Minimal ideals of group algebras

by
David Alexander and Jean Ludwig (Metz)

Abstract

We first study the behavior of weights on a simply connected nilpotent Lie group G. Then for a subalgebra A of $L^{1}(G)$ containing the Schwartz algebra $\mathcal{S}(G)$ as a dense subspace, we characterize all closed two-sided ideals of A whose hull reduces to one point which is a character.

Introduction. Let G be a simply connected nilpotent Lie group, \mathfrak{g} its Lie algebra, and A a subalgebra of $L^{1}(G)$. To every character χ_{l} of A we will associate a finite-dimensional translation invariant subspace \mathcal{P}_{l} of the vector space $\mathcal{P}(G)$ of complex polynomials on G and we will show that the set of closed two-sided ideals of A with hull $\left\{\operatorname{Ker} \chi_{l}\right\}$ is in bijection with the set of nonzero translation-invariant subspaces of \mathcal{P}_{l}. As an example of A we can take the weighted algebra $L_{w}^{1}(G)$ where w is a weight with polynomial growth. Such weights appear in a natural way in the following manner: let π be a unitary continuous irreducible representation of G in a Hilbert space \mathcal{H}_{π}. We denote by $\mathcal{U}(\mathfrak{g})$ the enveloping algebra of \mathfrak{g}. Fix a nonzero integer k and denote by $\mathcal{U}(\mathfrak{g})_{k}$ the vector space generated by the elements of $\mathcal{U}(\mathfrak{g})$ with degree less than k. Let $\mathcal{H}_{\pi}^{(k)}$ be the space of k times differentiable vectors in \mathcal{H}_{π}, i.e.

$$
\mathcal{H}_{\pi}^{(k)}=\left\{\xi \in \mathcal{H}_{\pi} \mid \forall z \in \mathcal{U}(\mathfrak{g})_{k}: d \pi(z) \xi \in \mathcal{H}_{\pi}\right\}
$$

Fix a basis $\left(z^{i}\right)_{|i| \leq k}$ of $\mathcal{U}(\mathfrak{g})_{k}$. We equip $\mathcal{H}_{\pi}^{(k)}$ with the norm

$$
\|\xi\|_{k}=\left(\sum_{|i| \leq k}\left\|d \pi\left(z^{i}\right) \xi\right\|^{2}\right)^{1 / 2}
$$

The space $\mathcal{H}_{\pi}^{(k)}$ with this norm is complete. Denoting by $\|\pi(x)\|_{\text {op }}$ the norm of the operator $\pi(x): \mathcal{H}_{\pi}^{(k)} \rightarrow \mathcal{H}_{\pi}^{(k)}$, we then have

$$
\|\pi(x)\|_{\mathrm{op}} \leq\left\|\left.\operatorname{Ad}(x)\right|_{\mathcal{U}(\mathfrak{g})_{k}}\right\|_{\mathrm{HS}}
$$

2000 Mathematics Subject Classification: Primary 43A20.
where $\left\|\|_{\text {HS }}\right.$ denotes the Hilbert-Schmidt norm. Denote by $w^{(k)}(x)$ the right side of this inequality. The function $x \mapsto w^{(k)}(x)$ is a natural example of a weight on G attached to π. By a weight on a topological group G, we mean a measurable function w on G with values in $[1,+\infty[$ such that for all s and t in G,

$$
w(s t) \leq w(s) w(t)
$$

The preceding result leads naturally to the study of weights on nilpotent Lie groups. The first section will give another example of a natural weight. Other examples of weights come from Banach space representations of topological groups. Let X be a Banach space and let (T, X) be a Banach space representation of G on X. That means that for every s in G, we have a bounded invertible operator $T(s)$ on X such that the mapping $s \mapsto T(s)$ is a homomorphism of groups and the mappings $s \mapsto T(s) x$ are continuous for every x in X. Then the operator norm $\|T(s)\|_{\text {op }}$ is a measurable function on G and defines a symmetric weight $w_{T}: s \mapsto \max \left(\|T(s)\|_{\mathrm{op}},\left\|T\left(s^{-1}\right)\right\|_{\mathrm{op}}\right)$.

