. Note that for any j ∈ N,

g
(k)
j = f

(k)
j + h

(k)
j

where h
(k)
j (t) = 0 for t ∈ [0, 1 − 1/j] and ‖h

(k)
j ‖∞ ≤ 2. Let

h
(i−1)
j (t) =

t\
0

h
(i)
j (s) ds

for i = k, k − 1, . . . , 1. Set

gj = fj + h
(0)
j .

By the mean value theorem,

‖g
(i)
j ‖∞ ≤ 1 + 2/j for i = 0, . . . , k − 1

and

‖g
(k)
j ‖∞ ≤ 1

by definition. Hence ‖gj‖ ≤ 1 + 2/j for j ∈ N. By the Banach–Alaoglu
theorem {gj} has a cluster point F1 ∈ X∗∗ with ‖F1‖ = 1. It is clear by
definition of gj that F1 ∈ W. If k < L, by the Ascoli–Arzelà theorem applied

to {f
(k)
j } there exists a subsequence {jl} such that f

(k)
jl

(1) → 1. Then we
can proceed as in the previous case.

Theorem 4.3. Let X = (CL[0, 1], ‖·‖L) and fix an integer k ∈ [0, L−1].
Set

W = {F ∈ X∗∗ | F (δk
0 ) = 1, ‖F‖ = 1}.
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Assume u is a Borel measure on [0, 1]. Define uk ∈ X∗ by

(22) uk(f) =
\

[0,1]

f (k)(t) du(t).

Then for any F ∈ W ,

F (uk) ≥ 0.

Proof. Fix F ∈ W and a Borel measure u. By the Goldstine theorem
there exists a sequence {fl} ⊂ X with ‖fl‖L ≤ 1 such that

(23) fl(δ
k
0) = f

(k)
l (0) → F (δk

0 ) = 1

and

(24) fl(u
(k)) =

\
[0,1]

f
(k)
l (t) du(t) → F (u(k)).

In particular, ‖f
(k+1)
l ‖∞ ≤ 1. Hence by the mean value theorem for any

s, t ∈ [0, 1] and l ∈ N,

|f
(k)
l (s) − f

(k)
l (t)| ≤ |t − s|.

Also ‖f
(k)
j ‖∞ ≤ 1. By the Ascoli–Arzelà theorem, passing to a subsequence

if necessary, we can assume that there exists f ∈ C[0, 1] such that

(25) ‖f
(k)
l − f‖∞ → 0.

Now we show that f(t) ≥ 0 for any t ∈ [0, 1]. By (23), f(0) = 1. Assume,
on the contrary, that there exists t0 ∈ (0, 1] such that f(t0) < 0. By (23)
there exists δ > 0 such that

|f
(k)
l (0) − f

(k)
l (t0)| > 1 + δ

for l ≥ l0. By the mean value theorem,

1 + δ < |f
(k)
l (0) − f

(k)
l (t0)| ≤ ‖f

(k+1)
l ‖∞t0 ≤ 1;

a contradiction.

Hence f(t) ≥ 0 for any t ≥ 0. By (25),

fl(u
(k)) =

\
[0,1]

f
(k)
l (t) du(t) →

\
[0,1]

f(t) du(t) ≥ 0,

since f is nonnegative and u is a measure. By (24),

F (u(k)) =
\

[0,1]

f(t) du(t) ≥ 0.

Theorem 4.4. Let X = (CL[0, 1], ‖ · ‖L) and fix an integer k ∈ [0, L].

Let g =
∑k

i=0 δi
0 and
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W1 = {F ∈ X∗∗ | F (g) = k + 1, ‖F‖ = 1}.

Then there exists F ∈ W1 such that

F (uk) ≥ 0

for any Borel measure u on [0, 1], where uk is defined by (22). Moreover

F (mk
t ) = 0 for any t ∈ [0, 1], where

mk
t (f) =

\
[0,t]

f (k)(t) dm(t)

and m is the Lebesgue measure on [0, 1].

Proof. Let Z = (CL+1[0, 1], ‖ · ‖L+1). Set g =
∑k+1

i=0 δi
0 and

W2 = {F ∈ Z∗∗ | F (g) = k + 2, ‖F‖ = 1}.

