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Subspaces of `2(X) and Rad(X)
without local unconditional structure

by

Ryszard A. Komorowski (Wrocław) and
Nicole Tomczak-Jaegermann (Edmonton)

Abstract. It is shown that if a Banach space X is not isomorphic to a Hilbert space
then the spaces `2(X) and Rad(X) contain a subspace Z without local unconditional
structure, and therefore without an unconditional basis. Moreover, if X is of cotype r <∞,
then a subspace Z of `2(X) can be constructed without local unconditional structure but
with 2-dimensional unconditional decomposition, hence also with basis.

1. Introduction. In this paper we continue the study of constructions
of subspaces without an unconditional basis, or even without a local un-
conditional structure, in general Banach spaces, that we began in [K-T.1].
Our main result provides a characterization of a Hilbert space in terms of
unconditionality: a Banach space X is isomorphic to a Hilbert space if and
only if every subspace of `2(X) and of Rad(X) has an unconditional basis.

This result is based on an abstract approach that works in a direct sum
of several Banach spaces with unconditional bases, such that the bases are
badly comparable with one another. In the present case we work with tensor
product spaces, which can then be found inside `2(X) and Rad(X), for an
arbitrary Banach spaceX. Subspaces so constructed do not have an uncondi-
tional basis, but retain many regularities in their linear topological structure.

For concrete Banach spaces, this type of construction was first studied in
[J-L-S] for Kalton–Peck’s space, then used in [Ke] and [B] for subspaces of
Lp, and in [K] for subspaces of an `2-sum of appropriately chosen Tsirelson-
type spaces. Then a general method was developed in [K-T.1] (see also
[K-T.2], [T.2]) to prove, among other results, that every Banach space either
contains `2 or a subspace without an unconditional basis. In particular, this
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latter theorem was used by Gowers in the solution to the homogeneous
space problem [G] (see also [T.2]): An infinite-dimensional Banach space
isomorphic to all of its infinite-dimensional closed subspaces is necessarily
isomorphic to `2.

It was pointed out by Casazza and Kalton [C-K] that the general method
of [K-T.1] cannot be used in an arbitrary Banach space X without additional
assumptions (see Remark 4.6 for the details). In the present paper we remove
all the assumptions on X, and we consider instead `2(X) or Rad(X), which
have enough extra structure for the technique to work, thus providing the
aforementioned characterization of a Hilbert space. Let us also recall that
it is still an open question whether `2 is the only Banach space (up to an
isomorphism) all of whose subspaces have an unconditional basis.

Let us now describe the content of the paper in more detail. Section 2
contains some preliminaries and several definitions and facts related to un-
conditionality. We recall the main criterion for recognizing that a space with
a special structure does not have local unconditional structure. In Section 3
we discuss a finite-dimensional quantitative version of our construction in a
general tensor product setting. Due to the presence of the additional struc-
ture, the proof here is much clearer than in [K-T.1].

The final Section 4 contains the main results for `2(X) and Rad(X), for
an arbitrary Banach space X. The results are stated in quantative forms,
a finite-dimensional version in Theorem 4.1 and general in Theorem 4.4.
This leads to a characterization of spaces isomorphic to `2. We also consider
finite-dimensional quantitative constructions inside `Np .

Acknowledgements. The second named author wishes to thank Peter
Casazza and Bernard Maurey for discussions held in 1993 on topics related
to the subject considered here. In particular, the tensor product presentation
in Theorem 3.1 was influenced by Maurey’s construction of subspaces of `Np
without good unconditional basis (Theorem 4.7), which is presented here
with his permission.

2. Notation and preliminaries. We use the standard terminology
from the Banach space theory (cf. e.g. [L-T.1], [L-T.2] and [T.1]) and we refer
the reader to these books for all notation not explained here. In particular,
the fundamental concepts related to bases and Schauder decompositions can
be found in [L-T.1], 1.a.1 and 1.g.1, respectively.

Let us recall some notation related to unconditionality. For λ ≥ 1, a
sequence {xi}i in a Banach space X is called λ-unconditional if for every
x =

∑
i tixi ∈ X one has ‖∑i εitixi‖ ≤ λ‖x‖ for all εi = ±1. A sequence is

called unconditional if it is λ-unconditional for some λ ≥ 1. The infimum of
the constants λ is denoted by unc{xi}i.
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A Schauder decomposition {Zi}i of a Banach space X is called λ-uncon-
ditional, for some λ ≥ 1, if for all finite sequences {zi}i with zi ∈ Zi for all
i, one has ‖∑i εizi‖ ≤ λ‖

∑
i zi‖ for all εi = ±1.

Definition 2.1. A Banach space X has local unconditional structure if
there is C ≥ 1 such that for every finite-dimensional subspace X0 ⊂ X
there exist a Banach space F with a 1-unconditional basis and operators
u0 : X0 → F and w0 : F → X such that the natural embedding j : X0 → X
admits a factorization j = w0u0 and ‖u0‖ · ‖w0‖ ≤ C. The infimum of the
constants C is denoted by lust(X).

Clearly, if a space X has an unconditional basis then it has local uncon-
ditional structure. Having local unconditional structure passes to comple-
mented subspaces. In particular, ifX admits a sequence of finite-dimensional
subspaces Yn such that supn lust(Yn) = ∞ and there exist projections Pn
from X onto Yn satisfying supn ‖Pn‖ < ∞, then X does not have local
unconditional structure.

The following proposition from [K-T.1] and [K-T.2] is our fundamental
criterion for recognizing that a space with a special structure does not have
local unconditional structure.

Proposition 2.2. Let Z be a Banach space of cotype r <∞, with cotype
constant Cr(Z). Suppose that Z has local unconditional structure and that Z
has a λ-unconditional decomposition {Zk}k with dimZk = 2 for all k. Then
there exists an operator T : Z → Z such that

(i) T (Zk) ⊂ Zk for each k,
(ii) ‖T‖ ≤ λ2M lust(Z), where M = M(r, Cr(Z)) ≥ 1 depends on r and

Cr(Z),
(iii) ‖(T − θId)|Zk‖ ≥ 1/8 for each θ ∈ R and k = 1, 2, . . .

Results and arguments of this paper gain on clarity in the tensor prod-
uct presentation. More than anything else, this plays a role of a notational
device, and only very basic general properties of tensor products and their
simplest examples will be used.

If Xi are Banach spaces for i = 1, . . . ,m, a norm ‖ · ‖ on X1 ⊗ . . .⊗Xm

is called a cross-norm if

‖x1 ⊗ . . .⊗ xm‖ = ‖x1‖X1 . . . ‖xn‖Xm
for all xi ∈ Xi, i = 1, . . . ,m.

