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Fine behavior of functions
whose gradients are in an Orlicz space

by

Jan Malý (Praha), David Swanson (Louisville, KY) and
William P. Ziemer (Bloomington, IN)

Abstract. For functions whose derivatives belong to an Orlicz space, we develop
their “fine” properties as a generalization of the treatment found in [MZ] for Sobolev
functions. Of particular importance is Theorem 8.8, which is used in the development in
[MSZ] of the coarea formula for such functions.

1. Introduction. In this paper a theory of capacity is developed for
functions whose derivatives are in an Orlicz space; the theory is analogous
to the well-known development for classical Sobolev spaces (cf. [FZ], [Ma2],
[MH], [Me]). One of our main results, Theorem 8.8, is needed in [MSZ] to
find sharp conditions for the validity of the coarea formula. It is essential
for this application that Orlicz–Sobolev spaces are considered rather than
the ordinary Sobolev spaces.

During the preparation of this manuscript, in a survey article [M2], part
of the results of this work have been announced and the methods outlined.
For related results in the framework of metric spaces see also [M3].

The outline of the paper is as follows. Section 2 includes preliminaries
and basic properties of Young functions and Orlicz spaces. Capacity for
Orlicz–Sobolev spaces is introduced in Section 3, where it is shown that
our capacity is a “true capacity” in the sense of Brelot–Choquet. The main
result of Section 4 is Theorem 4.6, which states that if the Young function F
satisfies a doubling condition, then functions in the corresponding Orlicz
spaces have Lebesgue points everywhere except for a capacity null set. In
Section 5, it is shown that Theorem 4.6 can be improved in the sense that
the integrand in the expression for a Lebesgue point can be replaced by
one involving a more demanding growth condition. Section 6 establishes
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some basic properties of capacitary extremals, while Section 7 shows how a
Young function can be modified to improve its growth properties while still
maintaining a particular growth property (Corollary 7.4). A fundamental
inequality relating Hausdorff content and capacity (Theorem 8.8) is proved
in Section 8. The last section, Section 9, shows that Lorentz spaces can be
written as the union of Orlicz spaces.

There exists a parallel development of the theory which has been recently
obtained by other authors. Fiorenza and Prignet [FP] obtained the compar-
ison of capacities and Hausdorff contents, and Aı̈ssaoui [Aı̈] proved that
Bessel potentials of functions from Orlicz spaces have Lebesgue points q.e.
measured by the corresponding capacity. A general development of Orlicz
capacities defined on metric spaces has been given in [BO] and [T]. However,
our exposition is completely different. Aı̈ssaoui studies capacities defined by
means of convolution kernels (let us call them “potential-theoretic capaci-
ties”). In [FP], variational capacity corresponding to Orlicz–Sobolev spaces
is introduced, it is shown to be equivalent to the potential-theoretic capacity
and the rest is derived using potential-theoretic methods. In our work, we
use intrinsic methods of variational capacity as in [MZ].

2. Preliminaries. The open ball in Rn with center x and radius r will
be denoted by B(x, r) and its volume by α(n). The Lebesgue measure of a
set E is denoted by |E| and we shall write

fE :=
�

E

f dx =
1
|E|

�

E

f dx

for the integral average of a measurable function over E. Whenever Ω ⊂ Rn

is an open set we write D(Ω) for the space of all C∞ functions defined on
Ω with compact support. We denote the integers by Z.

Definition 2.1. Given an open set Ω ⊂ Rn and 1 ≤ p ≤ ∞ we denote
by W 1,p(Ω) the Sobolev space consisting of those functions u ∈ Lp(Ω) whose
first order distributional partial derivatives are also members of Lp(Ω). The
space W 1,p(Ω) is a Banach space with respect to the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

W 1,p
0 (Ω) is the closure of D(Ω) in the W 1,p norm. W 1,p

loc (Ω) consists of those
measurable functions u defined on Ω which belong to W 1,p(U) for every
open set U compactly contained in Ω.

Definition 2.2. A nondecreasing left-continuous convex function F :
[0,∞) → [0,∞] which satisfies F (0) = limt→0+ F (t) = 0 and limt→∞ F (t)
=∞ is called a Young function.
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A finite-valued Young function F is locally Lipschitz and has left- and
right-sided derivatives which coincide except possibly on a countable set. For
definiteness, throughout the paper F ′ will denote the right-sided derivative
of F . For t > 0, F admits the representation

F (t) =
t�

0

F ′(s) ds.

Definition 2.3. For s ∈ [0,∞), the function

F̃ (s) := sup{ ts− F (t) : t ≥ 0}
is called the complementary function to F . It has the same properties as F
and in addition satisfies Young’s inequality

(2.1) ts ≤ F (t) + F̃ (s) for all t, s ≥ 0.

Notice that the complementary function to F̃ is F .

Definition 2.4. A Young function F is said to satisfy condition ∆2

globally if there exists d > 1 such that

(2.2) F (2t) ≤ dF (t) for all t > 0.

Definition 2.5. A Young function F is said to satisfy condition ∇2

globally if there exists l > 1 such that

(2.3) F (t) ≤ 1
2l
F (lt) for all t > 0.

The ∆2 condition (or ∇2 condition, respectively) without any modifier is
usually reserved for the situation where (2.2) (or (2.3)) holds only for t > t0
with some t0 > 0. We will not use these nonglobal conditions.

Proposition 2.6. Let F be a Young function. Then

(i) F satisfies ∆2 globally if and only if there exists a > 1 such that

F ′(2t) ≤ aF ′(t) for all t > 0.

(ii) F satisfies ∇2 globally if and only if there exists b > 1 such that

2F ′(t) ≤ F ′(bt) for all t > 0.

(iii) F satisfies ∆2 globally if and only if there exists p > 1 such that

tF ′(t)
F (t)

≤ p for all t > 0.

(iv) F satisfies ∇2 globally if and only if there exists q > 1 such that

tF ′(t)
F (t)

≥ q for all t > 0.
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Proof. Assertions (i) and (ii) follow from definitions. The remaining
parts are proven in Theorem 3 on p. 22 of [RR].

Notice that (iii) and (iv) imply “stronger” ∆2 and ∇2 conditions:

t ≥ 0, l > 1 ⇒ F (lt) ≤ lpF (t) if F is global ∆2,(2.4)
t > 0, l > 1 ⇒ F (lt) ≥ lqF (t) if F is global ∇2.(2.5)

These are derived by integrating
F ′(t)
F (t)

≤ p

t
or

F ′(t)
F (t)

≥ q

t

over [t, lt].

Definition 2.7. Let Ω ⊂ Rn and let F be a Young function. The Orlicz
space LF (Ω) is the set of all measurable functions u defined on Ω that satisfy�

Ω

F (|u(x)|/t) dx <∞

for some t > 0. The space LF becomes a Banach space when equipped with
the Luxemburg norm

(2.6) ‖u‖F ;Ω := inf
{
t > 0 :

�

Ω

F (|u(x)|/t) dx ≤ 1
}
.

Proposition 2.8. If F satisfies ∆2 globally , then

u ∈ LF (Ω) if and only if
�

Ω

F (|u(x)|) dx <∞.

Proposition 2.9. If u ∈ LF (Ω) and v ∈ LeF (Ω) then

(2.7)
�

Ω

uv dx ≤ 2‖u‖F ;Ω‖v‖eF ;Ω
.

Definition 2.10. Let Ω be an open set. The Orlicz–Sobolev space
W 1,F (Ω) consists of all functions u ∈ LF (Ω) whose distributional partial
derivatives are also elements of LF (Ω). The space W 1,F (Ω) is a Banach
space with respect to the norm

‖u‖W 1,F (Ω) := ‖u‖F ;Ω + ‖∇u‖F ;Ω.

The space W 1,F
0 (Ω) is the closure of D(Ω) in the W 1,F norm.

Since F is convex, there exist numbers a > 0 and b such that F (x) ≥
ax+ b for all x ∈ R. Thus if u ∈ LF (Ω), then�

Ω′

(a|u|+ b) dx ≤
�

Ω′

F (|u|) dx <∞

for every Ω′ ⊂⊂ Ω. In particular,

(2.8) W 1,F (Ω) ⊂W 1,1
loc (Ω).
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We will require the following results regarding the space W 1,F . Recall
from [MZ, p. 5] the definition of regularizations of a function u ∈ L1

loc(Ω).

Proposition 2.11 (see Adams [A]). If F satisfies ∆2 globally and u ∈
W 1,F (Rn), then the regularizations uε converge to u in W 1,F (Rn). Thus

W 1,F (Rn) = W 1,F
0 (Rn).

Proposition 2.12. Suppose F satisfies ∆2 globally and let B = B(x, r).
If u ∈ W 1,F (B), then there exist v ∈ W 1,F (Rn) and C = C(n,d) such that
v = u on B, spt v ⊂ B(x, 3r/2), and

�

Rn
F (|∇v|) dy ≤ C

�

B

F (|∇u|) + F (|u|/r) dy,
�

Rn
F (|v|) dy ≤ C

�

B

F (|u|) dy.

Proof. Assume x = 0. Define w by

w(y) =
{

(2|y|/r − 1)u(y) for |y| ≥ r/2,
0 for |y| < r/2

and observe that
|∇w(y)| ≤ |∇u(y)|+ 2r−1|u(y)|

for a.e. y ∈ B(0, r) \B(0, r/2). Hence, by the ∆2 condition,

(2.9)
�

B(0,r)

F (|∇w|) dy ≤
�

B(0,r)

F (|∇u|) dy + d
�

B(0,r)

F (|u|/r) dy.

Now define T : {y : r ≤ |y| ≤ 3r/2} → {y : r/2 ≤ |y| ≤ r} by

T (y) = (2r/|y| − 1)y

and note that ‖DT‖ = 1 and the Jacobian determinant JT satisfies |JT | ≥
31−n. Let

v(y) =


0 for |y| > 3r/2,
w ◦ T (y) for r ≤ |y| ≤ 3r/2,
u(y) for |y| < r.

