Minimal ideals of group algebras

by

DAVID ALEXANDER and JEAN LUDWIG (Metz)

Abstract. We first study the behavior of weights on a simply connected nilpotent Lie group G. Then for a subalgebra A of $L^1(G)$ containing the Schwartz algebra $\mathcal{S}(G)$ as a dense subspace, we characterize all closed two-sided ideals of A whose hull reduces to one point which is a character.

Introduction. Let G be a simply connected nilpotent Lie group, \mathfrak{g} its Lie algebra, and A a subalgebra of $L^1(G)$. To every character χ_l of A we will associate a finite-dimensional translation invariant subspace \mathcal{P}_l of the vector space $\mathcal{P}(G)$ of complex polynomials on G and we will show that the set of closed two-sided ideals of A with hull {Ker χ_l } is in bijection with the set of nonzero translation-invariant subspaces of \mathcal{P}_l . As an example of A we can take the weighted algebra $L^1_w(G)$ where w is a weight with polynomial growth. Such weights appear in a natural way in the following manner: let π be a unitary continuous irreducible representation of G in a Hilbert space \mathcal{H}_{π} . We denote by $\mathcal{U}(\mathfrak{g})$ the enveloping algebra of \mathfrak{g} . Fix a nonzero integer k and denote by $\mathcal{U}(\mathfrak{g})_k$ the vector space generated by the elements of $\mathcal{U}(\mathfrak{g})$ with degree less than k. Let $\mathcal{H}^{(k)}_{\pi}$ be the space of k times differentiable vectors in \mathcal{H}_{π} , i.e.

$$\mathcal{H}_{\pi}^{(k)} = \{ \xi \in \mathcal{H}_{\pi} \mid \forall z \in \mathcal{U}(\mathfrak{g})_k : d\pi(z)\xi \in \mathcal{H}_{\pi} \}.$$

Fix a basis $(z^i)_{|i| \leq k}$ of $\mathcal{U}(\mathfrak{g})_k$. We equip $\mathcal{H}^{(k)}_{\pi}$ with the norm

$$\|\xi\|_{k} = \left(\sum_{|i| \le k} \|d\pi(z^{i})\xi\|^{2}\right)^{1/2}.$$

The space $\mathcal{H}_{\pi}^{(k)}$ with this norm is complete. Denoting by $\|\pi(x)\|_{\text{op}}$ the norm of the operator $\pi(x): \mathcal{H}_{\pi}^{(k)} \to \mathcal{H}_{\pi}^{(k)}$, we then have

$$\|\pi(x)\|_{\rm op} \le \|{\rm Ad}(x)|_{\mathcal{U}(\mathfrak{g})_k}\|_{\rm HS}$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 43A20.

where $\| \|_{\text{HS}}$ denotes the Hilbert–Schmidt norm. Denote by $w^{(k)}(x)$ the right side of this inequality. The function $x \mapsto w^{(k)}(x)$ is a natural example of a weight on G attached to π . By a *weight* on a topological group G, we mean a measurable function w on G with values in $[1, +\infty[$ such that for all s and t in G,

$$w(st) \le w(s)w(t).$$

The preceding result leads naturally to the study of weights on nilpotent Lie groups. The first section will give another example of a natural weight. Other examples of weights come from Banach space representations of topological groups. Let X be a Banach space and let (T, X) be a Banach space representation of G on X. That means that for every s in G, we have a bounded invertible operator T(s) on X such that the mapping $s \mapsto T(s)$ is a homomorphism of groups and the mappings $s \mapsto T(s)x$ are continuous for every x in X. Then the operator norm $||T(s)||_{\text{op}}$ is a measurable function on G and defines a symmetric weight $w_T : s \mapsto \max(||T(s)||_{\text{op}}, ||T(s^{-1})||_{\text{op}})$.

Take for example the 3-dimensional Heisenberg group $G = H_1$. For x in H_1 write x = (a, b, t) and let (X, Y, Z) be a basis of the Lie algebra \mathfrak{h}_1 of H_1 with [X, Y] = Z. We have

$$\operatorname{Ad}(x)X = X - bZ, \quad \operatorname{Ad}(x)Y = Y + aZ, \quad \operatorname{Ad}(x)Z = Z.$$

After an easy computation, we find

$$w^{(2)}(x) = (9 + 7a^2 + 7b^2 + a^2b^2 + a^4 + b^4)^{1/2}$$

and

$$\frac{1}{\sqrt{2}}\left(1+a^2+b^2\right) \le w^{(2)}(x) \le 3(1+a^2+b^2).$$

1. Weights on topological (in particular nilpotent Lie) groups. Weights allow us to define Banach subalgebras of $L^1(G)$, the so-called Beurling algebras. This section studies the growth of the "most natural" weight attached to a connected locally compact group. This weight is of importance because it dominates all common weights. We end this section with a restriction property of this weight.

DEFINITION. Let G be a topological group and S a subset of G. We write $S^0 = \{e\}$ and for all n in \mathbb{N}^* ,

$$S^n = \{s_1 \dots s_n \mid s_i \in S\}.$$

When G is locally compact, for s in G, we denote by $\mathfrak{V}_G(s)$ the set of compact neighborhoods of s in G.

In the following proposition we recall the "most natural" weight attached to a connected locally compact group as in [9]. **1.1.** PROPOSITION. Let G be a connected locally compact group and U an element of $\mathfrak{V}_G(e)$. Then $G = \bigcup_{n \in \mathbb{N}} U^n$ and the map $\tau_U : G \to \mathbb{N}$ defined by

$$\tau_U(s) = \min\{n \in \mathbb{N} \mid s \in U^n\}$$

is measurable and satisfies

$$\tau_U(s) = 0 \iff s = e, \quad \tau_U(st) \le \tau_U(s) + \tau_U(t).$$

If in addition U is symmetric, then

$$\tau_U(s^{-1}) = \tau_U(s).$$

It seems difficult to define canonically the notion of a "polynomial function" on any group G. In the absence of such a notion, the following definition tries to define in a natural way a function "of polynomial growth" on a class of groups as large as possible.

1.2. DEFINITION. Let G be a connected locally compact group. A function $f: G \to \mathbb{C}$ is said to be *of polynomial growth* if for all U in $\mathfrak{V}_G(e)$, there exists a polynomial P_U in one variable, with real coefficients, such that for all s in G,

$$|f(s)| \le P_U(\tau_U(s)).$$

For example for a connected compact group G, the functions with polynomial growth on G are bounded functions. More generally, it is easy to check that under the conditions of 1.2, a function with polynomial growth is bounded on all compact subsets. Since for any two elements U and V of $\mathfrak{V}_G(e)$, there exist strictly positive numbers k and k' such that

$$\tau_V \le k \tau_U \le k' \tau_V,$$

it follows that if $f: G \to \mathbb{C}$ satisfies $|f| \leq P_U \circ \tau_U$ for one compact neighborhood U of e in G, then such a relation is true for all compact neighborhoods of e in G, i.e. f is of polynomial growth.

NOTATION. Let G be a group. For $f : G \to \mathbb{C}$, we denote by \check{f} the function $s \mapsto f(s^{-1})$.

It is clear that the set of weights on G is stable under pointwise multiplication, involution $w \mapsto \check{w}$, finite simple limit, finite upper hull, and left composition by functions of the form $\exp \circ f \circ \ln$, where f is an increasing and subadditive function $\mathbb{R}_+ \to \mathbb{R}_+$. Such functions are studied in [8].

1.3. EXAMPLE. For a connected locally compact group G and U in $\mathfrak{V}_G(e)$, the map $1 + \tau_U$, denoted by w_U , is clearly a weight on G, satisfying in addition

$$w_U(st) \le w_U(s) + w_U(t).$$

This weight will be studied in detail in the following when G will be assumed to be a nilpotent Lie group. By [6], we have:

1.4. PROPOSITION. Let G be a connected Lie group with Lie algebra \mathfrak{g} . A norm $\| \|$ on the vector space \mathfrak{g} being fixed, for all U in $\mathfrak{V}_G(e)$, there exists a strictly positive number c_U such that for all X in \mathfrak{g} ,

$$w_U(\exp X) < 2 + c_U \|X\|$$

Until the end of this section, G denotes a simply connected nilpotent Lie group with Lie algebra \mathfrak{g} . Starting with $\mathfrak{g}_0 = \mathfrak{g}$, we define \mathfrak{g}_m for m in \mathbb{N}^* as the real vector space generated by the set of [X, Y] where X runs through \mathfrak{g} and Y runs through \mathfrak{g}_{m-1} . The step of nilpotency of \mathfrak{g} is denoted by n; this means that \mathfrak{g}_n reduces to $\{0\}$ and \mathfrak{g}_{n-1} is nonzero. Hence, an element X of \mathfrak{g} belongs to \mathfrak{g}_i if and only if X is a linear combination of terms requiring at least i brackets in all. For all i in $\{1, \ldots, n\}$, choose a complementary subspace V_i of \mathfrak{g}_i in \mathfrak{g}_{i-1} . Then

$$\mathfrak{g} = \bigoplus_{i=1}^n V_i.$$

For all k in $\{0, \ldots, n\}$, let G_k be $\exp \mathfrak{g}_k$. Then G_k is the closure in G of the subgroup generated by the elements $xyx^{-1}y^{-1}$ where x runs through G and y runs through G_{k-1} . The exponential map \exp is a C^{∞} diffeomorphism of \mathfrak{g} onto G, which allows us to identify G with the real vector space \mathfrak{g} as manifolds. If \mathfrak{g} is endowed with the Baker-Campbell-Hausdorff product

$$X \cdot Y = X + Y + \frac{1}{2} [X, Y] + \frac{1}{12} ([X, [X, Y]] + [Y, [Y, X]]) + (\text{commutators of order 3 at least})$$

then exp is an isomorphism of topological groups from \mathfrak{g} onto G, which allows us to identify the groups G and (\mathfrak{g}, \cdot) . For this group law, -X is the inverse of X. Finally, for X and Y in \mathfrak{g} , we set

$$\{X,Y\} = X \cdot Y \cdot (-X) \cdot (-Y).$$

By [21], we have:

1.5. LEMMA. Let \mathfrak{g} be a nilpotent Lie algebra of step n. For all X_1, \ldots, X_n in \mathfrak{g} , we have

$$[X_1, [X_2, [\ldots, X_{n-1}] \ldots]] \equiv \{X_1, \{X_2, \{\ldots, X_{n-1}\} \ldots\}\} \mod \mathfrak{g}_{n-1}, [X_1, [X_2, [\ldots, X_n] \ldots]] = \{X_1, \{X_2, \{\ldots, X_n\} \ldots\}\}.$$

In the following proposition, the bracket of two elements X and Y will be written as product in the group \mathfrak{g} of $a_i X$ and $b_i Y$ where a_i and b_i are real numbers. We give a bound for the number of factors in the product, which improves a result of [21].

1.6. PROPOSITION. Let \mathfrak{g} be a nilpotent Lie algebra of step n greater than 2.

1) There exists an integer m, depending only on n and 2m real numbers $a_1, \ldots, a_m, b_1, \ldots, b_m$, such that for all X and Y in \mathfrak{g} , we have

$$X + Y = \prod_{i=1}^{m} (a_i X) \cdot (b_i Y).$$

2) There exists an integer p, depending only on n and 2p real numbers $c_1, \ldots, c_p, d_1, \ldots, d_p$, such that for all X and Y in \mathfrak{g} , we have

$$[X,Y] = \prod_{i=1}^{p} (c_i X) \cdot (d_i Y).$$

In addition m and p are less than $2^n(2^n-5)+2n+2$.

Proof. 1) If n = 2, then for all X and Y in \mathfrak{g} , we have

$$X + Y = \frac{X}{2} \cdot Y \cdot \frac{X}{2}.$$

Assume the result is true for a nilpotent Lie algebra of step $n - 1 \ge 2$ and let \mathfrak{g} be a nilpotent Lie algebra of step n. Since $\mathfrak{g}/\mathfrak{g}_{n-1}$ is nilpotent of step n - 1, for all X_1 and X_2 in \mathfrak{g} , we have by the induction hypothesis

$$X_1 + X_2 = \prod_{i=1}^{m} (c_i X_1) \cdot (d_i X_2) + u(X_1, X_2)$$

where $u(X_1, X_2)$ belongs to \mathfrak{g}_{n-1} , hence to the center of \mathfrak{g} . There exist real numbers $c_{i_1...i_n}$, where (i_1, \ldots, i_n) runs through $\{1, 2\}^n$, such that

$$u(X_1, X_2) = \sum_{(i_1, \dots, i_n) \in \{1, 2\}^n} c_{i_1 \dots i_n} [X_{i_1}, [X_{i_2}, [\dots, X_{i_n}] \dots]]$$

=
$$\prod_{(i_1, \dots, i_n) \in \{1, 2\}^n} [c_{i_1 \dots i_n} X_{i_1}, [X_{i_2}, [\dots, X_{i_n}] \dots]]$$

By Lemma 1.5, we have

$$u(X_1, X_2) = \prod_{(i_1, \dots, i_n) \in \{1, 2\}^n} \{c_{i_1 \dots i_n} X_{i_1}, \{X_{i_2}, \{\dots, X_{i_n}\} \dots\}\}$$

and then

$$X_1 + X_2 = \prod_{i=1}^m (c_i X_1) \cdot (d_i X_2) \cdot \prod_{(i_1, \dots, i_n) \in \{1, 2\}^n} \{c_{i_1 \dots i_n} X_{i_1}, \{X_{i_2}, \{\dots, X_{i_n}\} \dots\}\}$$

where $c_{1...1}$ and $c_{2...2}$ are zero. Denoting by m_n the number of factors sufficient to write $X_1 + X_2$ as a product when \mathfrak{g} is nilpotent of step n, we have shown that $m_2 = 3$; we can check that

$$m_n = m_{n-1} + (2^n - 2)(3 \cdot 2^{n-1} - 2)$$

and consequently

$$m_n = 2^{n+1}(2^n - 5) + 4n + 3.$$

2) Let us prove the second assertion. If n = 2, then for all X and Y in \mathfrak{g} , we have

$$[X,Y] = X \cdot Y \cdot (-X) \cdot (-Y).$$

The proof of the rest of the assertion is similar and we find that

$$p_n = 2^{n+1}(2^n - 5) + 4n + 4$$

where p_n indicates the number of factors sufficient to write $[X_1, X_2]$ as a product when \mathfrak{g} is nilpotent of step n.

1.7. COROLLARY. Let \mathfrak{g} be a nilpotent Lie algebra of step n greater than 2. Let X_1, \ldots, X_p be elements of \mathfrak{g} of the form

$$X_i = [X_i^1, [X_i^2, [\dots, X_i^{k_i}] \dots]].$$

Then there exists an integer q, depending only on p and n, such that

$$\sum_{i=1}^{p} X_{i} = \prod_{j=1}^{q} \prod_{\substack{1 \le i_{j} \le p \\ 1 \le l_{i_{j}} \le k_{i_{j}}}} c_{i_{j}l_{i_{j}}} X_{i_{j}}^{l_{i_{j}}}.$$

Proof. It suffices to apply the previous proposition as many times as necessary. \blacksquare

We recall that G denotes a simply connected nilpotent Lie group with Lie algebra \mathfrak{g} . In the rest of this section fix a euclidean norm $\| \|$ on \mathfrak{g} , and denote by U the unit ball B of \mathfrak{g} .

1.8. COROLLARY. There exists a real number c_1 such that for all j in $\{1, \ldots, n-1\}$, and X in \mathfrak{g}_j ,

$$w_U(X) \le c_1(1 + ||X||)^{1/j+1}.$$

Proof. Let j be in $\{1, \ldots, n-1\}$ and fix a basis (X_1, \ldots, X_p) of \mathfrak{g}_j . Each X_i can be chosen such that

$$X_i = [X_i^1, [X_i^2, [\dots, X_i^{j+1}] \dots]]$$

for certain vectors X_i^k . Let X be in \mathfrak{g}_j . We can write

$$(1 + ||X||)^{-1}X = \sum_{i=1}^{p} c_i X_i$$

210

where $|c_i| < 1$, and then

By Corollary 1.7, it follows that

$$X = \prod_{m=1}^{q} \prod_{\substack{1 \le i_m \le p \\ 1 \le r_m \le j+1}} c_{i_m r_m} (1 + \|X\|)^{1/j+1} X_{i_m}^{r_m}$$

for a certain integer q and some real numbers $c_{i_m r_m}$, depending only on j, n, p. Let s be the number of factors in the above product. Put

$$c = \max\{|c_{i_m r_m}| \mid 1 \le i_m \le p, \ 1 \le r_m \le j+1, \ 1 \le m \le q\},\ t = \max\{||X_i^k|| \mid 1 \le i \le p, \ 1 \le k \le j+1\}.$$

Hence

$$X \in U^{s(1+E(ct(1+\|X\|)^{1/j+1}))}$$

where E indicates the integer part function, from which, by definition of w_U ,

$$w_U(X) \le 1 + s(1 + E(ct(1 + ||X||)^{1/j+1}))$$

$$\le 1 + s + sct(1 + ||X||)^{1/j+1}$$

$$\le (1 + s + sct)(1 + ||X||)^{1/j+1}. \blacksquare$$

1.9. PROPOSITION. There exists a real number c_2 such that for all X in \mathfrak{g} and all j in $\{1, \ldots, n\}$ we have

$$(1 + ||X_j||)^{1/j} \le c_2 w_U(X)$$

where X_i indicates the component of X belonging to V_j .

Proof. 1) Let ε be a strictly positive number. Let us show by induction on *m* that there exists a real number $a_{\varepsilon} = O(\varepsilon)$ such that if $X \in (\varepsilon B)^m$, then $||X_j|| < a_{\varepsilon}(1+m)^j$.

If m = 1, then $||X_j|| < \varepsilon$, hence we take $a_{\varepsilon} = \varepsilon 2^{-j}$.