Let F , G and H be finite-dimensional Banach spaces with (fixed) al-
gebraic bases {fi}, {gj} and {hk}, respectively. Then {fi ⊗ gj ⊗ hk} is
an algebraic basis in F ⊗ G ⊗ H, which we shall call the natural tensor
basis. For many classical cross-norms, like projective and injective tensor
products, and other cross-norms induced by (most) spaces of operators,
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the natural tensor basis is not well unconditional (cf. e.g. [P.2] and [T.1]
and references therein). There are however particular cross-norms on ten-
sor products for which the natural tensor basis is indeed unconditional
if the basis in F is. An obvious example is the space `2(F ) which, to-
gether with Rad(X), is a starting point for our applications of the gen-
eral theorem from Section 3. Let us note that if the natural tensor ba-
sis is unconditional then, by a general property of bases, for an arbitrary
order of {fi ⊗ gj ⊗ hk}, its basis constant is well bounded and satisfies
bc{fi ⊗ gj ⊗ hk} ≤ unc{fi ⊗ gj ⊗ hk}.

In this paper we shall consider tensor products of two or three factors,
with all but one factor being the space `np for some 1 ≤ p <∞. In the space
`np the standard unit vector basis is denoted by {ei}.

Let X be a Banach space. We say that a system {xi,j,k}i,j,k of vec-
tors in X is λ-tensor-unconditional, for some λ ≥ 1, if for every vector
x =

∑
i,j,k ti,j,kxi,j,k ∈ X one has the estimate ‖∑i,j,k εiε

′
jε
′′
kti,j,kxi,j,k‖ ≤

λ‖x‖ for all εi, ε′j, ε
′′
k = ±1. Pisier proved in [P.1] that in the presence of

the local unconditional structure there is a close relation between tensor-
unconditionality and unconditionality. We shall state his result in a form
convenient for our use.

Proposition 2.3. Let X be a Banach space of cotype r <∞ which has
local unconditional structure. A system {xi,j,k}i,j,k in X which is λ-tensor-
unconditional for some λ ≥ 1 is automatically unconditional and

unc{xi,j,k} ≤ aλ2 lust(X),

where a = a(r, Cr(X)) ≥ 1 depends on r and the cotype constant Cr(X).

A version of this proposition for two-fold tensor products follows from
Propositions 2.1 and 2.2 of [P.1], and for three-fold tensor product the proof
requires an obvious modification (and gives the same constant). For the
sake of the reader not specializing in the local theory of Banach spaces, it
might be worth mentioning that the results in [P.1] are stated for spaces not
containing `n∞’s uniformly, so one should remember a fundamental result
(which became a special case of the Maurey–Pisier theorem) that this class
of spaces coincides with the class of Banach spaces X such that X is of
cotype r for some r <∞ (cf. e.g. , [T.1], [M.2]). In particular, our estimates
in Proposition 2.3 follow from the arguments in [P.1] rather than from the
statements themselves.

3. Construction of subspaces without local unconditional struc-
ture in tensor products. We will now present an abstract setting in which
it is possible to construct subspaces of tensor product spaces without local
unconditional structure.
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Theorem 3.1. Let λ ≥ 1 and D ≥
√

12. Let F be an n-dimensional
Banach space with a normalized λ-unconditional basis {fi}ni=1.

(i) Suppose that ‖∑n
i=1 fi‖ ≥ n1/2D. Consider three tensor product

spaces X1 = F ⊗ `n2 ⊗ `n2 , X2 = `n2 ⊗ F ⊗ `n2 and X3 = `n2 ⊗ `n2 ⊗ F ,
each endowed with a cross-norm. Suppose further that there exists Cλ ≥ 1
such that the natural tensor basis in each Xi is Cλ-unconditional. Set X =
X1 ⊕ X2 ⊕ X3. Let 2 ≤ r < ∞ and let Cr(X) denote the cotype r con-
stant of X. Then there exists a subspace Z of X such that lust(Z) ≥
aλ−1C−2

λ D.
(ii) Suppose that ‖∑n

i=1 fi‖ ≤ n1/2/D. Consider two tensor product
spaces X1 = F ⊗ `n2 and X2 = `n2 ⊗ F , each endowed with a cross-norm.
Suppose further that there exists Cλ ≥ 1 such that the natural tensor basis
in each Xi is Cλ-unconditional. Set X = X1⊕X2⊕`n2

2 . Let 2 ≤ r <∞ and
let Cr(X) denote the cotype r constant of X. Then there exists a subspace
Z of X such that lust(Z) ≥ aC−2

λ D1/2.

Here a = a(r, Cr(X)) > 0 depends on r and Cr(X) only. Moreover , the
space Z has a basis with basis constant less than or equal to cCλ, where c ≥ 1
is a numerical constant , and Z admits a 2-dimensional Cλ-unconditional
decomposition.

A choice of a particular norm on the space X = X1 ⊕X2 ⊕X3 (where
X3 = `n

2

2 , in case (ii)) may affect only constants a and c by numerical
factors. To fix ideas we may take for example the norm ‖(x1, x2, x3)‖ =
‖x1‖+ ‖x2‖+ ‖x3‖ for (x1, x2, x3) ∈ X.

Remark 3.2. The same construction works, giving exactly the same es-
timates, if the space `n2 is replaced by `np (for 1 ≤ p <∞) and the main as-
sumptions in cases (i) and (ii) are replaced by the inequalities ‖∑n

i=1 fi‖ ≥
n1/pD and ‖∑n

i=1 fi‖ ≤ n1/p/D, respectively.

The proof of Theorem 3.1 requires two lemmas.

Lemma 3.3. Let δ ∈ (0, 1).

(i) Let F be an n-dimensional space with a normalized λ-unconditional
basis {fi}ni=1 such that ‖∑n

i=1 fi‖ ≥ n1/2D for some λ ≥ 1 and D ≥ 1.
Then there exist D2 ≤ n0 ≤ n and a subset I ⊂ {1, . . . , n} with |I| = n0
such that for an arbitrary sequence {ci}i∈I of real numbers there exists a
subset S ⊂ I with |S| ≥ [δn0] such that

∥∥∥
∑

i∈I
cifi

∥∥∥ ≥ (1−
√
δ) max

i∈S
|ci|
√
n0 λ

−1D.(1)

Moreover , ‖∑i∈I fi‖ ≥
√
n0D.
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(ii) For every sequence of real numbers c1, . . . , cn there exists a subset
S ⊂ {1, . . . , n} with |S| ≥ [δn] such that

( n∑

i=1

c2
i

)1/2
≥
√

1− δmax
i∈S
|ci|n1/2.

Proof. (i) We first show that there exist n0 ≥ D2 and a subset I ⊂
{1, . . . , n} with |I| = n0 such that for every J ⊂ I with |J | ≥ (1− δ)n0,∥∥∥

∑

i∈J
fi

∥∥∥ ≥ (1−
√
δ)
√
n0D.(2)

Indeed, for 1 ≤ m ≤ n let

ϕ(m) = sup
∥∥∥
∑

i∈L
fi

∥∥∥/m1/2

where the supremum runs over all subsets L ⊂ {1, . . . , n} with |L| = m.
Pick 1 ≤ n0 ≤ n such that ϕ(n0) = max1≤m≤n ϕ(m). Clearly, ϕ(n0) ≥ D.
Pick I ⊂ {1, . . . , n} with |I| = n0 such that∥∥∥

∑

i∈I
fi

∥∥∥/n1/2
0 = ϕ(n0).