Then, with z := w ◦ T ,�

{r≤|y|≤3r/2}

F (|∇z|) dy =
�

{r≤|y|≤3r/2}

F (|∇(w ◦ T )|) dy

≤ 3n−1
�

{r≤|y|≤3r/2}

F (|∇(w ◦ T )|)|JT | dy

≤ 3n−1
�

{r/2≤|y|≤r}

F (|∇w|) dy
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and therefore, by (2.9),�

B(0,3r/2)

F (|∇v|) dy ≤
�

{r≤|y|≤3r/2}

F (|∇z|) dy +
�

B(0,r)

F (|∇u|) dy

≤ 3n−1
�

{r/2≤|y|≤r}

F (|∇w|) dy +
�

B(0,r)

F (|∇u|) dy

≤ C
�

B(0,r)

F (|∇u|) + F (|u|/r) dy.

A similar argument shows that�

Rn
F (|v|) dy ≤ C

�

B

F (|u|) dy.

The following Poincaré inequality is well known, but the proof is so
simple that we include it here.

Proposition 2.13 (Poincaré inequality). Suppose that F satisfies ∆2

globally and that Ω is an open set of finite measure. There is a constant
C = C(n,F , |Ω|) such that

(2.10)
�

Ω

F (|u|) dx ≤ C
�

Ω

F (|∇u|) dx for all u ∈W 1,F
0 (Ω).

Proof. In light of Proposition 2.8 we may assume that u is smooth and
has compact support. By the classical W 1,1

0 (Ω)-Poincaré inequality (cf. [Z,
Theorem 2.1.11]) applied to F (|u|) (which is Lipschitz and thus in W 1,1

0 (Ω)),�

Ω

F (|u|) dx ≤ C
�

Ω

F ′(|u|)|∇u| dx.

Given ε > 0, we distinguish |∇u| ≤ ε|u| and |∇u| > ε|u| and obtain�

Ω

F (|u|) dx ≤ C(n)
�

Ω

ε|u|F ′(|u|) dx+
�

Ω

|∇u|F ′(|∇u|/ε) dx.

From Proposition 2.6 and (2.4) we infer�

Ω

F (|u|) dx ≤ pC(n)ε
�

Ω

F (|u|) dx+ pC(n)C(d, ε)
�

Ω

F (|∇u|) dx.

This for εpC(n) < 1 yields the required inequality.

A similar argument may be used to prove other versions of the Poincaré
inequality. The following Poincaré-type inequality was proven in [BL] (see
also the appendix of [CFL]).

Proposition 2.14. Let B = B(z, r). If F is a Young function, then
there exists C = C(n) such that�

B

F (|u− uB|/r) dx ≤ C
�

B

F (|∇u|) dx for any u ∈W 1,F (B).
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Definition 2.15. A strictly increasing Young function F satisfying

lim
t→0+

F (t)
t

= 0 and lim
t→∞

F (t)
t

=∞

is called an N -function.

A Young function is an N -function if and only if

F ′(0) = 0, 0 < F ′(t) <∞ for all 0 < t <∞, lim
t→∞

F ′(t) =∞.

Proposition 2.16. A Young function F satisfying ∆2 and ∇2 globally
is an N -function.

Proof. From (2.5) with q > 1 we obtain the inequalities

F (a)
a
≤ aq−1 F (b)

b
and

F (b)
b
≥ bq−1 F (a)

a
.

For b = 1 and a = 1, respectively, this implies

F (a)
a
≤ aq−1F (1), a < 1,

F (b)
b
≥ bq−1F (1), b > 1.

The ∆2 condition ensures that F ′(t) > 0 for all t > 0.

Definition 2.17. The inverse of a nondecreasing function v : [0,∞)→
[0,∞) satisfying v(0) = 0 is given by

v−1(0) = 0, v−1(t) = sup{s > 0 : v(s) ≤ t} for t > 0.

The function v−1 is nondecreasing and satisfies v−1(v(t)) ≥ t for all t. If v is
right-continuous then v(v−1(t)) ≥ t, and if v satisfies a doubling condition
of the form v(2t) ≤ Cv(t) for all t > 0, then in addition we have

(2.11) v(v−1(t)) ≤ Ct,

where the constant C is the same as the doubling constant.

3. Capacity. In this section we introduce a variational capacity in a gen-
erality which includes the capacity for Orlicz–Sobolev spaces. Our treatment
is based on the variational approach to capacity. The theory of variational
capacity for Sobolev spaces was developed by Maz’ya starting with [Ma1]
(see also [Ma2], [AH] or [MZ] for details).

Definition 3.1. We say that a sequence {uj} converges locally weakly
in L1

loc(Ω) if it converges weakly in L1(Ω′) for any Ω′ ⊂⊂ Ω. We use a
similar definition for the space W 1,1

loc (Ω).
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Definition 3.2. Let F be a Young function, let c ≥ 0, and let Ω ⊂ Rn

be an open set. According to (2.8), the Luxemburg norm associated with
the functional

u 7→
�

Ω

(F (|∇u|) + cF (|u|)) dx

is finite for all u ∈ D(Ω). Denote this norm by ‖·‖U . We make the following
assumptions on (D(Ω), ‖·‖U ):

• (Continuity assumption) The embedding

(D(Ω), ‖·‖U ) ↪→W 1,1
loc (Ω)

is continuous. This enables us to identify the completion U of
(D(Ω), ‖·‖U ) as a subset of W 1,1

loc (Ω).
• (Compactness assumption) Closed balls in U are sequentially compact

with respect to local weak convergence in W 1,1
loc (Ω).

Given a set E ⊂ Ω, we write

Y(E) = {u ∈ U : 0 ≤ u ≤ 1, E ⊂ int{u = 1}},

where intA is the topological interior of A. We define

(3.1) γ(E) = inf
{�

(F (|∇u|) + cF (|u|)) dx : u ∈ Y(E)
}
.

Remark 3.3. The capacity that we want to study is just this corre-
sponding to c = 1 and Ω = Rn. However, we need slightly more generality
which will allow us to use (as an auxiliary tool) also the capacity on a ball
with c = 0, which brings to us the technical advantage of absence of the
lower order term. We skip the discussion of the possibility of taking c = 0,
Ω = Rn; indeed, this leads to complications whose treatment is irrelevant
for our purposes.

This definition is consistent with that in [MZ] and covers the cases stud-
ied there. For example, if U = W 1,p

0 (Ω), p > 1, then U is reflexive and the
closed balls in U are sequentially weakly compact in U . Since weak con-
vergence in U implies local weak convergence in W 1,1

loc (Ω), the compactness
assumption in Definition 3.2 is satisfied. In later sections we will see some
situations where it is possible to overcome the possible nonreflexivity of U .

The purpose of the continuity assumption is to prevent cases like ‖u‖U =
‖∇u‖n and Ω = Rn, when there is a sequence of D(Rn)-functions converging
in the U-norm and locally in L1 to the constant 1.

We recall De Giorgi’s lower semicontinuity theorem, [DG].

Theorem 3.4 (De Giorgi). Let f(x, ζ, ξ) : Ω × R × Rn → [0,∞) be
measurable in x, continuous in ζ, and convex in ξ. Suppose uk → u in
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L1
loc(Ω) and pk → p locally weakly in L1

loc(Ω). Then
�

Ω

f(x, u, p) dx ≤ lim inf
k→∞

�

Ω

f(x, uk, pk) dx.

For the remainder of this section we will consider the function f given by

(3.2) f(ζ, ξ) = F (|ξ|) + cF (|ζ|).

Theorem 3.5.

(i) For any set E ⊂ Ω,

γ(E) = inf{γ(G) : G open, G ⊃ E}.

(ii) If K1 ⊃ K2 ⊃ · · · are compact subsets of Ω, then

γ
( ∞⋂
i=1

Ki

)
= lim

i→∞
γ(Ki),

(iii) If E1, E2 ⊂ Ω, then

γ(E1 ∪ E2) + γ(E1 ∩ E2) ≤ γ(E1) + γ(E2).

(iv) If E1 ⊂ E2 ⊂ · · · are arbitrary subsets of Ω, then

γ
( ∞⋃
i=1

Ei

)
= lim

i→∞
γ(Ei).

(v) If {Ei} is a sequence of arbitrary subsets of Ω then

γ
( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

γ(Ei).

Proof. (i) is evident and (ii) is an easy consequence of (i).
(iii) Given u, v ∈ U , let A := {u ≥ v} and B := {u < v}. Then

∇ sup{u, v} = ∇uχA +∇vχB,
∇ inf{u, v} = ∇uχB +∇vχA,�

Ω

f(sup{u, v},∇ sup{u, v}) dx =
�

Ω

f(uχA + vχB,∇uχA +∇vχB) dx

=
�

A

f(u,∇u) dx+
�

B

f(v,∇v) dx,

�

Ω

f(inf{u, v},∇ inf{u, v}) dx =
�

Ω

f(uχB + vχA,∇uχB +∇vχA) dx

=
�

B

f(u,∇u) dx+
�

A

f(v,∇v) dx,
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and

(3.3)
�

Ω

f(sup{u, v},∇ sup{u, v}) dx+
�

Ω

f(inf{u, v},∇ inf{u, v}) dx

=
�

Ω

f(u,∇u) dx+
�

Ω

f(v,∇v) dx.

It follows that sup{u, v}, inf{u, v} ∈ U , and as u runs over Y(E1) and v runs
over Y(E2), and we easily obtain (iii).

(iv) Obviously limi→∞ γ(Ei) ≤ γ(
⋃∞
i=1Ei). To prove the opposite in-

equality let ε > 0 and choose ui ∈ Y(Ei) such that

(3.4)
�

Ω

f(ui,∇ui) dx ≤ γ(Ei) +
ε

2i
.