Assume the result is true for m-1 and let X be in $(\varepsilon B)^m$. Then X can be written as $Y \cdot W$ where $Y \in (\varepsilon B)^{m-1}$ and $W \in \varepsilon B$. By the induction hypothesis,

(1)
$$\|Y_j\| \le a_{\varepsilon} m^j$$

where $a_{\varepsilon} = O(\varepsilon)$. By the Baker–Campbell–Hausdorff formula, we have (2) $(Y \cdot W)_j = Y_j + W_j + Q_j(Y, W)$

where

(3)
$$Q_j(Y,W) = \sum_{\substack{i_1,\dots,i_p \ge 1\\i_1+\dots+i_p \le j}} c_{i_1\dots i_p}^j [T_{i_1}, [\dots, T_{i_p}] \dots]_j$$

and where each T_{i_k} is Y_{i_k} or W_{i_k} , i.e. an element of V_{i_k} . Since each W_{i_k} appears at least once in each bracket, it follows that for ε small enough

$$| [T_{i_1}, [\dots, T_{i_p}] \dots]_j || \leq || [T_{i_1}, [\dots, T_{i_p}] \dots] || \leq \varepsilon ||T_{i_1}|| \dots ||\widehat{T}_{i_k}|| \dots ||T_{i_p}|$$

$$\leq \varepsilon \, a_{\varepsilon} m^{i_1} \dots \widehat{a_{\varepsilon} m^{i_k}} \dots a_{\varepsilon} m^{i_p} \leq \varepsilon m^{j-1}$$

and hence, by (3),

$$\|Q_j(Y,W)\| \le \varepsilon m^{j-1} \sum_{\substack{i_1,\ldots,i_p \ge 1\\i_1+\ldots+i_p \le j}} |c_{i_1\ldots i_p}^j| \le \varepsilon c N m^{j-1}$$

where

$$c = \max\{|c_{i_1...i_p}^j| \mid i_1, ..., i_p \ge 1 \text{ and } i_1 + ... + i_p \le j\}$$

and N is the number of terms in the preceding sum. We then deduce, by (1) and (2), that

$$\|(Y \cdot W)_j\| \le \|Y_j\| + \|W_j\| + \|Q_j(Y, W)\|$$
$$\le a_{\varepsilon} m^j + \varepsilon + \varepsilon c N m^{j-1} \le c_{\varepsilon} (1+m)^j$$

where $c_{\varepsilon} = a_{\varepsilon} + \varepsilon + \varepsilon cN$. Finally $||X_j|| \leq c_{\varepsilon} (1+m)^j$ where $c_{\varepsilon} = O(\varepsilon)$. We now choose our new a_{ε} as c_{ε} .

2) Let X be in U, ε be a strictly positive number and M_{ε} the integer such that

$$M_{\varepsilon} - 1 < \varepsilon^{-1} \le M_{\varepsilon}.$$

Then

$$\|M_{\varepsilon}^{-1}X\| \le \varepsilon \|X\| \le \varepsilon,$$

therefore $M_{\varepsilon}^{-1}X$ belongs to εB and consequently $X \in (\varepsilon B)^{M_{\varepsilon}}$.

3) Let X be a nonzero element of \mathfrak{g} . Fix ε small enough so that $a_{\varepsilon} < 1$ in 1). By definition, X belongs to $U^{w_U(X)-1}$, then by 2) to $(\varepsilon B)^{M_{\varepsilon}(w_U(X)-1)}$, and by 1),

$$(1 + ||X_j||)^{1/j} \le (1 + M_{\varepsilon}^j)^{1/j} w_U(X).$$

1.10. PROPOSITION. There exists a real number c_3 such that for all Y_1, \ldots, Y_n where each Y_j belongs to \mathfrak{g}_{j-1} , we have

$$||X_j||^{1/j} \le c_3 \max_{1\le i\le j} (1+||Y_i||)^{1/i}, \quad ||Y_j||^{1/j} \le c_3 \max_{1\le i\le j} (1+||X_i||)^{1/i},$$

where X_j indicates the component of $Y_1 \dots Y_n$ belonging to V_j .

Proof. Fix j in $\{1, \ldots, n\}$. By the Baker–Campbell–Hausdorff formula,

(1)
$$X_{j} = Y_{j} + \sum_{\substack{i_{1}, \dots, i_{p} \geq 1 \\ i_{1} + \dots + i_{p} \leq j}} c_{i_{1} \dots i_{p}}^{j} \left[Y_{i_{1}}, [\dots, Y_{i_{p}}], \dots \right]_{j},$$

hence

$$\begin{split} \|X_{j}\| &\leq \|Y_{j}\| + \sum_{\substack{i_{1}, \dots, i_{p} \geq 1\\i_{1} + \dots + i_{p} \leq j}} |c_{i_{1} \dots i_{p}}^{j}| \, \|Y_{i_{1}}\| \dots \|Y_{i_{p}}\| \\ &\leq \|Y_{j}\| + c \sum_{\substack{i_{1}, \dots, i_{p} \geq 1\\i_{1} + \dots + i_{p} \leq j}} (\|Y_{i_{1}}\|^{1/i_{1}})^{i_{1}} \dots (\|Y_{i_{p}}\|^{1/i_{p}})^{i_{p}} \\ &\leq (1 + cN)(\max_{1 \leq i \leq j} (1 + \|Y_{i}\|)^{1/i})^{j} \end{split}$$

where

$$c = \max\{|c_{i_1...i_p}^j| \mid i_1, ..., i_p \ge 1 \text{ and } i_1 + ... + i_p \le j\}$$

and N is the number of terms in the previous sum. Finally,

$$||X_j||^{1/j} \le (1+cN)^{1/j} \max_{1\le i\le j} (1+||Y_i||)^{1/i}.$$

The second relation follows similarly.

By 1.2 all the weights w_U are equivalent on a connected group G. Hence we fix a compact neighborhood U of e in G and we write w_G instead of w_U . We can then summarize the previous results in the following theorem:

1.11. THEOREM. Let G be a simply connected nilpotent Lie group with Lie algebra \mathfrak{g} . Let $\mathfrak{g} = \bigoplus_{i=1}^{n} V_i$ where $V_i \oplus \mathfrak{g}_i = \mathfrak{g}_{i-1}$ and where $(\mathfrak{g}_i)_{0 \leq i \leq n-1}$ is the central decreasing sequence of \mathfrak{g} . Then there exist real numbers c and c' such that for all X in \mathfrak{g} , we have

$$c \max_{1 \le i \le n} (1 + \|X_i\|)^{1/i} \le w_G(\exp X) \le c' \max_{1 \le i \le n} (1 + \|X_i\|)^{1/i}$$

where X_i indicates the component of X belonging to V_i .

Proof. Proposition 1.9 shows the existence of c. Let now X be in \mathfrak{g} . We can find Y_1, \ldots, Y_n , where each Y_j belongs to \mathfrak{g}_{j-1} , such that $\exp X = \exp Y_1 \ldots \exp Y_n$. Hence, by 1.3, we have

$$w_G(\exp X) \le \sum_{j=1}^n w_G(\exp Y_j)$$

and by Corollary 1.8,

$$w_G(\exp X) \le c_1 \sum_{j=1}^n (1 + ||Y_j||)^{1/j}.$$

It now follows from Proposition 1.10 that

$$w_G(\exp X) \le c_1 \sum_{j=1}^n [1 + c_3^j \max_{1 \le i \le j} (1 + ||X_i||)^{j/i}]^{1/j}$$
$$\le c_1 \sum_{j=1}^n 1 + c_3 \max_{1 \le i \le j} (1 + ||X_i||)^{1/i}$$
$$\le c_1 n (1 + c_3) \max_{1 \le i \le n} (1 + ||X_i||)^{1/i}. \blacksquare$$

NOTATION. For all k in $\{1, \ldots, n\}$, the set $U \cap G_k$ denoted by V_k is a symmetric compact neighborhood of e in G_k , and the weight w_{V_k} on G_k defined in 1.3 will be denoted by w_{G_k} .

1.12. THEOREM. There exists a strictly positive number c such that for all k in $\{1, \ldots, n\}$, we have

$$w_G|_{G_k} \le c w_{G_k}^{1/k+1}.$$

Proof. We easily show by induction on i that for all i in \mathbb{N} ,

(1)
$$(\mathfrak{g}_k)_i \subset \mathfrak{g}_{(k+1)(i+1)-1}.$$

Denote by p_k the step of nilpotency of \mathfrak{g}_k and let Y be an element of \mathfrak{g}_k . Then

$$Y = Y_1 \dots Y_{p_k} = X_1 + \dots + X_{p_k}$$

where each Y_i belongs to $(\mathfrak{g}_k)_{i-1}$ and X_i to $(V_k)_i$ where, as at the beginning of this section, $(\mathfrak{g}_k)_{i-1}$ is the direct sum of $(\mathfrak{g}_k)_i$ and $(V_k)_i$ for all i in $\{1, \ldots, p_k\}$. As noticed in 1.3, we have

$$w_G(\exp Y) = w_G(\exp Y_1 \dots \exp Y_{p_k}) \le w_G(\exp Y_1) + \dots + w_G(\exp Y_{p_k}).$$

Now each Y_i belongs to $\mathfrak{g}_{(k+1)i-1}$ by (1), and so by Corollary 1.8,

$$w_G(\exp Y_i) \le c_1(1 + ||Y_i||)^{1/(k+1)i};$$

hence

$$w_{G}(\exp Y) \leq c_{1} \sum_{i=1}^{p_{k}} (1 + ||Y_{i}||)^{1/(k+1)i}$$

$$\leq c_{1}p_{k} \max_{1 \leq i \leq p_{k}} (1 + ||Y_{i}||)^{1/(k+1)i}$$

$$\leq c_{1}p_{k} + c_{1}p_{k} (\max_{1 \leq i \leq p_{k}} ||Y_{i}||^{1/i})^{1/k+1}$$

$$\leq c_{k}p_{k} + c_{k}p_{k} (a_{k} - \max_{1 \leq i \leq p_{k}} (1 + ||Y_{i}||)^{1/i})^{1/k}$$

(2)
$$\leq c_1 p_k + c_1 p_k (c_3 \max_{1 \leq i \leq p_k} (1 + ||X_i||)^{1/i})^{1/k+1}$$

(3)
$$\leq c_1 p_k + c_1 p_k (c_3 c_2 w_{G_k} (\exp Y))^{1/k+1} \\ \leq (c_1 p_k + c_1 p_k (c_2 c_3)^{1/k+1}) (w_{G_k} (\exp Y))^{1/k+1}$$

where (2) and (3) result from Propositions 1.10 and 1.9 respectively.