Observe that n0 ≥ ‖
∑

i∈I fi‖ ≥ n
1/2
0 D, hence n0 ≥ D2; and the “moreover”

part of the statement is trivially satisfied.
Let J ⊂ I with |J | ≥ (1− δ)n0. Then∥∥∥

∑

i∈J
fi

∥∥∥ ≥
∥∥∥
∑

i∈I
fi

∥∥∥−
∥∥∥
∑

i∈I\J
fi

∥∥∥

≥ (1− δ1/2)n1/2
0 ϕ(n0) ≥ (1− δ1/2)n1/2

0 D,

as required.
Now to show (1), let {ci}i∈I and a subset S ⊂ I be such that |S| = [δn0]

and maxi∈S |ci| ≤ minj∈I\S |cj |. Then by the λ-unconditionality and by (2)
we get∥∥∥

∑

i∈I
cifi

∥∥∥ ≥ λ−1 sup
εi=±1

∥∥∥
∑

i∈I
εicifi

∥∥∥ ≥ λ−1 sup
εi=±1

∥∥∥
∑

i∈I\S
εicifi

∥∥∥

≥ λ−1 min
i∈I\S

|ci|
∥∥∥
∑

i∈I\S
fi

∥∥∥ ≥ max
i∈S
|ci|(1− δ1/2)n1/2

0 Dλ−1.

(ii) Assuming, without loss of generality, that |c1| ≥ . . . ≥ |cn|, it is easy
to check that S = {[(1− δ)n], . . . , n} is the required set.

Lemma 3.4. Let δ ∈ [3/4, 1), n ≥ 12 and let I = {1, . . . , n}.
(i) Let Aj,k, Bi,k and Ci,j be subsets of I be such that |Aj,k| ≥ [δn],

|Bi,k| ≥ [δn] and |Ci,j | ≥ [δn] for all i, j, k ∈ I. Then there exist i0, j0, k0 ∈ I
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such that

i0 ∈ Aj0,k0 , j0 ∈ Bi0,k0 , k0 ∈ Ci0,j0 .

(ii) Let Aj and Bi be subsets of I such that |Aj | ≥ [δn] and |Bi| ≥ [δn]
for all i, j ∈ I, and let C ⊂ I × I be such that |C| ≥ [δn2]. Then there exist
i0, j0 ∈ I such that

i0 ∈ Aj0 , j0 ∈ Bi0 , (i0, j0) ∈ C.

Proof. The proof of case (ii) is very similar to case (i), and therefore we
will show only (i).

Consider the following three subsets of I × I × I:

A =
⋃

j,k∈I
Aj,k×{j}×{k}, B =

⋃

i,k∈I
{i}×Bi,k×{k}, C =

⋃

i,j∈I
{i}×{j}×Ci,j.

Observe that the cardinality of each of these sets is larger than or equal to
[δn]n2. Since for δ ≥ 3/4 and n ≥ 12 we have [δn] > 2

3n, it follows that
A ∩B ∩ C 6= ∅. For (i0, j0, k0) ∈ A ∩B ∩ C we have

i0 ∈ Aj0,k0 , j0 ∈ Bi0,k0 , k0 ∈ Ci0,j0 ,
as required.

Now we are ready to pass to the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix δ = 3/4. Let M = M(r, Cr(X)) be the func-
tion appearing in Proposition 2.2. To simplify the notation we shall use the
same letter a = a(r, Cr(X)) for all functions which depend on r and Cr(X)
only.

(i) Let I ⊂ {1, . . . , n} be the subset constructed in Lemma 3.3(i). Then
F ′ = span{fi}i∈I is an n0-dimensional subspace of F , and X ′1 = F ′⊗`n0

2 ⊗`n0
2

is a subspace of X1. Let X ′2 and X ′3 be defined analogously. Let X ′ =
X ′1⊕X ′2⊕X ′3 ⊂ X. It is clearly sufficient to construct the required space Z
as a subspace of X ′. Note that ‖∑i∈I fi‖ ≥

√
n0D and all primed spaces

satisfy our further assumptions as well. Thus without loss of generality we
may assume that F ′ is the original space F (and in particular n = n0 ≥ D2).
Moreover, for any sequence c1, . . . , cn of real numbers there exists a subset
S ⊂ {1, . . . , n} with |S| ≥ [δn] such that

∥∥∥
n∑

i=1

cifi

∥∥∥ ≥ max
i∈S
|ci|(1− δ1/2)n1/2Dλ−1.(3)

Let {ei}ni=1 denote the standard unit vector basis in `n2 . By our assump-
tions, the natural tensor bases {fi ⊗ ej ⊗ ei}i,j,k, {ei ⊗ fj ⊗ ei}i,j,k and
{ei ⊗ ej ⊗ fi}i,j,k are Cλ-unconditional in X1, X2 and X3, respectively.
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For i, j, k = 1, . . . , n, consider vectors in X defined by

xi,j,k = ei ⊗ fj ⊗ ek + ei ⊗ ej ⊗ fk,
yi,j,k = fi ⊗ ej ⊗ ek + ei ⊗ ej ⊗ fk.

Observe that for all i, j, k = 1, . . . , n one has 1 ≤ ‖xi,j,k‖, ‖yi,j,k‖ ≤ 2;
furthermore, for arbitrary scalars s and t we have

max(|s|, |t|) ≤ ‖sxi,j,k + tyi,j,k‖ ≤ 2(|s|+ |t|).(4)

Let Z = span{Zi,j,k}i,j,k, where Zi,j,k = span{xi,j,k, yi,j,k} for i, j, k =
1, . . . , n. Then {Zi,j,k}ni,j,k forms a Cλ-unconditional decomposition of Z ⊂
X. Since the basis constants of {fi ⊗ ej ⊗ ei}i,j,k, {ei ⊗ fj ⊗ ei}i,j,k and
{ei⊗ ej ⊗ fi}i,j,k are less than or equal to the unconditional basis constants,
each of them is bounded above by Cλ, and hence it is easy to see by (4) that
{xi,j,k, yi,j,k}i,j,k forms a basis in Z with basis constant less than or equal to
2Cλ.

Let T be the operator obtained in Proposition 2.2. Write

T (xi,j,k) = ai,j,kxi,j,k + ci,j,kyi,j,k, T (yi,j,k) = bi,j,kxi,j,k + di,j,kyi,j,k,

for all i, j, k = 1, . . . , n.
First observe that for all i, j, k = 1, . . . , n one has

max(|ai,j,k − di,j,k|, |bi,j,k|, |ci,j,k|) ≥ 2−6.(5)

Indeed, for arbitrary i, j, k = 1, . . . , n, estimates (4) imply that whenever
z = sxi,j,k + tyi,j,k ∈ Zi,j,k, then

‖Tz − di,j,kz‖ ≤ 2(|(ai,j,k − di,j,k)s+ bi,j,kt|+ |ci,j,ks|)
≤ 2 max(|s|, |t|)(|ai,j,k − di,j,k|+ |bi,j,k|+ |ci,j,k|)
≤ 6 max(|ai,j,k − di,j,k|, |bi,j,k|, |ci,j,k|)‖z‖.

