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Minimal ideals of group algebras
by

DAVID ALEXANDER and JEAN LUDWIG (Metz)

Abstract. We first study the behavior of weights on a simply connected nilpotent
Lie group G. Then for a subalgebra A of L(G) containing the Schwartz algebra S(G) as
a dense subspace, we characterize all closed two-sided ideals of A whose hull reduces to
one point which is a character.

Introduction. Let GG be a simply connected nilpotent Lie group, g its
Lie algebra, and A a subalgebra of L'(G). To every character x; of A we
will associate a finite-dimensional translation invariant subspace P; of the
vector space P(G) of complex polynomials on G and we will show that the
set of closed two-sided ideals of A with hull {Ker x;} is in bijection with the
set, of nonzero translation-invariant subspaces of P;. As an example of A we
can take the weighted algebra Ll (G) where w is a weight with polynomial
growth. Such weights appear in a natural way in the following manner:
let m be a unitary continuous irreducible representation of G in a Hilbert
space H,. We denote by U(g) the enveloping algebra of g. Fix a nonzero
integer k£ and denote by U(g) the vector space generated by the elements of
U(g) with degree less than k. Let H™ be the space of k times differentiable
vectors in H, i.e.

HE) = (¢ € Hy | VzeU(g)y : dm(2)E € Hy .
Fix a basis (2');<x of U(g)k. We equip H®) with the norm
) 1/2
el = (D Nan(=e)2) .
li|<k

The space M) with this norm is complete. Denoting by |7(z)||op the norm

of the operator 7(x) : 'ngk) — 5!“), we then have

I7(2)llop < |A(2)|es(g) . |11
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where || ||lus denotes the Hilbert-Schmidt norm. Denote by w*) () the right
side of this inequality. The function z + w*)(z) is a natural example of a
weight on G attached to 7. By a weight on a topological group GG, we mean
a measurable function w on G with values in [1, +-00[ such that for all s and
tin G,

w(st) < w(s)w(t).

The preceding result leads naturally to the study of weights on nilpotent
Lie groups. The first section will give another example of a natural weight.
Other examples of weights come from Banach space representations of topo-
logical groups. Let X be a Banach space and let (T', X) be a Banach space
representation of G on X. That means that for every s in G, we have a
bounded invertible operator T'(s) on X such that the mapping s +— T'(s) is
a homomorphism of groups and the mappings s — T'(s)z are continuous for
every = in X. Then the operator norm ||7(s)||op is a measurable function on
G and defines a symmetric weight wr : s — max (||7(s)|lop, |7(s™) [lop)-

Take for example the 3-dimensional Heisenberg group G = H;. For =
in Hy write z = (a,b,t) and let (X,Y, Z) be a basis of the Lie algebra bh; of
H, with [X,Y] = Z. We have

Ad(z) X =X -0bZ, Adx)Y =Y +aZ, Adx)Z=7Z.
After an easy computation, we find
w® (z) = (9 + 7a% + 7% + a®b? + a* + bH)1/?
and
Lt a2 < w®(@) <301+ a? +b2).

V2

1. Weights on topological (in particular nilpotent Lie) groups.
Weights allow us to define Banach subalgebras of L!(G), the so-called Beur-
ling algebras. This section studies the growth of the “most natural” weight
attached to a connected locally compact group. This weight is of impor-
tance because it dominates all common weights. We end this section with a
restriction property of this weight.

DEFINITION. Let G be a topological group and S a subset of G. We
write S° = {e} and for all n in N*,

S”:{sl...sn|si65}.

When G is locally compact, for s in G, we denote by Vs (s) the set of
compact neighborhoods of s in G.

In the following proposition we recall the “most natural” weight attached
to a connected locally compact group as in [9].
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1.1. PROPOSITION. Let G be a connected locally compact group and U
an element of Vg(e). Then G =,y U™ and the map 7y : G — N defined
by

Tr(s) =min{n e N| s € U"}

is measurable and satisfies
w(s)=0 & s=e, TU(st) <Tu(s)+1Uv(t).
If in addition U is symmetric, then
(™) = 15 (s).
It seems difficult to define canonically the notion of a “polynomial func-
tion” on any group G. In the absence of such a notion, the following definition

tries to define in a natural way a function “of polynomial growth” on a class
of groups as large as possible.

1.2. DEFINITION. Let G be a connected locally compact group. A func-
tion f : G — C is said to be of polynomial growth if for all U in Y (e), there
exists a polynomial Py in one variable, with real coefficients, such that for
all sin G,

[f(s)] < Pu(ru(s)).

For example for a connected compact group G, the functions with poly-
nomial growth on G are bounded functions. More generally, it is easy to
check that under the conditions of 1.2, a function with polynomial growth
is bounded on all compact subsets. Since for any two elements U and V of
Ve (e), there exist strictly positive numbers k and &’ such that

v < kry < k'1v,

it follows that if f : G — C satisfies | f| < Py o7y for one compact neighbor-
hood U of e in G, then such a relation is true for all compact neighborhoods
of e in G, i.e. f is of polynomial growth.

NOTATION. Let G be a group. For f : G — C, we denote by f the
function s — f(s71).

It is clear that the set of weights on G is stable under pointwise multi-
plication, involution w +— 0, finite simple limit, finite upper hull, and left
composition by functions of the form expof oln, where f is an increasing
and subadditive function Ry — R4 . Such functions are studied in [8].

1.3. ExXAMPLE. For a connected locally compact group G and U in
Ve (e), the map 1 + 7y, denoted by wy, is clearly a weight on G, satis-
fying in addition

wy (st) < wy(s) + wy(t).
This weight will be studied in detail in the following when G will be assumed
to be a nilpotent Lie group. By [6], we have:
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1.4. PROPOSITION. Let G be a connected Lie group with Lie algebra g.
A norm || || on the vector space g being fized, for all U in Ug(e), there
exists a strictly positive number cy such that for all X in g,

wy (exp X) <2+ cy || X|].