By Corollary 4.1, W2 6= ∅. Take any G ∈ W2. Since W2 ⊂ W, by Theorem 4.3
we have G(uk) ≥ 0 for any Borel measure u, where uk is the functional on Z
defined by (22). By the Goldstine theorem applied to B(Z∗∗), there exists
a net {fβ} ⊂ Z with ‖fβ‖ ≤ 1 for any β such that fβ → G weak∗ in Z∗∗.
Since Z ⊂ X (as sets), we have {fβ} ⊂ X. Moreover, each fβ has norm one
in X, since its norm in Z is at most one. By the Banach–Alaoglu theorem
applied to B(X∗∗) the set {fβ} has an accumulation point F ∈ B(X∗∗).
Since G ∈ W2,

1 = G(δi
0) = lim

β
f

(i)
β for i = 0, . . . , k + 1.

Hence obviously F (δi
0) = 1 for i = 0, . . . , k. Since ‖F‖ ≤ 1, we have F ∈ W1.

Moreover by Theorem 4.3, for any Borel measure u on [0, 1],

F (uk) = lim
β

\
[0,1]

f
(k)
β (t) du(t) = G(uk) ≥ 0,

as desired. In particular, F (mk
t ) ≥ 0 for any t ∈ [0, 1]. By the fundamental

theorem of calculus, for any f ∈ X,

mk
t (f) =

\
[0,t]

f (k)(t) dm(t) = f (k−1)(t) − f (k−1)(0).

Since F ∈ W1,

0 ≤ F (mk
t ) = F (δk−1

t − δk−1
0 ) = F (δk−1

t ) − 1.

Hence F (δk−1
t ) ≥ 1. Since ‖F‖ = 1,

F (δk−1
t ) = 1.

Consequently, F (mk
t ) = 0, which completes the proof.
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5. Proofs of minimality

Proof of Theorem 2.3. The fact that P0,n =
∑n

i=0 ui ⊗ vi is a projection
follows from the definition of ui and vi; it is easy to check that 〈vi, uj〉 = 0
unless i = j, in which case the result is 1.

The verification that P0,n preserves the multi-convex shape described by
σ (i.e., P0,nSσ ⊂ Sσ) is a direct calculation. Let f ∈ Sσ, t ∈ [0, 1], j ≤ M
an integer and consider

〈P0,nf, δj
t 〉 =

〈 n−1∑

k=0

f (k)(0)vk + f (L−1)(1)vn, δj
t

〉

=
n−1∑

k=j

f (k)(0)v
(j)
k (t) + f (L−1)(1)v(j)

n (t) ≥ 0

since every term in the sum is nonnegative. Thus P0,n ∈ PSσ
(X, Πn).

To verify (3) of Theorem 2.3, note that, from (2), we have ‖P0,n‖ ≤∑n−1
k=0 1/k!. If L = n − 1 then Lemma 4.4 yields ‖P0,n‖ =

∑n−1
k=0 1/k!. If

L ≥ n Theorem 4.4 guarantees the existence of F ∈ B(X∗∗) such that
F (δi

0) = 1 for i = 0, . . . , n−1 and F (m) = 0, where m denotes the Lebesgue
measure. But we see from the proof of Theorem 4.4 that F vanishing on
m implies F (δn−1

1 ) = 1, which implies ‖P0,n‖ ≥
∑n−1

k=0 1/k! and thus (3)
follows.

To show P0,n has minimal norm in PSσ
(X, Πn), we consider two cases:

M = n − 1 and M = n. We handle the M = n − 1 case first, using the
following uniqueness argument.

We begin with a corollary given in [9]; it describes how the functionals
that define a projection must be chosen in order for the projection to preserve
shape.

Corollary 5.1 (see [9]). Suppose P ∈ PS. If S∗
|V

is k-dimensional then

there exists a basis v = (v1, . . . , vn)T for V such that whenever P = u⊗v ∈
PS , where u = (u1, . . . , un) ∈ (X∗)n, we have ui ∈ S∗ for i = n−k+1, . . . , n.

Moreover , each such ui restricts to a distinct extreme ray of S∗
|V

.