Thus

‖(T − di,j,k id)|Zi,j,k‖ ≤ 6 max(|ai,j,k − di,j,k|, |bi,j,k|, |ci,j,k|),
and (5) follows from Proposition 2.2(iii).

We have
∥∥∥

n∑

i=1

xi,j,k

∥∥∥ ≤ 2n1/2 for j, k = 1, . . . , n,

∥∥∥
n∑

j=1

yi,j,k

∥∥∥ ≤ 2n1/2 for i, k = 1, . . . , n,(6)

∥∥∥
n∑

k=1

(xi,j,k − yi,j,k)
∥∥∥ ≤ 2n1/2 for i, j = 1, . . . , n.
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We show only the first inequality in (6):
∥∥∥

n∑

i=1

xi,j,k

∥∥∥ ≤
∥∥∥

n∑

i=1

ei ⊗ fj ⊗ ek
∥∥∥+

∥∥∥
n∑

i=1

ei ⊗ ej ⊗ fk
∥∥∥

=
∥∥∥

n∑

i=1

ei

∥∥∥ ‖fj ⊗ ek‖+
∥∥∥

n∑

i=1

ei

∥∥∥ ‖ej ⊗ fk‖ = 2n1/2.

For notational convenience, for i, j, k = 1, . . . , n define γi,j,k = ai,j,k −
bi,j,k + ci,j,k − di,j,k. Using (6), we get

∥∥∥
n∑

i=1

ci,j,kfi

∥∥∥ ≤ 2n1/2‖T‖ for j, k = 1, . . . , n,

∥∥∥
n∑

j=1

bi,j,kfj

∥∥∥ ≤ 2n1/2‖T‖ for i, k = 1, . . . , n,(7)

∥∥∥
n∑

k=1

γi,j,kfk

∥∥∥ ≤ 2n1/2‖T‖ for i, j = 1, . . . , n.

Again, we show only the first inequality:

2n1/2‖T‖ ≥
∥∥∥T
( n∑

i=1

xi,j,k

)∥∥∥ =
∥∥∥

n∑

i=1

(ai,j,kxi,j,k + ci,j,kyi,j,k)
∥∥∥

≥
∥∥∥

n∑

i=1

ci,j,kfi ⊗ ej ⊗ ek
∥∥∥ =

∥∥∥
n∑

i=1

ci,j,kfi

∥∥∥ ‖ej ⊗ ek‖

=
∥∥∥

n∑

i=1

ci,j,kfi

∥∥∥.

Hence by (3) one can choose subsets Aj,k (for j, k = 1, . . . , n), Bi,k (for
i, k = 1, . . . , n) and Ci,j (for i, j = 1, . . . , n) of {1, . . . , n} such that the
cardinality of each set is at least [δn] and

max
i∈Aj,k

|ci,j,k|Dn1/2(1− δ1/2)λ−1 ≤ 2n1/2‖T‖ for j, k = 1, . . . , n,

max
j∈Bi,k

|bi,j,k|Dn1/2(1− δ1/2)λ−1 ≤ 2n1/2‖T‖ for i, k = 1, . . . , n,(8)

max
k∈Ci,j

|γi,j,k|Dn1/2(1− δ1/2)λ−1 ≤ 2n1/2‖T‖ for i, j = 1, . . . , n.

Using Lemma 3.4(i) (note that n ≥ D2 ≥ 12) we get i0, j0 and k0 such
that i0 ∈ Aj0,k0 , j0 ∈ Bi0,k0 and k0 ∈ Ci0,j0 . Thus

|ci0,j0,k0 | ≤ 2D−1(1− δ1/2)−1λ‖T‖,
|bi0,j0,k0 | ≤ 2D−1(1− δ1/2)−1λ‖T‖,



10 R. A. Komorowski and N. Tomczak-Jaegermann

|γi0,j0,k0 | ≤ 2D−1(1− δ1/2)−1λ‖T‖.
In particular, by the definition of γi0,j0,k0 this yields

|ai0,j0,k0 − di0,j0,k0 | ≤ 6D−1(1− δ1/2)−1λ‖T‖.
Recall that, by Proposition 2.2(ii), ‖T‖ ≤ C2

λM lust(Z). Therefore, by
(5) we finally get

2−6 ≤ 6D−1(1− δ1/2)−1λC2
λM lust(Z).

Thus lust(Z) ≥ cD/(C2
λMλ), where c > 0 is a numerical constant, and this

completes the proof of case (i).
(ii) The beginning of the proof is similar to case (i). Fix δ = 3/4. Let

{ei}ni=1 be the standard unit vector basis in `n2 . For i, j = 1, . . . , n put

xi,j = ei ⊗ fj + D−1/2ei ⊗ ej ,
yi,j = fi ⊗ ej + D−1/2ei ⊗ ej .

Let Z = span{Zi,j}i,j where Zi,j = span{xi,j , yi,j} for i, j = 1, . . . , n. Then Z
has the basis {xi,j , yi,j}i,j and the natural Cλ-unconditional decomposition
analogous to those in case (i).

Let T be an operator from Proposition 2.2, and write

T (xi,j) = ai,jxi,j + ci,jyi,j , T (yi,j) = bi,jxi,j + di,jyi,j ,

for all i, j = 1, . . . , n. We have an estimate analogous to (5),

max(|ai,j − di,j |, |bi,j|, |ci,j|) ≥ 2−6,(9)

valid for all i, j = 1, . . . , n.
We have

∥∥∥
n∑

j=1

xi,j

∥∥∥ ≤ 2n1/2D−1/2 for i = 1, . . . , n,

∥∥∥
n∑

i=1

yi,j

∥∥∥ ≤ 2n1/2D−1/2 for j = 1, . . . , n,(10)

∥∥∥
n∑

i,j=1

(xi,j − yi,j)
∥∥∥ ≤ 2nD−1.

We show the first and the last inequality in (10):
∥∥∥

n∑

j=1

xi,j

∥∥∥ ≤
∥∥∥

n∑

j=1

ei ⊗ fj
∥∥∥+D−1/2

∥∥∥
n∑

j=1

ei ⊗ ej
∥∥∥

≤
∥∥∥

n∑

j=1

fj

∥∥∥+D−1/2n1/2

≤ n1/2D−1 + n1/2D−1/2 ≤ 2n1/2D−1/2,
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and
∥∥∥

n∑

i,j=1

xi,j − yi,j
∥∥∥ ≤ 2

∥∥∥
n∑

i,j=1

ei ⊗ fj
∥∥∥

= 2
∥∥∥
( n∑

i=1

ei

)
⊗
( n∑

j=1

fj

)∥∥∥ = 2n1/2
∥∥∥

n∑

j=1

fj

∥∥∥ ≤ 2nD−1.

