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Minimal ideals of group algebras

by

David Alexander and Jean Ludwig (Metz)

Abstract. We first study the behavior of weights on a simply connected nilpotent
Lie group G. Then for a subalgebra A of L1(G) containing the Schwartz algebra S(G) as
a dense subspace, we characterize all closed two-sided ideals of A whose hull reduces to
one point which is a character.

Introduction. Let G be a simply connected nilpotent Lie group, g its
Lie algebra, and A a subalgebra of L1(G). To every character χl of A we
will associate a finite-dimensional translation invariant subspace Pl of the
vector space P(G) of complex polynomials on G and we will show that the
set of closed two-sided ideals of A with hull {Kerχl} is in bijection with the
set of nonzero translation-invariant subspaces of Pl. As an example of A we
can take the weighted algebra L1

w(G) where w is a weight with polynomial
growth. Such weights appear in a natural way in the following manner:
let π be a unitary continuous irreducible representation of G in a Hilbert
space Hπ. We denote by U(g) the enveloping algebra of g. Fix a nonzero
integer k and denote by U(g)k the vector space generated by the elements of
U(g) with degree less than k. Let H(k)

π be the space of k times differentiable
vectors in Hπ, i.e.

H(k)
π = {ξ ∈ Hπ | ∀z ∈ U(g)k : dπ(z)ξ ∈ Hπ}.

Fix a basis (zi)|i|≤k of U(g)k. We equip H(k)
π with the norm

‖ξ‖k =
(∑

|i|≤k
‖dπ(zi)ξ‖2

)1/2
.

The space H(k)
π with this norm is complete. Denoting by ‖π(x)‖op the norm

of the operator π(x) : H(k)
π → H(k)

π , we then have

‖π(x)‖op ≤ ‖Ad(x)|U(g)k‖HS
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where ‖ ‖HS denotes the Hilbert–Schmidt norm. Denote by w(k)(x) the right
side of this inequality. The function x 7→ w(k)(x) is a natural example of a
weight on G attached to π. By a weight on a topological group G, we mean
a measurable function w on G with values in [1,+∞[ such that for all s and
t in G,

w(st) ≤ w(s)w(t).

The preceding result leads naturally to the study of weights on nilpotent
Lie groups. The first section will give another example of a natural weight.
Other examples of weights come from Banach space representations of topo-
logical groups. Let X be a Banach space and let (T,X) be a Banach space
representation of G on X. That means that for every s in G, we have a
bounded invertible operator T (s) on X such that the mapping s 7→ T (s) is
a homomorphism of groups and the mappings s 7→ T (s)x are continuous for
every x in X. Then the operator norm ‖T (s)‖op is a measurable function on
G and defines a symmetric weight wT : s 7→ max (‖T (s)‖op, ‖T (s−1)‖op).

Take for example the 3-dimensional Heisenberg group G = H1. For x
in H1 write x = (a, b, t) and let (X,Y,Z) be a basis of the Lie algebra h1 of
H1 with [X,Y ] = Z. We have

Ad(x)X = X − bZ, Ad(x)Y = Y + aZ, Ad(x)Z = Z.

After an easy computation, we find

w(2)(x) = (9 + 7a2 + 7b2 + a2b2 + a4 + b4)1/2

and
1√
2

(1 + a2 + b2) ≤ w(2)(x) ≤ 3(1 + a2 + b2).

1. Weights on topological (in particular nilpotent Lie) groups.
Weights allow us to define Banach subalgebras of L1(G), the so-called Beur-
ling algebras. This section studies the growth of the “most natural” weight
attached to a connected locally compact group. This weight is of impor-
tance because it dominates all common weights. We end this section with a
restriction property of this weight.

Definition. Let G be a topological group and S a subset of G. We
write S0 = {e} and for all n in N∗,

Sn = {s1 . . . sn | si ∈ S}.
When G is locally compact, for s in G, we denote by VG(s) the set of
compact neighborhoods of s in G.

In the following proposition we recall the “most natural” weight attached
to a connected locally compact group as in [9].
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1.1. Proposition. Let G be a connected locally compact group and U
an element of VG(e). Then G =

⋃
n∈N U

n and the map τU : G→ N defined
by

τU (s) = min{n ∈ N | s ∈ Un}
is measurable and satisfies

τU (s) = 0 ⇔ s = e, τU (st) ≤ τU (s) + τU (t).

If in addition U is symmetric, then

τU (s−1) = τU (s).

It seems difficult to define canonically the notion of a “polynomial func-
tion” on any groupG. In the absence of such a notion, the following definition
tries to define in a natural way a function “of polynomial growth” on a class
of groups as large as possible.

1.2. Definition. Let G be a connected locally compact group. A func-
tion f : G→ C is said to be of polynomial growth if for all U in VG(e), there
exists a polynomial PU in one variable, with real coefficients, such that for
all s in G,

|f(s)| ≤ PU (τU (s)).

For example for a connected compact group G, the functions with poly-
nomial growth on G are bounded functions. More generally, it is easy to
check that under the conditions of 1.2, a function with polynomial growth
is bounded on all compact subsets. Since for any two elements U and V of
VG(e), there exist strictly positive numbers k and k′ such that

τV ≤ kτU ≤ k′τV ,
it follows that if f : G→ C satisfies |f | ≤ PU ◦τU for one compact neighbor-
hood U of e in G, then such a relation is true for all compact neighborhoods
of e in G, i.e. f is of polynomial growth.

Notation. Let G be a group. For f : G → C, we denote by f̌ the
function s 7→ f(s−1).

It is clear that the set of weights on G is stable under pointwise multi-
plication, involution w 7→ w̌, finite simple limit, finite upper hull, and left
composition by functions of the form exp ◦f ◦ ln, where f is an increasing
and subadditive function R+ → R+. Such functions are studied in [8].

1.3. Example. For a connected locally compact group G and U in
VG(e), the map 1 + τU , denoted by wU , is clearly a weight on G, satis-
fying in addition

wU (st) ≤ wU (s) + wU (t).

This weight will be studied in detail in the following when G will be assumed
to be a nilpotent Lie group. By [6], we have:
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1.4. Proposition. Let G be a connected Lie group with Lie algebra g.
A norm ‖ ‖ on the vector space g being fixed , for all U in VG(e), there
exists a strictly positive number cU such that for all X in g,

wU (expX) < 2 + cU‖X‖.
Until the end of this section, G denotes a simply connected nilpotent Lie

group with Lie algebra g. Starting with g0 = g, we define gm for m in N∗ as
the real vector space generated by the set of [X,Y ] where X runs through g
and Y runs through gm−1. The step of nilpotency of g is denoted by n; this
means that gn reduces to {0} and gn−1 is nonzero. Hence, an element X of
g belongs to gi if and only if X is a linear combination of terms requiring
at least i brackets in all. For all i in {1, . . . , n}, choose a complementary
subspace Vi of gi in gi−1. Then

g =
n⊕

i=1

Vi.