Let vj := sup{u1, . . . , uj} and note that

vj = sup{vj−1, uj} and Ej−1 ⊂ int{inf{vj−1, uj} = 1}

since uj , vj−1 ≥ 1 on a neighborhood of Ej−1. Then, using (3.3), we get
�

Ω

f(vj ,∇vj) dx+ γ(Ej−1) ≤
�

Ω

f(sup{vj−1, uj},∇ sup{vj−1, uj}) dx

+
�

Ω

f(inf{vj−1, uj},∇ inf{vj−1, uj}) dx

=
�

Ω

f(vj−1,∇vj−1) dx+
�

Ω

f(uj ,∇uj) dx

≤
�

Ω

f(vj−1,∇vj−1) dx+ γ(Ej) +
ε

2j
.

By induction, we obtain

(3.5)
�

Ω

f(vj ,∇vj) dx ≤ γ(Ej) +
j∑
i=1

ε

2i
< lim

i→∞
γ(Ei) + ε

for all j. We may assume that limi→∞ γ(Ei) < ∞. By (2.6) and (3.2) the
sequence {vj} is bounded in U . By the compactness assumption in Defini-
tion 3.2 and the compact embedding theorem, there exists a subsequence
(not relabeled) of the sequence {vj} converging weakly in W 1,1

loc (Ω) and
strongly in L1

loc(Ω) to a function v ∈ U . By lower semicontinuity (Theo-
rem 3.4),

�

Ω

f(v,∇v) dx ≤ lim inf
j→∞

�

Ω

f(vj ,∇vj) dx ≤ lim
i→∞

γ(Ei) + ε.

Now define w = limj→∞ vj . Then
⋃∞
i=1Ei ⊂ int{w = 1}, and since vj → w

almost everywhere, the weak limit of the vj cannot be anything other than w.
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Thus v = w and so v ∈ Y(
⋃∞
i=1Ei). It follows that

γ
( ∞⋃
i=1

Ei

)
≤

�

Ω

f(v,∇v) dx ≤ lim
i→∞

γ(Ei) + ε.

(v) By induction, from (iii) we derive

(3.6) γ
( k⋃
i=1

Ei

)
≤

k∑
i=1

γ(Ei)

for any finite selection of sets E1, . . . , Ek. Now refer to (iv) to obtain

γ
( ∞⋃
i=1

Ei

)
= lim

k→∞
γ
( k⋃
i=1

Ei

)
≤ lim

k→∞

k∑
i=1

γ(Ei) =
∞∑
i=1

γ(Ei).

Proposition 3.6. Suppose that G ⊂ Ω is an open set and Y(G) 6= ∅.
Then there exists a minimizer of

(3.7)
�

Ω

(F (|∇u|) + cF (|u|)) dx

in Y(G).

Proof. Let {uj} ⊂ Y(G) be a minimizing sequence for (3.7). Then {uj}
is bounded in U , and proceeding as in the proof of Theorem 3.5 we may pass
to a subsequence converging weakly in W 1,1

loc (Ω) and strongly in L1
loc(Ω) to

a function u ∈ U (hence u ≥ 1 on G). Thus
�

Ω

(F (|∇u|) + cF (|u|)) dx ≤ lim inf
j→∞

�

Ω

(F (|∇uj |) + cF (|uj |)) dx = γ(G).

Since u ≥ 1 on G, it follows that u ∈ Y(G) and we obtain the opposite
inequality

γ(G) ≤
�

Ω

(F (|∇u|) + cF (|u|)) dx,

implying that u is a minimizer.

Remark 3.7. The minimizer from Proposition 3.6 is often called a ca-
pacitary extremal for γ(G). It is sometimes desirable to have uniqueness for
capacitary extremals; this requires stronger assumptions on F . For instance,
strict convexity of F is sufficient to imply uniqueness.

4. Lebesgue points and Orlicz spaces. In this section we prove a
generalization of the result concerning Sobolev functions and their Lebesgue
points (cf. [FZ]). Namely, we show that a function in W 1,F has Lebesgue
points q.e. for the capacity γF . Alternatively, these results can be seen from
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those of Aı̈ssaoui [Aı̈] which depend on deep results on equivalence of func-
tion spaces and capacities [FP]. We also mention quasicontinuous represen-
tatives (see [AH] or [MZ] for historical notes).

We assume throughout this section that F satisfies ∆2 globally with
doubling constant d.

Definition 4.1. Given a Young function F , we define the capacity γF

on Rn as

γF (E) = inf
{ �

Rn
(F (|u|) + F (|∇u|)) dx : u ∈W 1,F (Rn), E ⊂ int{u ≥ 1}

}
.

If F is an N -function, this definition is in accordance with the general defini-
tion of capacity in (3.1) with c = 1. A function u is called F -quasicontinuous
if for each ε > 0 there exists an open set Uε such that γF (Uε) < ε and u is
continuous on Rn \ Uε.

The ∆2 assumption and Proposition 2.11 imply

U = W 1,F (Rn).

The choice c = 1 and Proposition 2.9 make the continuity assumption trivial.
The compactness assumption is verified by the De La Vallée Poussin criterion
for weak compactness in L1 and Theorem 3.4. Precisely, if {uj} is a sequence
of functions from a closed ball in U , the De La Vallée Poussin criterion shows
that, after passing to a subsequence, {uj} has a weak limit in W 1,1

loc (Rn),
which is strong in L1

loc(Rn) by the compact embedding theorem. The lower
semicontinuity of the U-norm then shows that the limit remains in U .

The nondecreasing nature of F implies that W 1,F (Rn) is closed under
truncation and

γF (E) = inf
{ �

Rn
(F (|u|) + F (|∇u|)) dx :

u ∈W 1,F (Rn), 0 ≤ u ≤ 1, E ⊂ int{u = 1}
}
.

Definition 4.2. If u ∈ L1
loc(Rn), its corresponding maximal function is

defined by
Mu(x) = sup

r>0

�

B(x,r)

|u(y)| dy

for all x ∈ Rn.

Theorem 4.3. There exists a constant C = C(n,d) such that

γF ({Mu > 1}) ≤ C
�

Rn
(F (|u|) + F (|∇u|)) dx

for all u ∈W 1,F (Rn).
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Proof. Assume without loss of generality that u is nonnegative, and sup-
pose first that u has compact support. With A := {x : Mu(x) > 1} and
u(x, r) :=

�
B(x,r) u(y) dy, note that if x ∈ A, then u(x, r) > 1 for some r > 0.

For such an r,

|B(x, r)| ≤
�

B(x,r)

u dx ≤
�

sptu

|u| dx <∞,

so that r is bounded above by some constant C. Consequently, we may
appeal to the Besicovitch covering lemma to conclude that there exist an
integer N > 1 and a sequence {Bj} of balls such that

(4.1) A ⊂
∞⋃
j=1

Bj ,
∑
j

χBj ≤ N,

and �

Bj

u dx > 1 for each j = 1, 2, . . . .

Now consider ϕ := (uBj − u)+. Applying the ∆2 condition and Jensen’s
inequality we have

(4.2) F (|ϕ|) ≤ d
2

(F (|uBj |) + F (|u|)) ≤ d
2

( �

Bj

F (|u|) dy + F (|u|)
)
,

and hence �

Bj

F (|ϕ|) dx ≤ d
�

Bj

F (|u|) dx.

Likewise, since |∇ϕ| ≤ |∇u|, we have�

Bj

F (|∇ϕ|) dx ≤
�

Bj

F (|∇u|) dx

and so ϕ ∈ W 1,F (Bj). We refer to Proposition 2.12, (4.2), and Poincaré’s
inequality (Proposition 2.14) to obtain a function vj ∈W 1,F (Rn) such that
vj = ϕ on Bj and�

Rn
(F (|∇vj |) + F (vj)) dx ≤ C

�

Bj

(F (|∇ϕ|) + F (|ϕ|/r) + F (|ϕ|)) dx

≤ C
�

Bj

(F (|u|) + F (|∇u|) + F (|uBj − u|/r)) dx

≤ C
�

Bj

(F (|u|) + F (|∇u|)) dx,

where C = C(n,d) and r is the radius of Bj . Note that

u+ vj ≥ uBj ≥ 1 on Bj .
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Therefore, defining
wj = sup{v1, . . . , vj},

we see that
u+ wj > 1 on A ∩ (B1 ∪ · · · ∪Bj).

Note that there exist disjoint sets A1, . . . , Aj such that

(4.3)

wj =
j∑
i=1

χAivi, ∇wj =
j∑
i=1

χAi∇vi a.e.,

F (wj) =
j∑
i=1

χAiF (vi), F (∇wj) =
j∑
i=1

χAi∇F (vi) a.e.,

and therefore, since F ∈ ∆2 globally,�

Rn
(F (|∇(u+ wj)|) + F (|u+ wj |)) dx

≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx+ C

�

Rn
(F (|∇wj |) + F (|wj |)) dx

≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx+ C

j∑
i=1

�

Ai

(F (|∇vi|) + F (|vi|)) dx

≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx+ C

j∑
i=1

�

Bi

(F (|∇u|) + F (|u|)) dx

≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx+ CN

�

Rn
(F (|∇u|) + F (|u|)) dx.

Since A is open,

γF (A ∩ (B1 ∪ · · · ∪Bj)) ≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx

and taking the limit as j →∞, we obtain, by Theorem 3.5(iv),

γF (A) ≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx,

as desired. In case u fails to have compact support, apply the preceding
argument to uηm where ηm is a smooth cut-off function satisfying

χB(0,m) ≤ ηm ≤ χB(0,2m) and |∇ηm| ≤ 2/m.