Using (10), the boundedness of the operator T and Lemma 3.3(ii) as
in (7) and (8), we see that there exist subsets Aj , Bi ⊂ {1, . . . , n} with
|Aj |, |Bi| ≥ [δn] for i, j = 1, . . . , n, and C ⊂ {1, . . . , n} × {1, . . . , n} with
|C| ≥ [δn2] such that

max
j∈Bi
|ci,j |(1− δ)1/2n1/2 ≤ 2n1/2D−1/2‖T‖ for i = 1, . . . , n,

max
i∈Aj
|bi,j |(1− δ)1/2n1/2 ≤ 2n1/2D−1/2‖T‖ for j = 1, . . . , n,

D−1/2 max
(i,j)∈C

|ai,j − di,j + ci,j − bi,j |(1− δ)1/2n ≤ 2nD−1‖T‖.

Indeed, for example the first inequality follows from

2n1/2D−1/2‖T‖ ≥
∥∥∥

n∑

j=1

Txi,j

∥∥∥ =
∥∥∥

n∑

j=1

(ai,jxi,j + ci,jyi,j)
∥∥∥

≥
∥∥∥

n∑

j=1

ci,jfi ⊗ ej
∥∥∥ =

( n∑

j=1

c2
i,j

)1/2

≥ max
j∈Bi
|ci,j|(1− δ)1/2n1/2.

And for the third inequality we have

2nD−1‖T‖ ≥
∥∥∥

n∑

i,j=1

Txi,j −
n∑

i,j=1

Tyi,j

∥∥∥

=
∥∥∥

n∑

i,j=1

((ai,j − bi,j)xi,j + (ci,j − di,j)yi,j)
∥∥∥

≥ D−1/2
∥∥∥

n∑

i,j=1

(ai,j − bi,j + ci,j − di,j)ei ⊗ ej
∥∥∥

≥ D−1/2 max
(i,j)∈C

|ai,j − bi,j + ci,j − di,j |(1− δ)1/2n.

Therefore by Lemma 3.4(ii) one can find i0 ∈ Aj0 and j0 ∈ Bi0 such that
(i0, j0) ∈ C. Hence
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|ci0,j0 | ≤ 2D−1/2(1− δ)−1/2‖T‖,

|bi0,j0 | ≤ 2D−1/2(1− δ)−1/2‖T‖,
|ai0,j0 − di0,j0 + ci0,j0 − bi0,j0 | ≤ 2D−1/2(1− δ)−1/2‖T‖.

Again, as in the proof of case (i), using (9) and Proposition 2.2 we get

2−6 ≤ 6D−1/2(1− δ)−1/2C2
λM lust(Z).

Thus lust(Z) ≥ c
√
D/(C2

λM), where c > 0 is a numerical constant, and this
completes the proof of case (ii).

Remark 3.5. As an immediate consequence of the proof of Theorem 3.1
note that the same conclusion as in case (ii) holds whenever X1 = F1 ⊗ `n2
and X2 = `n2⊗F2, and each Fν is an n-dimensional Banach space with a nor-
malized λ-unconditional basis {f (ν)

i }ni=1 such that ‖∑n
i=1 f

(ν)
i ‖ ≤ n1/2/D,

for ν = 1, 2.
In case (i) we want that X1 = F1 ⊗ `n2 ⊗ `n2 , X2 = `n2 ⊗ F2 ⊗ `n2 and

X3 = `n2 ⊗ `n2 ⊗ F3, and each Fν is an n-dimensional Banach space with a
normalized λ-unconditional basis {f (ν)

i }ni=1 such that ‖∑n
i=1 f

(ν)
i ‖ ≥ n1/2D

and additionally, condition (3) is satisfied, for ν = 1, 2, 3.

4. Subspaces of `2(X) and Rad(X) without local unconditional
structure. In this section we consider spaces `2(X) and Rad(X) and we
prove our main result that ifX is not isomorphic to a Hilbert space then each
of these spaces contains a subspace without local unconditional structure.
As all these spaces have a natural structure of tensor products, the result
will follow easily from our abstract scheme.

Recall that if X is a Banach space, `2(X) and Rad(X) are spaces of
all sequences (xi) with xi ∈ X for i = 1, 2, . . . such that the following
expressions representing the respective norms are finite:

‖(xi)‖`2(X) =
( ∞∑

i=1

‖xi‖2
)1/2

<∞,

‖(xi)‖Rad(X) =
( 1�

0

∥∥∥
∞∑

i=1

ri(t)xi
∥∥∥

2
dt
)1/2

<∞.

(Here {ri}i denotes the sequence of Rademacher functions on [0, 1], defined
by ri(t) = sign sin(2iπt) for t ∈ [0, 1] and i = 1, 2, . . .)

Let {ei}i denote the standard unit vector basis in `2. For a natural num-
ber n, we denote by `n2 (X) and Radn(X) the spaces of all n-tuples (xi)ni=1,
endowed with the corresponding norms. These spaces can be (algebraically)
identified with `n2 ⊗X, via the map

(x1, . . . , xn) ↔ e1 ⊗ x1 + . . .+ en ⊗ xn ∈ `n2 ⊗X.(11)
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We shall also identify `k
2

2 (X) and Radk2(X) to `k2 ⊗ `k2 ⊗X via the map

(xi,j) i=1,...,k
j=1,...,k

↔
∑

i,j

ei ⊗ ej ⊗ xi,j ∈ `k2 ⊗ `k2 ⊗X.(12)

We shall consider two norms on `n2 ⊗ X, induced by the spaces `n2 (X)
and Radn(X), respectively. By an obvious algebraic identification, `n2 ⊗X =
X ⊗ `n2 , the same spaces also induce norms on X ⊗ `n2 . Analogously, the
spaces `k

2

2 (X) and Radk2(X) provide, via (12), three induced norms on the
tensor products X ⊗ `k2 ⊗ `k2, `k2 ⊗X ⊗ `k2 and `k2 ⊗ `k2 ⊗X.

We shall require several remarks and well known easy facts about the
above Banach spaces.

Clearly, Radn(X) contains X as a subspace and it can be identified with
a subspace of `2

n

2 (X), for n ≥ 1. It is well known that if X has cotype r then
so does `2(X), and it can be checked by direct calculation that Cr(`2(X)) =
Cr(X). Here the cotype r constant is defined by means of the L2-norms of
Rademacher averages (cf. e.g. [T.1], [M.2]). Thus Cr(Radn(X)) = Cr(X) as
well (n ≥ 1).

(I) The norms on `n2 ⊗ X induced by `n2 (X) and Radn(X) via (11)
are cross-norms, as are the norms on `n2 ⊗ `n2 ⊗ X induced by `n

2

2 (X) and
Radn2(X) via (12).

This can be easily checked directly from the definitions. Note that if
u =

∑
i aiei ∈ `n2 , w =

∑
j bjej ∈ `n2 and x ∈ X then to the element

u⊗ x ∈ `n2 ⊗X, (11) assigns the n-tuple (a1x, . . . , anx); and to the element
u⊗ w ⊗ x ∈ `n2 ⊗ `n2 ⊗X, (12) assigns the n2-tuple (aibjx)i,j .