For all k in {0, . . . , n}, let Gk be exp gk. Then Gk is the closure in G of the
subgroup generated by the elements xyx−1y−1 where x runs through G and
y runs through Gk−1. The exponential map exp is a C∞ diffeomorphism
of g onto G, which allows us to identify G with the real vector space g as
manifolds. If g is endowed with the Baker–Campbell–Hausdorff product

X · Y = X + Y +
1
2

[X,Y ] +
1
12

([X, [X,Y ]] + [Y, [Y,X]])

+ (commutators of order 3 at least)

then exp is an isomorphism of topological groups from g onto G, which
allows us to identify the groups G and (g, ·). For this group law, −X is the
inverse of X. Finally, for X and Y in g, we set

{X,Y } = X · Y · (−X) · (−Y ).

By [21], we have:

1.5. Lemma. Let g be a nilpotent Lie algebra of step n. For all X1, . . .
. . . ,Xn in g, we have

[X1, [X2, [. . . ,Xn−1] . . .]] ≡ {X1, {X2, {. . . ,Xn−1} . . .}} mod gn−1,

[X1, [X2, [. . . ,Xn] . . .]] = {X1, {X2, {. . . ,Xn} . . .}}.
In the following proposition, the bracket of two elements X and Y will

be written as product in the group g of aiX and biY where ai and bi are
real numbers. We give a bound for the number of factors in the product,
which improves a result of [21].

1.6. Proposition. Let g be a nilpotent Lie algebra of step n greater
than 2.
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1) There exists an integer m, depending only on n and 2m real numbers
a1, . . . , am, b1, . . . , bm, such that for all X and Y in g, we have

X + Y =
m∏

i=1

(aiX) · (biY ).

2) There exists an integer p, depending only on n and 2p real numbers
c1, . . . , cp, d1, . . . , dp, such that for all X and Y in g, we have

[X,Y ] =
p∏

i=1

(ciX) · (diY ).

In addition m and p are less than 2n(2n − 5) + 2n+ 2.

Proof. 1) If n = 2, then for all X and Y in g, we have

X + Y =
X

2
· Y · X

2
.

Assume the result is true for a nilpotent Lie algebra of step n − 1 ≥ 2 and
let g be a nilpotent Lie algebra of step n. Since g/gn−1 is nilpotent of step
n− 1, for all X1 and X2 in g, we have by the induction hypothesis

X1 +X2 =
m∏

i=1

(ciX1) · (diX2) + u(X1,X2)

where u(X1,X2) belongs to gn−1, hence to the center of g. There exist real
numbers ci1...in , where (i1, . . . , in) runs through {1, 2}n, such that

u(X1,X2) =
∑

(i1,...,in)∈{1,2}n
ci1...in [Xi1 , [Xi2 , [. . . ,Xin ] . . .]]

=
∏

(i1,...,in)∈{1,2}n
[ci1...inXi1 , [Xi2 , [. . . ,Xin ] . . .]].

By Lemma 1.5, we have

u(X1,X2) =
∏

(i1,...,in)∈{1,2}n
{ci1...inXi1 , {Xi2 , {. . . ,Xin} . . .}}

and then

X1+X2 =
m∏

i=1

(ciX1)·(diX2)·
∏

(i1,...,in)∈{1,2}n
{ci1...inXi1 , {Xi2 , {. . . ,Xin} . . .}}

where c1...1 and c2...2 are zero. Denoting by mn the number of factors suffi-
cient to write X1 +X2 as a product when g is nilpotent of step n, we have
shown that m2 = 3; we can check that

mn = mn−1 + (2n − 2)(3 · 2n−1 − 2)
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and consequently

mn = 2n+1(2n − 5) + 4n+ 3.

2) Let us prove the second assertion. If n = 2, then for all X and Y in g,
we have

[X,Y ] = X · Y · (−X) · (−Y ).

The proof of the rest of the assertion is similar and we find that

pn = 2n+1(2n − 5) + 4n+ 4

where pn indicates the number of factors sufficient to write [X1,X2] as a
product when g is nilpotent of step n.

1.7. Corollary. Let g be a nilpotent Lie algebra of step n greater
than 2. Let X1, . . . ,Xp be elements of g of the form

Xi = [X1
i , [X

2
i , [. . . ,X

ki
i ] . . .]].

Then there exists an integer q, depending only on p and n, such that
p∑

i=1

Xi =
q∏

j=1

∏

1≤ij≤p
1≤lij≤kij

cij lijX
lij
ij
.

Proof. It suffices to apply the previous proposition as many times as
necessary.

We recall that G denotes a simply connected nilpotent Lie group with
Lie algebra g. In the rest of this section fix a euclidean norm ‖ ‖ on g, and
denote by U the unit ball B of g.

1.8. Corollary. There exists a real number c1 such that for all j in
{1, . . . , n− 1}, and X in gj ,

wU (X) ≤ c1(1 + ‖X‖)1/j+1.

Proof. Let j be in {1, . . . , n−1} and fix a basis (X1, . . . ,Xp) of gj . Each
Xi can be chosen such that

Xi = [X1
i , [X

2
i , [. . . ,X

j+1
i ] . . .]]

for certain vectors Xk
i . Let X be in gj . We can write

(1 + ‖X‖)−1X =
p∑

i=1

ciXi
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where |ci| < 1, and then

X =
p∑

i=1

ci(1 + ‖X‖)[X1
i , [X

2
i , [. . . ,X

j+1
i ] . . .]]

=
p∑

i=1

[ci(1 + ‖X‖)1/j+1X1
i ,

[(1 + ‖X‖)1/j+1X2
i , [. . . , (1 + ‖X‖)1/j+1Xj+1

i ] . . .]].

By Corollary 1.7, it follows that

X =
q∏

m=1

∏

1≤im≤p
1≤rm≤j+1

cimrm(1 + ‖X‖)1/j+1Xrm
im

for a certain integer q and some real numbers cimrm , depending only on j,
n, p. Let s be the number of factors in the above product. Put

c = max{|cimrm | | 1 ≤ im ≤ p, 1 ≤ rm ≤ j + 1, 1 ≤ m ≤ q},
t = max{‖Xk

i ‖ | 1 ≤ i ≤ p, 1 ≤ k ≤ j + 1}.
Hence

X ∈ Us(1+E(ct(1+‖X‖)1/j+1))

where E indicates the integer part function, from which, by definition of
wU ,

wU (X) ≤ 1 + s(1 + E(ct(1 + ‖X‖)1/j+1))

≤ 1 + s+ sct(1 + ‖X‖)1/j+1

≤ (1 + s+ sct) (1 + ‖X‖)1/j+1.