Until the end of this section, G denotes a simply connected nilpotent Lie
group with Lie algebra g. Starting with go = g, we define g,, for m in N* as
the real vector space generated by the set of [X, Y] where X runs through g
and Y runs through g,,_1. The step of nilpotency of g is denoted by n; this
means that g,, reduces to {0} and g,,_1 is nonzero. Hence, an element X of
g belongs to g; if and only if X is a linear combination of terms requiring
at least i brackets in all. For all ¢ in {1,...,n}, choose a complementary
subspace V; of g; in g;_1. Then

s=EPv.
=1

For all k in {0,...,n}, let G) be exp gi. Then Gy is the closure in G of the
subgroup generated by the elements xyxz 'y~ where = runs through G and
y runs through Gi_1. The exponential map exp is a C*° diffeomorphism
of g onto GG, which allows us to identify G with the real vector space g as
manifolds. If g is endowed with the Baker—Campbell-Hausdorff product
1 1
XY = X4V + 5 X V] + o (X, [X, Y] + [V, [¥ X])
+ (commutators of order 3 at least)

then exp is an isomorphism of topological groups from g onto G, which
allows us to identify the groups G and (g, -). For this group law, —X is the
inverse of X. Finally, for X and Y in g, we set

{X,)Y}=X Y. - (-X)-(-Y).
By [21], we have:

1.5. LEMMA. Let g be a nilpotent Lie algebra of step n. For all X1, ...
.., X, in g, we have
[Xl, [Xg, [ .. ,anl] .. H = {Xl, {XQ, { .. ,anl} .. }} mod On-1,
(X1, [Xo, [ -, Xn] -] = { X0, { X, { ., X0}
In the following proposition, the bracket of two elements X and Y will
be written as product in the group g of a;X and b;Y where a; and b; are

real numbers. We give a bound for the number of factors in the product,
which improves a result of [21].

1.6. PROPOSITION. Let g be a nilpotent Lie algebra of step n greater
than 2.
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1) There exists an integer m, depending only on n and 2m real numbers
A1y-evyOmy b1,y b, such that for all X and Y in g, we have

X+Y =]J(@X)- ®:Y).
i=1
2) There exists an integer p, depending only on n and 2p real numbers
Cly--sCp, d1,...,dp, such that for all X and Y in g, we have

(X, Y] = [[(e:X) - (diY).

i=1
In addition m and p are less than 2™(2™ —5) + 2n + 2.

Proof. 1) If n =2, then for all X and Y in g, we have

X X
X+Y = 5 Y- 5
Assume the result is true for a nilpotent Lie algebra of step n — 1 > 2 and
let g be a nilpotent Lie algebra of step n. Since g/g,—1 is nilpotent of step
n — 1, for all X; and X5 in g, we have by the induction hypothesis

m

X1+ Xo = H(Cin) (diX2) + u(Xy, X2)

i=1
where u(X1, X3) belongs to g,,_1, hence to the center of g. There exist real
numbers ¢;, ;. , where (i1,...,1,) runs through {1,2}", such that

w(X1,Xo) = Z Ciy i [ XKy [XKigy [+, X, ] -]
(i1,..0yin )E{1,2}™

= 11 [Ciroiin Xiys [Xigs [, X, ] -]
(ir,eiin)E{1,2}7
By Lemma 1.5, we have
u(X1, Xp) = 11 {cipin Xin A Xy {0 X ) - )
(i1sesin) €41,2}7

and then

m

X1+ X5 = [ J(eiX1)- (diX)- 11 {ei i, X A X {0 X b 3
i=1 (i1,050n ) €{1,2}"

where ¢1.1 and co. o are zero. Denoting by m,, the number of factors suffi-
cient to write X1 + X5 as a product when g is nilpotent of step n, we have
shown that mo = 3; we can check that

My =Mp_1 + (2" —2)(3-2"71 —2)
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and consequently
my, = 2" (2" — 5) 4 4n + 3.

2) Let us prove the second assertion. If n = 2, then for all X and Y in g,
we have

(X, Y]=X Y. (-X) - (-Y).
The proof of the rest of the assertion is similar and we find that
pp =2"T1(2" = 5) +4n + 4

where p,, indicates the number of factors sufficient to write [X1, X5 as a
product when g is nilpotent of step n. m

1.7. COROLLARY. Let g be a mnilpotent Lie algebra of step n greater
than 2. Let Xy,..., X, be elements of g of the form

X=X} (X2, X
Then there exists an integer q, depending only on p and n, such that
- 1 I
ZXi = H Cijls, Xi;].
i=1 j=1 1<i;<p

1<li; <ki;

Proof. It suffices to apply the previous proposition as many times as
necessary. m

We recall that G denotes a simply connected nilpotent Lie group with
Lie algebra g. In the rest of this section fix a euclidean norm || || on g, and
denote by U the unit ball B of g.

1.8. COROLLARY. There exists a real number c1 such that for all j in
{1,...,n—1}, and X in g;,

wy(X) < er(1+ | X)L

Proof. Let j bein {1,...,n—1} and fix a basis (X1,...,X,) of g;. Each
X, can be chosen such that

X=X} X2, X )
for certain vectors XF. Let X be in g;. We can write

p
L+ X)X = Y e,

i=1
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where |¢;| < 1, and then

X = Zcz L IXIX X [, X

p
=Y la(+ | X)X,
=1

[+ X IDY7HEXE L (U XD X))
By Corollary 1.7, it follows that

X = H [T cor G IXDY X

= 1<im <p
1<r,, <j+1

for a certain integer ¢ and some real numbers ¢; _, , depending only on j,
n, p. Let s be the number of factors in the above product. Put

c=max{|c;, r. | |1 <ip <p,1<r, <j+1,1<m<q}
t = max{||Xf|| [1<i<p 1<k<j+1}.
Hence

X € e+ BletHIXINYIt)

where E indicates the integer part function, from which, by definition of
wy,
wy (X) < 1+ s(1+ Blet(1+ || X[)1/7+)
<14 s+ sct(1+ || X)L+
< (1+s+sct) (1+ || X)L m

1.9. PROPOSITION. There exists a real number co such that for all X

ing and all j in {1,...,n} we have
L+ X510 < e wur(X)
where X indicates the component of X belonging to V.