To utilize this result, we note that the proof of Theorem 2.1 demonstrates
that the simplicial cone S∗

|V
has easily described extreme rays; they are

generated (via nonnegative scalar multiplication) by

(26) {(δ0)|V , (δ1
0)|V , . . . , (δn−1

0 )|V , (δn−1
1 )|V }.

Thus, by Corollary 5.1, every projection P =
∑n

i=0 ui ⊗ v̂i ∈ PSσ
(X, Πn)

must be such that ui ∈ S∗ and (ui)|V = (δj
0)|V for some j or (ui)|V =

(δn−1
1 )|V . However, it is easy to check that for every j there exists a unique

element of S∗ whose restriction to V is (δj
0)|V , namely δj

0. Similarly, δn−1
1
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is the unique element of S∗ with restriction to V given by (δn−1
1 )|V . Con-

sequently, (2) implies that P0,n is the unique element of PSσ
(X, Πn) and

therefore of minimal norm.

We now consider the case M = n. Unlike the previous case, the projec-
tion P0,n is not unique in PSσ

(X, Πn); indeed, consider P0,n written in the
following way:

P0,n = δ0 ⊗ 1 + δ1
0 ⊗

x

1!
+ · · · + δn−1

0 ⊗
xn−1

(n − 1)!
+ (δn−1

1 − δn−1
0 ) ⊗

xn

n!
.

Replacing the functional δn−1
1 − δn−1

0 with (a positive scalar multiple of)
any nonzero element from the weak∗ closure of cone{δn

t }t∈[0,1] will result
in an element of PSσ

(X, Πn). In fact, by Corollary 5.1 every element of
PSσ

(X, Πn) can be constructed in this way. And that is why we are unable to
appeal to the standard theory of minimal projections (described for example
in [9]) which relies on best approximations from a linear space (and not from
a cone). Therefore we proceed in the following way: we show that replacing
δn−1
1 −δn−1

0 in P0,n with any other allowable functional from S∗ results in an
element of PSσ

(X, Πn) with norm at least as large as ‖P0,n‖. The following
gives the form of an element from PSσ

(X, Πn) in the M = n case.

Lemma 5.1. Let Q ∈ PSσ
(X, Πn). Then there exists u ∈ X∗ such that

Q = δ0 ⊗ 1 + δ1
0 ⊗

x

1!
+ · · · + δn−1

0 ⊗
xn−1

(n − 1)!
+ u ⊗

xn

n!
.

Moreover , there exists a probability Borel measure µ such that for every

f ∈ X we have

(27) u(f) =

1\
0

f (n)(t) dµ(t).

Proof. Fix the basis {1, x, x/2!, . . . , xn/n!}; then Corollary 5.1 guaran-
tees the above representation of Q and implies that u ∈ S∗ ⊂ X∗. Further-
more E(S∗), the union of the extreme rays of S∗, is (strictly) contained in
the union of the rays

{[δj
t ]

+ | t ∈ [0, 1], j = 0, . . . , n}.

Let

C = co(E(S∗) ∩ S(X∗))

where the closure is taken with respect to the weak∗ topology. Note that
ext(C) ⊂ {δj

t | t ∈ [0, 1], j = 0, . . . , n}. Then by Proposition 2 from [31], for
every nonzero φ ∈ S∗, there exists a positive scalar c and a probability Borel
measure µ supported on ext(C) such that µ represents cφ (in the sense of
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Choquet), i.e.,

cφ(f) =
\

ext(C)

f(δ) dµ(δ)

for every f ∈ X. Consider now our u above; the fact that 〈xi, u〉 = 0 for
every i = 0, . . . , n − 1 implies that a representing measure µ for u cannot
have any positive support on the set of extreme points of C of the form
{δj

t | t ∈ [0, 1], j = 0, . . . , n − 1}. And thus the representation in (27) is the
only choice.

Now from Theorem 4.4, we have the existence of an F ∈ B(X∗∗) such
that F (δi

0) = 1 for i = 0, . . . , n − 1 and F (u) ≥ 0. Therefore ‖Q‖ ≥∑n−1
k=0 1/k!, which implies P0,n is of minimal norm in the M = n case. This

completes the proof of Theorem 2.3.