(II) Let X have cotype r < ∞. If {f1, . . . , fm} is a 1-unconditional
sequence in X then {ei ⊗ fj} i=1,...,n

j=1,...,m
is 1-unconditional in `n2 ⊗ X with

the norm induced by `n2 (X) and λ-unconditional in the norm induced by
Radn(X). Furthermore, the sequence {ei ⊗ ej ⊗ fk}, where i = 1, . . . , n,
j = 1, . . . , n, k = 1, . . . ,m, is 1-unconditional in `n2 ⊗ `n2 ⊗X with the norm
induced by `n

2

2 (X), and λ-unconditional in the norm induced by Radn2(X).
Here λ = λ(r, Cr(X)).

For the norms induced by `t2(X) (t = n, n2) the statement is obvious. It
is clear that it is sufficient to prove the remaining statements for the two-fold
tensor product only.

This is an easy consequence of the Maurey–Khinchin inequality, which
for completeness we state in the form convenient for our present use (for
the proof cf. e.g. [L-T.2], 1.d.6 and 1.f.9). Let Y be a Banach space with
a 1-unconditional basis {yj} and cotype r < ∞. Then for any wi ∈ Y for
i = 1, 2, . . . we have
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c
∥∥∥
(∑

i

|wi|2
)1/2∥∥∥

Y
≤
( 1�

0

∥∥∥
∑

i

ri(t)wi
∥∥∥

2

Y
dt
)1/2

≤M
∥∥∥
(∑

i

|wi|2
)1/2∥∥∥

Y
,

where c > 0 is a universal constant and M = M(r, Cr(Y )). Here, if wi =∑
j wi(j)yj for all i, then the vector w = (

∑
i |wi|2)1/2 is defined by the

pointwise operation w =
∑

j(
∑

i |wi(j)|2)1/2yj .

Returning to the unconditionality in Radn(X), let x =
∑

i,j ai,jrifj ∈
Radn(X). Applying the Maurey–Khinchin inequality to the space F =
span{fj} one sees that ‖x‖Rad(X) is equivalent, up to a factor depending
on r and Cr(X), to the expression

∥∥∥
∑

j

(∑

i

|ai,j|2
)1/2∥∥∥

F
=
∥∥∥
∑

j

(∑

i

|ai,j |2
)1/2

fj

∥∥∥
X
,

which is obviously 1-unconditional.

(III) If a space X has cotype r < ∞ and local unconditional structure
then the natural map from Radn1(Radn2(X)) to Radn1n2(X) is an isomor-
phism with constant C(r, Cr(X)) lust(X).

This is the content of Definition 2.1 and Proposition 2.1 of [P.1] (see the
comments after Proposition 2.3 above). In the case of a Banach lattice see
also the proof of Proposition 2.d.7 of [L-T.2].

Recall a standard convention that for a Banach space X, dX denotes
the Banach–Mazur distance from X to a Hilbert space. So dX = d(X, `n2 )
if dimX = n, and dX = d(X, `2) if X is infinite-dimensional; in particular,
dX =∞ if X is not isomorphic to a Hilbert space.

The finite-dimensional quantitative version of our main result is:

Theorem 4.1. Let X be an n-dimensional Banach space with cotype r
constant Cr(X) for some 2 ≤ r < ∞, and let dX = d(X, `n2). If Y is one
of the finite-dimensional spaces listed below , then there exists a subspace
Z ⊂ Y such that lust(Z) ≥ ad

1/8
X , where a = a(r, Cr(X)) depends on r and

Cr(X) only.

(i) Y = RadN (Radn(X)), where N = 3n2;
(ii) Y = `M2 (X), where M = 3n22n.

Moreover , the space Z admits a 2-dimensional decomposition which is a-
unconditional , where a = a(r, Cr(X).

Before passing to the proof of the theorem, let us recall the notion of
property (H), which will play an important role in our discussion. It was
introduced by Pisier in [P.3] (see also [P.4]), and studied by Nielsen and
Tomczak-Jaegermann in [N-T].
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Definition 4.2. Let X be a Banach space. For m = 1, 2, . . . , let κm(X)
≥ 1 be the smallest constant κ such that for every 1-unconditional normal-
ized sequence {gi}li=1 of vectors in X with 1 ≤ l ≤ m, one has

κ−1l1/2 ≤
∥∥∥

l∑

i=1

gi

∥∥∥ ≤ κl1/2.

We say that X has property (H) if κ(X) = supm κm(X) <∞.

The following proposition is taken from [N-T], Proposition 1.2. It is a
finite-dimensional version of [P.3], Proposition 4.3. We state it here in the
form in which it was proved in [N-T] (although the actual formulation was
slightly weaker).

Proposition 4.3. Let X be an n-dimensional Banach space. Then

dX ≤ Cκn(Radn(X))4,

where C is a universal constant.

Proof of Theorem 4.1. By Proposition 4.3, we have κn(Radn(X)) ≥
cd

1/4
X , where c > 0 is a universal constant. Thus there exist normalized

1-unconditional vectors f1, . . . , fm in Radn(X), with 1 ≤ m ≤ n, such that
either ∥∥∥

m∑

i=1

fi

∥∥∥ ≥ cm1/2d
1/4
X ,

or ∥∥∥
m∑

i=1

fi

∥∥∥ ≤ (1/c)m1/2d
−1/4
X .

We may additionally assume that cd1/4
X ≥

√
12, otherwise the theorem is

true by adjusting a(r, Cr(X)).
Let F = span{f1, . . . , fm} ⊂ Radn(X). In particular, F has a 1-uncondi-

tional basis and dimF = m ≤ n. Set W1 = (F ⊗ `m2 ⊗ `m2 )⊕ (`m2 ⊗F ⊗ `m2 )⊕
(`m2 ⊗ `m2 ⊗ F ) and W2 = (F ⊗ `m2 )⊕ (`m2 ⊗ F )⊕ `m2

2 .
(i) Consider the space `m2 ⊗`m2 ⊗F with the norm induced by Radm2(F ).

This is a cross-norm, and the vectors {ei ⊗ ej ⊗ fk} form a λ-unconditional
basis, where λ = λ(r, Cr(X)). Moreover, for the cotype r constants we have
Cr(Radm2(F )) = Cr(F ) ≤ Cr(X). Similarly, consider `m2 ⊗ F and identify
it, via (11), with Radm(F ).

For each term entering the definitions of W1 and W2 we can make anal-
ogous identifications to get the cross-norm in which the natural tensor basis
is λ-unconditional. Moreover, the cotype r constants of W1 and W2 are less
than or equal to Cr(X).
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Thus Theorem 3.1 yields that either there exists a subspace Z of W1

with lust(Z) ≥ aλ−2d
1/4
X , or there exists a subspace Z ⊂W2 with lust(Z) ≥

aλ−2d
1/8
X , where a = a(r, Cr(X)) > 0. Since each of W1 and W2 (under the

cross-norms considered above) can be identified with a subspace of RadN (F ),
(i) follows.