Proof. 1) Let ¢ be a strictly positive number. Let us show by induction
on m that there exists a real number a. = O(e) such that if X € (¢B)™
then || X;|| < a-(1+m)7.

If m = 1, then || X,| < &, hence we take a. =277,

Assume the result is true for m —1 and let X be in (¢B)™. Then X can

be written as Y - W where Y € (¢B)™! and W € eB. By the induction
hypothesis,

(1) 151l < acm?
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where a. = O(e). By the Baker-Campbell-Hausdorff formula, we have

(2) Y -W); =Y; +W; +Q;(Y, W)

where

(3) QY. W)= > d [T, l... T,
Al

and where each T;, is Y;, or W, , i.e. an element of V;, . Since each W,
appears at least once in each bracket, it follows that for £ small enough

VT o Tl L < NI Lo T < T e 1T T

<ecacm™...acmi ... .acm' < emi!
and hence, by (3),
1Q,; (Y, W)|| <em?™* Z ‘C’lep| < ecNm/™1

i1y >1
where
c=max{|c; , ||i1,...,ip = 1and iy +... 4+, < j}

and N is the number of terms in the preceding sum. We then deduce, by (1)
and (2), that

1= W1 < Y51+ W51+ 11Qs (Y, W
<a.m? +e+ecNm?~! <c. (1 +m)’
where ¢. = a. + € +ecN. Finally || X;|| < c. (1 +m)? where c. = O(e). We
now choose our new a. as c.
2) Let X be in U, € be a strictly positive number and M. the integer
such that
M.—-1<e <M.
Then
IMIIX) < ellX| <e,
therefore M !X belongs to eB and consequently X € (eB)M-.

3) Let X be a nonzero element of g. Fix € small enough so that a. < 1
in 1). By definition, X belongs to U*v(X)=1 ‘then by 2) to (¢ B)Ms(wv(X)=1)
and by 1), A o

L+ 12XV < 1+ M)V wy(X). =

1.10. PROPOSITION. There exists a real number cz such that for all

Yi,...,Y, where each Y; belongs to gj_1, we have

W1i < 11/ Wi < 1)L/
5119 < eg max (1 [VI)MY, I < e max (14 XG0,

where X indicates the component of Y ...Y, belonging to V;.
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Proof. Fix j in {1,...,n}. By the Baker—-Campbell-Hausdorff formula,

(1) Xj :}/j-}_ Z Czl...z‘p [Y7:17|:""}/ip:|"":|j’
i1yeyip>1
hence

IXGI <Y+ >0 e, HYall 1Y,

i15eyip>1
i1t ip<j
<Iill+e S UM, )
i1seyip>1
< AN YA
< (14 eN)(max (1 +[[¥i[])™)
where '
c=max{le/ , [|i1,....ip >1and i1 +...+i, < j}

and N is the number of terms in the previous sum. Finally,

150117 < (14 N7 max (1+ [[V;])H"
1<i<j

The second relation follows similarly. m

By 1.2 all the weights wy are equivalent on a connected group G. Hence
we fix a compact neighborhood U of e in G and we write w¢g instead of wy .
We can then summarize the previous results in the following theorem:

1.11. THEOREM. Let G be a simply connected nilpotent Lie group with
Lie algebra g. Let g = @), Vi where V; ® g; = gi—1 and where (g;)o<i<n—1
s the central decreasing sequence of g. Then there exist real numbers ¢ and
c such that for all X in g, we have

N < < N1/é
¢ max (1+[[X:[)* < we(expX) < ¢ max (141X

where X; indicates the component of X belonging to V;.

Proof. Proposition 1.9 shows the existence of ¢. Let now X be in g.
We can find Yi,...,Y,, where each Y} belongs to g;_1, such that exp X =
expYi...expY,. Hence, by 1.3, we have

n
wg(exp X) < Z we(expY;)
j=1

and by Corollary 1.8,

n

we(expX) < ery (1+[Y;I)Y9.

j=1
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It now follows from Proposition 1.10 that

n
< j RNTGIVE
wolexp X) < e 31+ s (1+ X))
]:

< e ) 1+ es s (L+ XD
i=1 o

< en(l + c3) (1+[|X: DY w

max
1<i<n

NoTATION. For all k in {1,...,n}, the set U N G} denoted by Vj is a
symmetric compact neighborhood of e in Gj, and the weight wy, on Gj
defined in 1.3 will be denoted by wg,, .

1.12. THEOREM. There exists a strictly positive number ¢ such that for
all kin {1,...,n}, we have

1/k+1
wala, < cwg,” .

Proof. We easily show by induction on ¢ that for all 7 in N,

(1) (9k)i C B(kr1)(it1)—1-
Denote by pj the step of nilpotency of g and let Y be an element of gy.
Then

Y=Y...Y, =Xi+...+X,,
where each Y; belongs to (gx);—1 and X; to (Vj); where, as at the begin-
ning of this section, (gx);—1 is the direct sum of (gx); and (Vi); for all ¢ in
{1,...,pk}. As noticed in 1.3, we have

wa(expY) = wg(expYi...expYy,) <wg(expYi) + ... +wg(expYy, ).
Now each Y; belongs to g(x41)i—1 by (1), and so by Corollary 1.8,

we(expY;) < ex(1+ Y)Y

hence
Pk

wa(expY) < e Y (1+||¥y]|)H/ *H0?
=1
< 14 |||/ B+
< c1p @gk( + (1Y)

< cpr + crpr( max [ || /8y R
>SUXSPk

(2) < eipr +epr(cs max (14 || X;))YH)VEH
1<i<py

(3) < e1pk + e1pr(es c2 wa,, (exp Yt/

1/k+1) ( 1/k+1

< (c1px + c1pr(cacs) we, (expY))
where (2) and (3) result from Propositions 1.10 and 1.9 respectively. m
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1.13. COROLLARY. Let N be a subgroup of Gi and let (w,X) be a
Banach space representation of G on X. If ©|n is given by x 1x for some
character x of N, then x must be unitary.