Remark 5.1. Let X = (CL[0, 1], ‖ · ‖2,L), where

‖f‖2,L = max{ max
j=0,...,L−1

{|f (j)(0)|, |f (j)(1)|}, ‖f (L)‖∞}.

Note that ‖ · ‖L and ‖ · ‖2,L are equivalent since

(2/3)L‖ · ‖L ≤ ‖ · ‖2,L ≤ ‖ · ‖L.

Hence P0,n ∈ PSσ
(X, Πn). Moreover, an argument identical to the above

shows P0,n is minimal in PSσ
(X, Πn) (for either M = n− 1 or M = n) and

(by Lemma 4.4 and Theorem 4.4) ‖P0,n‖ =
∑n−1

k=0 1/k!.

Proof of Theorem 2.4. To simplify notation, let P denote the operator
Pm+1,n+1 defined in (4). Also, for a positive integer k, we denote the Banach
space Ck[0, 1] simply by Ck.

We begin by verifying that P is a projection onto [1, W0, W1, . . . , Wn].
Let k(x) denote a (nonzero) constant function and note that

(Pk)(x) = (k(0) + k(1))/2 = k(x)

since k′ ≡ 0; thus (P1)(x) = 1. Moreover, using the fact that Pm,n is a
projection onto Y , for each integer j ∈ [0, n] we have

(PWj)(x) = (Wj(0) + Wj(1))/2 +

x\
0

wj(t) dt − Wj(1)/2 = Wj(x)

since Wj(0) = 0. Thus P is a projection onto [1, W0, W1, . . . , Wn].
Note the following (derivative) relationships between the projections P

and Pm,n: for any f ∈ CL+1, integer j ∈ [1, L + 1] and x ∈ [0, 1] we have

(28) (Pf)j(x) = (Pm,nf ′)(j−1)(x).

To see that P preserves shape, let f ∈ S
σ̂

⊂ CL+1 and fix an integer
j ∈ [m +1, M +1]. Then (28) implies (Pf)j(x) ≥ 0 since f ′ ∈ Sσ ⊂ CL and



Minimal multi-convex projections 119

Pm,n ∈ PSσ
(CL, W ). Hence

P ∈ PS
σ̂

(CL+1, [1, W0, W1, . . . , Wn]).

We now verify (5). Let A = {f ′ | f ∈ B(CL+1)}. We claim

(29) A = B(CL).

Clearly A ⊂ B(CL). Let g ∈ B(CL) and define f(x) =
Tx
0 g(t) dt. Obviously

f ∈ CL+1, since

(30) f (j)(x) = g(j−1)(x) for j = 1, . . . , L + 1.

Furthermore, from (30) it follows that ‖f (j)‖∞ ≤ 1 for j = 1, . . . , L + 1.
Finally, using the definition of f we have ‖f‖∞ ≤ ‖g‖∞ ≤ 1 and thus
f ∈ B(CL+1). This establishes our claim in (29) since g = f ′.

We are now ready to compare ‖P‖ and ‖Pm,n‖. Recall that

‖P‖ = sup
f∈B(CL+1)

‖Pf‖ = sup
f∈B(CL+1)

max
j=0,...,L+1

‖(Pf)(j)‖∞

= max
j=0,...,L+1

sup
f∈B(CL+1)

‖(Pf)(j)‖∞.

Consider first the case j ≥ 1; then

sup
f∈B(CL+1)

‖(Pf)(j)‖∞ = sup
f∈B(CL+1)

sup
x∈[0,1]

|(Pf)(j)(x)|

= sup
f∈B(CL+1)

sup
x∈[0,1]

|(Pm,nf ′)(j−1)(x)| by (30)

= sup
f∈B(CL+1)

‖(Pm,nf ′)(j−1)‖∞

= sup
f∈A

‖(Pm,nf)(j−1)‖∞

= sup
f∈B(CL)

‖(Pm,nf)(j−1)‖∞ by (29).

Consequently, we have

max
j=1,...,M+1

sup
f∈B(CL+1)

‖(Pf)(j)‖∞ = max
k=0,...,M

sup
f∈B(CL)

‖(Pm,nf)(k)‖∞(31)

= ‖Pm,n‖.