1.13. COROLLARY. Let N be a subgroup of G_1 and let (π, X) be a Banach space representation of G on X. If $\pi|_N$ is given by $\chi 1_X$ for some character χ of N, then χ must be unitary.

Proof. Assume that $\pi|_N$ is a (continuous) nonunitary character of N. Denote by \mathfrak{n} the Lie algebra of N. Let U be in $\mathfrak{V}_G(e)$. First, for all s in G distinct from e we have

$$s = s_1 \dots s_{\tau_U(s)},$$

hence

(1)
$$|\pi(s)| = |\pi(s_1)| \dots |\pi(s_{\tau_U(s)})| \le e^{k_U \tau_U(s)} \le e^{k_U w_G(s)}$$

where

$$e^{k_U} = \sup_{s \in U} |\pi(s)|.$$

By hypothesis, there exist two real linear forms α and β on \mathfrak{n} , with $\alpha \neq 0$, such that

$$\pi(\exp X) = e^{\langle \alpha + i\beta, X \rangle}, \quad X \in \mathfrak{n}.$$

Fix X in \mathfrak{n} such that $\langle \alpha, X \rangle = 1$. Then for all t in \mathbb{R} , from (1) we have

$$e^t = |\pi(\exp(tX))| \le e^{k_U w_G(\exp(tX))}$$

Let $V = U \cap G_1$. By Theorem 1.12

$$w_G(\exp(tX)) = w_G|_{G_1}(\exp(tX)) \le c(w_{G_1}(\exp(tX)))^{1/2}$$

and by Proposition 1.4,

 $w_{G_1}(\exp(tX)) < 2 + c_V ||tX||,$

hence

$$e^t \le e^{k_U c \sqrt{2 + c_V |t| \|X\|}}$$

This last inequality is false for t large enough.

2. Spectral synthesis for nilpotent Lie groups. Let G be a connected Lie group, \mathfrak{g} its Lie algebra, and \mathfrak{g}^* the dual vector space of \mathfrak{g} . The set of equivalence classes of irreducible continuous unitary representations of G is denoted by \widehat{G} . When G is abelian, by Schur's lemma, \widehat{G} is in bijection with the group of continuous characters of G into the multiplicative group U of complex numbers of norm 1. When G is not abelian, \widehat{G} is not known in general. In 1962, A. Kirillov managed to determine \widehat{G} when G is nilpotent and simply connected [11]: the unitary dual \widehat{G} of G is described by the orbits of the elements of \mathfrak{g}^* under the coadjoint action of G; this action is defined by the relation

$$x \cdot l = l \circ \operatorname{Ad}(x^{-1}), \quad l \in \mathfrak{g}^*, \ x \in G.$$

From now on, G denotes a simply connected real nilpotent Lie group with Lie algebra \mathfrak{g} . For l in \mathfrak{g}^* , there exists a *polarization* \mathfrak{m} at l, i.e. a subalgebra \mathfrak{m} of \mathfrak{g} which is maximal isotropic for the skew-symmetric bilinear form

$$B_l(X,Y) = l[X,Y], \quad X,Y \in \mathfrak{g}.$$

Denote by M the connected subgroup $\exp \mathfrak{m}$ of G associated to \mathfrak{m} . The map

$$\chi_{l,M}: M \to U, \quad \exp X \mapsto e^{i\langle l,X \rangle},$$

is a character of M. We write

$$\pi_{l,M} = \operatorname{ind}_M^G \chi_{l,M}.$$

Then $\pi_{l,M}$ is irreducible and the correspondence

$$\mathfrak{g}^*/\mathrm{Ad}^*(G) \to \widehat{G}, \quad [l] \mapsto [\pi_{l,M}],$$

is a bijective mapping, called Kirillov's bijection, where

 $l \sim l' \Leftrightarrow \exists x \in G : l' = \mathrm{Ad}^*(x)l.$

The set \widehat{G} is also in bijection with Prim(G), the space of primitive ideals of the C^* -algebra of G by [6], and by [3] in bijection with

 $\operatorname{Prim}^* L^1(G)$

= {Ker $\pi \mid |\pi | \pi | \pi | \pi$ a *-topologically irreducible representation of $L^1(G)$ }.

We equip these two sets with the Jacobson topology: for a subset S of $L^1(G)$, we define its *hull* by

$$h(S) = \{ J \in \operatorname{Prim}^* L^1(G) \mid |S \subset J \},\$$

and for a subset C of $\operatorname{Prim}^* L^1(G)$ or $\operatorname{Prim}(G)$, we define its *kernel* by

$$k(C) = \bigcap_{J \in C} J.$$

Then, by definition, C is closed in $\operatorname{Prim}^* L^1(G)$, respectively in $\operatorname{Prim}(G)$, if and only if C = h(k(C)). By Brown's theorem [4], Kirillov's bijection is a homeomorphism.

The Jacobson topology is in general not Hausdorff, but always accessible, i.e. each point is closed, which means that every element in $\operatorname{Prim}^* L^1(G)$, respectively in $\operatorname{Prim}(G)$, is maximal. This follows from the fact that the coadjoint orbits of nilpotent Lie groups are closed [18].

PROBLEM. Given a closed subset C of $\operatorname{Prim}^* L^1(G)$, can we determine the set $\mathcal{J}(C)$ of closed two-sided ideals of $L^1(G)$ with hull C?

When $\mathcal{J}(C) = \{k(C)\}$, the subset C is said to be of synthesis or spectral. The first result of spectral synthesis is the famous theorem of N. Wiener

stating that \emptyset is of synthesis in $\operatorname{Prim}^* L^1(\mathbb{R})$, i.e. each proper closed ideal of $L^1(\mathbb{R})$ is contained in the kernel of a *-topologically irreducible representation of $L^1(\mathbb{R})$. I. Segal [20] next showed that each point of $\operatorname{Prim}^* L^1(\mathbb{R})$ is of synthesis; then I. Kaplansky [10] generalized this result to $\operatorname{Prim}^* L^1(G)$ where G is abelian. The first result when G is not abelian was obtained by H. Leptin [12] who showed that if G is nilpotent of step 2, then each point in $\operatorname{Prim}^* L^1(G)$ is of synthesis. If G is nilpotent of step 3, J. Ludwig [14] showed that $\mathcal{J}(\{\operatorname{Ker} \pi\})$ is in bijection with $\mathcal{J}(\{\operatorname{Ker} \chi\})$ where χ is a character of $L^1_w(\mathbb{R}^n)$, and w is a weight of polynomial growth on \mathbb{R}^n . J. Ludwig shows that $\mathcal{J}(\{\operatorname{Ker} \pi\})$ then contains in general an infinity of elements, and consequently $\{\operatorname{Ker} \pi\}$ is not of synthesis in these cases. If G is nilpotent of step 4, the computations become much more difficult and no general result is known. We have however the following theorem due to J. Ludwig [13], which gives the existence of a smallest element in $\mathcal{J}(C)$:

THEOREM. Let G be a locally compact group with polynomial growth such that $L^1(G)$ is symmetric, and C a closed subset of $\operatorname{Prim}^* L^1(G)$. Then there exists a single closed two-sided ideal j(C) of $L^1(G)$ such that

$$h(j(C)) = C$$

and

$$(J \triangleleft L^1(G), h(J) \subset C) \Rightarrow j(C) \subset J.$$

This theorem applies in particular when G is a simply connected nilpotent Lie group [6]. For example, if G is abelian, then j(C) is the closure in $L^1(G)$ of the ideal of $L^1(G)$ of functions for which the support of the Fourier transform is compact and disjoint from C [19].

Notice that for a closed subset C of $\operatorname{Prim}^* L^1(G)$, each element of $\mathcal{J}(C)$ is contained in k(C). Hence there exists a "minimal" ideal and a "maximal" ideal with hull C. The subset C is then of synthesis if and only if these two ideals are equal.

Let π be an element of \widehat{G} . In order to determine $\mathcal{J}(\{\operatorname{Ker} \pi\})$ when the step of G is larger than 3, it is natural to begin with the determination of $j(\{\operatorname{Ker} \pi\})$, since the latter is contained in each element of $\mathcal{J}(\{\operatorname{Ker} \pi\})$. The result obtained by J. Ludwig when G is of step 3 forces us to look for this ideal not in $L^1(G)$ but in a weighted L^1 -algebra on \mathbb{R}^n .