Proof. Assume that 7|y is a (continuous) nonunitary character of N.
Denote by n the Lie algebra of N. Let U be in Ug(e). First, for all s in G
distinct from e we have

S§=8S81... 57(](3)7
hence
(1) [7(s)] = [m(s1)] - T (57 ()| < B0 < bl

where
eFv = sup |7 (s)].
seU
By hypothesis, there exist two real linear forms a and 8 on n, with « # 0,
such that

m(exp X) = el@TBX) X en.
Fix X in n such that («a, X) = 1. Then for all ¢ in R, from (1) we have
el = |m(exp(tX))| < ghuwa (exp(tX)),
Let V = U N G;. By Theorem 1.12
we (exp(tX)) = wala, (exp(tX)) < c(wea, (exp(tX))) /2
and by Proposition 1.4,
we, (exp(tX)) < 2+ ey |[tX||,

hence

et < ekvey/2rev X

This last inequality is false for ¢ large enough. =

2. Spectral synthesis for nilpotent Lie groups. Let G be a con-
nected Lie group, g its Lie algebra, and g* the dual vector space of g. The
set of equivalence classes of irreducible continuous unitary representations
of G is denoted by G. When G is abelian, by Schur’s lemma, Gisin bijection
with the group of continuous characters of G into the multiplicative group
U of complex numbers of norm 1. When G is not abelian, G is not known in
general. In 1962, A. Kirillov managed to determine G when G is nilpotent
and simply connected [11]: the unitary dual G of G is described by the orbits
of the elements of g* under the coadjoint action of G; this action is defined
by the relation

z-l=1oAd(z™Y), leg*, z€q.
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From now on, GG denotes a simply connected real nilpotent Lie group with
Lie algebra g. For [ in g*, there exists a polarization m at [, i.e. a subalgebra
m of g which is maximal isotropic for the skew-symmetric bilinear form

B(X,Y)=1[X,Y], X, Yeg
Denote by M the connected subgroup expm of GG associated to m. The map
xXim:M—U, expXi— ei<l’X>,
is a character of M. We write
T M = ind%;/f X1,M -
Then m; ps is irreducible and the correspondence
07 /AdN(G) = G, [ [mu,
is a bijective mapping, called Kirillov’s bijection, where
[~1'e 3 eG: 1= Ad" (o).

The set G is also in bijection with Prim(G), the space of primitive ideals of
the C*-algebra of G by [6], and by [3] in bijection with
Prim* L'(G)
= {Ker | | a *-topologically irreducible representation of L*(G)}.
We equip these two sets with the Jacobson topology: for a subset S of L1(G),
we define its hull by
h(S) = {J € Prim* L}(G) | |S c J},
and for a subset C of Prim* L!(G) or Prim(G), we define its kernel by
KC)= () T
JeCl
Then, by definition, C is closed in Prim* L!(G), respectively in Prim(G), if
and only if C' = h(k(C)). By Brown’s theorem [4], Kirillov’s bijection is a
homeomorphism.
The Jacobson topology is in general not Hausdorff, but always accessible,
i.e. each point is closed, which means that every element in Prim* L!(G),

respectively in Prim(G), is maximal. This follows from the fact that the
coadjoint orbits of nilpotent Lie groups are closed [18].

PRrROBLEM. Given a closed subset C' of Prim* L'(G), can we determine
the set J(C) of closed two-sided ideals of L!(G) with hull C?

When J(C) = {k(C)}, the subset C is said to be of synthesis or spec-
tral. The first result of spectral synthesis is the famous theorem of N. Wiener
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stating that () is of synthesis in Prim* L!(R), i.e. each proper closed ideal of
L'(R) is contained in the kernel of a x-topologically irreducible representa-
tion of L!(R). I. Segal [20] next showed that each point of Prim* L!(R) is
of synthesis; then I. Kaplansky [10] generalized this result to Prim* L(G)
where G is abelian. The first result when G is not abelian was obtained by
H. Leptin [12] who showed that if G is nilpotent of step 2, then each point
in Prim* L'(G) is of synthesis. If G is nilpotent of step 3, J. Ludwig [14]
showed that J({Ker7}) is in bijection with J({Ker x}) where x is a char-
acter of L1 (R"), and w is a weight of polynomial growth on R™. J. Ludwig
shows that J({Ker7}) then contains in general an infinity of elements, and
consequently {Ker 7} is not of synthesis in these cases. If G is nilpotent of
step 4, the computations become much more difficult and no general result
is known. We have however the following theorem due to J. Ludwig [13],
which gives the existence of a smallest element in J(C):

THEOREM. Let G be a locally compact group with polynomial growth
such that L'(G) is symmetric, and C a closed subset of Prim* L*(G). Then
there exists a single closed two-sided ideal j(C) of L*(G) such that

h(i(C)) =C

and
(JALYG), h(J)C C) = j(C)CJ

This theorem applies in particular when G is a simply connected nilpo-
tent Lie group [6]. For example, if G is abelian, then j(C') is the closure in
L'(G) of the ideal of L(G) of functions for which the support of the Fourier
transform is compact and disjoint from C [19].

Notice that for a closed subset C' of Prim* L!(G), each element of J(C')
is contained in k(C'). Hence there exists a “minimal” ideal and a “maximal”
ideal with hull C. The subset C is then of synthesis if and only if these two
ideals are equal.