1.9. Proposition. There exists a real number c2 such that for all X
in g and all j in {1, . . . , n} we have

(1 + ‖Xj‖)1/j ≤ c2 wU (X)

where Xj indicates the component of X belonging to Vj.

Proof. 1) Let ε be a strictly positive number. Let us show by induction
on m that there exists a real number aε = O(ε) such that if X ∈ (εB)m,
then ‖Xj‖ < aε(1 +m)j .

If m = 1, then ‖Xj‖ < ε, hence we take aε = ε 2−j .
Assume the result is true for m− 1 and let X be in (εB)m. Then X can

be written as Y ·W where Y ∈ (εB)m−1 and W ∈ εB. By the induction
hypothesis,

(1) ‖Yj‖ ≤ aεmj
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where aε = O(ε). By the Baker–Campbell–Hausdorff formula, we have

(2) (Y ·W )j = Yj +Wj +Qj(Y,W )

where

(3) Qj(Y,W ) =
∑

i1,...,ip≥1
i1+...+ip≤j

cji1...ip [Ti1 , [. . . , Tip ] . . .]j

and where each Tik is Yik or Wik , i.e. an element of Vik . Since each Wik

appears at least once in each bracket, it follows that for ε small enough

‖ [Ti1 , [. . . , Tip ] . . .]j‖ ≤ ‖ [Ti1 , [. . . , Tip ] . . .] ‖ ≤ ε ‖Ti1‖ . . . ‖T̂ik‖ . . . ‖Tip‖
≤ ε aεmi1 . . . ̂aεmik . . . aεm

ip ≤ εmj−1

and hence, by (3),

‖Qj(Y,W )‖ ≤ εmj−1
∑

i1,...,ip≥1
i1+...+ip≤j

|cji1...ip | ≤ εcNm
j−1

where
c = max {|cji1...ip | | i1, . . . , ip ≥ 1 and i1 + . . .+ ip ≤ j}

and N is the number of terms in the preceding sum. We then deduce, by (1)
and (2), that

‖(Y ·W )j‖ ≤ ‖Yj‖+ ‖Wj‖+ ‖Qj(Y,W )‖
≤ aεmj + ε+ εcNmj−1 ≤ cε (1 +m)j

where cε = aε + ε+ εcN . Finally ‖Xj‖ ≤ cε (1 +m)j where cε = O(ε). We
now choose our new aε as cε.

2) Let X be in U , ε be a strictly positive number and Mε the integer
such that

Mε − 1 < ε−1 ≤Mε.

Then
‖M−1

ε X‖ ≤ ε‖X‖ ≤ ε,
therefore M−1

ε X belongs to εB and consequently X ∈ (εB)Mε .
3) Let X be a nonzero element of g. Fix ε small enough so that aε < 1

in 1). By definition, X belongs to UwU (X)−1, then by 2) to (εB)Mε(wU (X)−1),
and by 1),

(1 + ‖Xj‖)1/j ≤ (1 +M j
ε )1/j wU (X).

1.10. Proposition. There exists a real number c3 such that for all
Y1, . . . , Yn where each Yj belongs to gj−1, we have

‖Xj‖1/j ≤ c3 max
1≤i≤j

(1 + ‖Yi‖)1/i, ‖Yj‖1/j ≤ c3 max
1≤i≤j

(1 + ‖Xi‖)1/i,

where Xj indicates the component of Y1 . . . Yn belonging to Vj .
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Proof. Fix j in {1, . . . , n}. By the Baker–Campbell–Hausdorff formula,

(1) Xj = Yj +
∑

i1,...,ip≥1
i1+...+ip≤j

cji1...ip [Yi1 , [. . . , Yip ], . . .]j ,

hence

‖Xj‖ ≤ ‖Yj‖+
∑

i1,...,ip≥1
i1+...+ip≤j

|cji1...ip | ‖Yi1‖ . . . ‖Yip‖

≤ ‖Yj‖+ c
∑

i1,...,ip≥1
i1+...+ip≤j

(‖Yi1‖1/i1)i1 . . . (‖Yip‖1/ip)ip

≤ (1 + cN)( max
1≤i≤j

(1 + ‖Yi‖)1/i)j

where
c = max {|cji1...ip | | i1, . . . , ip ≥ 1 and i1 + . . .+ ip ≤ j}

and N is the number of terms in the previous sum. Finally,

‖Xj‖1/j ≤ (1 + cN)1/j max
1≤i≤j

(1 + ‖Yi‖)1/i.

The second relation follows similarly.

By 1.2 all the weights wU are equivalent on a connected group G. Hence
we fix a compact neighborhood U of e in G and we write wG instead of wU .
We can then summarize the previous results in the following theorem:

1.11. Theorem. Let G be a simply connected nilpotent Lie group with
Lie algebra g. Let g =

⊕n
i=1 Vi where Vi⊕ gi = gi−1 and where (gi)0≤i≤n−1

is the central decreasing sequence of g. Then there exist real numbers c and
c′ such that for all X in g, we have

c max
1≤i≤n

(1 + ‖Xi‖)1/i ≤ wG(expX) ≤ c′ max
1≤i≤n

(1 + ‖Xi‖)1/i

where Xi indicates the component of X belonging to Vi.

Proof. Proposition 1.9 shows the existence of c. Let now X be in g.
We can find Y1, . . . , Yn, where each Yj belongs to gj−1, such that expX =
expY1 . . . expYn. Hence, by 1.3, we have

wG(expX) ≤
n∑

j=1

wG(expYj)

and by Corollary 1.8,

wG(expX) ≤ c1
n∑

j=1

(1 + ‖Yj‖)1/j .
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It now follows from Proposition 1.10 that

wG(expX) ≤ c1
n∑

j=1

[1 + cj3 max
1≤i≤j

(1 + ‖Xi‖)j/i]1/j

≤ c1
n∑

j=1

1 + c3 max
1≤i≤j

(1 + ‖Xi‖)1/i

≤ c1n(1 + c3) max
1≤i≤n

(1 + ‖Xi‖)1/i.

Notation. For all k in {1, . . . , n}, the set U ∩ Gk denoted by Vk is a
symmetric compact neighborhood of e in Gk, and the weight wVk on Gk
defined in 1.3 will be denoted by wGk .

1.12. Theorem. There exists a strictly positive number c such that for
all k in {1, . . . , n}, we have

wG|Gk ≤ cw1/k+1
Gk

.

Proof. We easily show by induction on i that for all i in N,

(1) (gk)i ⊂ g(k+1)(i+1)−1.