(ii) On the tensor products `m2 ⊗ `m2 ⊗ F and `m2 ⊗ F consider the cross-
norms induced by `m

2

2 (F ) and `m2 (F ), respectively; thus identify W1 with
`3m

2

2 (F ) and W2 with `2m2 (F )⊕`m2

2 . The natural tensor bases in these spaces
are now 1-unconditional. It is easy to check that Theorem 3.1 again yields the
existence of a subspace Z of W1 or of W2 admitting an estimate lust(Z) ≥
ad

1/8
X . Since F ⊂ Radn(X) and Radn(X) can be identified with a subspace

of `2
n

2 (X), the conclusion follows.

As an easy consequence we obtain the following theorem which is stated
in a quantitative form.

Theorem 4.4. Let X be a Banach space of cotype r <∞. Then

(i) there exists a subspace Z in `2(X) such that lust(Z) ≥ ad1/8
X ,

(ii) there exists a subspace Z in Rad(Rad(X)) such that lust(Z) ≥ ad1/8
X .

Here a = a(r, Cr(X)) > 0 depends on r and Cr(X) only.

The proof of this theorem is completely standard; we give a short outline
for the convenience of the reader.

Outline of the proof. Recall that dX = sup dE , where the supremum is
taken over all finite-dimensional subspaces E of X. Thus if dX < ∞ then
the result follows immediately from Theorem 4.1.

If dX =∞ pick a sequence of finite-dimensional subspaces Ek ⊂ X with
dEk → ∞ as k → ∞. For k = 1, 2, . . . , let Zk ⊂ RadNk(Radnk(Ek)) be a
subspace constructed in Theorem 4.1(i) such that lust(Zk) ≥ ad

1/8
Ek

(here
nk = dimEk and Nk = 3n2

k).
In case (ii) partition the set N of all natural numbers as

⋃
Jk =

⋃
Ik

where Jk’s (resp., Ik’s) are successive intervals of natural numbers with
cardinality |Jk| = Nk (resp., |Ik| = nk) for all k. For each k, consider the
subspace Vk = RadJk(RadIk(X)) of Rad(Rad(X)) defined in the natural
way, and identify Zk with a subspace of Vk. Observe that by symmetry of
Rademacher functions, the Vk’s form a monotone Schauder decomposition
of Rad(Rad(X)) (which is in fact 1-unconditional). Let Z be the subspace
of Rad(Rad(X)) spanned by the Zk’s, Z = span{Zk}k. Denote by Qk the
natural projection from Rad(Rad(X)) onto Vk and observe that Qk|Z is a
(norm 1) projection from Z onto Zk. Thus lust(Z) ≥ lust(Zk)→∞, hence
lust(Z) =∞.



Subspaces without local unconditional structure 17

In case (i) we let Z be the `2-sum of the Zk’s, Z = (
∑⊕Zk)`2 , so that Z

is a subspace of `2(`2(X)) = `2(X). The rest of the proof is similar to case
(ii).

Case (i) of the above proof also shows that if X is not isomorphic to a
Hilbert space and is of cotype r <∞, then the subspace Z ⊂ `2(X) without
local unconditional structure is of the form Z = (

∑⊕Zk)2, where each
space Zk has a 2-dimensional unconditional decomposition. It easily follows
that Z itself has a 2-dimensional unconditional decomposition as well, thus
proving the “moreover” part of the abstract.

We now easily get an isomorphic characterization of a Hilbert space in
terms of local unconditional structure.

Corollary 4.5. For any Banach space X the following conditions are
equivalent :

(i) X is isomorphic to a Hilbert space.
(ii) Every subspace of `2(X) has local unconditional structure.

(iii) Every subspace of Rad(X) has local unconditional structure.

Proof. It is easy to see by Theorem 4.4 and by (III) above that the only
case to prove is when X does not have a finite cotype, which is equivalent
to X containing `n∞’s uniformly.

Recall the well known fact that for any Banach space and a finite-dimen-
sional subspace E there exists a finite-codimensional subspace Y such that
‖e‖ ≤ 2‖e+ y‖ for all e ∈ E and y ∈ Y (cf. e.g. the proof of [L-T.1], 1.a.6).
Thus in our case we can construct by induction a sequence of subspaces
En ⊂ X such that dimEn = n, d(En, `n∞) ≤ 2 for all n, and if X0 =
span{En}n ⊂ X then the natural projection Qn from X0 onto span{Ek}k≤n
has norm ≤ 2. Then Pn = Qn−Qn−1 is the natural projection from X0 onto
En with ‖Pn‖ ≤ 4.

Recall also that a “random” [n/2]-dimensional subspace of `n∞ has the
Gordon–Lewis constant, hence also the lust-constant of maximal order (cf.
e.g. [T.1]). This implies that for every n, there is a subspace Zn ⊂ En with
dimZn = [n/2] and lust(Zn) ≥ GL(Zn) ≥ c

√
n, where c > 0 is an absolute

constant. Let Z = span{Zn}n ⊂ X0 ⊂ X. Then Pn|Z is a projection from
Z onto Zn with norm ‖Pn|Z‖ ≤ 4. This implies that lust(Z) = ∞, and for
the same reason, Z does not have the Gordon–Lewis property.

Let us recall that it is still an open question whether the condition that
every subspace of X has an unconditional basis, or merely local uncondi-
tional structure, implies that X is isomorphic to a Hilbert space. In this
connection the following remark is of interest.

Remark 4.6. Casazza and Kalton [C-K] proved that the general method
from [K-T.1] does not work in an arbitrary Banach space X. Just as in The-
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orems 3.1 and 4.1, subspaces Z ⊂ X constructed by this method which fail
to have an unconditional basis, still have a 2-dimensional Schauder decom-
position which is a = a(r, Cr(X))-unconditional. It is shown in [C-K] that
there is an Orlicz sequence space `F 6= `2 with the property that whenever
Y is a closed subspace of `F with an unconditional finite-dimensional de-
composition {Zk}k such that sup dimZk <∞, then Y has an unconditional
basis. Clearly, `F has a 1-unconditional basis and it is easy to check that it
is of cotype 2. It is also easy to check that every subspace of `F contains an
isomorphic copy of `2.

The following theorem is a finite-dimensional quantitative result for sub-
spaces of `Np . It was proved by B. Maurey [M.1], who on this occasion sug-
gested the use of tensor products in the context of [K-T.1].

Theorem 4.7. (i) For 1 ≤ p < 2 the space `Np contains a subspace Z of
dimension ≥ N/2 with lust(Z) ≥ cNα which has a basis with basis constant
less than or equal to 1/c. Here α = (1/3)(1/p−1/2) and c > 0 is an absolute
constant.

(ii) For 2 < p < ∞ the space `Np contains a subspace Z of dimension
≥ apNα with lust(Z) ≥ apNβ which has a basis with basis constant less than
or equal to c. Here α = 3(2 + p/2)−1, β = (2 + p/2)−1(1/2− 1/p), c ≥ 1 is
an absolute constant and ap > 0 depends on p only.