To finish the comparison, we must check the j = 0 case. Recalling the form
of P (= Pm+1,n+1) given in (4), we find

(32) sup
f∈B(CL+1)

‖Pf‖∞

≤ 1 + sup
f∈B(CL+1)

∥∥∥∥
x\
0

(Pm,nf ′)(t) dt −
1

2

1\
0

(Pm,nf ′)(t) dt

∥∥∥∥.
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However, the right-hand side of (32) becomes

1 + sup
f∈B(CL+1)

∥∥∥∥
1

2

x\
0

(Pm,nf ′)(t) dt−
1

2

( 1\
0

(Pm,nf ′)(t) dt−
x\
0

(Pm,nf ′)(t) dt
)∥∥∥∥

∞

= 1 +
1

2
sup

f∈B(CL+1)

∥∥∥
x\
0

(Pm,nf ′)(t) dt −
1\
x

(Pm,nf ′)(t) dt
∥∥∥
∞

= 1 +
1

2
sup

f∈B(CL+1)

sup
x∈[0,1]

∣∣∣
x\
0

(Pm,nf ′)(t) dt −
1\
x

(Pm,nf ′)(t) dt
∣∣∣

≤ 1 +
1

2
sup

f∈B(CL+1)

1\
0

|(Pm,nf ′)(t)| dt

= 1 +
1

2
sup

f∈B(CL)

1\
0

|(Pm,nf)(t)| dt by (29)

≤ 1 +
1

2
‖Pm,n‖.

Thus

sup
f∈B(CL+1)

‖Pf‖∞ ≤ 1 +
1

2
‖Pm,n‖ ≤ ‖Pm,n‖

since, by assumption, ‖Pm,n‖ ≥ 2. This result, in combination with (31),
establishes (5) and completes the proof of Theorem 2.4.

Remark 5.2. This proof demonstrates that when CL[0, 1] is normed by
‖ · ‖L, the construction given in (4) is (operator) norm-preserving. It is a
straightforward verification that this proof can be repeated when ‖ · ‖L is
replaced by ‖ · ‖2,L and thus we have norm preservation in this case as well.

Proof of Theorem 2.5. We begin by verifying this theorem in the (L + k)-
norm case. For simplicity, let XL+k = (CL+k[0, 1], ‖ · ‖L+k). From our as-
sumption on the construction of Pk,n+k and Theorem 2.4 we have Pk,n+k ∈
PSσ

(XL+k, Πn+k) and

(33) ‖Pk,n+k‖ = ‖P0,n‖.

In fact, we can say more: a straightforward generalization of (29) gives

{f (k) | f ∈ B(XL+k)} = B(XL)

and so

‖P0,n‖ = sup
f∈B(XL)

‖P0,nf‖∞ = sup
f∈B(XL+k)

‖P0,n(f (k))‖∞

= sup
f∈B(XL+k)

‖(Pk,n+kf)(k))‖∞.
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This result, together with (33), yields

(34) ‖Pk,n+k‖ = sup
f∈B(XL+k)

‖(Pk,n+kf)(k))‖∞.

Let Q ∈ PSσ
(XL+k, Πn+k). Recall M = maxσi=1 i. Then by Corollary 5.1

there exists a basis {v̂0, v̂1, . . . , v̂n+k} for Πn+k such that Q may be repre-
sented as

(35) Q =

k−1∑

i=0

φi ⊗ v̂i +

n+k−1∑

i=k

δi
0 ⊗ v̂i + ∆ ⊗ v̂n+k

where, in the case M = n+k−1, ∆ = δn+k−1
1 and otherwise (for M = n+k)

∆ is any nonzero element of the weak∗ closure of the cone generated by the
set {δn+k

t }t∈[0,1].
We claim that for i = 0, . . . , k − 1, the degree of v̂i is strictly less than

k. To the contrary, suppose for some i we have k ≤ deg(v̂i) ≤ n + k. If

deg(v̂i) < n + k then 〈v̂i, δ
deg(v̂i)
0 〉 6= 0, which is a contradiction; a similar

conclusion is obtained if deg(v̂i) = n+k since 〈v̂i, ∆〉 6= 0. Thus deg(v̂i) < k
for i = 0, . . . , k − 1.