Denote by pk the step of nilpotency of gk and let Y be an element of gk.
Then

Y = Y1 . . . Ypk = X1 + . . .+Xpk

where each Yi belongs to (gk)i−1 and Xi to (Vk)i where, as at the begin-
ning of this section, (gk)i−1 is the direct sum of (gk)i and (Vk)i for all i in
{1, . . . , pk}. As noticed in 1.3, we have

wG(expY ) = wG(expY1 . . . expYpk) ≤ wG(expY1) + . . .+ wG(expYpk).

Now each Yi belongs to g(k+1)i−1 by (1), and so by Corollary 1.8,

wG(expYi) ≤ c1(1 + ‖Yi‖)1/(k+1)i;
hence

wG(expY ) ≤ c1
pk∑

i=1

(1 + ‖Yi‖)1/(k+1)i

≤ c1pk max
1≤i≤pk

(1 + ‖Yi‖)1/(k+1)i

≤ c1pk + c1pk( max
1≤i≤pk

‖Yi‖1/i)1/k+1

≤ c1pk + c1pk(c3 max
1≤i≤pk

(1 + ‖Xi‖)1/i)1/k+1(2)

≤ c1pk + c1pk(c3 c2 wGk(expY ))1/k+1(3)

≤ (c1pk + c1pk(c2c3)1/k+1) (wGk(expY ))1/k+1

where (2) and (3) result from Propositions 1.10 and 1.9 respectively.
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1.13. Corollary. Let N be a subgroup of G1 and let (π,X) be a
Banach space representation of G on X. If π|N is given by χ 1X for some
character χ of N , then χ must be unitary.

Proof. Assume that π|N is a (continuous) nonunitary character of N .
Denote by n the Lie algebra of N . Let U be in VG(e). First, for all s in G
distinct from e we have

s = s1 . . . sτU (s),

hence

(1) |π(s)| = |π(s1)| . . . |π(sτU (s))| ≤ ekUτU (s) ≤ ekUwG(s)

where
ekU = sup

s∈U
|π(s)|.

By hypothesis, there exist two real linear forms α and β on n, with α 6= 0,
such that

π(expX) = e〈α+iβ,X〉, X ∈ n.

Fix X in n such that 〈α,X〉 = 1. Then for all t in R, from (1) we have

et = |π(exp(tX))| ≤ ekUwG(exp(tX)).

Let V = U ∩G1. By Theorem 1.12

wG(exp(tX)) = wG|G1(exp(tX)) ≤ c(wG1(exp(tX)))1/2

and by Proposition 1.4,

wG1(exp(tX)) < 2 + cV ‖tX‖,
hence

et ≤ ekUc
√

2+cV |t|‖X‖.

This last inequality is false for t large enough.

2. Spectral synthesis for nilpotent Lie groups. Let G be a con-
nected Lie group, g its Lie algebra, and g∗ the dual vector space of g. The
set of equivalence classes of irreducible continuous unitary representations
of G is denoted by Ĝ. When G is abelian, by Schur’s lemma, Ĝ is in bijection
with the group of continuous characters of G into the multiplicative group
U of complex numbers of norm 1. When G is not abelian, Ĝ is not known in
general. In 1962, A. Kirillov managed to determine Ĝ when G is nilpotent
and simply connected [11]: the unitary dual Ĝ of G is described by the orbits
of the elements of g∗ under the coadjoint action of G; this action is defined
by the relation

x · l = l ◦ Ad(x−1), l ∈ g∗, x ∈ G.
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From now on, G denotes a simply connected real nilpotent Lie group with
Lie algebra g. For l in g∗, there exists a polarization m at l, i.e. a subalgebra
m of g which is maximal isotropic for the skew-symmetric bilinear form

Bl(X,Y ) = l[X,Y ], X, Y ∈ g.

Denote by M the connected subgroup exp m of G associated to m. The map

χl,M : M → U, expX 7→ ei〈l,X〉,

is a character of M . We write

πl,M = indGM χl,M .

Then πl,M is irreducible and the correspondence

g∗/Ad∗(G)→ Ĝ, [l ] 7→ [πl,M ],

is a bijective mapping, called Kirillov’s bijection, where

l ∼ l′ ⇔ ∃x ∈ G : l′ = Ad∗(x)l.

The set Ĝ is also in bijection with Prim(G), the space of primitive ideals of
the C∗-algebra of G by [6], and by [3] in bijection with

Prim∗ L1(G)

= {Kerπ | |π a ∗-topologically irreducible representation of L1(G)}.
We equip these two sets with the Jacobson topology: for a subset S of L1(G),
we define its hull by

h(S) = {J ∈ Prim∗ L1(G) | |S ⊂ J},
and for a subset C of Prim∗ L1(G) or Prim(G), we define its kernel by

k(C) =
⋂

J∈C
J.

Then, by definition, C is closed in Prim∗ L1(G), respectively in Prim(G), if
and only if C = h(k(C)). By Brown’s theorem [4], Kirillov’s bijection is a
homeomorphism.

The Jacobson topology is in general not Hausdorff, but always accessible,
i.e. each point is closed, which means that every element in Prim∗ L1(G),
respectively in Prim(G), is maximal. This follows from the fact that the
coadjoint orbits of nilpotent Lie groups are closed [18].

Problem. Given a closed subset C of Prim∗ L1(G), can we determine
the set J (C) of closed two-sided ideals of L1(G) with hull C?

When J (C) = {k(C)}, the subset C is said to be of synthesis or spec-
tral . The first result of spectral synthesis is the famous theorem of N. Wiener
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stating that ∅ is of synthesis in Prim∗ L1(R), i.e. each proper closed ideal of
L1(R) is contained in the kernel of a ∗-topologically irreducible representa-
tion of L1(R). I. Segal [20] next showed that each point of Prim∗ L1(R) is
of synthesis; then I. Kaplansky [10] generalized this result to Prim∗ L1(G)
where G is abelian. The first result when G is not abelian was obtained by
H. Leptin [12] who showed that if G is nilpotent of step 2, then each point
in Prim∗ L1(G) is of synthesis. If G is nilpotent of step 3, J. Ludwig [14]
showed that J ({Kerπ}) is in bijection with J ({Kerχ}) where χ is a char-
acter of L1

w(Rn), and w is a weight of polynomial growth on Rn. J. Ludwig
shows that J ({Kerπ}) then contains in general an infinity of elements, and
consequently {Kerπ} is not of synthesis in these cases. If G is nilpotent of
step 4, the computations become much more difficult and no general result
is known. We have however the following theorem due to J. Ludwig [13],
which gives the existence of a smallest element in J (C):

Theorem. Let G be a locally compact group with polynomial growth
such that L1(G) is symmetric, and C a closed subset of Prim∗ L1(G). Then
there exists a single closed two-sided ideal j(C) of L1(G) such that

h(j(C)) = C

and
(J / L1(G), h(J) ⊂ C) ⇒ j(C) ⊂ J.