Take for example the 3-dimensional Heisenberg group $G=H_{1}$. For x in H_{1} write $x=(a, b, t)$ and let (X, Y, Z) be a basis of the Lie algebra \mathfrak{h}_{1} of H_{1} with $[X, Y]=Z$. We have

$$
\operatorname{Ad}(x) X=X-b Z, \quad \operatorname{Ad}(x) Y=Y+a Z, \quad \operatorname{Ad}(x) Z=Z
$$

After an easy computation, we find

$$
w^{(2)}(x)=\left(9+7 a^{2}+7 b^{2}+a^{2} b^{2}+a^{4}+b^{4}\right)^{1 / 2}
$$

and

$$
\frac{1}{\sqrt{2}}\left(1+a^{2}+b^{2}\right) \leq w^{(2)}(x) \leq 3\left(1+a^{2}+b^{2}\right)
$$

1. Weights on topological (in particular nilpotent Lie) groups. Weights allow us to define Banach subalgebras of $L^{1}(G)$, the so-called Beurling algebras. This section studies the growth of the "most natural" weight attached to a connected locally compact group. This weight is of importance because it dominates all common weights. We end this section with a restriction property of this weight.

Definition. Let G be a topological group and S a subset of G. We write $S^{0}=\{e\}$ and for all n in \mathbb{N}^{*},

$$
S^{n}=\left\{s_{1} \ldots s_{n} \mid s_{i} \in S\right\}
$$

When G is locally compact, for s in G, we denote by $\mathfrak{V}_{G}(s)$ the set of compact neighborhoods of s in G.

In the following proposition we recall the "most natural" weight attached to a connected locally compact group as in [9].
1.1. Proposition. Let G be a connected locally compact group and U an element of $\mathfrak{V}_{G}(e)$. Then $G=\bigcup_{n \in \mathbb{N}} U^{n}$ and the map $\tau_{U}: G \rightarrow \mathbb{N}$ defined by

$$
\tau_{U}(s)=\min \left\{n \in \mathbb{N} \mid s \in U^{n}\right\}
$$

is measurable and satisfies

$$
\tau_{U}(s)=0 \Leftrightarrow s=e, \quad \tau_{U}(s t) \leq \tau_{U}(s)+\tau_{U}(t)
$$

If in addition U is symmetric, then

$$
\tau_{U}\left(s^{-1}\right)=\tau_{U}(s)
$$

It seems difficult to define canonically the notion of a "polynomial function" on any group G. In the absence of such a notion, the following definition tries to define in a natural way a function "of polynomial growth" on a class of groups as large as possible.
1.2. Definition. Let G be a connected locally compact group. A function $f: G \rightarrow \mathbb{C}$ is said to be of polynomial growth if for all U in $\mathfrak{V}_{G}(e)$, there exists a polynomial P_{U} in one variable, with real coefficients, such that for all s in G,

$$
|f(s)| \leq P_{U}\left(\tau_{U}(s)\right)
$$

For example for a connected compact group G, the functions with polynomial growth on G are bounded functions. More generally, it is easy to check that under the conditions of 1.2 , a function with polynomial growth is bounded on all compact subsets. Since for any two elements U and V of $\mathfrak{V}_{G}(e)$, there exist strictly positive numbers k and k^{\prime} such that

$$
\tau_{V} \leq k \tau_{U} \leq k^{\prime} \tau_{V}
$$

it follows that if $f: G \rightarrow \mathbb{C}$ satisfies $|f| \leq P_{U} \circ \tau_{U}$ for one compact neighborhood U of e in G, then such a relation is true for all compact neighborhoods of e in G, i.e. f is of polynomial growth.

Notation. Let G be a group. For $f: G \rightarrow \mathbb{C}$, we denote by \check{f} the function $s \mapsto f\left(s^{-1}\right)$.

It is clear that the set of weights on G is stable under pointwise multiplication, involution $w \mapsto \check{w}$, finite simple limit, finite upper hull, and left composition by functions of the form $\exp \circ f \circ \ln$, where f is an increasing and subadditive function $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Such functions are studied in [8].
1.3. Example. For a connected locally compact group G and U in $\mathfrak{V}_{G}(e)$, the map $1+\tau_{U}$, denoted by w_{U}, is clearly a weight on G, satisfying in addition

$$
w_{U}(s t) \leq w_{U}(s)+w_{U}(t)
$$

This weight will be studied in detail in the following when G will be assumed to be a nilpotent Lie group. By [6], we have:
1.4. Proposition. Let G be a connected Lie group with Lie algebra \mathfrak{g}. A norm || || on the vector space \mathfrak{g} being fixed, for all U in $\mathfrak{V}_{G}(e)$, there exists a strictly positive number c_{U} such that for all X in \mathfrak{g},