Let 7 be an element of G. In order to determine J({Ker7}) when the
step of G is larger than 3, it is natural to begin with the determination of
j({Kerm}), since the latter is contained in each element of J({Ker7}). The
result obtained by J. Ludwig when G is of step 3 forces us to look for this
ideal not in L!(G) but in a weighted L!-algebra on R™.

By Kirillov’s bijection, 7 is associated to the orbit O(l) of a certain linear
form [ on g, and the easiest case is when the orbit O(l) is a single point. The
rest of this paper is devoted to the determination of j({Ker7}) in this case.
This will be done in a quite general class of algebras which contain weighted
algebras, and for nilpotent Lie groups of any step. The principal result of
this paper is based in fact on a general property of C*°(G)-modules of finite
dimension, where G is solvable. This property is dealt with in [2].
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NOTATION. By [3], the set Prim* L!(G) is in bijection with g*/Ad*(G).
In order to make the reading easier, closed subsets C' of Prim* L!(G) and
closed subsets of G will be identified with closed Ad*(G)-invariant subsets
of g*. So, for m; in é, associated to the orbit O(l) of a linear form [ on g,
the minimal ideal j({Kerm;}) of L'(G) and the set J({Kerm}) of closed
two-sided ideals of L*(G) with hull {Kerm;} will be denoted j(I) and J(I)
respectively.

CONVENTIONS. Unless otherwise stated, a function will always be
complex-valued. For any group, e will indicate the identity element. For
a normed algebra A the relation I < A means that I is a closed two-sided
ideal of A.

3. Polynomials and group algebras. In the following, A will indicate
a Haar measure on a simply connected nilpotent Lie group G and dA(x) will
be denoted by dz.

3.1. NOTATION. Let G be a locally compact group, A a left Haar measure
on G, and w a weight on G. We denote by L. (G) the subalgebra of L!(G) of
measurable functions f such that { |f|w dX is finite, and we define a norm
I lw on Ly, (G) by

£l = § 1 £lwdA.

G

We thus obtain the Beurling algebra L. (G). The algebra of polynomials on
G is denoted by P(G). For X in g and for a C* function f on G, we let
X x f be the left derivative of f in direction X, and f* X the right derivative
of f in direction X:

X f(y) = 5 fexp(-tX)| . yeq,
t=0
feX() = SiesptX)| . yeG
t=0

A basis (X1,...,X4) of g being fixed, for a multi-index (av, ..., aq) of N%,
denoted by «, and a C'"*° function f on G, we write

X f=X{"*x..x X"« f, [xXY=fx X *..  x X
\a\:a1+...+o¢d.
We denote by S(G) the Schwartz space of C* functions f on G such that

for all positive integers N,

pn(f) =D VIX*x flw™ dr

la|<N G
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is finite, where w is the weight wy defined in 1.3. One can check that the
definition of S(G) is independent of the choice of the basis of g and of U.
We have (see [17])

pn (g f) < pn (@ fllwn-

We denote by D(G) the subspace of S(G) of functions with compact support.
The space S(G) equipped with the convolution multiplication and with the
family of seminorms (py)nen is then a Fréchet algebra and S(G) is dense

in (LY(G), [ l1)-

3.2. The determination of the “minimal ideal” in Section 5 will be given
for a quite general class of algebras. Indeed, in this paper we consider a
Banach subalgebra (4, || ||) of L!'(G) containing S(G) as a dense subspace
and satisfying
{31\7 eN,Vf e S(G):|fl <pn(f),
Ve A fll < I

which means that the norm || || of A makes the injections of S(G) into A
and of A into L!(G) continuous.

3.3. Recall that the characters of G, i.e. the continuous homomorphisms
of the group G into C*, are of the form exp X + y;(exp X) = 'X) where
[ is an R-linear form on g with complex values such that [[X, Y] is zero for
all X and Y in g. For real-valued [ we obtain the unitary characters of G.

For [ in g* such that [ is zero on g;, we denote by P; the vector space
of polynomials P, with complex coefficients, such that the continuous linear
form Py; on S(G) mapping f to {, fPx;d) extends to a continuous linear
form on A, meaning that there exists a positive number ¢ such that for all
f in S(G), we have

[ rPxiar| el
G

Let G be a group and s be an element of G. For a function f: G — C,
we denote by L f or of the left translate of f by s, mapping ¢ to f(s~1t),
and by Rsf or fs the right translate of f by s, mapping ¢ to f(¢s).

Let P be in P; and f, g be elements of A. Then Py, defines a continuous
linear form on A by definition, and consequently (Px;, g * f) exists. For g
in A, we write § * (Py;) for the continuous linear form on A defined by

(9 (Px1), f) = (Pxi,9* [)-

In the same way, Py; * § denotes the continuous linear form on A defined
by
<PXl *g7f> = <PXl7f*g>

3.4. THEOREM. The vector space P is finite-dimensional.
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Proof. 1) Let f be in S(G), @ a polynomial and x, a unitary character
of G. After an easy computation, for all x in G we have

(f * (@xq))(x) = P(x)xq(2)
where P is another polynomial.
2) Let @ be in P; and g in S(G). By 1),

g+ (Qx1) = Qgxu
where @), is a polynomial, and for all f in S(G),

(g * (@xa), /)l = {Q@xu, g * )l < 1@xullop |9+ £l
< 1@xtllop P (7 % f) < 1@xtllop 2 (9) [1f 1l

where N is an integer depending on @) and [. Hence g * (Qx;) is in the dual
space of L! (@), and so

1Qg/w™ | < 0.