This theorem applies in particular when G is a simply connected nilpo-
tent Lie group [6]. For example, if G is abelian, then j(C) is the closure in
L1(G) of the ideal of L1(G) of functions for which the support of the Fourier
transform is compact and disjoint from C [19].

Notice that for a closed subset C of Prim∗ L1(G), each element of J (C)
is contained in k(C). Hence there exists a “minimal” ideal and a “maximal”
ideal with hull C. The subset C is then of synthesis if and only if these two
ideals are equal.

Let π be an element of Ĝ. In order to determine J ({Kerπ}) when the
step of G is larger than 3, it is natural to begin with the determination of
j({Kerπ}), since the latter is contained in each element of J ({Kerπ}). The
result obtained by J. Ludwig when G is of step 3 forces us to look for this
ideal not in L1(G) but in a weighted L1-algebra on Rn.

By Kirillov’s bijection, π is associated to the orbit O(l) of a certain linear
form l on g, and the easiest case is when the orbit O(l) is a single point. The
rest of this paper is devoted to the determination of j({Kerπ}) in this case.
This will be done in a quite general class of algebras which contain weighted
algebras, and for nilpotent Lie groups of any step. The principal result of
this paper is based in fact on a general property of C∞(G)-modules of finite
dimension, where G is solvable. This property is dealt with in [2].
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Notation. By [3], the set Prim∗ L1(G) is in bijection with g∗/Ad∗(G).
In order to make the reading easier, closed subsets C of Prim∗ L1(G) and
closed subsets of Ĝ will be identified with closed Ad∗(G)-invariant subsets
of g∗. So, for πl in Ĝ, associated to the orbit O(l) of a linear form l on g,
the minimal ideal j({Kerπl}) of L1(G) and the set J ({Kerπl}) of closed
two-sided ideals of L1(G) with hull {Kerπl} will be denoted j(l) and J (l)
respectively.

Conventions. Unless otherwise stated, a function will always be
complex-valued. For any group, e will indicate the identity element. For
a normed algebra A the relation I / A means that I is a closed two-sided
ideal of A.

3. Polynomials and group algebras. In the following, λ will indicate
a Haar measure on a simply connected nilpotent Lie group G and dλ(x) will
be denoted by dx.

3.1. Notation. LetG be a locally compact group, λ a left Haar measure
on G, and w a weight on G. We denote by L1

w(G) the subalgebra of L1(G) of
measurable functions f such that

�
G
|f |w dλ is finite, and we define a norm

‖ ‖w on L1
w(G) by

‖f‖w = �
G

|f |w dλ.

We thus obtain the Beurling algebra L1
w(G). The algebra of polynomials on

G is denoted by P(G). For X in g and for a C∞ function f on G, we let
X ∗f be the left derivative of f in direction X, and f ∗X the right derivative
of f in direction X:

X ∗ f(y) =
d

dt
f(exp(−tX)y)

∣∣∣∣
t=0

, y ∈ G,

f ∗X(y) =
d

dt
f(y exp(tX))

∣∣∣∣
t=0

, y ∈ G.

A basis (X1, . . . ,Xd) of g being fixed, for a multi-index (α1, . . . , αd) of Nd,
denoted by α, and a C∞ function f on G, we write

Xα ∗ f = Xα1
1 ∗ . . . ∗Xαd

d ∗ f, f ∗Xα = f ∗Xα1
1 ∗ . . . ∗Xαd

d ,

|α| = α1 + . . .+ αd.

We denote by S(G) the Schwartz space of C∞ functions f on G such that
for all positive integers N ,

pN (f) =
∑

|α|≤N
�
G

|Xα ∗ f |wN dλ
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is finite, where w is the weight wU defined in 1.3. One can check that the
definition of S(G) is independent of the choice of the basis of g and of U .
We have (see [17])

pN (g ∗ f) ≤ pN (g)‖f‖wN .
We denote by D(G) the subspace of S(G) of functions with compact support.
The space S(G) equipped with the convolution multiplication and with the
family of seminorms (pN )N∈N is then a Fréchet algebra and S(G) is dense
in (L1(G), ‖ ‖1).

3.2. The determination of the “minimal ideal” in Section 5 will be given
for a quite general class of algebras. Indeed, in this paper we consider a
Banach subalgebra (A, ‖ ‖) of L1(G) containing S(G) as a dense subspace
and satisfying {∃N ∈ N, ∀f ∈ S(G) : ‖f‖ ≤ pN (f),

∀f ∈ A : ‖f‖1 ≤ ‖f‖,
which means that the norm ‖ ‖ of A makes the injections of S(G) into A
and of A into L1(G) continuous.

3.3. Recall that the characters of G, i.e. the continuous homomorphisms
of the group G into C×, are of the form expX 7→ χl(expX) = eil(X) where
l is an R-linear form on g with complex values such that l[X,Y ] is zero for
all X and Y in g. For real-valued l we obtain the unitary characters of G.

For l in g∗ such that l is zero on g1, we denote by Pl the vector space
of polynomials P , with complex coefficients, such that the continuous linear
form Pχl on S(G) mapping f to

�
G
fPχl dλ extends to a continuous linear

form on A, meaning that there exists a positive number c such that for all
f in S(G), we have ∣∣∣ �

G

fPχl dλ
∣∣∣ ≤ c‖f‖.

Let G be a group and s be an element of G. For a function f : G → C,
we denote by Lsf or sf the left translate of f by s, mapping t to f(s−1t),
and by Rsf or fs the right translate of f by s, mapping t to f(ts).

Let P be in Pl and f, g be elements of A. Then Pχl defines a continuous
linear form on A by definition, and consequently 〈Pχl, g ∗ f〉 exists. For g
in A, we write ǧ ∗ (Pχl) for the continuous linear form on A defined by

〈ǧ ∗ (Pχl), f〉 = 〈Pχl, g ∗ f〉.
In the same way, Pχl ∗ ǧ denotes the continuous linear form on A defined
by

〈Pχl ∗ ǧ, f〉 = 〈Pχl, f ∗ g〉.
3.4. Theorem. The vector space Pl is finite-dimensional.
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Proof. 1) Let f be in S(G), Q a polynomial and χq a unitary character
of G. After an easy computation, for all x in G we have

(f ∗ (Qχq))(x) = P (x)χq(x)

where P is another polynomial.
2) Let Q be in Pl and g in S(G). By 1),

g ∗ (Qχl) = Qgχl

where Qg is a polynomial, and for all f in S(G),

|〈g ∗ (Qχl), f〉| = |〈Qχl, ǧ ∗ f〉| ≤ ‖Qχl‖op ‖ǧ ∗ f‖
≤ ‖Qχl‖op pN (ǧ ∗ f) ≤ ‖Qχl‖op pN (ǧ) ‖f‖wN

where N is an integer depending on Q and l. Hence g ∗ (Qχl) is in the dual
space of L1

wN (G), and so

‖Qg/wN‖∞ <∞.
Denote by PN the vector space of polynomials P such that ‖P/wN‖∞ is
finite. Since the weight wN has a polynomial growth, the space PN is finite-
dimensional and we have shown that for all Q in Pl and all g in S(G),
g ∗ (Qχl) belongs to PNχl ∩ Plχl.