$$
w_{U}(\exp X)<2+c_{U}\|X\|
$$

Until the end of this section, G denotes a simply connected nilpotent Lie group with Lie algebra \mathfrak{g}. Starting with $\mathfrak{g}_{0}=\mathfrak{g}$, we define \mathfrak{g}_{m} for m in \mathbb{N}^{*} as the real vector space generated by the set of $[X, Y]$ where X runs through \mathfrak{g} and Y runs through \mathfrak{g}_{m-1}. The step of nilpotency of \mathfrak{g} is denoted by n; this means that \mathfrak{g}_{n} reduces to $\{0\}$ and \mathfrak{g}_{n-1} is nonzero. Hence, an element X of \mathfrak{g} belongs to \mathfrak{g}_{i} if and only if X is a linear combination of terms requiring at least i brackets in all. For all i in $\{1, \ldots, n\}$, choose a complementary subspace V_{i} of \mathfrak{g}_{i} in \mathfrak{g}_{i-1}. Then

$$
\mathfrak{g}=\bigoplus_{i=1}^{n} V_{i} .
$$

For all k in $\{0, \ldots, n\}$, let G_{k} be $\exp \mathfrak{g}_{k}$. Then G_{k} is the closure in G of the subgroup generated by the elements $x y x^{-1} y^{-1}$ where x runs through G and y runs through G_{k-1}. The exponential map exp is a C^{∞} diffeomorphism of \mathfrak{g} onto G, which allows us to identify G with the real vector space \mathfrak{g} as manifolds. If \mathfrak{g} is endowed with the Baker-Campbell-Hausdorff product

$$
\begin{aligned}
X \cdot Y= & X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X,[X, Y]]+[Y,[Y, X]]) \\
& +(\text { commutators of order } 3 \text { at least })
\end{aligned}
$$

then exp is an isomorphism of topological groups from \mathfrak{g} onto G, which allows us to identify the groups G and (\mathfrak{g}, \cdot). For this group law, $-X$ is the inverse of X. Finally, for X and Y in \mathfrak{g}, we set

$$
\{X, Y\}=X \cdot Y \cdot(-X) \cdot(-Y) .
$$

By [21], we have:
1.5. Lemma. Let \mathfrak{g} be a nilpotent Lie algebra of step n. For all X_{1}, \ldots \ldots, X_{n} in \mathfrak{g}, we have

$$
\begin{aligned}
{\left[X_{1},\left[X_{2},\left[\ldots, X_{n-1}\right] \ldots\right]\right] } & \equiv\left\{X_{1},\left\{X_{2},\left\{\ldots, X_{n-1}\right\} \ldots\right\}\right\} \bmod \mathfrak{g}_{n-1} \\
{\left[X_{1},\left[X_{2},\left[\ldots, X_{n}\right] \ldots\right]\right] } & =\left\{X_{1},\left\{X_{2},\left\{\ldots, X_{n}\right\} \ldots\right\}\right\}
\end{aligned}
$$

In the following proposition, the bracket of two elements X and Y will be written as product in the group \mathfrak{g} of $a_{i} X$ and $b_{i} Y$ where a_{i} and b_{i} are real numbers. We give a bound for the number of factors in the product, which improves a result of [21].
1.6. Proposition. Let \mathfrak{g} be a nilpotent Lie algebra of step n greater than 2.

1) There exists an integer m, depending only on n and $2 m$ real numbers $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}$, such that for all X and Y in \mathfrak{g}, we have

$$
X+Y=\prod_{i=1}^{m}\left(a_{i} X\right) \cdot\left(b_{i} Y\right)
$$

2) There exists an integer p, depending only on n and $2 p$ real numbers $c_{1}, \ldots, c_{p}, d_{1}, \ldots, d_{p}$, such that for all X and Y in \mathfrak{g}, we have

$$
[X, Y]=\prod_{i=1}^{p}\left(c_{i} X\right) \cdot\left(d_{i} Y\right)
$$

In addition m and p are less than $2^{n}\left(2^{n}-5\right)+2 n+2$.
Proof. 1) If $n=2$, then for all X and Y in \mathfrak{g}, we have