By Kirillov's bijection, π is associated to the orbit O(l) of a certain linear form l on \mathfrak{g} , and the easiest case is when the orbit O(l) is a single point. The rest of this paper is devoted to the determination of $j({\text{Ker }\pi})$ in this case. This will be done in a quite general class of algebras which contain weighted algebras, and for nilpotent Lie groups of any step. The principal result of this paper is based in fact on a general property of $C^{\infty}(G)$ -modules of finite dimension, where G is solvable. This property is dealt with in [2]. NOTATION. By [3], the set $\operatorname{Prim}^* L^1(G)$ is in bijection with $\mathfrak{g}^*/\operatorname{Ad}^*(G)$. In order to make the reading easier, closed subsets C of $\operatorname{Prim}^* L^1(G)$ and closed subsets of \widehat{G} will be identified with closed $\operatorname{Ad}^*(G)$ -invariant subsets of \mathfrak{g}^* . So, for π_l in \widehat{G} , associated to the orbit O(l) of a linear form l on \mathfrak{g} , the minimal ideal $j({\operatorname{Ker}} \pi_l)$ of $L^1(G)$ and the set $\mathcal{J}({\operatorname{Ker}} \pi_l)$ of closed two-sided ideals of $L^1(G)$ with hull ${\operatorname{Ker}} \pi_l$ will be denoted j(l) and $\mathcal{J}(l)$ respectively.

CONVENTIONS. Unless otherwise stated, a function will always be complex-valued. For any group, e will indicate the identity element. For a normed algebra A the relation $I \triangleleft A$ means that I is a closed two-sided ideal of A.

3. Polynomials and group algebras. In the following, λ will indicate a Haar measure on a simply connected nilpotent Lie group G and $d\lambda(x)$ will be denoted by dx.

3.1. NOTATION. Let G be a locally compact group, λ a left Haar measure on G, and w a weight on G. We denote by $L^1_w(G)$ the subalgebra of $L^1(G)$ of measurable functions f such that $\int_G |f| w \, d\lambda$ is finite, and we define a norm $\| \|_w$ on $L^1_w(G)$ by

$$||f||_w = \int_G |f| w \, d\lambda.$$

We thus obtain the *Beurling algebra* $L^1_w(G)$. The algebra of polynomials on G is denoted by $\mathcal{P}(G)$. For X in \mathfrak{g} and for a C^{∞} function f on G, we let X * f be the left derivative of f in direction X, and f * X the right derivative of f in direction X:

$$X * f(y) = \frac{d}{dt} f(\exp(-tX)y) \Big|_{t=0}, \quad y \in G,$$
$$f * X(y) = \frac{d}{dt} f(y \exp(tX)) \Big|_{t=0}, \quad y \in G.$$

A basis (X_1, \ldots, X_d) of \mathfrak{g} being fixed, for a multi-index $(\alpha_1, \ldots, \alpha_d)$ of \mathbb{N}^d , denoted by α , and a C^{∞} function f on G, we write

$$X^{\alpha} * f = X_1^{\alpha_1} * \dots * X_d^{\alpha_d} * f, \quad f * X^{\alpha} = f * X_1^{\alpha_1} * \dots * X_d^{\alpha_d},$$
$$|\alpha| = \alpha_1 + \dots + \alpha_d.$$

We denote by $\mathcal{S}(G)$ the Schwartz space of C^{∞} functions f on G such that for all positive integers N,

$$p_N(f) = \sum_{|\alpha| \le N} \int_G |X^{\alpha} * f| w^N d\lambda$$

218

is finite, where w is the weight w_U defined in 1.3. One can check that the definition of $\mathcal{S}(G)$ is independent of the choice of the basis of \mathfrak{g} and of U. We have (see [17])

$$p_N(g*f) \le p_N(g) \|f\|_{w^N}.$$

We denote by $\mathcal{D}(G)$ the subspace of $\mathcal{S}(G)$ of functions with compact support. The space $\mathcal{S}(G)$ equipped with the convolution multiplication and with the family of seminorms $(p_N)_{N \in \mathbb{N}}$ is then a Fréchet algebra and $\mathcal{S}(G)$ is dense in $(L^1(G), \| \|_1)$.

3.2. The determination of the "minimal ideal" in Section 5 will be given for a quite general class of algebras. Indeed, in this paper we consider a Banach subalgebra (A, || ||) of $L^1(G)$ containing $\mathcal{S}(G)$ as a dense subspace and satisfying

$$\begin{cases} \exists N \in \mathbb{N}, \, \forall f \in \mathcal{S}(G) : \|f\| \le p_N(f), \\ \forall f \in A : \|f\|_1 \le \|f\|, \end{cases}$$

which means that the norm $\| \|$ of A makes the injections of $\mathcal{S}(G)$ into A and of A into $L^1(G)$ continuous.

3.3. Recall that the characters of G, i.e. the continuous homomorphisms of the group G into \mathbb{C}^{\times} , are of the form $\exp X \mapsto \chi_l(\exp X) = e^{il(X)}$ where l is an \mathbb{R} -linear form on \mathfrak{g} with complex values such that l[X, Y] is zero for all X and Y in \mathfrak{g} . For real-valued l we obtain the unitary characters of G.

For l in \mathfrak{g}^* such that l is zero on \mathfrak{g}_1 , we denote by \mathcal{P}_l the vector space of polynomials P, with complex coefficients, such that the continuous linear form $P\chi_l$ on $\mathcal{S}(G)$ mapping f to $\int_G f P\chi_l d\lambda$ extends to a continuous linear form on A, meaning that there exists a positive number c such that for all f in $\mathcal{S}(G)$, we have

$$\left| \int_{G} f P \chi_l \, d\lambda \right| \le c \|f\|.$$

Let G be a group and s be an element of G. For a function $f: G \to \mathbb{C}$, we denote by $L_s f$ or ${}_s f$ the left translate of f by s, mapping t to $f(s^{-1}t)$, and by $R_s f$ or f_s the right translate of f by s, mapping t to f(ts).

Let P be in \mathcal{P}_l and f, g be elements of A. Then $P\chi_l$ defines a continuous linear form on A by definition, and consequently $\langle P\chi_l, g * f \rangle$ exists. For g in A, we write $\check{g} * (P\chi_l)$ for the continuous linear form on A defined by

$$\langle \check{g} * (P\chi_l), f \rangle = \langle P\chi_l, g * f \rangle.$$

In the same way, $P\chi_l * \check{g}$ denotes the continuous linear form on A defined by

$$\langle P\chi_l * \check{g}, f \rangle = \langle P\chi_l, f * g \rangle.$$

3.4. THEOREM. The vector space \mathcal{P}_l is finite-dimensional.

Proof. 1) Let f be in $\mathcal{S}(G)$, Q a polynomial and χ_q a unitary character of G. After an easy computation, for all x in G we have

$$(f * (Q\chi_q))(x) = P(x)\chi_q(x)$$

where P is another polynomial.

2) Let Q be in \mathcal{P}_l and g in $\mathcal{S}(G)$. By 1),

$$g * (Q\chi_l) = Q_g \chi_l$$

where Q_g is a polynomial, and for all f in $\mathcal{S}(G)$,

$$\begin{aligned} |\langle g * (Q\chi_l), f \rangle| &= |\langle Q\chi_l, \check{g} * f \rangle| \le \|Q\chi_l\|_{\mathrm{op}} \, \|\check{g} * f\| \\ &\le \|Q\chi_l\|_{\mathrm{op}} \, p_N(\check{g} * f) \le \|Q\chi_l\|_{\mathrm{op}} \, p_N(\check{g}) \, \|f\|_{w^N} \end{aligned}$$

where N is an integer depending on Q and l. Hence $g * (Q\chi_l)$ is in the dual space of $L^1_{w^N}(G)$, and so

$$\|Q_g/w^N\|_{\infty} < \infty.$$

Denote by \mathcal{P}_N the vector space of polynomials P such that $||P/w^N||_{\infty}$ is finite. Since the weight w^N has a polynomial growth, the space \mathcal{P}_N is finitedimensional and we have shown that for all Q in \mathcal{P}_l and all g in $\mathcal{S}(G)$, $g * (Q\chi_l)$ belongs to $\mathcal{P}_N\chi_l \cap \mathcal{P}_l\chi_l$.

3) Let Q be in \mathcal{P}_l . Since the weak star topology on \mathcal{P}_N with respect to $L^1_{w^N}(G)$ coincides with the norm topology, and since for any approximate identity (g_n) in $\mathcal{S}(G)$, $(g_n * Q\chi_l)$ converges in the weak star topology to $Q\chi_l$, it follows that $(g_n * Q\chi_l)$ inside \mathcal{P}_N converges to $Q\chi_l$ in the operator norm, and so $Q\chi_l \in \mathcal{P}_N$. Hence $\mathcal{P}_l \subset \mathcal{P}_N$.