3) Let Q be in Pl. Since the weak star topology on PN with respect to
L1
wN (G) coincides with the norm topology, and since for any approximate

identity (gn) in S(G), (gn∗Qχl) converges in the weak star topology to Qχl,
it follows that (gn ∗Qχl) inside PN converges to Qχl in the operator norm,
and so Qχl ∈ PN . Hence Pl ⊂ PN .

3.5. Notation. Until the end of this paper, W indicates a nonzero
subspace of Pl which is invariant under left and right translations, and Wχl
is denoted by Wl. We also write

I(W ) = {f ∈ A | ∀P ∈W : 〈Pχl, f〉 = 0} = (Wχl)◦.

We then have the following proposition.

3.6. Proposition. The vector space W is invariant under translations
and under convolution by elements of S(G). So I(W ) is a closed two-sided
ideal of A.

4. Hull

Definition. For a Banach algebra A, we denote by Prim(A) the set of
primitive ideals of A, i.e. the set of the kernels of algebraically irreducible
representations of A in Banach spaces. The kernel of a subset C of Prim(A)
is the set

k(C) =
⋂

J∈C
J,
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and the hull of a subset S of A is the set

h(S) = {J ∈ Prim(A) | S ⊂ J}.
Notation. For a Banach algebra A, the set Prim(A) is equipped with

the Jacobson topology: by definition, a subset C of Prim(A) is closed in
Prim(A) if and only if C = h(k(C)). We denote by J (C) the set of closed
two-sided ideals of A with hull C:

J (C) = {J / A | h(J) = C}.
In the present case, the set {Kerχl} is closed in Prim(A), and as stipulated
in Section 2, the set J ({Kerχl}) will be denoted J (l) by abuse of notation.

4.1. Proposition. With the above hypothesis on A, we have

Prim(A) = {Ker(π|A) | π ∈ Ĝ}.
Proof. 1) Let π be a unitary topologically irreducible representation of

G; denote also by π the corresponding representation of L1(G). Since A is
dense in L1(G), π|A is topologically irreducible on the Hilbert space H. Let

H0 = Span{π(f)ξ | ξ ∈ H, f ∈ A, π(f) of finite rank}.
Since π(S(G)) contains many operators of finite rank, H0 is an A-invariant
nontrivial subspace of H and the restriction of π to H0 defines a simple
module of A (see [6]). Hence Ker(π|A) is a primitive ideal:

{Ker(π|A) | π ∈ Ĝ} ⊂ Prim(A).

Let us prove the other inclusion. If (T, V ) is a simple A-module on a
Banach space V then (T |S(G), V ) is a topologically irreducible S(G)-module.
Hence by [16] there exists a π ∈ Ĝ such that

Ker(T |S(G)) = Ker(π|S(G)).

By [15] we know that Ker(π|S(G)) is dense in Ker(π|A). Hence KerT contains
Ker(π|A).

2) Let us prove that Ker(π|A) is a maximal two-sided ideal of A. Let M
be a closed two-sided ideal of A containing Ker(π|A). Suppose that M 6=
Ker(π|A). Then there exists g in M such that g /∈ Ker(π|A). By [15], the
two-sided ideal

R = {f ∈ S(G) | π(f) of finite rank}
is dense in S(G) and then in A. Hence R∗g ∗R is not contained in Ker(π|A)
and so M contains an element h such that π(h) = Pλ is the orthogonal
projector onto a C∞ vector λ of Hπ. Let f in S(G) be such that π(f) = Pµ
is also a one-dimensional orthogonal projector with 〈λ, µ〉 6= 0. Then

π(f) = |〈λ, µ〉|−2 Pµ ◦ Pλ ◦ Pµ = π(〈λ, µ〉−2
f ∗ h ∗ f).

Hence
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f − 〈λ, µ〉−2
f ∗ h ∗ f ∈ Kerπ ⊂M

and consequently f ∈ M . Since R is generated as an ideal by those ele-
ments f , this shows that M contains the ideal R and finally M = A since
M is closed. This proves that KerT = Ker(π|A).

The aim of this section is to determine the hull of I(W ) where W is
defined in 3.5. Since W is finite-dimensional, we have the following proposi-
tion.

4.2. Proposition. The space W is invariant under derivations: for all
X in g and all P in W , X ∗ P and P ∗X belong to W .

By [5], we have:

4.3. Proposition. There exists a function deg on the complex vector
space of polynomials on G such that for all X in g and all polynomials P ,
we have

deg(X ∗ P ) < degP.

Hence for all X in g, there exists a natural k such that for all P in W ,
Xk ∗ P is zero.

4.4. Proposition. The hull h(I(W )) of I(W ) contains Kerχl.

Proof. For X in g and P in W , π(X)(Pχl) = X ∗ (Pχl) = (X ∗ P )χl +
i〈l,X〉(Pχl) defines a representation π of the Lie algebra g in Wl. By Lie’s
theorem (see [7]), there exists a nonzero element P in W such that for
all X in g, π(X)(Pχl) = λ(X)(Pχl) where λ is a linear form on g. Since
deg (X ∗ P ) < degP , we have λ(X) = i〈l,X〉 and so (X ∗ P )χl = 0. Hence
X ∗ P = 0 and the polynomial P is constant. Consequently, χl ∈ Wl and
hence I(W ) ⊂ Kerχl and Kerχl ⊂ h(I(W )).

Notation. For f in L1(G), the Fourier transform of f at l is denoted
f̂(l) and is defined by

f̂(l) = �
G

fχl dλ.

Let P be a polynomial in the variables X1, . . . ,Xd. We define the differential
operator P (D) in the Dj = i ∂/∂Xj with

Dα =
d∏

i=1

D
αj
j , α = (α1, . . . , αd).

We have the well known result:

4.5. Lemma. For all f in A,

f ∈ I(W ) ⇔ ∀P ∈W : (P (D)(f̂ ))(−l) = 0,

where f̂ indicates the Fourier transform of f .

4.6. Theorem. The hull h(I(W )) of I(W ) is {Kerχl}.
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Proof. By Proposition 4.4, Kerχl ∈ h(I(W )).
Let π be a topologically irreducible ∗-representation of L1(G) in a Hilbert

space whose kernel in A contains I(W ). By Theorem 3.4, I(W ) is of finite
codimension in A, hence π is finite-dimensional and defines an irreducible
continuous unitary representation π̃ of the nilpotent group G. By Lie’s the-
orem (see [7]), π̃ is a character. Then π is a character χl′ where l′ is a real
linear form on g which is zero on [g, g] by 3.3. If l′ is different from l, there
exists f in S(g) such that f̂(−l′) = 1 and f̂ is zero on a neighborhood of −l.
Then f does not belong to Kerχl′ and belongs to I(W ) by Lemma 4.5. Since
this contradicts the hypothesis, l′ is equal to l.