$$
X+Y=\frac{X}{2} \cdot Y \cdot \frac{X}{2}
$$

Assume the result is true for a nilpotent Lie algebra of step $n-1 \geq 2$ and let \mathfrak{g} be a nilpotent Lie algebra of step n. Since $\mathfrak{g} / \mathfrak{g}_{n-1}$ is nilpotent of step $n-1$, for all X_{1} and X_{2} in \mathfrak{g}, we have by the induction hypothesis

$$
X_{1}+X_{2}=\prod_{i=1}^{m}\left(c_{i} X_{1}\right) \cdot\left(d_{i} X_{2}\right)+u\left(X_{1}, X_{2}\right)
$$

where $u\left(X_{1}, X_{2}\right)$ belongs to \mathfrak{g}_{n-1}, hence to the center of \mathfrak{g}. There exist real numbers $c_{i_{1} \ldots i_{n}}$, where $\left(i_{1}, \ldots, i_{n}\right)$ runs through $\{1,2\}^{n}$, such that

$$
\begin{aligned}
u\left(X_{1}, X_{2}\right) & =\sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}} c_{i_{1} \ldots i_{n}}\left[X_{i_{1}},\left[X_{i_{2}},\left[\ldots, X_{i_{n}}\right] \ldots\right]\right] \\
& =\prod_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}}\left[c_{i_{1} \ldots i_{n}} X_{i_{1}},\left[X_{i_{2}},\left[\ldots, X_{i_{n}}\right] \ldots\right]\right]
\end{aligned}
$$

By Lemma 1.5, we have

$$
u\left(X_{1}, X_{2}\right)=\prod_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}}\left\{c_{i_{1} \ldots i_{n}} X_{i_{1}},\left\{X_{i_{2}},\left\{\ldots, X_{i_{n}}\right\} \ldots\right\}\right\}
$$

and then
$X_{1}+X_{2}=\prod_{i=1}^{m}\left(c_{i} X_{1}\right) \cdot\left(d_{i} X_{2}\right) \cdot \prod_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}}\left\{c_{i_{1} \ldots i_{n}} X_{i_{1}},\left\{X_{i_{2}},\left\{\ldots, X_{i_{n}}\right\} \ldots\right\}\right\}$
where $c_{1 \ldots 1}$ and $c_{2 \ldots 2}$ are zero. Denoting by m_{n} the number of factors sufficient to write $X_{1}+X_{2}$ as a product when \mathfrak{g} is nilpotent of step n, we have shown that $m_{2}=3$; we can check that

$$
m_{n}=m_{n-1}+\left(2^{n}-2\right)\left(3 \cdot 2^{n-1}-2\right)
$$

and consequently

$$
m_{n}=2^{n+1}\left(2^{n}-5\right)+4 n+3
$$

2) Let us prove the second assertion. If $n=2$, then for all X and Y in \mathfrak{g}, we have

$$
[X, Y]=X \cdot Y \cdot(-X) \cdot(-Y)
$$

The proof of the rest of the assertion is similar and we find that

$$
p_{n}=2^{n+1}\left(2^{n}-5\right)+4 n+4
$$

where p_{n} indicates the number of factors sufficient to write $\left[X_{1}, X_{2}\right]$ as a product when \mathfrak{g} is nilpotent of step n.
1.7. Corollary. Let \mathfrak{g} be a nilpotent Lie algebra of step n greater than 2. Let X_{1}, \ldots, X_{p} be elements of \mathfrak{g} of the form

$$
X_{i}=\left[X_{i}^{1},\left[X_{i}^{2},\left[\ldots, X_{i}^{k_{i}}\right] \ldots\right]\right]
$$

Then there exists an integer q, depending only on p and n, such that

$$
\sum_{i=1}^{p} X_{i}=\prod_{j=1}^{q} \prod_{\substack{1 \leq i_{j} \leq p \\ 1 \leq l_{i_{j}} \leq k_{i_{j}}}} c_{i_{j} l_{i_{j}}} X_{i_{j}}^{l_{i_{j}}}
$$

Proof. It suffices to apply the previous proposition as many times as necessary.