3.5. NOTATION. Until the end of this paper, W indicates a nonzero subspace of \mathcal{P}_l which is invariant under left and right translations, and $W\chi_l$ is denoted by W_l . We also write

$$I(W) = \{ f \in A \mid \forall P \in W : \langle P\chi_l, f \rangle = 0 \} = (W\chi_l)^{\circ}.$$

We then have the following proposition.

3.6. PROPOSITION. The vector space W is invariant under translations and under convolution by elements of $\mathcal{S}(G)$. So I(W) is a closed two-sided ideal of A.

4. Hull

DEFINITION. For a Banach algebra A, we denote by Prim(A) the set of primitive ideals of A, i.e. the set of the kernels of algebraically irreducible representations of A in Banach spaces. The *kernel* of a subset C of Prim(A) is the set

$$k(C) = \bigcap_{J \in C} J,$$

and the *hull* of a subset S of A is the set

 $h(S) = \{ J \in \operatorname{Prim}(A) \mid S \subset J \}.$

NOTATION. For a Banach algebra A, the set Prim(A) is equipped with the Jacobson topology: by definition, a subset C of Prim(A) is closed in Prim(A) if and only if C = h(k(C)). We denote by $\mathcal{J}(C)$ the set of closed two-sided ideals of A with hull C:

$$\mathcal{J}(C) = \{ J \triangleleft A \mid h(J) = C \}.$$

In the present case, the set {Ker χ_l } is closed in Prim(A), and as stipulated in Section 2, the set $\mathcal{J}({\text{Ker }\chi_l})$ will be denoted $\mathcal{J}(l)$ by abuse of notation.

4.1. PROPOSITION. With the above hypothesis on A, we have

$$\operatorname{Prim}(A) = \{\operatorname{Ker}(\pi|_A) \mid \pi \in \widehat{G}\}.$$

Proof. 1) Let π be a unitary topologically irreducible representation of G; denote also by π the corresponding representation of $L^1(G)$. Since A is dense in $L^1(G)$, $\pi|_A$ is topologically irreducible on the Hilbert space \mathcal{H} . Let

$$\mathcal{H}_0 = \operatorname{Span}\{\pi(f)\xi \mid \xi \in \mathcal{H}, f \in A, \pi(f) \text{ of finite rank}\}.$$

Since $\pi(\mathcal{S}(G))$ contains many operators of finite rank, \mathcal{H}_0 is an A-invariant nontrivial subspace of \mathcal{H} and the restriction of π to \mathcal{H}_0 defines a simple module of A (see [6]). Hence $\operatorname{Ker}(\pi|_A)$ is a primitive ideal:

$${\operatorname{Ker}}(\pi|_A) \mid \pi \in G \subset \operatorname{Prim}(A).$$

Let us prove the other inclusion. If (T, V) is a simple A-module on a Banach space V then $(T|_{\mathcal{S}(G)}, V)$ is a topologically irreducible $\mathcal{S}(G)$ -module. Hence by [16] there exists a $\pi \in \widehat{G}$ such that

$$\operatorname{Ker}(T|_{\mathcal{S}(G)}) = \operatorname{Ker}(\pi|_{\mathcal{S}(G)}).$$

By [15] we know that $\operatorname{Ker}(\pi|_{\mathcal{S}(G)})$ is dense in $\operatorname{Ker}(\pi|_A)$. Hence $\operatorname{Ker} T$ contains $\operatorname{Ker}(\pi|_A)$.

2) Let us prove that $\operatorname{Ker}(\pi|_A)$ is a maximal two-sided ideal of A. Let M be a closed two-sided ideal of A containing $\operatorname{Ker}(\pi|_A)$. Suppose that $M \neq \operatorname{Ker}(\pi|_A)$. Then there exists g in M such that $g \notin \operatorname{Ker}(\pi|_A)$. By [15], the two-sided ideal

$$R = \{ f \in \mathcal{S}(G) \mid \pi(f) \text{ of finite rank} \}$$

is dense in $\mathcal{S}(G)$ and then in A. Hence R * g * R is not contained in $\operatorname{Ker}(\pi|_A)$ and so M contains an element h such that $\pi(h) = P_{\lambda}$ is the orthogonal projector onto a C^{∞} vector λ of \mathcal{H}_{π} . Let f in $\mathcal{S}(G)$ be such that $\pi(f) = P_{\mu}$ is also a one-dimensional orthogonal projector with $\langle \lambda, \mu \rangle \neq 0$. Then

$$\pi(f) = |\langle \lambda, \mu \rangle|^{-2} P_{\mu} \circ P_{\lambda} \circ P_{\mu} = \pi(\langle \lambda, \mu \rangle^{-2} f * h * f).$$

Hence

D. Alexander and J. Ludwig

$$f - \langle \lambda, \mu \rangle^{-2} f * h * f \in \operatorname{Ker} \pi \subset M$$

and consequently $f \in M$. Since R is generated as an ideal by those elements f, this shows that M contains the ideal R and finally M = A since M is closed. This proves that $\text{Ker } T = \text{Ker}(\pi|_A)$.

The aim of this section is to determine the hull of I(W) where W is defined in 3.5. Since W is finite-dimensional, we have the following proposition.

4.2. PROPOSITION. The space W is invariant under derivations: for all X in \mathfrak{g} and all P in W, X * P and P * X belong to W.

By [5], we have:

4.3. PROPOSITION. There exists a function deg on the complex vector space of polynomials on G such that for all X in \mathfrak{g} and all polynomials P, we have

$$\deg(X * P) < \deg P.$$

Hence for all X in \mathfrak{g} , there exists a natural k such that for all P in W, $X^k * P$ is zero.

4.4. PROPOSITION. The hull h(I(W)) of I(W) contains Ker χ_l .

Proof. For X in \mathfrak{g} and P in W, $\pi(X)(P\chi_l) = X * (P\chi_l) = (X * P)\chi_l + i\langle l, X \rangle (P\chi_l)$ defines a representation π of the Lie algebra \mathfrak{g} in W_l . By Lie's theorem (see [7]), there exists a nonzero element P in W such that for all X in \mathfrak{g} , $\pi(X)(P\chi_l) = \lambda(X)(P\chi_l)$ where λ is a linear form on \mathfrak{g} . Since deg $(X * P) < \deg P$, we have $\lambda(X) = i\langle l, X \rangle$ and so $(X * P)\chi_l = 0$. Hence X * P = 0 and the polynomial P is constant. Consequently, $\chi_l \in W_l$ and hence $I(W) \subset \operatorname{Ker} \chi_l$ and $\operatorname{Ker} \chi_l \subset h(I(W))$.

NOTATION. For f in $L^1(G)$, the Fourier transform of f at l is denoted $\widehat{f}(l)$ and is defined by

$$\widehat{f}(l) = \int_{G} f \overline{\chi}_l \, d\lambda.$$

Let P be a polynomial in the variables X_1, \ldots, X_d . We define the differential operator P(D) in the $D_j = i \partial/\partial X_j$ with

$$D^{\alpha} = \prod_{i=1}^{d} D_j^{\alpha_j}, \quad \alpha = (\alpha_1, \dots, \alpha_d).$$

We have the well known result:

4.5. LEMMA. For all f in A,

$$f \in I(W) \iff \forall P \in W : (P(D)(\widehat{f}))(-l) = 0,$$

where \hat{f} indicates the Fourier transform of f.

4.6. THEOREM. The hull h(I(W)) of I(W) is $\{\text{Ker }\chi_l\}$.

Proof. By Proposition 4.4, Ker $\chi_l \in h(I(W))$.

Let π be a topologically irreducible *-representation of $L^1(G)$ in a Hilbert space whose kernel in A contains I(W). By Theorem 3.4, I(W) is of finite codimension in A, hence π is finite-dimensional and defines an irreducible continuous unitary representation $\tilde{\pi}$ of the nilpotent group G. By Lie's theorem (see [7]), $\tilde{\pi}$ is a character. Then π is a character $\chi_{l'}$ where l' is a real linear form on \mathfrak{g} which is zero on $[\mathfrak{g},\mathfrak{g}]$ by 3.3. If l' is different from l, there exists f in $S(\mathfrak{g})$ such that $\hat{f}(-l') = 1$ and \hat{f} is zero on a neighborhood of -l. Then f does not belong to Ker $\chi_{l'}$ and belongs to I(W) by Lemma 4.5. Since this contradicts the hypothesis, l' is equal to l.

5. Minimal ideal

5.1. PROPOSITION. For each closed subset C of $Prim^*(A)$, there exists a closed two-sided ideal j(C) of A with hull C such that each closed two-sided ideal of A whose hull is contained in C contains j(C).

Proof. The proof given in [13] adapts to the general case. \blacksquare

Taking in the previous theorem $W = \mathcal{P}_l$, we have $j(\text{Ker }\chi_l) \subset I(\mathcal{P}_l)$. The following theorem will show the other inclusion.

5.2. LEMMA. Let F be a finite-dimensional A-left invariant subspace of the dual A' of the algebra A. Then each element of F is a finite sum of functions of the form $P\chi_q$, where P is a polynomial, and χ_q a unitary character of G.