Since |∇(uηm)| ≤ 2m−1|u|+ |∇u|, the ∆2 condition implies

γF ({M(uηm) > 1}) ≤ C
�

Rn
(F (|∇u|) + F (|u|)) dx
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for all m ≥ 1. Using the fact that

{Mu > 1} =
∞⋃
m=1

{M(uηm) > 1},

we derive the result from Theorem 3.5(iv).

Corollary 4.4. Under the same hypotheses as in the previous theorem,

γF ({Mu > λ}) ≤ C

λ

�

Rn
(F (|u|) + F (|∇u|)) dx

for all λ > 1. Consequently ,

γF ({Mu =∞}) = 0.

Proof. Assume λ > 1. With v := u/λ, the convexity of F yields

γF ({Mv > 1}) ≤ C
�

Rn
(F (|u/λ|) + F (|∇u/λ|)) dx

≤ C

λ

�

Rn
(F (|u|) + F (|∇u|)) dx.

If E := {x : Mu(x) =∞}, then E ⊂ {x : Mu(x) > λ} for any λ > 0. Hence

γF (E) ≤ C

λ

�

Rn
(F (|u|) + F (|∇u|)) dx→ 0 as λ→∞.

Definition 4.5. For u ∈ L1
loc(Ω), for any ball B = B(x, r) we will write

uB = u(x, r) =
�

B(x,r)

u(y) dy.

Further, we define

(4.4) u(x) := lim
r→0+

u(x, r)

whenever the limit exists. The function u, which coincides almost everywhere
with u, is called the precise representative of u. We say that u is precisely rep-
resented if it is identified with u at all points x where the above limit exists.

Theorem 4.6. If u ∈W 1,F
loc (Ω), then u(x) exists and

lim
r→0+

�

B(x,r)

|u(y)− ū(x)| dy = 0

for all x except a γF -null set.

Proof. Since the result is local, we may assume that Ω = Rn and u has
compact support. Since F ∈ ∆2, Proposition 2.11 implies that for each ε > 0
there exists uε ∈ D(Rn) such that

(4.5)
�

Rn
(F (|u− uε|) + F (|∇u−∇uε|)) dx < ε.
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With εk = 2−pk−k, where p is as in Proposition 2.6(iii), we set

Ek = {x ∈ Rn : M(u− uεk) > 2−k−1}, Gk =
⋃
j≥k

Ej .

By Theorem 4.3, (4.5) and (2.4),

γF (Ek) = γF {x ∈ Rn : M(2k(u− uεk)) > 1}

≤ C
�

Rn
(F (2k|u− uεk |) + F (2k|∇(u− uεk)|)) dx

≤ C2pk
�

Rn
(F (|u− uεk |) + F (|∇(u− uεk)|)) dx ≤ C2pkεk ≤ C2−k

and thus by countable subadditivity also

γF (Gk) ≤ C2−k.

Define χr := |B(0, r)|−1χB(0,r). If x /∈ Gk, for j ≥ k we have

|u(x, r)− u(x, δ)| ≤ |χr ∗ uεj (x)− χδ ∗ uεj (x)|
+ |χr ∗ (u− uεj )(x)|+ |χδ ∗ (u− uεj )(x)|

and thus

lim sup
r,δ→0

|χr ∗ u(x)− χδ ∗ u(x)| ≤ 2M(u− uεj )(x) ≤ 2−j .

It follows that there exists u(x) = limr→0 χr ∗ u(x). Choosing j ≥ k again,
we observe |u(x)− uεj (x)| ≤M(u− uε)(x). Now,
�

B(x,r)

|u−u(x)| dy ≤ χr ∗ |u−uεj |(x)+χr ∗ |uεj −uεj (x)|(x)+ |uεj (x)−u(x)|

and hence

lim sup
r→0

χr ∗ |u− u(x)|(x) ≤ 2M(u− uεj )(x) ≤ 2−j .

It follows that x is a Lebesgue point for u. Since γF (
⋂∞
k=1Gk) = 0, u exists

and x is a Lebesgue point for u for all x except a γF -null set.

Corollary 4.7. Under the hypotheses of the previous theorem, the
function u has an F -quasicontinuous representative.

Proof. In the previous proof, observe that the sets Gk are open, and for
x ∈ Rn \Gk,

|u(x)− uεj (x)| ≤M(u− uεj )(x) ≤ 2−j

for all j ≥ k. Thus uεj → u uniformly on Rn \Gk.

Next we show how the capacity γF may be tested by functions outside
the class Y(E). It follows from Theorems 4.3 and 4.6 that if u ∈W 1,F (Rn)
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then
γF ({u ≥ 1}) ≤ C

�

Rn
(F (|u|) + F (|∇u|)) dx.

The next result shows that this remains valid with C = 1 and with u replaced
by any F -quasicontinuous representative of u.

Theorem 4.8. Suppose that u ∈ W 1,F (Rn) is F -quasicontinuous. If
E ⊂ Rn and u ≥ 1 γF -quasi everywhere on E, then

γF (E) ≤
�

Rn
(F (|u|) + F (|∇u|)) dx.

Proof. Let p be as in Proposition 2.6(iii). For every k ≥ 1 choose an
open set Uk with γF (Uk) < 2−k−1 such that u|Rn\Uk is continuous, and an
open set Vk with γF (Vk) < 2−k−1 such that u ≥ 1 everywhere on E \Vk. Let
Wk = Uk ∪ Vk. Then γF (Wk) < 2−k, so there exists wk ∈ Y(Uk) satisfying

(4.6)
�

Rn
(F (|wk|) + F (|∇wk|)) dx < 2−k.

The set {u > 1 − 1/k} is a relatively open subset of Rn \Wk containing
E \Wk, so

Gk := Wk ∪ {u > 1− 1/k}

is an open set containing E. The function

(4.7) vk :=
k

k − 1
u+ wk

belongs to W 1,F (Rn) and satisfies vk ≥ 1 on Gk, implying that

γF (E) ≤ γF (Gk) ≤
�

Rn
(F (|vk|) + F (|∇vk|)) dx.

We have

vk =
k

k + 1
k + 1
k − 1

u+
1

k + 1
(k + 1)wk,

so by convexity and (2.4),

F (|vk|) + F (|∇vk|) ≤
k

k + 1

(
F

(
k + 1
k − 1

|u|
)

+ F
(
k + 1
k − 1

|∇u|
))

+
1

k + 1
(F ((k + 1) |wk|) + F ((k + 1)|∇wk|))

≤ k

k + 1

(
k + 1
k − 1

)p
(F (|u|) + F (|∇u|))

+
(k + 1)p

k + 1
(F (|wk|) + F (|∇wk|)).
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It follows that

γF (E) ≤
�

Rn
(F (|vk|) + F (|∇vk|)) dx

≤ (k + 1)p−1k

(k − 1)p
�

Rn
(F (|u|) + F (|∇u|)) dx+ 2−k(k + 1)p−1,

which implies the result.

Corollary 4.9. Let u ∈ W 1,F (Rn) and suppose that u1 and u2 are
two quasicontinuous representatives of u. Then u1 = u2 γF -quasieverywhere
in Rn.

5. Lebesgue points—an improvement. In the standard develop-
ment of Lebesgue points for functions u ∈ W 1,p(Rn), we have the follow-
ing result that is an improvement of Theorem 4.6: With 1 ≤ p < n and
p∗ := np/(n− p),

(5.1) lim
r→0+

�

B(x,r)

|u(y)− u(x)|p∗ dy = 0

for all x in the complement of a p-capacity null set. In this section, we
establish an analogous result in the context of Orlicz–Sobolev spaces. When
F (t) = tp, (5.8) in Theorem 5.8 below is precisely (5.1).

Lemma 5.1. Let F be a Young function satisfying ∆2 globally and sup-
pose that g ∈ LF (Rn). Then

(5.2) lim
r→0+

1
F (1/r)

�

B(x,r)

F (|g|) dy = 0 for γF -q.e. x ∈ Rn.

Proof. For ε > 0, consider

Aε =
{
x ∈ Rn : lim sup

r→0+

1
F (1/r)

�

B(x,r)

F (|g|) dy > ε

}
.

Since Aε does not contain any Lebesgue point of F (g), it follows that
|Aε| = 0. Choose an open set G containing Aε. For each x ∈ Aε we find
r(x) ∈ (0, 1) such that B(x, r(x)) ⊂ G and

1
F (1/r)

�

B(x,r(x))

F (|g|) dy > ε.

Using a well-known covering theorem (cf. [Z, Theorem 1.3.1]) we can find a
disjoint sequence {Bi} of balls, Bi = B(xi, ri), such that ri = r(xi) and

Aε ⊂
∞⋃
i=1

B̂i, where B̂i = B(xi, 5ri).
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For each i let ηi be a smooth cut-off function such that

χB(xi,5ri) ≤ ηi ≤ χB(xi,6ri) and |∇ηi| ≤ 2/ri.

Then

γF (B̂i) ≤
�

Rn
(F (|ηi|) + F (|∇ηi|)) dy ≤

�

B(xi,6ri)

(F (1) + F (2/ri)) dy

≤ Crni F (1/ri) ≤
C

ε

�

Bi

F (|g|) dy.

Hence by Theorem 3.5(v),

γF (Aε) ≤ γF

( ∞⋃
i=1

B̂i

)
≤
∞∑
i=1

γF (B̂i) ≤
C

ε

∞∑
i=1

�

Bi

F (|g|) dy(5.3)

≤ C

ε

�

G

F (|g|) dy.

Now, the right hand side of (5.3) can be made arbitrarily small with an
appropriate choice of G and hence γF (Aε) = 0. Again invoking Theorem
3.5(v), we get γF (

⋃
ε>0Aε) = 0, which concludes the proof.

Cianchi [C1] proved the following embedding theorem:

Proposition 5.2. Let n ≥ 2 and F be a Young function such that

(5.4)
T�

0

(
t

F (t)

)n′−1

dt <∞ and
∞�

T

(
t

F (t)

)n′−1

dt =∞

for all T > 0, where n′ is the Hölder conjugate of n. Let F n be defined by

F n

(( T�

0

(
t

F (t)

)n′−1

dt

)1/n′)
= F (T ), T > 0.