We recall that G denotes a simply connected nilpotent Lie group with Lie algebra \mathfrak{g}. In the rest of this section fix a euclidean norm $\|\|$ on \mathfrak{g}, and denote by U the unit ball B of \mathfrak{g}.
1.8. Corollary. There exists a real number c_{1} such that for all j in $\{1, \ldots, n-1\}$, and X in \mathfrak{g}_{j},

$$
w_{U}(X) \leq c_{1}(1+\|X\|)^{1 / j+1}
$$

Proof. Let j be in $\{1, \ldots, n-1\}$ and fix a basis $\left(X_{1}, \ldots, X_{p}\right)$ of \mathfrak{g}_{j}. Each X_{i} can be chosen such that

$$
X_{i}=\left[X_{i}^{1},\left[X_{i}^{2},\left[\ldots, X_{i}^{j+1}\right] \ldots\right]\right]
$$

for certain vectors X_{i}^{k}. Let X be in \mathfrak{g}_{j}. We can write

$$
(1+\|X\|)^{-1} X=\sum_{i=1}^{p} c_{i} X_{i}
$$

where $\left|c_{i}\right|<1$, and then

$$
\begin{aligned}
X= & \sum_{i=1}^{p} c_{i}(1+\|X\|)\left[X_{i}^{1},\left[X_{i}^{2},\left[\ldots, X_{i}^{j+1}\right] \ldots\right]\right] \\
= & \sum_{i=1}^{p}\left[c_{i}(1+\|X\|)^{1 / j+1} X_{i}^{1}\right. \\
& \left.\quad\left[(1+\|X\|)^{1 / j+1} X_{i}^{2},\left[\ldots,(1+\|X\|)^{1 / j+1} X_{i}^{j+1}\right] \ldots\right]\right]
\end{aligned}
$$

By Corollary 1.7, it follows that

$$
X=\prod_{m=1}^{q} \prod_{\substack{1 \leq i_{m} \leq p \\ 1 \leq r_{m} \leq j+1}} c_{i_{m} r_{m}}(1+\|X\|)^{1 / j+1} X_{i_{m}}^{r_{m}}
$$

for a certain integer q and some real numbers $c_{i_{m} r_{m}}$, depending only on j, n, p. Let s be the number of factors in the above product. Put

$$
\begin{aligned}
& c=\max \left\{\left|c_{i_{m} r_{m}}\right| \mid 1 \leq i_{m} \leq p, 1 \leq r_{m} \leq j+1,1 \leq m \leq q\right\} \\
& t=\max \left\{\left\|X_{i}^{k}\right\| \mid 1 \leq i \leq p, 1 \leq k \leq j+1\right\}
\end{aligned}
$$

Hence

$$
X \in U^{s\left(1+E\left(c t(1+\|X\|)^{1 / j+1}\right)\right)}
$$

where E indicates the integer part function, from which, by definition of w_{U},

$$
\begin{aligned}
w_{U}(X) & \leq 1+s\left(1+E\left(c t(1+\|X\|)^{1 / j+1}\right)\right) \\
& \leq 1+s+\operatorname{sct}(1+\|X\|)^{1 / j+1} \\
& \leq(1+s+s c t)(1+\|X\|)^{1 / j+1}
\end{aligned}
$$

1.9. Proposition. There exists a real number c_{2} such that for all X in \mathfrak{g} and all j in $\{1, \ldots, n\}$ we have

$$
\left(1+\left\|X_{j}\right\|\right)^{1 / j} \leq c_{2} w_{U}(X)
$$

where X_{j} indicates the component of X belonging to V_{j}.
Proof. 1) Let ε be a strictly positive number. Let us show by induction on m that there exists a real number $a_{\varepsilon}=O(\varepsilon)$ such that if $X \in(\varepsilon B)^{m}$, then $\left\|X_{j}\right\|<a_{\varepsilon}(1+m)^{j}$.

If $m=1$, then $\left\|X_{j}\right\|<\varepsilon$, hence we take $a_{\varepsilon}=\varepsilon 2^{-j}$.
Assume the result is true for $m-1$ and let X be in $(\varepsilon B)^{m}$. Then X can be written as $Y \cdot W$ where $Y \in(\varepsilon B)^{m-1}$ and $W \in \varepsilon B$. By the induction hypothesis,

$$
\begin{equation*}
\left\|Y_{j}\right\| \leq a_{\varepsilon} m^{j} \tag{1}
\end{equation*}
$$

where $a_{\varepsilon}=O(\varepsilon)$. By the Baker-Campbell-Hausdorff formula, we have

