Non-normal elements in Banach *-algebras

by

B. YOOD (Eugene, OR)

Abstract. Let A be a Banach *-algebra with an identity, continuous involution, center Z and set of self-adjoint elements Σ . Let $h \in \Sigma$. The set of $v \in \Sigma$ such that $(h + iv)^n$ is normal for no positive integer n is dense in Σ if and only if $h \notin Z$. The case where A has no identity is also treated.

1. Introduction. Normal operators are important in the theory of bounded linear operators on a Hilbert space. For the more general situation of a Banach *-algebra A it is then natural to consider its normal elements, those $x \in A$ for which $xx^* = x^*x$. Suppose that A has an identity, a continuous involution and is not commutative. It was shown in [10, Cor. 3.5] that the set of $x \in A$ such that x^n is normal for no positive integer n is dense in A. This investigation started with a desire to be more specific in important cases.

Throughout this paper A is a Banach *-algebra with a continuous involution $x \mapsto x^*$, center Z and set of self-adjoint elements Σ . Suppose first that A has an identity. Let $h \in \Sigma$. We show that the set of $v \in \Sigma$ such that $(h + iv)^n$ is normal for no positive integer n is dense in Σ if and only if $h \notin Z$. This has the following consequence.

PROPOSITION 1.1. Let A be the algebra of all bounded linear operators on a Hilbert space. Let $T \in \Sigma$. Then if T is not a scalar multiple of the identity the set of $V \in \Sigma$ such that $(T + iV)^n$ is normal for no positive integer n is dense in Σ .

The argument used here makes use of the identity. A separate argument is needed to show the following result.

PROPOSITION 1.2. Let A be the algebra of all compact linear operators on an infinite-dimensional Hilbert space. Let $T \neq 0, T \in \Sigma$. Then the set of $V \in \Sigma$ such that $(T + iV)^n$ is normal for no positive integer n is dense in Σ .

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L05.

B. Yood

2. On non-normal elements. As usual we set [x, y] = xy - yx. We say that x is normal modulo Z if $[x, x^*] \in Z$. Let $p(t) = \sum_{j=0}^n b_j t^j$ be a polynomial in the real variable t with coefficients in A. If $p(t) \in Z$ for an infinite subset of the reals then each $b_j \in Z$.

THEOREM 2.1. Suppose that A has an identity e and that n is a positive integer. Let $h \in \Sigma$. Let Δ (resp. Δ_1) be the set of $k \in \Sigma$ such that $(h+ik)^n$ is not normal (resp. not normal modulo Z). If $h \notin Z$ then Δ dense in Σ . If $h \notin Z$ and A is semi-prime then Δ_1 is dense in Σ .

Proof. Let E be the closed linear subspace of A which will be successively (0) and Z in the arguments to follow.

Suppose that Δ or Δ_1 is not dense in Σ . Then there is a non-void open set Ω in Σ such that, for each $k \in \Omega$, $(h + ik)^n$ is normal modulo E. Let $a \in \Omega$ and $v \in \Sigma$. For some $\varepsilon > 0$ we have

$$[(h+i(a+tv))^n, (h-i(a+tv))^n] \in E$$

for all $t, 0 \le t \le \varepsilon$. Hence this relation holds for all real t. It follows that $(h + iv)^n$ is normal modulo E for all $v \in \Sigma$.

From this it follows that $(v + ith)^n$ is normal modulo E for all $v \in \Sigma$ and real values of t. As shown in [11, Lemma 3.1] we have

$$\left[v^n, \sum_{j=0}^{n-1} v^j h v^{n-1-j}\right] \in E$$

for all $v \in \Sigma$. Suppose that $t \neq 0$. Set

$$w_1 = t^{-1}\{(e+tv)^n - e\}, \quad w_2 = \sum_{j=0}^{n-1} (e+tv)^j h(e+tv)^{n-1-j}.$$

Then $[w_1, w_2] \in E$. Let $t \to 0$ to see that $[v, h] \in E$ for all $v \in \Sigma$. Hence $[h, x] \in E$ for all $x \in A$.

Now consider the above analysis for Δ and E = (0). We then have $h \in Z$. Next suppose that A is semi-prime and we are treating Δ_1 with E = Z. Then $[h, x] \in Z$ for all $x \in A$. It follows from [12, Th. 3.1] that $h \in Z$ in this case also. \blacksquare

THEOREM 2.2. Suppose that A has an identity. Let $h \in \Sigma$, $h \notin Z$. Then the set of $v \in \Sigma$ such that $(h + iv)^n$ is normal for no positive integer n is dense in Σ . If A is semi-prime the set of $v \in \Sigma$ such that $(h + iv)^n$ is normal modulo Z for no positive integer n is dense in Σ .

Proof. The set of $v \in \Sigma$ such that $(h + iv)^n$ is not normal modulo E is an open set which is dense by Theorem 2.1. The conclusion follows from the Baire Category Theorem.

We let Γ denote the set of $h \in \Sigma$ such that $h^n \in Z$ for no positive integer n.

LEMMA 2.3. Suppose that A is semi-prime and is not commutative. Then Γ is dense in Σ .