Denote by Py the vector space of polynomials P such that ||[P/w!|s is
finite. Since the weight w'¥ has a polynomial growth, the space Py is finite-
dimensional and we have shown that for all @ in P; and all g in S(G),
g * (Qx1) belongs to Pnxi N Pixi-

3) Let @ be in P;. Since the weak star topology on Py with respect to
L}U ~ (G) coincides with the norm topology, and since for any approximate
identity (gn) in S(G), (gn *Qx:) converges in the weak star topology to Qxi,
it follows that (g, * Qx;) inside Py converges to Qx; in the operator norm,
and so Qx; € Pny. Hence P; C Py. =

3.5. NOTATION. Until the end of this paper, W indicates a nonzero
subspace of P; which is invariant under left and right translations, and Wy;
is denoted by W;. We also write

IW)={feA[VPeW:(Pxi,[)=0} = (Wxi)°
We then have the following proposition.

3.6. PROPOSITION. The vector space W is invariant under translations
and under convolution by elements of S(G). So I(W) is a closed two-sided
ideal of A.

4. Hull

DEFINITION. For a Banach algebra A, we denote by Prim(A) the set of
primitive ideals of A, i.e. the set of the kernels of algebraically irreducible
representations of A in Banach spaces. The kernel of a subset C' of Prim(A)

is the set
KC)= () /.
Jec
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and the hull of a subset S of A is the set
h(S) = {J € Prim(A) | S C J}.

NoTATION. For a Banach algebra A, the set Prim(A) is equipped with
the Jacobson topology: by definition, a subset C' of Prim(A) is closed in
Prim(A) if and only if C' = h(k(C)). We denote by J(C') the set of closed
two-sided ideals of A with hull C":

J(C)={J<A|h(J)=C}.
In the present case, the set {Ker x;} is closed in Prim(A), and as stipulated
in Section 2, the set J({Ker x;}) will be denoted 7 () by abuse of notation.

4.1. PROPOSITION. With the above hypothesis on A, we have

Prim(A4) = {Ker(r|4) | 7 € G}.

Proof. 1) Let 7 be a unitary topologically irreducible representation of
G; denote also by 7 the corresponding representation of L*(G). Since A is
dense in L'(G), 7|4 is topologically irreducible on the Hilbert space H. Let

Ho = Span{n(f){ | £ € H, f € A, n(f) of finite rank}.

Since m(S(G)) contains many operators of finite rank, H is an A-invariant
nontrivial subspace of H and the restriction of m to Hg defines a simple
module of A (see [6]). Hence Ker(m|4) is a primitive ideal:

{Ker(r|a) |7 € (A;} C Prim(A).
Let us prove the other inclusion. If (7, V) is a simple A-module on a
Banach space V' then (T'|s(q), V) is a topologically irreducible S(G)-module.
Hence by [16] there exists a w € G such that

Ker(T'|s(q)) = Ker(r|s(a))-
By [15] we know that Ker(7|s(¢)) is dense in Ker(n|4). Hence Ker T' contains
Ker(m|4).

2) Let us prove that Ker(7|4) is a maximal two-sided ideal of A. Let M
be a closed two-sided ideal of A containing Ker(w|4). Suppose that M #
Ker(7|4). Then there exists g in M such that g ¢ Ker(w|4). By [15], the
two-sided ideal

R={f € S(GQ)|n(f) of finite rank}

is dense in §(G) and then in A. Hence R+ g* R is not contained in Ker(7| )
and so M contains an element h such that w(h) = Py is the orthogonal
projector onto a C'* vector A of H,. Let f in S(G) be such that ©(f) = P,
is also a one-dimensional orthogonal projector with (A, ) # 0. Then

7(f) = [\ )| 7> Pyo Pyo Py =m((A )~ f b= f).
Hence
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f—<)\,ﬂ>72f*h*f€Ker7rCM

and consequently f € M. Since R is generated as an ideal by those ele-
ments f, this shows that M contains the ideal R and finally M = A since
M is closed. This proves that KerT'= Ker(7|4). »

The aim of this section is to determine the hull of (W) where W is
defined in 3.5. Since W is finite-dimensional, we have the following proposi-
tion.

4.2. PROPOSITION. The space W is invariant under derivations: for all
Xingandal Pin W, X x P and P x X belong to W.

By [5], we have:

4.3. PROPOSITION. There exists a function deg on the complex vector
space of polynomials on G such that for all X in g and all polynomials P,

we have
deg(X * P) < deg P.

Hence for all X in g, there exists a natural k such that for all P in W,
X* % P is zero.
4.4. PROPOSITION. The hull h(I(W)) of I(W) contains Ker x;.

Proof. For X in gand Pin W, n(X)(Px;) = X * (Pxi1) = (X * P)x; +
i(l, X)(Px;) defines a representation 7 of the Lie algebra g in W;. By Lie’s
theorem (see [7]), there exists a nonzero element P in W such that for
all X in g, 7(X)(Pxi) = MX)(Px:) where X is a linear form on g. Since
deg (X * P) < deg P, we have A\(X) = i(l, X) and so (X * P)yx; = 0. Hence
X % P = 0 and the polynomial P is constant. Consequently, x; € W; and
hence I(W) C Ker y; and Ker x; C h(I(W)). =

NOTATION. For f in L!(G), the Fourier transform of f at [ is denoted
f(l) and is defined by

F@) =\ fx dx
G
Let P be a polynomial in the variables X1, ..., X4. We define the differential

operator P(D) in the D; =i0/0X; with

d
Da:HD?j, a=(ag,...,aq).
i=1

We have the well known result:
4.5. LEMMA. For all f in A,
fel(W) & YPeW : (P(D)(f))(-]) =0,
where f indicates the Fourier transform of f.
4.6. THEOREM. The hull h(I(W)) of I(W) is {Ker x;}.
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Proof. By Proposition 4.4, Ker x; € h(I(W)).