5. Minimal ideal

5.1. Proposition. For each closed subset C of Prim∗(A), there exists a
closed two-sided ideal j(C) of A with hull C such that each closed two-sided
ideal of A whose hull is contained in C contains j(C).

Proof. The proof given in [13] adapts to the general case.

Taking in the previous theorem W = Pl, we have j(Kerχl) ⊂ I(Pl). The
following theorem will show the other inclusion.

5.2. Lemma. Let F be a finite-dimensional A-left invariant subspace
of the dual A′ of the algebra A. Then each element of F is a finite sum
of functions of the form Pχq, where P is a polynomial , and χq a unitary
character of G.

Proof. Let us show that the elements of F are C∞ functions on G. Let
(µ1, . . . , µn) be a basis of F . Then D(G)∗µ1 + . . .+D(G)∗µn is dense in the
finite-dimensional vector space F , hence is equal to F . Every µ in F defines
a tempered distribution on G. Let g be in D(G). For all f in S(G),

〈g ∗ µ, f〉 = 〈µ, ǧ ∗ f〉 = �
G

ϕ(x) (1−∆)N (ǧ ∗ f)(x) dx

for a certain function ϕ with moderate growth, of class C∞ on G, and a
certain integer N , where ∆ indicates the Laplacian of G (by [17]).

Putting h = (1−∆)N ǧ, we then have

〈g ∗ µ, f〉 = �
G

ψf dλ where ψ(x) = �
G

hϕx dλ.

The linear form g ∗ µ is then given on S(G) by a function ψ of class C∞ on
G. Since S(G) is dense in A, the linear form g ∗ µ can be identified with ψ,
and with this identification, F consists of C∞ functions. The lemma then
results from Proposition 1 of [2].
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5.3. Theorem. The smallest closed two-sided ideal of A with hull
{Kerχl} is

j(l) = I(Pl).
Proof. 1) It has already been noticed that j(l) is contained in I(Pl).

By [15], there exists a natural integer N such that j(l) = (Kerχl)N .
Let us show by induction on n that if T is a continuous linear form on A

which is zero on (Kerχl)n then T is of the form Pχl where P belongs to Pl.
The result is true if n = 1: the polynomial P is a nonzero constant.
2) Let m in N∗ be such that T is zero on (Kerχl)m and nonzero on

(Kerχl)m−1.
(a) Let f0 be in Kerχl. Then f̌0 ∗T is a continuous linear form on A and

for all u in (Kerχl)m−1,

〈f̌0 ∗ T, u〉 := 〈T, f0 ∗ u〉 = 0

because f0 ∗ u belongs to (Kerχl)m. The induction hypothesis shows that
f̌0 ∗ T = Pf0χl where Pf0 belongs to Pl.

(b) Let f and f1 in A be such that χl(f1) = 1. Then f−χl(f)f1 ∈ Kerχl,
and consequently

(f − f̂(−l)f1)∨ ∗ T = Pfχl

where Pf ∈ Pl by (a), i.e.

f̌ ∗ T = f̂(−l)f̌1 ∗ T + Pfχl ∈ C(f̌1 ∗ T ) + Plχl.
This shows that the complex vector space Ǎ ∗ T , which is contained in A′,
is of finite dimension by Theorem 3.4.

3) Let φ be an element of A. By 2) and Lemma 5.2, φ̌ ∗ T is of the form

φ̌ ∗ T =
p∑

j=1

Pjχqj

where the Pj are polynomials and the χqj are unitary characters of G which
we assume to be all distinct. Let us show that p = 1 and q1 = l.

Let f0 be in Kerχl ∩ S(G). The function f0 ∗ φ belongs to Kerχl, so
by 2)(a),

(f0 ∗ φ)∨ ∗ T = Pχl

where P belongs to Pl. On the other hand, the computation 1) in the proof
of Theorem 3.4 shows that

(f0 ∗ φ)∨ ∗ T =
p∑

j=1

f̌0 ∗ Pjχqj =
p∑

j=1

Qjχqj

where the Qj are polynomials which we can assume to be all nonzero. Finally

Pχl =
p∑

j=1

Qjχqj .
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In the module of linear combinations (whose coefficients are polynomials) of
unitary characters of G, each finite family of distinct unitary characters of G
is free. Consequently, p = 1, q1 = l and φ̌∗T = Qχl where Q is a polynomial.
Since φ ∈ A and T ∈ A′, φ̌ ∗ T is continuous on A and Q belongs to Pl.

Let us show that T itself is in Plχl.
4) The space Pl being finite-dimensional, let f1, . . . , fM be Schwartz

functions on G such that

(〈Pχl, fi〉 = 0 for i = 1, . . . ,M) ⇒ P = 0.

For all P in Pl let
‖Pχl‖l = max

1≤i≤M
|〈Pχl, fi〉|.

Let (φn)n∈N be an approximate unit in S(G). For all f in S(G),

(1) 〈φ̌n ∗ T − T, f〉 = 〈T, φn ∗ f − f〉.
The sequence (φn ∗ f − f)n∈N converges to 0 in S(G), hence in A, and T
being continuous on A, (〈φ̌n ∗ T − T, f〉)n∈N tends to 0 by (1). We have

‖φ̌n ∗ T − φ̌m ∗ T‖l = max
1≤i≤M

|〈T, (φn − φm) ∗ fi〉|.

This tends to 0 because (φn − φn ∗ fi)n∈N tends to 0 in S(G), hence also
in A. This shows that the sequence (φ̌n ∗T )n∈N is Cauchy for the norm ‖ ‖l,
hence converges to an element Pχl where P belongs to Pl, the space Plχl
being finite-dimensional. Let f be in S(G). For all Q in Pl write

‖Qχl‖f = ‖Qχl‖l + |〈Qχl, f〉|.
Then ‖ ‖f is a norm on Plχl equivalent to ‖ ‖l, since Plχl is finite-dimen-
sional. Hence the sequence (φ̌n ∗ T )n∈N converges to Pχl for ‖ ‖f and the
inequality

|〈Pχl − T, f〉| ≤ |〈Pχl − φ̌n ∗ T, f〉|+ |〈φ̌n ∗ T − T, f〉|
≤ ‖Pχl − φ̌n ∗ T‖f + |〈φ̌n ∗ T − T, f〉|,

valid for all n in N, gives, as n→∞,

〈Pχl − T, f〉 = 0.