Proof. Let us show that the elements of F are C^{∞} functions on G. Let (μ_1, \ldots, μ_n) be a basis of F. Then $\mathcal{D}(G) * \mu_1 + \ldots + \mathcal{D}(G) * \mu_n$ is dense in the finite-dimensional vector space F, hence is equal to F. Every μ in F defines a tempered distribution on G. Let g be in $\mathcal{D}(G)$. For all f in $\mathcal{S}(G)$,

$$\langle g * \mu, f \rangle = \langle \mu, \check{g} * f \rangle = \int_{G} \varphi(x) \left(1 - \Delta\right)^{N} (\check{g} * f)(x) dx$$

for a certain function φ with moderate growth, of class C^{∞} on G, and a certain integer N, where Δ indicates the Laplacian of G (by [17]).

Putting $h = (1 - \Delta)^N \check{g}$, we then have

$$\langle g * \mu, f \rangle = \int_{G} \psi f \, d\lambda \quad \text{where} \quad \psi(x) = \int_{G} h \varphi_x \, d\lambda$$

The linear form $g * \mu$ is then given on $\mathcal{S}(G)$ by a function ψ of class C^{∞} on G. Since $\mathcal{S}(G)$ is dense in A, the linear form $g * \mu$ can be identified with ψ , and with this identification, F consists of C^{∞} functions. The lemma then results from Proposition 1 of [2].

5.3. THEOREM. The smallest closed two-sided ideal of A with hull $\{\text{Ker }\chi_l\}$ is $(l) = I(\mathcal{D})$

$$j(l) = I(\mathcal{P}_l).$$

Proof. 1) It has already been noticed that j(l) is contained in $I(\mathcal{P}_l)$. By [15], there exists a natural integer N such that $j(l) = \overline{(\text{Ker }\chi_l)^N}$.

Let us show by induction on n that if T is a continuous linear form on A which is zero on $(\text{Ker }\chi_l)^n$ then T is of the form $P\chi_l$ where P belongs to \mathcal{P}_l . The result is true if r_{l-1} , the polynomial P is a population

The result is true if n = 1: the polynomial P is a nonzero constant.

2) Let *m* in \mathbb{N}^* be such that *T* is zero on $(\text{Ker }\chi_l)^m$ and nonzero on $(\text{Ker }\chi_l)^{m-1}$.

(a) Let f_0 be in Ker χ_l . Then $\check{f}_0 * T$ is a continuous linear form on A and for all u in $(\text{Ker }\chi_l)^{m-1}$,

$$\langle \check{f}_0 * T, u \rangle := \langle T, f_0 * u \rangle = 0$$

because $f_0 * u$ belongs to $(\text{Ker }\chi_l)^m$. The induction hypothesis shows that $\check{f}_0 * T = P_{f_0}\chi_l$ where P_{f_0} belongs to \mathcal{P}_l .

(b) Let f and f_1 in A be such that $\chi_l(f_1) = 1$. Then $f - \chi_l(f) f_1 \in \text{Ker } \chi_l$, and consequently

$$(f - f(-l)f_1)^{\vee} * T = P_f \chi_l$$

where $P_f \in \mathcal{P}_l$ by (a), i.e.

$$\check{f} * T = \widehat{f}(-l)\check{f}_1 * T + P_f \chi_l \in \mathbb{C}(\check{f}_1 * T) + \mathcal{P}_l \chi_l.$$

This shows that the complex vector space $\mathring{A} * T$, which is contained in A', is of finite dimension by Theorem 3.4.

3) Let ϕ be an element of A. By 2) and Lemma 5.2, $\check{\phi} * T$ is of the form

$$\check{\phi} * T = \sum_{j=1}^{p} P_j \chi_{q_j}$$

where the P_j are polynomials and the χ_{q_j} are unitary characters of G which we assume to be all distinct. Let us show that p = 1 and $q_1 = l$.

Let f_0 be in Ker $\chi_l \cap \mathcal{S}(G)$. The function $f_0 * \phi$ belongs to Ker χ_l , so by 2)(a),

$$(f_0 * \phi)^{\vee} * T = P\chi_l$$

where P belongs to \mathcal{P}_l . On the other hand, the computation 1) in the proof of Theorem 3.4 shows that

$$(f_0 * \phi)^{\vee} * T = \sum_{j=1}^p \check{f}_0 * P_j \chi_{q_j} = \sum_{j=1}^p Q_j \chi_{q_j}$$

where the Q_i are polynomials which we can assume to be all nonzero. Finally

$$P\chi_l = \sum_{j=1}^p Q_j \chi_{q_j}.$$

In the module of linear combinations (whose coefficients are polynomials) of unitary characters of G, each finite family of distinct unitary characters of Gis free. Consequently, p = 1, $q_1 = l$ and $\check{\phi} * T = Q\chi_l$ where Q is a polynomial. Since $\phi \in A$ and $T \in A'$, $\check{\phi} * T$ is continuous on A and Q belongs to \mathcal{P}_l .

Let us show that T itself is in $\mathcal{P}_l \chi_l$.

4) The space \mathcal{P}_l being finite-dimensional, let f_1, \ldots, f_M be Schwartz functions on G such that

$$(\langle P\chi_l, f_i \rangle = 0 \text{ for } i = 1, \dots, M) \Rightarrow P = 0.$$

For all P in \mathcal{P}_l let

$$||P\chi_l||_l = \max_{1 \le i \le M} |\langle P\chi_l, f_i \rangle|.$$

Let $(\phi_n)_{n \in \mathbb{N}}$ be an approximate unit in $\mathcal{S}(G)$. For all f in $\mathcal{S}(G)$,

(1)
$$\langle \check{\phi}_n * T - T, f \rangle = \langle T, \phi_n * f - f \rangle.$$

The sequence $(\phi_n * f - f)_{n \in \mathbb{N}}$ converges to 0 in $\mathcal{S}(G)$, hence in A, and T being continuous on A, $(\langle \phi_n * T - T, f \rangle)_{n \in \mathbb{N}}$ tends to 0 by (1). We have

$$\|\check{\phi}_n * T - \check{\phi}_m * T\|_l = \max_{1 \le i \le M} |\langle T, (\phi_n - \phi_m) * f_i \rangle|.$$

This tends to 0 because $(\phi_n - \phi_n * f_i)_{n \in \mathbb{N}}$ tends to 0 in $\mathcal{S}(G)$, hence also in A. This shows that the sequence $(\check{\phi}_n * T)_{n \in \mathbb{N}}$ is Cauchy for the norm $|| \, ||_l$, hence converges to an element $P\chi_l$ where P belongs to \mathcal{P}_l , the space $\mathcal{P}_l\chi_l$ being finite-dimensional. Let f be in $\mathcal{S}(G)$. For all Q in \mathcal{P}_l write

$$\|Q\chi_l\|_f = \|Q\chi_l\|_l + |\langle Q\chi_l, f\rangle|.$$

Then $\| \|_f$ is a norm on $\mathcal{P}_l \chi_l$ equivalent to $\| \|_l$, since $\mathcal{P}_l \chi_l$ is finite-dimensional. Hence the sequence $(\check{\phi}_n * T)_{n \in \mathbb{N}}$ converges to $P \chi_l$ for $\| \|_f$ and the inequality

$$\begin{aligned} |\langle P\chi_l - T, f\rangle| &\leq |\langle P\chi_l - \check{\phi}_n * T, f\rangle| + |\langle \check{\phi}_n * T - T, f\rangle| \\ &\leq \|P\chi_l - \check{\phi}_n * T\|_f + |\langle \check{\phi}_n * T - T, f\rangle|, \end{aligned}$$

valid for all n in \mathbb{N} , gives, as $n \to \infty$,

$$\langle P\chi_l - T, f \rangle = 0.$$

Since $\mathcal{S}(G)$ is dense in A, this proves that $T = P\chi_l$ and so T is zero on $I(\mathcal{P}_l)$. For all T in $j(l)^\circ$, we know that T is zero on $(\operatorname{Ker} \chi_l)^N$ and by the preceding T belongs to $\mathcal{P}_l\chi_l$ and so to $I(\mathcal{P}_l)^\circ$. Since $\langle T, (\operatorname{Ker} \chi_l)^m \rangle = 0$ we see that T is zero on $I(\mathcal{P}_l)$. The Hahn–Banach theorem shows finally that $I(\mathcal{P}_l)$ is contained in j(l).

NOTATION. Let J be a closed two-sided ideal of A. We associate to it the vector subspace V(J) of \mathcal{P}_l defined by

$$V(J) = \{ P \in \mathcal{P}_l \mid \forall f \in J : Pf \in \operatorname{Ker} \chi_l \}.$$

We show that the mapping $J \mapsto V(J)$ gives characterization of the closed two-sided ideals of A with hull {Ker χ_l }.

5.4. PROPOSITION. Let J be a closed two-sided ideal of A. The vector subspace V(J) of \mathcal{P}_l is invariant under translations.

Proof. The vector space generated by S(G) * V(J) * S(G) is dense in the finite-dimensional vector space V(J), hence is equal to V(J). The result then follows from the formula

$$_{x}(f \ast P \ast g)_{y} = _{x}f \ast P \ast g_{y}$$

valid for all f and g in $\mathcal{S}(G)$, P in V(J), and x, y in G.