Let 7 be a topologically irreducible #-representation of L!(G) in a Hilbert
space whose kernel in A contains [(W). By Theorem 3.4, I(W) is of finite
codimension in A, hence w is finite-dimensional and defines an irreducible
continuous unitary representation 7 of the nilpotent group G. By Lie’s the-
orem (see [7]), 7 is a character. Then 7 is a character x; where I is a real
linear form on g which is zero on [g, g] by 3.3. If I’ is different from [, there
exists f in S(g) such that f(—l') =1and fis zero on a neighborhood of —1.
Then f does not belong to Ker y;» and belongs to I(W) by Lemma 4.5. Since
this contradicts the hypothesis, I’ is equal to [. m

5. Minimal ideal

5.1. PROPOSITION. For each closed subset C' of Prim*(A), there exists a
closed two-sided ideal j(C) of A with hull C such that each closed two-sided
ideal of A whose hull is contained in C contains j(C).

Proof. The proof given in [13] adapts to the general case. m

Taking in the previous theorem W = P;, we have j(Ker ;) C I(P;). The
following theorem will show the other inclusion.

5.2. LEMMA. Let F be a finite-dimensional A-left invariant subspace
of the dual A’ of the algebra A. Then each element of F is a finite sum
of functions of the form Px,, where P is a polynomial, and x, a unitary
character of G.

Proof. Let us show that the elements of F' are C'*° functions on G. Let
(1, - -, ) be a basis of F. Then D(G)*pu1+...+D(G)* p,, is dense in the
finite-dimensional vector space F', hence is equal to F'. Every p in F' defines
a tempered distribution on G. Let g be in D(G). For all f in §(G),

(g f) = axf) = o) (1= 2N (G = f)(x) do
G
for a certain function ¢ with moderate growth, of class C*° on G, and a
certain integer N, where A indicates the Laplacian of G (by [17]).
Putting h = (1 — A)V g, we then have

(g#p fy=\wfdr where t(z)= | hp,dr.
€] G
The linear form g * p is then given on S(G) by a function v of class C* on
G. Since S(G) is dense in A, the linear form g * p can be identified with 1,
and with this identification, F' consists of C'*° functions. The lemma then
results from Proposition 1 of [2]. m
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5.3. THEOREM. The smallest closed two-sided ideal of A with hull
Ker 18 )
teral i) = I(Py).

Proof. 1) Tt has already been noticed that j(I) is contained in I(P;).
By [15], there exists a natural integer N such that j(I) = (Ker x;)".

Let us show by induction on n that if T is a continuous linear form on A
which is zero on (Ker x;)™ then T is of the form Px; where P belongs to P;.
The result is true if n = 1: the polynomial P is a nonzero constant.

2) Let m in N* be such that T is zero on (Ker x;)™ and nonzero on
(Ker x;)™ .
(a) Let fo be in Ker y;. Then fo*T is a continuous linear form on A and

m—1

for all w in (Ker x;)™ ™+,
(fo T,u) := (T, foxu) =0
because fy * u belongs to (Kery;)™. The induction hypothesis shows that

foxT = Py x; where Py, belongs to P;.
(b) Let f and f; in A be such that x;(f1) = 1. Then f—x;(f)f1 € Ker xy,

and consequently ~ Y
(f=f(=Df)"*T = Prx
where Py € P; by (a), i.e.
f* T = f(—l)fl T + Ple S (C(]El * T) + Pixi-

This shows that the complex vector space A % T, which is contained in A’,
is of finite dimension by Theorem 3.4.
3) Let ¢ be an element of A. By 2) and Lemma 5.2, ¢ % T' is of the form

P

oxT = Z Pjxq;

j=1
where the P; are polynomials and the y,, are unitary characters of G which
we assume to be all distinct. Let us show that p =1 and ¢; = I[.
Let fo be in Kery; N S(G). The function fy * ¢ belongs to Ker y;, so

by 2)(a),

(fox )" =T = Pxy
where P belongs to P;. On the other hand, the computation 1) in the proof
of Theorem 3.4 shows that

p p
(foxd) T = fo*Pixg, =Y QiXq,
j=1

j=1

where the (); are polynomials which we can assume to be all nonzero. Finally

P
Pxi =Y QiXq,-
=1
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In the module of linear combinations (whose coefficients are polynomials) of
unitary characters of 7, each finite family of distinct unitary characters of G
is free. Consequently, p = 1, g1 =l and ¢+T" = Qx; where @ is a polynomial.
Since p € Aand T € A’, ¢ * T is continuous on A and @ belongs to P;.

Let us show that T itself is in P;x;.

4) The space P; being finite-dimensional, let fi,..., fos be Schwartz
functions on G such that

((Pxi, fi) =0fori=1,...,M) = P=0.
For all P in P; let
1Pxalle = max [(Pxi, fi)l

Let (¢n)nen be an approximate unit in S(G). For all f in S(G),

The sequence (¢, * f — f)nen converges to 0 in S(G), hence in A, and T

being continuous on A, ((¢,, * T — T, f))nen tends to 0 by (1). We have
60T = G Tl = s [T (60— 0w) = .

This tends to 0 because (¢, — ¢p * fi)nen tends to 0 in S(G), hence also
in A. This shows that the sequence (¢, * T)nen is Cauchy for the norm || ||;,
hence converges to an element Px; where P belongs to P;, the space P;x;
being finite-dimensional. Let f be in S(G). For all @ in P; write

1Qxally = l@xalli + [(@xu, f)I-

Then || || is a norm on P;x; equivalent to || [|;, since Pyy; is finite-dimen-
sional. Hence the sequence (¢, * T')pen converges to Px; for || ||; and the
inequality

< 1Pxe = n * Tl + [{n + T =T, ),

valid for all n in N, gives, as n — oo,

Since S(G) is dense in A, this proves that T = Py; and so T is zero on
I(P;). For all T in j(1)°, we know that 7T is zero on (Ker x;)"V and by the
preceding T belongs to P;x; and so to I(P;)°. Since (T, (Ker x;)™) = 0 we
see that T is zero on I(P;). The Hahn-Banach theorem shows finally that
I(P;) is contained in j(I). m

NoOTATION. Let J be a closed two-sided ideal of A. We associate to it
the vector subspace V(.J) of P; defined by

V(J)={PeP |VfeJ:PfecKerx}.
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We show that the mapping J — V(J) gives characterization of the closed
two-sided ideals of A with hull {Ker x;}.