Then for each u ∈W 1,F (Rn) we have
�

Rn
F n

(
|u(y)|

8α(n)−1/nI1/n

)
dy ≤ I, where I =

�

Rn
F (|∇u|) dx.

Proposition 5.3. Let B = B(z, r). Let n ≥ 2 and let F be a Young
function satisfying global ∆2 and (5.4). Let F n be as in Proposition 5.2. If
u ∈W 1,F (B) and

I =
�

B

F (|∇u|) dx,

then there is a constant C = C(n) such that
�

B

F n

(
|u− uB|
CI1/n

)
dy ≤ CI.
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Proof. We may assume that uB = 0. By Proposition 2.12, there is v ∈
W 1,F (Rn) such that v = u on B and�

Rn
F (|∇v|) dx ≤ C

�

B

(F (|∇u|) + F (|u|/r)) dx.

Using Proposition 2.14 now gives�

Rn
F (|∇v|) dx ≤ C

�

B

F (|∇u|) dx ≤ CI

and thus �

B

F n

(
|u(y)|
CI1/n

)
dy ≤

�

Rn
F n

(
|v(y)|
CI1/n

)
dy ≤ CI.

Corollary 5.4. Let F be a Young function satisfying global ∆2 and
(5.4), and let F n be as in Proposition 5.2. Suppose that u ∈ W 1,F

loc (Rn).
Then

(5.5) lim
r→0+

1
F (1/r)

�

B(z,r)

F n

(
|u(x)− u(z, r)|
rF (1/r)1/n

)
dx = 0

for γF -q.e. z ∈ Rn.

Proof. Let z ∈ Rn be a Lebesgue point for u satisfying (5.2). With
g = |∇u| in Lemma 5.1, we know that γF -q.e. z ∈ Rn has this property.
Hence �

B(z,r)

F (|∇u|) dx = ω(r)rnF (1/r), where lim
r→0+

ω(r) = 0.

By Proposition 5.3, it follows that
�

B

F n

(
|u(x)− u(z, r)|

Cω(r)1/nrF (1/r)1/n

)
dx ≤ Cω(r)rnF (1/r).

This proves (5.5).

Remark 5.5. Corollary 5.4 is not precisely saying what we want because
we subtract u(x, r) and not u(x). In Theorem 5.8 below we present a version
which really generalizes (5.1), but at the expense of an additional restriction
on F which is described next.

Definition 5.6. Given a global ∆2 Young function F for which t 7→
t/F (t)1/n is injective we define F ∗ by

F ∗

(
t

F (t)1/n

)
= F (t).

Lemma 5.7. Let F be a Young function such that t 7→ t−pF (t) is non-
increasing for some p < n. Then F satisfies (5.4), F ∗ is nondecreasing and
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doubling and

(5.6) F ∗(s) ≤ CF n(s), s > 0.

Proof. We have
T�

0

(
t

F (t)

)n′−1

dt =
T�

0

t−
p−1
n−1

(
tp

F (t)

)n′−1

dt

≤
(

T p

F (T )

)n′−1 T�

0

t−
p−1
n−1 dt =

Tn
′

F (T )n′−1
<∞

and
∞�

T

(
t

F (t)

)n′−1

dt =
∞�

T

t−
p−1
n−1

(
tp

F (t)

)n′−1

dt

≥
(

T p

F (T )

)n′−1∞�

T

t−
p−1
n−1 dt =∞,

so F satisfies (5.4). For s > t we have

t−nF (t) ≥ tp−nt−pF (t) ≥ tp−ns−pF (s) ≥
(
s

t

)n−p
s−nF (s),

which, with λ = 2n/(n−p), implies that
F (λt)
(λt)n

≤ F (t)
(2t)n

.

Therefore

F ∗

(
2t

F (t)1/n

)
≤ F ∗

(
λt

F (λt)1/n

)
= F (λt) ≤ λpF (t) = λpF ∗

(
t

F (t)1/n

)
,

so that F ∗ is doubling. It follows that

F ∗

(( T�

0

(
t

F (t)

)n′−1

dt

)1/n′)
≤ F ∗

(
C

T

F (T )1/n

)
≤ CF ∗

(
T

F (T )1/n

)
= CF (T )

≤ CF n

(( T�

0

(
t

F (t)

)n′−1

dt

)1/n′)
,

so we arrive at (5.6).

Due to the monotonicity and doubling property of F ∗, we observe

(5.7) F ∗(s+ t) ≤ C(F ∗(s) + F ∗(t)), s, t ≥ 0,

which allows us to handle the difference between u(x) and u(x, r).
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Theorem 5.8. Let F be a Young function satisfying ∆2 globally. Sup-
pose that u ∈ W 1,F

loc (Rn) is precisely represented and that t 7→ t−pF (t) is
nonincreasing , p < n. Then

(5.8) lim
r→0+

1
F (1/r)

�

B(z,r)

F ∗

(
|u(x)− u(z)|
rF (1/r)1/n

)
dx = 0

for γF -q.e. z ∈ Rn.

Proof. Let z ∈ Rn be a Lebesgue point for u satisfying (5.5). By Corol-
lary 5.4, we know that γF -q.e. z ∈ Rn has this property. Then, by Lemma
5.7,

(5.9) lim
r→0+

1
F (1/r)

�

B(z,r)

F ∗

(
|u(x)− u(z, r)|
rF (1/r)1/n

)
dx = 0.

By (5.7), we have

(5.10)
�

B(z,r)

F ∗

(
|u(x)− u(z)|
rF (1/r)1/n

)
dx

≤ C
�

B(z,r)

F ∗

(
|u(x)− u(z, r)|
rF (1/r)1/n

)
dx+ C

�

B(z,r)

F ∗

(
|u(z, r)− u(z)|
rF (1/r)1/n

)
dx.

Since
o(z, r) := u(z, r)− u(z)→ 0 as r → 0+,

we estimate

(5.11) F ∗

(
|u(x, r)− u(z)|
rF (1/r)1/n

)
= F ∗

(
o(z, r)

rF (1/r)1/n

)
= CF ∗

(
o(z, r)r−1

F (o(z, r)r−1)1/n

)
= CF (o(z, r)(1/r))

for all r satisfying o(z, r) < 1. Combining (5.10), (5.9) and (5.11) we obtain
the assertion.

Remark 5.9. If we use the notation

F ∗(t, r) =
F ∗(t)

rF (1/r)1/n
,

we can write (5.8) in the “symmetric form”

lim
r→0+

�

B(z,r)

F ∗(|u(x)− u(z)|, r)
F ∗(1, r)

dx = 0.

6. Capacitary distribution. In this auxiliary section we shall mention
some elementary properties of capacitary extremals.
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Definition 6.1. We suppose that Ω ⊂ Rn is a Lipschitz domain with fi-
nite Lebesgue measure and that F is a Young function satisfying ∆2 globally.
We define the capacity cF (·, Ω) as a particular case of the general capacity
(3.1) from Definition 3.2, obtained by setting c = 0.

In light of Proposition 2.13, the continuity assumption of Definition 3.2
is satisfied and

U = W 1,F
0 (Ω).

In view of the good behavior of F with respect to truncation the capacity
cF (·, Ω) is given by

cF (E,Ω) = inf
{ �
Ω

F (|∇u|) dx : u ∈W 1,F
0 (Ω), E ⊂ int{u ≥ 1}

}
.

We use the Lipschitz boundary of Ω to observe that

W 1,F
0 (Ω) = W 1,F (Ω) ∩W 1,1

0 (Ω)

because the “zero trace” means for both spaces simply that the zero exten-
sion is in W 1,1

loc (Rn). This enables us to verify the compactness assumption
of Definition 3.2 similarly to the case of γF (cf. paragraph after Defini-
tion 4.1). If the space W 1,F

0 (Ω) is reflexive, we do not need to assume that
Ω is Lipschitz and the assumption |Ω| <∞ is enough.

Anticipating the approximation in Section 7 below, we will assume that
F is a continuously differentiable and strictly convex N -function. We define

(6.1) A(ξ) =
F ′(|ξ|)
|ξ|

ξ.

Proposition 6.2. Suppose that G ⊂⊂ Ω is an open set and let

K(G) = W 1,F
0 (Ω) ∩ {u ≥ 1 on G}.

Then there is a unique capacitary extremal uG ∈ K(G) for cF (G,Ω). More-
over , there is a finite Radon measure µG on Ω such that

�

Ω

A(∇uG)∇ϕdx =
�

Ω

ϕdµG

for each ϕ = D(Ω). If v ∈ K(G), then

(6.2)
�

Ω

A(∇uG) · (∇v −∇uG) dx ≥ 0.

Proof. For the existence and uniqueness of uG see Proposition 3.6 and
Remark 3.7. If v ∈ K(G) and t > 0 then uG + t(v − uG) ∈ K(G), hence

�

Ω

F (|∇(uG + t(v − uG))|) dx ≥
�

Ω

F (|∇uG|) dx.
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The variational inequality (6.2) is obtained by the differentiation of

t 7→
�

Ω

F (|∇(uG + t(v − uG))|) dx

at t = 0+. Setting v = u+ ϕ, where ϕ ∈ D(Ω) is nonnegative, we obtain

(6.3)
�

Ω

A(∇uG) · ∇ϕdx ≥ 0 ∀ϕ ∈ D+(Ω).

It follows that

−div A(∇uG) : ϕ 7→
�

Ω

A(∇uG) · ∇ϕdx

is a positive distribution on D(Ω), and thus we may apply the Riesz repre-
sentation theorem to deduce the existence of µG.

Definition 6.3. The measure µG from Proposition 6.2 is called the
capacitary distribution of cF (G,Ω).