$$
\begin{equation*}
(Y \cdot W)_{j}=Y_{j}+W_{j}+Q_{j}(Y, W) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{j}(Y, W)=\sum_{\substack{i_{1}, \ldots, i_{p} \geq 1 \\ i_{1}+\ldots+i_{p} \leq j}} c_{i_{1} \ldots i_{p}}^{j}\left[T_{i_{1}},\left[\ldots, T_{i_{p}}\right] \ldots\right]_{j} \tag{3}
\end{equation*}
$$

and where each $T_{i_{k}}$ is $Y_{i_{k}}$ or $W_{i_{k}}$, i.e. an element of $V_{i_{k}}$. Since each $W_{i_{k}}$ appears at least once in each bracket, it follows that for ε small enough

$$
\begin{aligned}
\left\|\left[T_{i_{1}},\left[\ldots, T_{i_{p}}\right] \ldots\right]_{j}\right\| & \leq\left\|\left[T_{i_{1}},\left[\ldots, T_{i_{p}}\right] \ldots\right]\right\| \leq \varepsilon\left\|T_{i_{1}}\right\| \ldots\left\|\widehat{T_{i_{k}}}\right\| \ldots\left\|T_{i_{p}}\right\| \\
& \leq \varepsilon a_{\varepsilon} m^{i_{1}} \ldots \widehat{a_{\varepsilon} m^{i_{k}}} \ldots a_{\varepsilon} m^{i_{p}} \leq \varepsilon m^{j-1}
\end{aligned}
$$

and hence, by (3),

$$
\left\|Q_{j}(Y, W)\right\| \leq \varepsilon m^{j-1} \sum_{\substack{i_{1}, \ldots, i_{p} \geq 1 \\ i_{1}+\ldots+i_{p} \leq j}}\left|c_{i_{1} \ldots i_{p}}^{j}\right| \leq \varepsilon c N m^{j-1}
$$

where

$$
c=\max \left\{\left|c_{i_{1} \ldots i_{p}}^{j}\right| \mid i_{1}, \ldots, i_{p} \geq 1 \text { and } i_{1}+\ldots+i_{p} \leq j\right\}
$$

and N is the number of terms in the preceding sum. We then deduce, by (1) and (2), that

$$
\begin{aligned}
\left\|(Y \cdot W)_{j}\right\| & \leq\left\|Y_{j}\right\|+\left\|W_{j}\right\|+\left\|Q_{j}(Y, W)\right\| \\
& \leq a_{\varepsilon} m^{j}+\varepsilon+\varepsilon c N m^{j-1} \leq c_{\varepsilon}(1+m)^{j}
\end{aligned}
$$

where $c_{\varepsilon}=a_{\varepsilon}+\varepsilon+\varepsilon c N$. Finally $\left\|X_{j}\right\| \leq c_{\varepsilon}(1+m)^{j}$ where $c_{\varepsilon}=O(\varepsilon)$. We now choose our new a_{ε} as c_{ε}.
2) Let X be in U, ε be a strictly positive number and M_{ε} the integer such that

$$
M_{\varepsilon}-1<\varepsilon^{-1} \leq M_{\varepsilon}
$$

Then

$$
\left\|M_{\varepsilon}^{-1} X\right\| \leq \varepsilon\|X\| \leq \varepsilon,
$$

therefore $M_{\varepsilon}^{-1} X$ belongs to εB and consequently $X \in(\varepsilon B)^{M_{\varepsilon}}$.
3) Let X be a nonzero element of \mathfrak{g}. Fix ε small enough so that $a_{\varepsilon}<1$ in 1). By definition, X belongs to $U^{w_{U}(X)-1}$, then by 2) to $(\varepsilon B)^{M_{\varepsilon}\left(w_{U}(X)-1\right)}$, and by 1),

$$
\left(1+\left\|X_{j}\right\|\right)^{1 / j} \leq\left(1+M_{\varepsilon}^{j}\right)^{1 / j} w_{U}(X)
$$

1.10. Proposition. There exists a real number c_{3} such that for all Y_{1}, \ldots, Y_{n} where each Y_{j} belongs to \mathfrak{g}_{j-1}, we have

$$
\left\|X_{j}\right\|^{1 / j} \leq c_{3} \max _{1 \leq i \leq j}\left(1+\left\|Y_{i}\right\|\right)^{1 / i}, \quad\left\|Y_{j}\right\|^{1 / j} \leq c_{3} \max _{1 \leq i \leq j}\left(1+\left\|X_{i}\right\|\right)^{1 / i}
$$

where X_{j} indicates the component of $Y_{1} \ldots Y_{n}$ belonging to V_{j}.