NOTATION. Denote by \mathcal{TP}_l the set of nonzero subspaces of \mathcal{P}_l which are invariant under left and right translations. For a topological vector space Eand a subset X of E, we denote by X° the orthogonal complement of X in E, i.e. the vector space of continuous linear forms on E which are zero on X:

$$X^{\circ} = \{ \varphi \in E' \mid \forall x \in X : \langle \varphi, x \rangle = 0 \}.$$

The most important result of this paper is the following theorem:

5.5. THEOREM. The map

$$\mathcal{TP}_l \to \mathcal{J}(l), \quad W \mapsto I(W),$$

is a decreasing bijection, with inverse

$$\mathcal{J}(l) \to \mathcal{TP}_l, \quad J \mapsto V(J).$$

Proof. By Theorem 4.6, the map $W \mapsto I(W)$ is $\mathcal{J}(l)$ -valued.

For any finite-dimensional subspace U of A', we know that U is *-weakly closed and so $(U^{\circ})^{\circ} = U$. This shows that the mapping $W \mapsto I(W)$ is injective.

Let us show the surjectivity. Let J be an element of $\mathcal{J}(l)$. Since $J \supset j(l)$, its orthogonal J° is finite-dimensional and is contained in $j(l)^{\circ}$, which means by Theorem 5.3 that $J^{\circ} \subset \mathcal{P}_l \chi_l$ and so $J^{\circ} = W \chi_l$ for some translation invariant subspace W of \mathcal{P}_l . Hence $J = (W \chi_l)^{\circ} = I(W)$, which shows the surjectivity of the map $W \mapsto I(W)$ and consequently, the bijectivity of $J \mapsto V(J)$.

6. Examples. Let w be a symmetric weight with polynomial growth on G. Let N be an integer and define A_N as the subalgebra of $L^1(G)$ of classes of functions f such that $\sum_{|\alpha| \leq N} \int_G (|X^{\alpha} * f|w + |f * X^{\alpha}|w) d\lambda$ is finite. We define a norm on A_N by putting

$$||f|| = \sum_{|\alpha| \le N} \int_{G} (|X^{\alpha} * f|w + |f * X^{\alpha}|w) d\lambda.$$

The algebra A_N with the norm $\| \|$ is a Banach algebra and satisfies the conditions given in 3.2. Consequently, Theorem 5.3 applies in this case. In particular, for N equal to zero, the weighted algebra $L^1_w(G)$ defined in 3.1 is an example of an algebra A satisfying the conditions of 3.2. The rest of this section states the principal results of the paper in this particular case.

NOTATION. Let G be a locally compact group and w a weight on G. We denote by $L_w^{\infty}(G)$ the vector space of (classes of) functions f essentially bounded by w, i.e. such that $||f/w||_{\infty}$ is finite, and we define a norm || || on $L_w^{\infty}(G)$ by

$$\|f\| = \|f/w\|_{\infty}.$$

The following proposition, which describes the topological dual $L^1_w(G)'$ of $L^1_w(G)$, is known.

6.1. PROPOSITION. Let G be a locally compact group, λ a nonzero positive left Haar measure on G, and w a weight on G. The map $\psi: L^{\infty}_{w}(G) \to L^{1}_{w}(G)'$ which takes $g \in L^{\infty}_{w}(G)$ to

$$\psi g: L^1_w(G) \to \mathbb{C}, \quad f \mapsto \langle g, f \rangle = \int_G f g \, d\lambda,$$

is an isometric isomorphism of Banach spaces.

In the following, the spaces $L^1_w(G)'$ and $L^\infty_w(G)$ will be identified. The topological dual of $L^1_w(G)$ being known, it is possible to give a more vivid description of the vector space \mathcal{P}_l defined in 3.3:

NOTATION. Let w be a weight on G. We denote by $\mathcal{P}_w(G)$ the vector space of polynomials which are essentially bounded by w:

$$\mathcal{P}_w(G) = \mathcal{P}(G) \cap L^\infty_w(G).$$

By 6.1, it is clear that $\mathcal{P}_l = \mathcal{P}_w(G)$ and Theorem 5.3 can be written as

$$j(l) = I(\mathcal{P}_w(G)) = \left\{ f \in L^1_w(G) \mid \forall P \in \mathcal{P}_w(G) : \int_G P(x)f(x)\chi_l(x) \, dx = 0 \right\}.$$

Particular cases. 1) If w is the constant weight equal to 1, then $L_w^1(G)$ coincides with $L^1(G)$, and $\mathcal{P}_w(G)$ contains only constants; then $j(l) = \{\text{Ker }\chi_l\}$, which shows that $\{\text{Ker }\chi_l\}$ is of synthesis. We find again in this case a result of [10].

2) If in a direction X_0 , $w(\exp(tX_0))$ grows at least as |t|, then $\mathcal{P}_w(G)$ contains a nonconstant polynomial, hence j(l) is strictly contained in {Ker χ_l } and therefore {Ker χ_l } is not of synthesis. So, for a nonconstant weight w, the one-point set {Ker χ_l } is not of synthesis in $L^1_w(G)$ in general.

6.2. Let us take for G the 3-dimensional Heisenberg group H_1 , for which the multiplication is given by

$$(x, y, z) \cdot (x', y', z') = \left(x + x', y + y', z + z' + \frac{1}{2}(xy' - yx')\right)$$

Denote by L the left regular representation of H_1 in $C^{\infty}(H_1)$. Let P be the polynomial

$$P = -x^2 + y^2 + z^2$$

and V the vector space generated by P and its left derivatives. Then the vector space V is 10-dimensional and $(1, x, y, z, x^2, y^2, xy, xz, yz, z^2)$ is a basis of V. For an element $(m_{ij})_{1 \le i,j \le 10}$, denoted by M, belonging to End(V), denote by $||M||_{\text{HS}}$ its Hilbert–Schmidt norm

$$||M||_{\mathrm{HS}} = \left(\sum_{1 \le i,j \le 10} |m_{ij}|^2\right)^{1/2}.$$

Finally, define

$$\omega(u,v,w) = \|L_{(u,v,w)}\|_{\mathrm{HS}}$$

An explicit computation shows that

$$\omega(u, v, w) = \left[10 + \frac{35}{4} (u^2 + v^2) + 7w^2 + \frac{7}{4} u^2 v^2 + 2(u^2 w^2 + v^2 w^2) + \frac{21}{16} (u^4 + v^4) + w^4\right]^{1/2}$$

The mapping ω is a weight on H_1 . Let π be an element of the unitary dual \hat{H}_1 of H_1 and let \mathfrak{h}_1 be the Lie algebra of H_1 . Assume that the orbit of the linear form l on \mathfrak{h}_1 associated to π by the Kirillov bijection is one point, i.e. l is a character of \mathfrak{h}_1 . So, π is a character of $L^1_{\omega}(H_1)$. By Theorem 5.5, the sets $\mathcal{J}(l)$ and $\mathcal{TP}_{\omega}(H_1)$ are in bijection. The set $\mathcal{TP}_{\omega}(H_1)$ is explicitly determined in [1].

References

- D. Alexander, Idéaux minimaux d'algèbres de groupes, thèse, Université de Metz, 2000.
- [2] D. Alexander and J. Ludwig, Undecomposable finite dimensional representations of solvable Lie groups, preprint.
- [3] J. Boidol, H. Leptin, J. Schurmann und D. Vahle, Raüme primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1–13.
- [4] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407–411.
- S. Dhieb et J. Ludwig, Caractérisation des convoluteurs de Schwartz des groupes de Lie nilpotents, J. Funct. Anal. 144 (1997), 46–53.

- [6] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 13–35.
- [7] —, Algèbres enveloppantes, Cahiers Sci. 37, Gauthier-Villars, 1974.
- [8] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
- [9] A. Hulanicki, Subalgebra of L₁(G) associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259–287.
- [10] I. Kaplansky, Primary ideals in group algebras, Proc. Natl. Acad. Sci. USA 35 (1949), 133–136.
- [11] A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (1962), no. 4, 57–110 (in Russian); English transl.: Russian Math. Surveys 17 (1962), no. 4, 53–104.
- H. Leptin, Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976), 259–278.
- J. Ludwig, Polynomial growth and ideals in group algebras, Manuscripta Math. 30 (1980), 215–221.
- [14] —, On the spectral synthesis problem for points in the dual of a nilpotent Lie group, Ark. Math. 21 (1983), 127–144.
- [15] —, Minimal C*-dense ideals and algebraically irreducible representations in the Schwartz algebra of a nilpotent Lie group, in: Lecture Notes in Math. 1359, Springer, Berlin, 1988, 209–217.
- [16] —, Topologically irreducible representations of the Schwartz algebra of a nilpotent Lie group, Arch. Math. (Basel) 54 (1990), 284–292.
- [17] J. Ludwig and C. Molitor-Braun, A restriction theorem for ideals in the Schwartz algebra of a nilpotent Lie group, ibid. 67 (1996), 199–210.
- [18] L. Pukanszky, Leçons sur les représentations des groupes, Dunod, 1967.
- [19] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, 1968.
- [20] I. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69–105.
- [21] N. Varopoulos, Analysis and Geometry on Groups, Cambridge Univ. Press, 1992.

Département de Mathématiques et d'Informatique

Université de Metz

Ile du Saulcy

57045 Metz Cedex 01, France

E-mail: alexander@poncelet.sciences.univ-metz.fr

ludwig@poncelet.sciences.univ-metz.fr

Received January 21, 2002

(4872)