Since S(G) is dense in A, this proves that T = Pχl and so T is zero on
I(Pl). For all T in j(l)◦, we know that T is zero on (Kerχl)N and by the
preceding T belongs to Plχl and so to I(Pl)◦. Since 〈T, (Kerχl)m〉 = 0 we
see that T is zero on I(Pl). The Hahn–Banach theorem shows finally that
I(Pl) is contained in j(l).

Notation. Let J be a closed two-sided ideal of A. We associate to it
the vector subspace V (J) of Pl defined by

V (J) = {P ∈ Pl | ∀f ∈ J : Pf ∈ Kerχl}.
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We show that the mapping J 7→ V (J) gives characterization of the closed
two-sided ideals of A with hull {Kerχl}.

5.4. Proposition. Let J be a closed two-sided ideal of A. The vector
subspace V (J) of Pl is invariant under translations.

Proof. The vector space generated by S(G) ∗ V (J) ∗ S(G) is dense in
the finite-dimensional vector space V (J), hence is equal to V (J). The result
then follows from the formula

x(f ∗ P ∗ g)y = xf ∗ P ∗ gy
valid for all f and g in S(G), P in V (J), and x, y in G.

Notation. Denote by T P l the set of nonzero subspaces of Pl which are
invariant under left and right translations. For a topological vector space E
and a subset X of E, we denote by X◦ the orthogonal complement of X
in E, i.e. the vector space of continuous linear forms on E which are zero
on X:

X◦ = {ϕ ∈ E′ | ∀x ∈ X : 〈ϕ, x〉 = 0}.
The most important result of this paper is the following theorem:

5.5. Theorem. The map

T Pl → J (l), W 7→ I(W ),

is a decreasing bijection, with inverse

J (l)→ T Pl, J 7→ V (J).

Proof. By Theorem 4.6, the map W 7→ I(W ) is J (l)-valued.
For any finite-dimensional subspace U of A′, we know that U is ∗-weakly

closed and so (U◦)◦ = U . This shows that the mapping W 7→ I(W ) is
injective.

Let us show the surjectivity. Let J be an element of J (l). Since J ⊃ j(l),
its orthogonal J◦ is finite-dimensional and is contained in j(l)◦, which means
by Theorem 5.3 that J◦ ⊂ Plχl and so J◦ = Wχl for some translation
invariant subspace W of Pl. Hence J = (Wχl)◦ = I(W ), which shows the
surjectivity of the map W 7→ I(W ) and consequently, the bijectivity of
J 7→ V (J).

6. Examples. Let w be a symmetric weight with polynomial growth
on G. Let N be an integer and define AN as the subalgebra of L1(G) of
classes of functions f such that

∑
|α|≤N

�
G

(|Xα ∗ f |w + |f ∗ Xα|w) dλ is
finite. We define a norm on AN by putting

‖f‖ =
∑

|α|≤N
�
G

(|Xα ∗ f |w + |f ∗Xα|w) dλ.
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The algebra AN with the norm ‖ ‖ is a Banach algebra and satisfies the
conditions given in 3.2. Consequently, Theorem 5.3 applies in this case. In
particular, for N equal to zero, the weighted algebra L1

w(G) defined in 3.1
is an example of an algebra A satisfying the conditions of 3.2. The rest of
this section states the principal results of the paper in this particular case.

Notation. Let G be a locally compact group and w a weight on G.
We denote by L∞w (G) the vector space of (classes of) functions f essentially
bounded by w, i.e. such that ‖f/w‖∞ is finite, and we define a norm ‖ ‖ on
L∞w (G) by

‖f‖ = ‖f/w‖∞.

The following proposition, which describes the topological dual L1
w(G)′

of L1
w(G), is known.

6.1. Proposition. Let G be a locally compact group, λ a nonzero posi-
tive left Haar measure on G, and w a weight on G. The map ψ : L∞w (G)→
L1
w(G)′ which takes g ∈ L∞w (G) to

ψg : L1
w(G)→ C, f 7→ 〈g, f〉 = �

G

fg dλ,

is an isometric isomorphism of Banach spaces.

In the following, the spaces L1
w(G)′ and L∞w (G) will be identified. The

topological dual of L1
w(G) being known, it is possible to give a more vivid

description of the vector space Pl defined in 3.3:

Notation. Let w be a weight on G. We denote by Pw(G) the vector
space of polynomials which are essentially bounded by w:

Pw(G) = P(G) ∩ L∞w (G).

By 6.1, it is clear that Pl = Pw(G) and Theorem 5.3 can be written as

j(l) = I(Pw(G)) =
{
f ∈ L1

w(G)
∣∣∣ ∀P ∈ Pw(G) : �

G

P (x)f(x)χl(x) dx = 0
}
.

Particular cases. 1) If w is the constant weight equal to 1, then L1
w(G)

coincides with L1(G), and Pw(G) contains only constants; then j(l) =
{Kerχl}, which shows that {Kerχl} is of synthesis. We find again in this
case a result of [10].

2) If in a direction X0, w(exp(tX0)) grows at least as |t|, then Pw(G) con-
tains a nonconstant polynomial, hence j(l) is strictly contained in {Kerχl}
and therefore {Kerχl} is not of synthesis. So, for a nonconstant weight w,
the one-point set {Kerχl} is not of synthesis in L1

w(G) in general.
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6.2. Let us take for G the 3-dimensional Heisenberg group H1, for which
the multiplication is given by

(x, y, z) · (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1
2

(xy′ − yx′)
)
.

Denote by L the left regular representation of H1 in C∞(H1). Let P be the
polynomial

P = −x2 + y2 + z2

and V the vector space generated by P and its left derivatives. Then the
vector space V is 10-dimensional and (1, x, y, z, x2, y2, xy, xz, yz, z2) is a ba-
sis of V . For an element (mij)1≤i,j≤10, denoted by M , belonging to End(V ),
denote by ‖M‖HS its Hilbert–Schmidt norm

‖M‖HS =
( ∑

1≤i,j≤10

|mij |2
)1/2

.

Finally, define
ω(u, v, w) = ‖L(u,v,w)‖HS.

An explicit computation shows that

ω(u, v, w) =
[
10 +

35
4

(u2 + v2) + 7w2 +
7
4
u2v2

+ 2(u2w2 + v2w2) +
21
16

(u4 + v4) + w4
]1/2

.

The mapping ω is a weight on H1. Let π be an element of the unitary dual
Ĥ1 of H1 and let h1 be the Lie algebra of H1. Assume that the orbit of the
linear form l on h1 associated to π by the Kirillov bijection is one point,
i.e. l is a character of h1. So, π is a character of L1

ω(H1). By Theorem 5.5,
the sets J (l) and T Pω(H1) are in bijection. The set T Pω(H1) is explicitly
determined in [1].
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