Proof. Let $W_m = \{h \in \Sigma : h^m \notin Z\}$. Then $\Gamma = \bigcap_m W_m$. By the Baire Category Theorem it is sufficient to show that each W_m is dense in Σ . Suppose that, for some positive integer r, W_r is not dense. Then there is a non-empty open subset Ω of Σ in the complement of W_r .

Let $a \in \Omega$ and let $h \in \Sigma$. For all real t, the element $(a+th)^r$ lies in Z so $h^r \in Z$. By [10, Lemma 3.1] we see that $x^r \in Z$ for all $x \in A$. By standard ring theory [5, Th. 3.22], A is commutative. This contradiction shows that Γ is dense in Σ .

THEOREM 2.4. Suppose that A is semi-prime and is not commutative. For each h in the dense subset Γ of Σ the set of $v \in \Sigma$ such that $(h + iv)^n$ is normal modulo Z for no positive integer n is dense in Σ .

Proof. By the arguments used for Theorems 2.1 and 2.2 it is sufficient to show that, for each positive integer n, the set of $v \in \Sigma$ such that $(h+iv)^n$ is not normal modulo Z is dense in Σ .

Suppose otherwise. As shown in the proof of Theorem 2.1 the element $(h+iv)^n$ is normal modulo Z for each $v \in \Sigma$. As shown in [11, Lemma 3.1] this implies that $[h^n, [h^n, v]] = 0$ for all $v \in \Sigma$. But then $[h^n, [h^n, x]] = 0$ for all $x \in A$. By a result of Herstein [6, p. 5] we see that $h^n \in Z$. But this contradicts $h \in \Gamma$.

COROLLARY 2.5. Let A be a C^{*}-algebra with Z = (0). Then for any $h \neq 0, h \in \Sigma$, the set of $v \in \Sigma$ such that $(h + iv)^n$ is normal for no positive integer n is dense in Σ .

Proof. Let $h \in \Sigma$ with $h^n = 0$ for a positive integer n. Then $||h^n|| = ||h||^n$ so that h = 0. Thus if $h \neq 0$ then $h \in \Gamma$. We apply Theorem 2.4.

Proposition 1.2 is a special case of Corollary 2.5.

For each $x \in A$ let $r(x) = \lim ||x^n||^{1/n}$. In [4, p. 420] the involution in A is said to be *regular* if r(h) = 0, $h \in \Sigma$, imply that h = 0. In that case it is readily seen that A is semisimple and so $x \mapsto x^*$ is continuous in virtue of the uniqueness of norm theorem [3, p. 130].

If A has a regular involution and $h^n = 0$ for $h \in \Sigma$ then r(h) = 0 so that h = 0.

THEOREM 2.6. Let A be a semisimple topologically simple infinite-dimensional annihilator Banach *-algebra. Suppose that $x^*x = 0$ implies that x = 0. Then the conclusion of Corollary 2.5 holds. *Proof.* As A is semisimple the involution is continuous. By [9, Th. 4.10.16], A has a faithful *-representation $x \mapsto T(x)$ as bounded linear operators on a Hilbert space. This *-representation is continuous ([3, p. 196, Th. 3]). For each $h \in \Sigma$ we have $r(T(h)) \leq r(h)$. Thus whenever r(h) = 0 we have T(h) = 0 and also h = 0 so that the involution is regular.

Now (0) is the only primitive ideal of A so that A is a primitive Banach algebra. By [9, Cor. 2.4.5] either Z = (0) or Z is the set of all scalar multiples of a non-zero idempotent e. We rule out the latter possibility. First of all e cannot be an identity element for A, since otherwise A would be finite-dimensional by [2, Prop. 6.3]. If $e \neq 0$ and e is not the identity we would have $A = Ae \oplus A(1 - e)$ contrary to the fact that A is topologically simple. Therefore Z = (0). Again we apply Theorem 2.4.

Proposition 1.2 is a special case of Theorem 2.6; the latter also applies to some H^{*}-algebras of [1] such as a full matrix algebra [9, Theorem 4.10.32].

References

- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386.
- [2] B. A. Barnes, Modular annihilator algebras, Canad. J. Math. 18 (1966), 566–578.
- [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973.
- P. Civin and B. Yood, Involutions on Banach algebras, Pacific J. Math. 9 (1959), 415–436.
- [5] I. N. Herstein, *Noncommutative Rings*, Carus Math. Monogr. 15, Math. Assoc. Amer., 1968.
- [6] —, Topics in Ring Theory, Univ. of Chicago, 1969.
- [7] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, Princeton, 1953.
- [8] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. 1, Cambridge Univ. Press, 1994.
- [9] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
- [10] B. Yood, Commutativity theorems for Banach algebras, Michigan Math. J. 37 (1990), 203–210.
- [11] —, Commutativity theorems for normed *-algebras, Colloq. Math. 69 (1995), 75–80.
- [12] —, Dense subsets of Banach *-algebras, Illinois J. Math. 43 (1999), 403–409.

Department of Mathematics University of Oregon Eugene, OR 97403, U.S.A.

> Received December 5, 2000 Revised version June 21, 2003 (4648)