For i = k, . . . , n+k, write v̂i = aivi+pi where ai ∈ R, vi is as in Theorem
2.3, and pi ∈ Πn+k. Using an orthogonality argument identical to that above

(e.g., 〈v̂i, δ
j
0〉 = 0 whenever i 6= j), we conclude that ai = 1 and deg(pi) < k.

Thus

(36) (Qf)(k) = (Pk,n+kf)(k)

and so by (34) we find

‖Q‖ ≥ sup
f∈B(XL+k)

‖(Qf)(k)‖∞ = sup
f∈B(XL+k)

‖(Pk,n+kf)(k)‖∞ = ‖Pk,n+k‖.

Therefore Pk,n+k has minimal norm in PSσ
(XL+k, Πn+k).

Consider now the case X2,L+k = (CL+k[0, 1], ‖ · ‖2,L+k). From our as-
sumption on the construction of Pk,n+k and Remarks 5.1 and 5.2 we know
that Pk,n+k ∈ PSσ

(X2,L+k, Πn+k) and

(37) ‖Pk,n+k‖2,L+k = ‖P0,n‖2,L,

where ‖Q‖2,L+k denotes the operator norm of Q defined on X2,L+k. From
Remark 5.1 the norm ‖P0,n‖2,L is minimal (in view of Theorem 2.3 and
Remark 5.1) and therefore, from an argument identical to that above in
the L-norm case, we conclude that Pk,n+k is a minimal norm element from
PSσ

(X2,L+k, Πn+k).
We now make the following observation: the operator

Pk,n+k : XL+k = (CL+k[0, 1], ‖ · ‖L+k) → Y = (Πn+k, ‖ · ‖2,L+k)

preserves the multi-convex shape Sσ. From the form of Pk,n+k, it follows
that the operator norm of Pk,n+k : XL+k → Y is equal to the operator norm
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of Pk,n+k ∈ PSσ
(X2,L+k, Πn+k). Let ‖Pk,n+k‖ denote this common value.

Again using the form of Pk,n+k we find

‖Pk,n+k‖ = sup
f∈B(X2,L+k)

sup
t∈{0,1}

|(Pk,n+kf)(k)(t)|.

We claim that Pk,n+k has minimal (operator) norm among all operators
between XL+k and Y preserving Sσ. Indeed, let Q be any such operator. By
Remark 5.1 the norms ‖ · ‖L+k and ‖ · ‖2,L+k are equivalent and therefore we
may consider Q as an element of PSσ

(XL+k, Πn+k), i.e., a projection from
XL+k onto Πn+k such that QSσ ⊂ Sσ. This implies that Q : XL+k → Y
has the form described in (35) and therefore we have (36). The minimality
of Pk,n+k : XL+k → Y follows since

‖Q‖ = sup
f∈B(XL+k)

‖Qf‖2,L+k

≥ sup
f∈B(XL+k)

sup
t∈{0,1}

|(Qf)(k)(t)| = sup
f∈B(XL+k)

sup
t∈{0,1}

|(Pk,n+kf)(k)(t)|

= sup
f∈B(X2,L+k)

sup
t∈{0,1}

|(Pk,n+kf)(k)(t)| = ‖Pk,n+k‖.

Finally, let X = (CL+k[0, 1], ‖ · ‖) be such that

‖ · ‖2,L+k ≤ ‖ · ‖ ≤ ‖ · ‖L+k.

From the definitions of the L- and (2, L)-norms, we have

‖Pk,n+k‖2,L+k ≤ ‖Pk,n+k‖X ≤ ‖Pk,n+k‖L+k

where ‖Pk,n+k‖X is the operator norm of Pk,n+k defined on X. But from
(33), (37) and Remark 5.1 we find

‖Pk,n+k‖X = ‖Pk,n+k‖2,L+k = ‖Pk,n+k‖L+k.

As above, let ‖Pk,n+k‖ denote this common value. To show that Pk,n+k has
minimal norm in PSσ

(X, Πn+k) let Q ∈ PSσ
(X, Πn+k). Since Q : XL+k→Y

with QSσ ⊂ Sσ, we have

‖Q‖X = sup
f∈B(X)

‖Qf‖ ≥ sup
f∈B(XL+k)

‖Qf‖2,L+k ≥ ‖Pk,n+k‖.
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