Lemma 6.4. Let G ⊂⊂ Ω be an open set and µ be the capacitary distri-
bution of cF (G,Ω). Then

µ(G) ≤ p cF (G,Ω),

where p is the constant from Proposition 2.6(iv).

Proof. Let u be the capacitary extremal for cF (G,Ω) and η ∈ D(Ω), 0 ≤
η ≤ 1. We use the fact that 2u− η ∈ K(G) together with (6.2), Proposition
2.6(iii), and the definition of extremal to obtain�

Ω

η dµ =
�

Ω

A(∇u) · ∇η dx ≤
�

Ω

A(∇u) · ∇u dx ≤ p
�

Ω

F (|∇u|) dx.

Letting η → 1 we reach the conclusion.

7. Smoothing of Young functions. In this section we consider an
N -function G and a Young function F satisfying

(7.1)
∞�

0

[G′]−1

(
1

F ′(t)

)
dt <∞,

where [G′]−1 is understood as in Definition 2.17.

Lemma 7.1. Suppose that F and G are as above and (7.1) holds. Then
there is a Young function G1 such that

(i) G1 is an N -function.
(ii) G1 ≤ G.
(iii)

	∞
0 [G′1]−1(1/F ′(t)) dt ≤ C

	∞
0 [G′]−1(1/F ′(t)) dt.

(iv) If G satisfies ∆2 globally , then so does G1. If G satisfies ∇2 globally ,
then so does G1.
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(v) G′1 is continuous.
(vi) G′1 is strictly increasing.

Proof. Let g = [G′]−1. First we construct a nondecreasing continuous
function g̃ such that

(7.2) g(s) ≤ g̃(s) ≤ g(2s)

and
∞�

0

g̃

(
1

F ′(t)

)
dt ≤ 2

∞�

0

g

(
1

F ′(t)

)
dt.

For each j ∈ Z we define gj on [0,∞) so that on each interval

Ii,j := [(i− 1)2−j , i2−j ], i ∈ N,

gj is the upper concave envelope of g with respect to Ii,j . Since g is nonde-
creasing and right continuous, each function gj is nondecreasing, continuous,
and satisfies gj = g at the endpoints of each interval Ii,j . For fixed k ∈ Z,
gj converges to g on [2−k, 2−k+1]. Hence there exists j(k) ≥ k such that

�

Ek

gj(k)

(
1

F ′1(t)

)
dt ≤ 2

�

Ek

g

(
1

F ′(t)

)
dt,

where
Ek := {t ∈ (0,∞) : 2−k ≤ 1/F ′1(t) < 2−k+1}.

We define
g̃(s) = gj(k)(s), s ∈ [2−k, 2−k+1].

Since j(k) ≥ k, we have gj(k)(s) = g(s) at the endpoints s = 2−k and
s = 2−k+1, so the definition is not ambiguous at the breakpoints. This
coincidence also implies (7.2). It is easily seen from (7.2) that if g is doubling,
then so is g̃, and if g−1 is doubling, then so is g̃−1.

Obviously, g has all properties that we require from [G′1]−1 except for
strict monotonicity. As the next step, we find points ak, k ∈ Z, so that

ak+1 > ak, lim
k→−∞

ak = 0, lim
k→∞

ak =∞, g̃(ak) < g̃(ak+1).

We define a piecewise linear function h such that h is linear on each interval
[ak, ak+1] and

h(ak+1) = g̃(ak).

Then h is continuous, strictly increasing and 0 ≤ h ≤ g̃. Clearly, if G1 is a
Young function such that

[G′1]−1 = g̃ + h,

then G1 has all the required properties.
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Lemma 7.1 shows that there is no loss of generality in our consideration
of (7.1) if we suppose that the derivative of G is continuous and strictly
increasing. We will show that F may be replaced by an N -function F 1 ≤ F
which inherits good properties of G and preserves (7.1). Consider an expo-
nent 0 < α < 1. Define

k(s) = (1 + α) min{sα, s−α}.

The modified Young function F 1 will be defined by F 1(0) = 0 and

(7.3)
1

F ′1(t)
= G′

(∞�
0

k
(
λ

t

)
[G′]−1

(
1

F ′(λ)

)
dλ

t

)
, t > 0.

Theorem 7.2. Let F and G be given as in (7.1), with G′ strictly in-
creasing and continuous, and let F 1 be defined by (7.3). Then:

(i) F 1 is an N -function.
(ii) F 1 ≤ F .

(iii)
	∞
0 [G′]−1(1/F ′1(t)) dt ≤ C

	∞
0 [G′]−1(1/F ′(t)) dt with C = C(α).

(iv) If G is ∆2, then so is F 1. If G is ∇2, then so is F 1.
(v) F ′1 is continuous.
(vi) F ′1 is strictly increasing.

Proof. (i), (v), (vi). Observe that the function

t 7→
∞�

0

k
(
λ

t

)
[G′]−1

(
1

F ′(λ)

)
dλ

t

is strictly decreasing and continuous, which implies (v) and (vi). Since

1
F ′1(t)

≥ G′
(
tα−1

∞�

t

λ−α[G′]−1

(
1

F ′(λ)

)
dλ

)
,

we have
1

F ′1(t)
→∞ as t→ 0.

Similarly, since k(λ/t) ≤ 1 + α, we have

1
F ′1(t)

≤ G′
(

1 + α

t

∞�

0

[G′]−1

(
1

F ′(λ)

)
dλ

)
,

so it follows that
1

F ′1(t)
→ 0 as t→∞.



Fine behavior of functions 59

(ii) Since F ′(λ) ≤ F ′(t) for 0 < λ < t, we have

1
F ′1(t)

≥ G′
( t�

0

k
(
λ

t

)
[G′]−1

(
1

F ′(λ)

)
dλ

t

)

≥ G′
(

[G′]−1

(
1

F ′(t)

) t�

0

k
(
λ

t

)
dλ

t

)
= G′

(
[G′]−1

(
1

F ′(t)

))
≥ 1
F ′(t)

and thus F 1 ≤ F .
(iii) We have

∞�

0

[G′]−1

(
1

F ′1(t)

)
dt =

∞�

0

(∞�
0

k
(
λ

t

)
[G′]−1

(
1

F ′(λ)

)
dλ

t

)
dt

=
∞�

0

(∞�
0

k
(
λ

t

)
[G′]−1

(
1

F ′(λ)

)
dt

t

)
dλ

≤
∞�

0

(∞�
0

k(s)
ds

s

)
[G′]−1

(
1

F ′(λ)

)
dλ

=
2
α

(α+ 1)
∞�

0

[G′]−1

(
1

F ′(λ)

)
dλ.

(iv) Observe that sαk(s) is nondecreasing and s−αk(s) is nonincreasing.
Thus for 0 < s < t we have

k
(
λ

s

)
1
s
≥
(
s

t

)α−1

k
(
λ

t

)
1
t
, k

(
λ

s

)
1
s
≤
(
s

t

)−α−1

k
(
λ

t

)
1
t
.

Hence

[G′]−1

(
1

F ′1(s)

)
≥
(
s

t

)α−1

[G′]−1

(
1

F ′1(t)

)
,

[G′]−1

(
1

F ′1(s)

)
≤
(
s

t

)−α−1

[G′]−1

(
1

F ′1(t)

)
since [G′]−1 is nondecreasing.

Suppose that G satisfies ∆2 globally. By Proposition 2.6 there is a con-
stant K > 1 such that

G′(2t) ≤ KG′(t) for all t > 0.

Setting t = 21/(α+1)s we have

[G′]−1

(
1

F ′1(s)

)
≤
(
s

t

)−1−α
[G′]−1

(
1

F ′1(t)

)
= 2[G′]−1

(
1

F ′1(t)

)
,
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so the monotonicity of G′ implies

1
F ′1(s)

≤ G′
(

2[G′]−1

(
1

F ′1(t)

))
≤ KG′

(
[G′]−1

(
1

F ′1(t)

))
= K

1
F ′1(t)

,

that is,
F ′1(21/(α+1)s) ≤ KF ′1(s)

for all s > 0. This implies that F 1 satisfies ∆2 globally.
Suppose now that G satisfies ∇2 globally. Again by Proposition 2.6 there

is a constant K > 1 such that

2G′(t) ≤ G′(Kt) for all t > 0.

Setting t = K1/(1−α)s we have

[G′]−1

(
1

F ′1(s)

)
≥
(
s

t

)α−1

[G′]−1

(
1

F ′1(t)

)
= K[G′]−1

(
1

F ′1(t)

)
,

so the monotonicity of G′ implies

1
F ′1(s)

≥ G′
(
K[G′]−1

(
1

F ′1(t)

))
≥ 2G′

(
[G′]−1

(
1

F ′1(t)

))
≥ 2
F ′1(t)

.

It follows that 2F ′1(s) ≤ F ′1(21/(1−α)s) for all s > 0, so F 1 satisfies ∇2

globally.

Lemma 7.3. Suppose that F satisfies ∆2 globally , F 1 satisfies ∇2 glob-
ally , and F ′1 ≤ F ′. Then there exists F 2 satisfying both ∆2 and ∇2 globally
such that

F ′1 ≤ F ′2 ≤ F ′1.

Proof. Define f = F ′, g = F ′1. We set

F 2(t) =
t�

0

φ(s) ds,

where φ is to be constructed. Let a, b > 1 be constants as in Proposition 2.6
satisfying

f(2t) ≤ af(t) and g(bt) ≥ 2g(t)

for t > 0. Define

φ(t) = sup
{
g(t),

g(2t)
a

,
g(4t)
a2

,
g(8t)
a3

, . . .

}
.