Proof. Fix j in $\{1, \ldots, n\}$. By the Baker-Campbell-Hausdorff formula,

$$
\begin{equation*}
X_{j}=Y_{j}+\sum_{\substack{i_{1}, \ldots, i_{p} \geq 1 \\ i_{1}+\ldots+i_{p} \leq j}} c_{i_{1} \ldots i_{p}}^{j}\left[Y_{i_{1}},\left[\ldots, Y_{i_{p}}\right], \ldots\right]_{j}, \tag{1}
\end{equation*}
$$

hence

$$
\begin{aligned}
\left\|X_{j}\right\| & \leq\left\|Y_{j}\right\|+\sum_{\substack{i_{1}, \ldots, i_{p} \geq 1 \\
i_{1}+\ldots+i_{p} \leq j}}\left|c_{i_{1} \ldots i_{p}}^{j}\right|\left\|Y_{i_{1}}\right\| \ldots\left\|Y_{i_{p}}\right\| \\
& \leq\left\|Y_{j}\right\|+c \sum_{\substack{i_{1}, \ldots, i_{p} \geq 1 \\
i_{1}+\ldots+i_{p} \leq j}}\left(\left\|Y_{i_{1}}\right\|^{1 / i_{1}}\right)^{i_{1}} \ldots\left(\left\|Y_{i_{p}}\right\|^{1 / i_{p}}\right)^{i_{p}} \\
& \leq(1+c N)\left(\max _{1 \leq i \leq j}\left(1+\left\|Y_{i}\right\|\right)^{1 / i}\right)^{j}
\end{aligned}
$$

where

$$
c=\max \left\{\left|c_{i_{1} \ldots i_{p}}^{j}\right| \mid i_{1}, \ldots, i_{p} \geq 1 \text { and } i_{1}+\ldots+i_{p} \leq j\right\}
$$

and N is the number of terms in the previous sum. Finally,

$$
\left\|X_{j}\right\|^{1 / j} \leq(1+c N)^{1 / j} \max _{1 \leq i \leq j}\left(1+\left\|Y_{i}\right\|\right)^{1 / i} .
$$

The second relation follows similarly.
By 1.2 all the weights w_{U} are equivalent on a connected group G. Hence we fix a compact neighborhood U of e in G and we write w_{G} instead of w_{U}. We can then summarize the previous results in the following theorem:
1.11. Theorem. Let G be a simply connected nilpotent Lie group with Lie algebra \mathfrak{g}. Let $\mathfrak{g}=\bigoplus_{i=1}^{n} V_{i}$ where $V_{i} \oplus \mathfrak{g}_{i}=\mathfrak{g}_{i-1}$ and where $\left(\mathfrak{g}_{i}\right)_{0 \leq i \leq n-1}$ is the central decreasing sequence of \mathfrak{g}. Then there exist real numbers c and c^{\prime} such that for all X in \mathfrak{g}, we have

$$
c \max _{1 \leq i \leq n}\left(1+\left\|X_{i}\right\|\right)^{1 / i} \leq w_{G}(\exp X) \leq c^{\prime} \max _{1 \leq i \leq n}\left(1+\left\|X_{i}\right\|\right)^{1 / i}
$$

where X_{i} indicates the component of X belonging to V_{i}.
Proof. Proposition 1.9 shows the existence of c. Let now X be in \mathfrak{g}. We can find Y_{1}, \ldots, Y_{n}, where each Y_{j} belongs to \mathfrak{g}_{j-1}, such that $\exp X=$ $\exp Y_{1} \ldots \exp Y_{n}$. Hence, by 1.3, we have

$$
w_{G}(\exp X) \leq \sum_{j=1}^{n} w_{G}\left(\exp Y_{j}\right)
$$

and by Corollary 1.8,

$$
w_{G}(\exp X) \leq c_{1} \sum_{j=1}^{n}\left(1+\left\|Y_{j}\right\|\right)^{1 / j} .
$$