Proof. For p 6= 2, denote by {ej} the standard unit vector basis in `p.
On the tensor product `n1

p ⊗ `n2
p ⊗ `n3

p consider the norm induced by `Np ,
where N = n1n2n3. Obviously, it is a cross-norm.

If {gi} is a λ-unconditional sequence in `n1
p for some λ ≥ 1, a straightfor-

ward calculation shows that {gi⊗ ej ⊗ ek}i,j,k is a λ-unconditional sequence
in `n1

p ⊗ `n2
p ⊗ `n3

p with the above cross-norm. An analogous statement is
true for sequences obtained by permuting the place of the gi’s in the tensor
product.

More generally, it follows from Proposition 2.3 that if {fi}, {gj} and
{hk} are λ-unconditional sequences in `nνp for ν = 1, 2, 3, respectively, then
{fi ⊗ gj ⊗ hk} is Cλ-unconditional in `Np with Cλ ≤ c1λ

2, where c1 is a
universal constant if 1 ≤ p < 2, and c1 depends on p if p ≥ 2.

Denote by {hi} the standard unit vector basis in `2.
(i) First consider arbitrary cross-norms on the tensor products X1 =

`np ⊗ `n2 ⊗ `n2 , X2 = `n2 ⊗ `np ⊗ `n2 and X3 = `n2 ⊗ `n2 ⊗ `np such that the natural
tensor bases are λ-unconditional for some λ ≥ 1. (So {ei ⊗ hj ⊗ hk} is λ-
unconditional in X1, etc.) Set X = X1⊕X2⊕X3. Applying Theorem 3.1(i)
with F = `np and D = ‖∑n

i=1 ei‖n−1/2 = n1/p−1/2 we get a 2n3-dimensional
subspace Z of X such that lust(Z) ≥ c2λ

−2D, where c2 > 0 is an absolute
constant.
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Now recall that for any k, the space `kp contains an n-dimensional sub-
space with n ≥

√
3k/2 which is C-isomorphic to `n2 , where C ≥ 1 is a

universal constant. (In fact this is true for any proportion 0 < ξ < 1 and
n ≥ ξk, with the constant C depending on ξ. We refer the reader e.g.
to [M-S] and [P.4] for the deep general theory of Euclidean subspaces of
finite-dimensional spaces.) Let k = [2n/

√
3] + 1 and let E ⊂ `kp be an

n-dimensional C-Euclidean subspace as above. Let {h′j} ⊂ E be a normal-
ized basis C-equivalent to the basis {hj} in `n2 (i.e., there are a, b > 0 with
ab = C such that 1/b ≤ ‖∑ tjh

′
j‖ ≤ a for all sequences (tj) of scalars

with
∑ |tj|2 = 1). In particular, {h′j} ⊂ E is C-unconditional. Consider

the tensor product X̃1 = `np ⊗ E ⊗ E as the subspace of `np ⊗ `kp ⊗ `kp, with
the cross-norm from `nk

2

p , as described at the beginning of the proof. The
discussion at the beginning of the proof also shows that the natural tensor
basis {ei⊗h′j⊗h′k} is λ′-unconditional, where λ′ ≤ c1C

2. An analogous con-

struction can be done for X̃2 and X̃3, and for X̃, which makes X̃ a subspace
of `Np for N = 3nk2 = 4n3. Using Theorem 3.1(i) in the same way as in the
previous paragraph, and noting that only the upper bound a enters in the
proof of this theorem, we get a 2n3-dimensional subspace Z̃ ⊂ X̃ ⊂ `Np such

that lust(Z̃) ≥ c2a
−1λ′−2D ≥ c3D, where c3 > 0 is an absolute constant.

(ii) We use Theorem 3.1(i), with the modification indicated in Remark
3.2. First, letting F = `n2 with the basis {hi}, we get a 2n3-dimensional
subspace Z of X = (`n2 ⊗ `np ⊗ `np ) ⊕ (`np ⊗ `n2 ⊗ `np ) ⊕ (`np ⊗ `np ⊗ `n2 ) with
lust(Z) ≥ aD, where D = n1/2−1/p and a > 0 depends on cotype properties
of X.

Recall that `n2 is 2-isomorphic to a subspace E of `kp with k = Cpn
p/2,

where Cp ≥ 1 depends on p only (cf. e.g. [M-S]). Let X̃1 = E ⊗ `np ⊗ `np
and define X̃2 and X̃3 by analogous formulas. An argument similar to (i)
shows that on each X̃ν there is a cross-norm which makes this space into a
subspace of `Np (where N = Cpn

2+p/2). Let {h′i} be a basis in E 2-equivalent
to the basis {hi} in `n2 . Then the natural tensor basis {h′i ⊗ ej ⊗ ek} is 2-
unconditional in X̃1, and a similar calculation is valid in X̃2 and X̃3. Finally,
note that the cotype p constant of `p satisfies Cp(`p) ≤ c

√
p, where c is an

absolute constant. Thus, by Theorem 3.1(i), the space X̃ = X̃1 ⊕ X̃2 ⊕ X̃3

contains a 2n3-dimensional subspace Z̃ with lust(Z̃) ≥ a′pn
1/2−1/p, where

a′p > 0 depends on p only. In both cases (i) and (ii) the statement about the
basis constant follows directly from Theorem 3.1.

Let us conclude by several comments about subspaces of `p (and `Np ).
We start with 1 ≤ p ≤ 2. It is well known that in this case a random
N/2-dimensional subspace of `Np is nearly Euclidean (see the proof of Theo-
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rem 4.7(i) above), and therefore, the subspace constructed in Theorem 4.7(i)
is very far from being random. In this range of p, every subspace of `p has
the Gordon–Lewis property (this is true for subspaces of any Banach lattice
of cotype 2, cf. e.g. [P.2]). It follows that all subspaces of `Np have the GL-
constant uniformly bounded above. The lower estimate for lust(Z) obtained
here is of the largest order known to date. Still, it is quite likely that there
exists a subspace Z̃ ⊂ `p with dim(Z̃) = n such that lust(Z̃) ≥ cn1/p−1/2.

For 2 ≤ p ≤ ∞, a “random” [N/2]-dimensional subspace Z̃ ⊂ `Np satisfies

lust(Z̃) ≥ GL(Z̃) ≥ cN1/2−1/p; and this gives an asymptotically maximal
order, up to a numerical factor. This in particular means that although our
method seems to require the assumption of finite cotype, Banach spaces
which do not satisfy this assumption, hence contain `n∞’s uniformly, auto-
matically have subspaces without the Gordon–Lewis property, hence with-
out local unconditional structure (see the proof of Corollary 4.5). However,
an [N/2]-dimensional subspace Z̃ ⊂ `Np as above has basis constant also

of maximal order (i.e., the basis constant of every basis in Z̃ admits an
appropriate lower estimate). On the other hand, although the example in
Theorem 4.7(ii) obviously does not produce the worse possible behaviour
for the lust-constant, it sharply contrasts the bad behaviour of this constant
with the good behaviour of the basis constant.
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