5.4. PROPOSITION. Let J be a closed two-sided ideal of A. The vector
subspace V (J) of Py is invariant under translations.

Proof. The vector space generated by S(G) x V(J) * S(G) is dense in
the finite-dimensional vector space V' (J), hence is equal to V' (.J). The result
then follows from the formula

(fxPxg)y=.f*xPxg,
valid for all f and ¢ in S(G), P in V(J), and z,y in G. =

NOTATION. Denote by 7P, the set of nonzero subspaces of P; which are
invariant under left and right translations. For a topological vector space E
and a subset X of E, we denote by X° the orthogonal complement of X
in E, i.e. the vector space of continuous linear forms on E which are zero
on X:

X°={peFE |VzeX: (puz)=0}

The most important result of this paper is the following theorem:
5.5. THEOREM. The map
TP — Jl), Ww—I(W),
is a decreasing bijection, with inverse
JO)—-TP, J—V(J).

Proof. By Theorem 4.6, the map W — I(W) is J(I)-valued.

For any finite-dimensional subspace U of A’, we know that U is *-weakly
closed and so (U°)° = U. This shows that the mapping W — I(W) is
injective.

Let us show the surjectivity. Let J be an element of 7 ({). Since J D j(I),
its orthogonal J° is finite-dimensional and is contained in j(I)°, which means
by Theorem 5.3 that J° C P;x; and so J° = Wy, for some translation
invariant subspace W of P;. Hence J = (Wy;)° = I(W), which shows the
surjectivity of the map W +— I(W) and consequently, the bijectivity of
J—V(J). =

6. Examples. Let w be a symmetric weight with polynomial growth
on G. Let N be an integer and define Ay as the subalgebra of L'(G) of
classes of functions f such that >, .y S (IX ¥ * flw + [f x X¥|w) dX is
finite. We define a norm on Ay by putting

1= 57 §0X 5 flao+ [ 5 X ) dA.

la|<N G
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The algebra Ay with the norm || || is a Banach algebra and satisfies the
conditions given in 3.2. Consequently, Theorem 5.3 applies in this case. In
particular, for N equal to zero, the weighted algebra L1 (G) defined in 3.1
is an example of an algebra A satisfying the conditions of 3.2. The rest of
this section states the principal results of the paper in this particular case.

NOTATION. Let G be a locally compact group and w a weight on G.
We denote by L3 (G) the vector space of (classes of) functions f essentially
bounded by w, i.e. such that || f/w]|« is finite, and we define a norm || || on
Ly (G) by

1A= 11f /wll oo

The following proposition, which describes the topological dual L} (G)’
of L (G), is known.

6.1. PROPOSITION. Let G be a locally compact group, A a nonzero posi-
tive left Haar measure on G, and w a weight on G. The map 1 : LYY (G) —
LY (G)" which takes g € L°(G) to

by Ly(G) —~C, [ (g, f)=\Fgd\
G

s an isometric isomorphism of Banach spaces.

In the following, the spaces Ll (G)" and LS (G) will be identified. The
topological dual of L. (G) being known, it is possible to give a more vivid
description of the vector space P; defined in 3.3:

NOTATION. Let w be a weight on G. We denote by P, (G) the vector
space of polynomials which are essentially bounded by w:

Pu(G) = P(G) N Ly (G).
By 6.1, it is clear that P; = P,,(G) and Theorem 5.3 can be written as

i) = I(Pu(G)) = {f e LL(G) ‘ VP € Pu(G) : | P(x)f(2)xi() da = o}.
G

Particular cases. 1) If w is the constant weight equal to 1, then L. (G)
coincides with L'(G), and P,(G) contains only constants; then j(I) =
{Ker x;}, which shows that {Kery;} is of synthesis. We find again in this
case a result of [10].

2) If in a direction X, w(exp(tXp)) grows at least as |t|, then P, (G) con-
tains a nonconstant polynomial, hence j(I) is strictly contained in {Ker x;}
and therefore {Ker yx;} is not of synthesis. So, for a nonconstant weight w,
the one-point set {Ker x;} is not of synthesis in Ll (G) in general.
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6.2. Let us take for G the 3-dimensional Heisenberg group Hy, for which
the multiplication is given by

1
(z,y,2)- (2',y,2) = (w +2y+y,z+2 + i(wy’ — yw'))-

Denote by L the left regular representation of Hy in C°°(Hy). Let P be the
polynomial
P=—2>+ y2 + 22

and V the vector space generated by P and its left derivatives. Then the
vector space V is 10-dimensional and (1, x,v, 2, 2%, y?, vy, 72, yz, 2%) is a ba-
sis of V. For an element (m;;)1<; j<10, denoted by M, belonging to End(V),
denote by || M||us its Hilbert—Schmidt norm

s = (X0 dmal?) "

Finally, define
w(u, v, w) = || Ly,v,w)llas-

An explicit computation shows that

35 7
w(u,v,w) = [10 + T (u? + v?) + Tw? + 1 u?v?

921 1/2

+ 2(v*w? + viw?) + T (u* +v?) + w?
The mapping w is a weight on H;. Let 7 be an element of the unitary dual
H, of Hy and let h; be the Lie algebra of H;. Assume that the orbit of the
linear form [ on h; associated to m by the Kirillov bijection is one point,
i.e. [ is a character of h;. So, 7 is a character of L (H;). By Theorem 5.5,
the sets J(I) and TP, (H;) are in bijection. The set TP, (H;) is explicitly
determined in [1].
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