We observe that φ is nondecreasing (as the supremum of a family of non-
decreasing functions), and that φ ≥ g. On the other hand, the sequence of
inequalities

g(t) ≤ f(t),
g(2t)
a
≤ f(2t)

a
≤ f(t),

g(4t)
a2
≤ f(4t)

a2
≤ f(2t)

a
≤ f(t), . . .
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implies that φ ≤ f . Now,

φ(bt) = sup
{
g(bt),

g(2bt)
a

,
g(4bt)
a2

, . . .

}
≥ sup

{
2g(t),

2g(2t)
a

,
2g(4t)
a2

, . . .

}
≥ 2φ(t)

and

φ(2t) = sup
{
g(2t),

g(4t)
a

,
g(8t)
a2

, . . .

}
≤ a sup

{
g(2t)
a

,
g(4t)
a2

,
g(8t)
a3

, . . .

}
≤ aφ(t),

so F 2 satisfies ∆2 and ∇2.

Corollary 7.4. Suppose that F or G satisfies ∆2 globally and that F
or G satisfies ∇2 globally. Then there is a Young function F 2 ≤ F satisfying
both ∆2 and ∇2 globally such that

∞�

0

[G′]−1

(
1

F ′2(t)

)
dt ≤ C

∞�

0

[G′]−1

(
1

F ′(t)

)
dt.

Proof. If F satisfies ∆2 and ∇2 there is nothing to prove, and if G
satisfies ∆2 and ∇2 we set F 2 = F 1. If F satisfies ∆2 and G satisfies ∇2,
then F 1 satisfies ∇2 and we can use Lemma 7.3 to produce F 2. Finally, if F
satisfies ∇2 and G satisfies ∆2, then we use a dual version of the previous
reasoning to construct G2 such that G′2 ≤ G′, G2 satisfies ∆2 and ∇2, and

∞�

0

[G′2]−1

(
1

F ′(t)

)
dt ≤ C

∞�

0

[G′]−1

(
1

F ′(t)

)
dt.

Then we construct F 2 from F using G2 similarly to the way F 1 was con-
structed using G.

8. Capacity and Hausdorff content. In this section we compare
Hausdorff content and capacity. The estimates of W 1,p-capacity go back
to Frostman [F] for p = 2, to Reshetnyak [Re] for the case of general p, and
in sharp form to Maz’ya and Havin [MH]. The extension to Orlicz–Sobolev
capacity has been done by Fiorenza and Prignet [FP] with the use of deep
results on equivalence of certain function spaces and capacities. Here we
present an alternative development based on estimates of capacitary ex-
tremals.

Definition 8.1. A gauge is a nondecreasing function h : [0,∞)→ [0,∞)
with h(0) = 0. The spherical Hausdorff content induced by h is defined for
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all sets E ⊂ Rn by

Hh(E) = inf
{∑

j

h(rj) : E ⊂
⋃
j

B(xj , rj)
}
.

The maximal function induced by h of a Radon measure µ is defined by

Mh,Rµ(x) = sup
0<r<R

µ(B(x, r))
h(r)

.

The relation between Hh and Mh,R is given by the following lemma of
Cartan which is a modification of the Hardy–Littlewood maximal theorem.
See also Bagby and Ziemer [BZ, Lemma 3.2].

Proposition 8.2. Suppose that h is a gauge, µ is a Radon measure on
Rn, and R > 0. There is a constant C = C(n) so that

Hh({Mh,Rµ > λ}) ≤ C µ(Rn)
λ

for all λ > 0.

Proof. Define Eλ = {Mh,Rµ > λ}. For every x ∈ Eλ choose 0< r(x)<R
satisfying µ(B(x, r(x))) > λh(r(x)). By the Besicovitch covering theorem
there is an integer C ≥ 1 and a sequence of balls Bj of the form B(xj , r(xj))
with centers in Eλ so that

Eλ ⊂
∞⋃
j=1

Bj and
∑
J

χBj ≤ C.

Thus
Hh(Eλ) ≤

∑
j

h(r(xj)) <
1
λ

∑
j

µ(Bj) ≤
C

λ
µ(Rn).

Definition 8.3. Given an N -function F , the F -Wolff potential of a
Radon measure µ is defined as

WF ,Rµ(x) =
R�

0

[F ′]−1

(
µ(B(x, r))
rn−1

)
dr.

Next we recall the result of [M1].

Proposition 8.4. Let B = B(z, 1) and let µ be a finite Radon mea-
sure on Rn. Let F be a continuously differentiable N -function satisfying ∆2

and ∇2 globally and let p, q > 1 be the constants from Proposition 2.6(iii)
and (iv). Suppose that u ∈W 1,F

0 (B) is a solution of�

B

A(∇u) · ∇ϕdx =
�

B

ϕdµ for each ϕ ∈ D(Ω),

where A is given by (6.1). Then there is a constant C depending only on n,
p, and q such that

u(x) ≤ CWF ,4µ(x) for each Lebesgue point x of u.
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Next we consider a strictly convex continuously differentiable N -function
F satisfying ∆2 and ∇2 globally such that

(8.1)
R�

0

[F ′]−1

(
h(r)
rn−1

)
dr <∞, R > 0.

Lemma 8.5. Assume (8.1) holds. For every ε > 0 there exists δ > 0
(depending on F , h and ε) so that

Mh,Rµ(x) ≤ δ ⇒ WF ,Rµ(x) < ε

for any Radon measure µ on Rn and all x ∈ Rn.

Proof. Observe that

WF ,Rµ(x) =
R�

0

[F ′]−1

(
µ(B(x, r))
rn−1

)
dr ≤

R�

0

[F ′]−1

(
Mh,Rµ(x)h(r)

rn−1

)
dr.

Since limt→0[F ′]−1(t) = 0, inequality (8.1) and the dominated convergence
theorem imply that

lim
δ→0

R�

0

[F ′]−1

(
δh(r)
rn−1

)
dr = 0.

Lemma 8.6. Assume (8.1) holds. Let B = B(z, 1) and let G ⊂⊂ B be
an open set. Then

Hh(G) ≤ C cF (G,B),

where C depends on F , h, n.

Proof. Let u be a capacitary extremal for cF (G,B) and let µ be its
corresponding capacitary distribution. Then u = 1 on G, in particular each
point of G is a Lebesgue point of u. By Proposition 8.4, there exists ε > 0
such that

ε ≤ εu(x) ≤WF ,4µ(x) for every x ∈ G.
By Lemma 8.5 there exists δ > 0 such thatMh,4µ(x) ≥ δ at all such points x.
Since G ⊂ {x : Mh,4µ(x) ≥ δ}, Proposition 8.2 and Lemma 6.4 imply

(8.2) Hh(G) ≤ C

δ
µ(Rn) ≤ C

δ
cF (G,B).

Lemma 8.7. Assume (8.1) holds. Let B = B(z, 1) and G ⊂ B(z, 1/2) be
an open set. Let u ∈W 1,F (B), u ≥ 1 on G. Then

Hh(G) ≤ C
�

B

(F (|∇u|) + F (|u|)) dx,

where C depends on F , h, and n.

Proof. Let η ∈ D(Rn) be a cut-off function with

χB(z,1/2) ≤ η ≤ χB(z,1) and |∇η| ≤ 3.
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Then ηu is a competitor for cF (G) and

∇(ηu) ≤ |∇u|+ 3|u|.

By the ∆2 condition of F this implies

F (|∇(ηu)(x)|) ≤ C (F (|u(x)|) + F (|∇u(x)|))

for all x ∈ B. The assertion follows from Lemma 8.6.

Theorem 8.8. Assume (8.1) holds. There is a constant C depending
only on F , h, and n such that

Hh(E) ≤ CγF (E) for all E ⊂ Rn.

Proof. Let G ⊃ E be open and let u be a competitor for γF (G). Let
{zk} be a sequence of points in Rn with

Rn =
∞⋃
k=1

B(zk, 1/2) and
∞∑
k=1

χB(zk,1) ≤ C,

where C depends only on n. Applying Lemma 8.7 we obtain

Hh(G ∩B(zk, 1/2)) ≤ C
�

B(zk,1)

(F (|u|) + F (|∇u|)) dx

for all k. Since Hh is countably subadditive it follows that

Hh(E) ≤ Hh(G) ≤ C
�

Rn
(F (|u|) + F (|∇u|)) dx.

By taking the infimum over all competitors u we have Hh(E) ≤ CγF (G),
and an appeal to Theorem 3.5(i) finishes the proof.

Before proceeding we state a simple symmetry formula concerning con-
dition (7.1). It is based on the following application of Fubini’s theorem.

Lemma 8.9. Suppose that f, g : [0,∞)→ [0,∞) are nonincreasing func-
tions such that

(8.3) s < f(t) ⇒ t ≤ g(s) and t < g(s) ⇒ s ≤ f(t).

(This is a weak form of g being the inverse of f .) Then

(8.4)
∞�

0

f(t) dt =
∞�

0

g(s) ds.

Proof. Using the Fubini theorem, from (8.3) we obtain

∞�

0

f(t) dt =
∞�

0

(f(t)�

0

ds
)
dt =

�

s<f(t)

ds dt
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≤
�

t≤g(s)

ds dt =
∞�

0

(g(s)�
0

dt
)
ds =

∞�

0

g(s) ds

and vice versa.

Proposition 8.10. Let F and G be N -functions. Then
∞�

0

[G′]−1

(
1

F ′(t)

)
dt =

∞�

0

[F ′]−1

(
1

G′(t)

)
dt.

Proof. Recall that G′, F ′ are right-sided derivatives and their inverses
are understood as in Definition 2.17. In view of Lemma 8.9 it is enough to
verify (8.3) for

f(t) = [G′]−1

(
1

F ′(t)

)
and g(s) = [F ′]−1

(
1

G′(s)

)
.

If s < f(t), then by Definition 2.17, s belongs to the interval {σ > 0 :
G′(σ) ≤ 1/F ′(t)}. Hence F ′(t) ≤ 1/G′(s), which, again by Definition 2.17,
yields t ≤ g(s). The proof of the other implication is similar.

For the remainder of the section we specialize to a gauge h of the form
hm(r) = rn−m for 1 < m < n (m need not be an integer). The (n − m)-
dimensional Hausdorff content is defined by

Hn−m∞ (E) = α(n−m)Hhm(E),

where α(k) is the normalizing constant of the k-dimensional Hausdorff mea-
sure, and the fractional maximal function Mm,R is given by

Mm,Rµ(x) = Mhm,Rµ(x).

Proposition 8.11. Let F be an N -function. If µ is a Radon measure
on Rn then

WF ,Rµ(x) ≤Mm,Rµ(x)1/(m−1)
∞�

0

(F ′(t))1/(1−m) dt

for all x ∈ Rn.

Proof. Define G(r) = m−1rm. Then G is an N -function and, by Propo-
sition 8.10,

∞�

0

(F ′(t))1/(1−m) dt =
∞�

0

[G′]−1

(
1

F ′(t)

)
dt =

∞�

0

[F ′]−1

(
1

G′(t)

)
dt

=
∞�

0

[F ′]−1(t1−m) dt.
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By the change of variable r = Mm,Rµ(x)1/(m−1) t, this implies

WF ,Rµ(x) =
R�

0

[F ′]−1

(
µ(B(x, r))
rn−1

)
dr ≤

R�

0

[F ′]−1

(
Mm,Rµ(x)rn−m

rn−1

)
dr

≤Mm,Rµ(x)1/(m−1)
∞�

0

[F ′]−1(t1−m) dt

= Mm,Rµ(x)1/(m−1)
∞�

0

(F ′(t))1/(1−m) dt.

Theorem 8.12. Let F be a Young function. For an arbitrary set E ⊂ Rn

we have

Hn−m∞ (E) ≤ CγF (E)
(∞�

0

(F ′(t))1/(1−m) dt
)m−1

,

where C depends only on n and m.

Proof. The proof follows the lines of those of Lemma 8.6 and Theorem
8.8 but we must pay more attention to the constants. Assume that

∞�

0

(F ′(t))1/(1−m) dt <∞.

With G(r) = m−1rm, this may be written as
∞�

0

[G′]−1

(
1

F ′(t)

)
dt <∞.

Applying Theorem 7.2 we may replace F by a strictly convex continu-
ously differentiable N -function F 1 satisfying ∆2 and ∇2 globally such that
F 1 ≤ F and

∞�

0

[G′]−1

(
1

F ′1(t)

)
dt ≤ C

∞�

0

[G′]−1

(
1

F ′(t)

)
dt.

Observe that this implies γF 1(E) ≤ γF (E) for all E ⊂ Rn. By Proposition
8.10,

∞�

0

[F ′1]−1

(
hm(r)
rn−1

)
dr =

∞�

0

[F ′1]−1

(
1

G′(r)

)
dr

=
∞�

0

[G′]−1

(
1

F ′1(t)

)
dt <∞,

so F 1 satisfies (8.1). Proceeding as in the proofs of Lemmas 8.6 and 8.7, if
B = B(z, 1) and G ⊂ B(z, 1/2) is an open set, we have 1 ≤ CWF 1,4µ(x)
for almost all x ∈ G. Here the constant C depends on n and the ∆2 and
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∇2 constants of F 1, which in turn depend on the corresponding constants
of G. Thus C depends only on m and n. The previous proposition implies

WF 1,4µ(x) ≤ CMm,4µ(x)1/(m−1)
∞�

0

(F ′(t))1/(1−m) dt,

so we obtain the lower bound

Mm,4µ(x) ≥ C
(∞�

0

(F ′(t))1/(1−m) dt
)1−m

at all points of G. Proposition 8.2 and Lemma 6.4 imply

(8.5) Hhm(G) ≤ C
(∞�

0

(F ′(t))1/(1−m) dt
)m−1

cF (G,B).

Repeating the argument in the proofs of Lemma 8.7 and Theorem 8.8 with
(8.5) in place of (8.2) we obtain

Hhm(E) ≤ CγF 1(E)
(∞�

0

(F ′(t))1/(1−m) dt
)m−1

for any E ⊂ Rn, completing the argument.

Finally we arrive at the result needed in [MSZ].

Theorem 8.13. Suppose that m > 1 and F is a Young function satis-
fying

∞�

0

(F ′(t))1/(1−m) dt ≤ 1.

Let E ⊂ Rn. If u ∈W 1,1
loc (Rn) is precisely represented and u ≥ 1 on E, then

(8.6) Hn−m∞ (E) ≤ C
�

Rn
(F (|u|) + F (|∇u|)) dx.

Proof. We may assume that the right-hand side of (8.6) is finite. By
Corollary 4.7, u has an F -quasicontinuous representative, so the result fol-
lows from Theorems 4.8 and 8.12.

In the next section we will characterize those Young functions F satis-
fying the hypothesis of Theorem 8.13.

9. Lorentz and Orlicz spaces. In this section we prove some relations
between Lorentz and Orlicz spaces. This is a generalization of results in
[KKM] and [CP]. We use an idea of simplification of proofs due to Cianchi
(private communication).
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Definition 9.1. Let f be a measurable function defined on a set Ω ⊂Rn.
The distribution function of f is given by

µf (s) = {x ∈ Ω : |f(x)| > s}.
For the rest of this section we consider an N -function Φ satisfying ∆2

globally and define G by

1/G(t) = Φ(1/t), t > 0,

with the understanding that G(0) = 0. Thus G is an N -function satisfying
∆2 globally.

Definition 9.2. Let Ω ⊂ Rn be an open set. If f is a measurable
function on Ω we define

‖f‖LΦ,1(Ω) :=
∞�

0

G−1(µf (s)) ds.

The Lorentz space LΦ,1(Ω) is defined as

LΦ,1(Ω) = {f ∈ L1
loc(Ω) : ‖f‖LΦ,1(Ω) <∞}.

Since Φ satisfies ∆2 globally, ‖ · ‖LΦ,1(Ω) is a norm under which LΦ,1(Ω)
is a Banach space.

Lemma 9.3. Suppose that f ∈ LΦ,1(Ω), ‖f‖LΦ,1(Ω) = 1. Then there
exists a Young function F satisfying

(9.1)
∞�

0

[G′]−1

(
1

F ′(t)

)
dt = 1

and

(9.2)
�

Ω

F (|f(x)|) dx ≤ 1.

Proof. We may assume that f ≥ 0. Define

F (t) =
t�

0

(G−1)′(µf (s)) ds.

It is routine to verify that F is a Young function. It follows at once that
∞�

0

[G′]−1

(
1

F ′(t)

)
dt =

∞�

0

[G′]−1

(
1

(G−1)′(µf (t))

)
dt

=
∞�

0

[G′]−1(G′(G−1(µf (t)))) dt

=
∞�

0

G−1(µf (t)) dt = ‖f‖LΦ,1(Ω) = 1.
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SinceG is convex and increasing, andG(0) = 0, the inverse ofG is a concave
function satisfying

(G−1)′(λ) ≤ G
−1(λ)−G−1(0)

λ− 0
=
G−1(λ)

λ

and thus

F ′(t) ≤
G−1(µf (t))

µf (t)
.

It follows by an application of Fubini’s theorem that
�

Ω

F (f(x)) dx =
∞�

0

F ′(t)µf (t) dt

≤
∞�

0

G−1(µf (t))
µf (t)

µf (t) dt=
∞�

0

G−1(µf (t)) dt= ‖f‖LΦ,1(Ω) = 1.

Lemma 9.4. Suppose that f is a measurable function on Ω and that F
is a Young function satisfying (9.1) and (9.2). Then f ∈ LΦ,1(Ω) and

‖f‖LΦ,1(Ω) ≤ 2.

Proof. We may assume that f ≥ 0. Let G̃ be the Young function com-
plementary to G. By convexity we have

G̃(λ) ≤ λG̃′(λ) for all λ > 0.

Then Young’s inequality (2.1) implies

G−1(µf (t))
1

F ′(t)
≤ µf (t) + G̃

(
1

F ′(t)

)
≤ µf (t) +

1
F ′(t)

G̃′
(

1
F ′(t)

)
.

Multiplying both sides by F ′(t) and integrating we obtain

‖f‖LΦ,1(Ω) =
∞�

0

G−1(µf (t)) dt

≤
∞�

0

F ′(t)µf (t) dt+
∞�

0

G̃′
(

1
F ′(t)

)
dt

=
�

Ω

F (f(x)) dx+
∞�

0

[G′]−1

(
1

F ′(t)

)
dt ≤ 2.

Combining the preceding lemmas, we can show that LΦ,1(Ω) may be
written as a union of Orlicz spaces.

Theorem 9.5.

LΦ,1(Ω) =
⋃
{LF (Ω) : F satisfies (9.1)}.
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Proof. If f ∈ LΦ,1(Ω), then f̃ = f/‖f‖LΦ,1(Ω) satisfies ‖f̃‖LΦ,1(Ω) = 1.
By Lemma 9.3 there is a Young function F for which (9.1) holds and for
which f̃ ∈ LF (Ω), hence f ∈ LF (Ω).

If f ∈LF (Ω) for a Young function F satisfying (9.1), then f̃ =f/‖f‖LF (Ω)

satisfies (9.2). Lemma 9.4 implies that f̃ ∈ LΦ,1(Ω), hence f ∈ LΦ,1(Ω).

The Lorentz space Lm,1(Ω) is defined as LΦ,1(Ω) corresponding to Φ(r) =
G(r) = rm. In light of Theorems 9.5 and 7.2 we have the following.

Corollary 9.6. Let m > 1. Then

Lm,1(Ω) =
⋃{

LF (Ω) : F is a Young function with
∞�

0

(F ′(t))1/(1−m) dt= 1
}
.
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plications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935),
1–118.



Fine behavior of functions 71
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