It now follows from Proposition 1.10 that

$$
\begin{aligned}
w_{G}(\exp X) & \leq c_{1} \sum_{j=1}^{n}\left[1+c_{3}^{j} \max _{1 \leq i \leq j}\left(1+\left\|X_{i}\right\|\right)^{j / i}\right]^{1 / j} \\
& \leq c_{1} \sum_{j=1}^{n} 1+c_{3} \max _{1 \leq i \leq j}\left(1+\left\|X_{i}\right\|\right)^{1 / i} \\
& \leq c_{1} n\left(1+c_{3}\right) \max _{1 \leq i \leq n}\left(1+\left\|X_{i}\right\|\right)^{1 / i}
\end{aligned}
$$

Notation. For all k in $\{1, \ldots, n\}$, the set $U \cap G_{k}$ denoted by V_{k} is a symmetric compact neighborhood of e in G_{k}, and the weight $w_{V_{k}}$ on G_{k} defined in 1.3 will be denoted by $w_{G_{k}}$.
1.12. THEOREM. There exists a strictly positive number c such that for all k in $\{1, \ldots, n\}$, we have

$$
\left.w_{G}\right|_{G_{k}} \leq c w_{G_{k}}^{1 / k+1}
$$

Proof. We easily show by induction on i that for all i in \mathbb{N},

$$
\begin{equation*}
\left(\mathfrak{g}_{k}\right)_{i} \subset \mathfrak{g}_{(k+1)(i+1)-1} \tag{1}
\end{equation*}
$$

Denote by p_{k} the step of nilpotency of \mathfrak{g}_{k} and let Y be an element of \mathfrak{g}_{k}. Then

$$
Y=Y_{1} \ldots Y_{p_{k}}=X_{1}+\ldots+X_{p_{k}}
$$

where each Y_{i} belongs to $\left(\mathfrak{g}_{k}\right)_{i-1}$ and X_{i} to $\left(V_{k}\right)_{i}$ where, as at the beginning of this section, $\left(\mathfrak{g}_{k}\right)_{i-1}$ is the direct sum of $\left(\mathfrak{g}_{k}\right)_{i}$ and $\left(V_{k}\right)_{i}$ for all i in $\left\{1, \ldots, p_{k}\right\}$. As noticed in 1.3, we have

$$
w_{G}(\exp Y)=w_{G}\left(\exp Y_{1} \ldots \exp Y_{p_{k}}\right) \leq w_{G}\left(\exp Y_{1}\right)+\ldots+w_{G}\left(\exp Y_{p_{k}}\right)
$$

Now each Y_{i} belongs to $\mathfrak{g}_{(k+1) i-1}$ by (1), and so by Corollary 1.8,

$$
w_{G}\left(\exp Y_{i}\right) \leq c_{1}\left(1+\left\|Y_{i}\right\|\right)^{1 /(k+1) i}
$$

hence

$$
\begin{align*}
w_{G}(\exp Y) & \leq c_{1} \sum_{i=1}^{p_{k}}\left(1+\left\|Y_{i}\right\|\right)^{1 /(k+1) i} \\
& \leq c_{1} p_{k} \max _{1 \leq i \leq p_{k}}\left(1+\left\|Y_{i}\right\|\right)^{1 /(k+1) i} \\
& \leq c_{1} p_{k}+c_{1} p_{k}\left(\max _{1 \leq i \leq p_{k}}\left\|Y_{i}\right\|^{1 / i}\right)^{1 / k+1} \\
& \leq c_{1} p_{k}+c_{1} p_{k}\left(c_{3} \max _{1 \leq i \leq p_{k}}\left(1+\left\|X_{i}\right\|\right)^{1 / i}\right)^{1 / k+1} \tag{2}\\
& \leq c_{1} p_{k}+c_{1} p_{k}\left(c_{3} c_{2} w_{G_{k}}(\exp Y)\right)^{1 / k+1} \tag{3}\\
& \leq\left(c_{1} p_{k}+c_{1} p_{k}\left(c_{2} c_{3}\right)^{1 / k+1}\right)\left(w_{G_{k}}(\exp Y)\right)^{1 / k+1}
\end{align*}
$$

where (2) and (3) result from Propositions 1.10 and 1.9 respectively.
1.13. Corollary. Let N be a subgroup of G_{1} and let (π, X) be a Banach space representation of G on X. If $\left.\pi\right|_{N}$ is given by $\chi 1_{X}$ for some character χ of N, then χ must be unitary.

Proof. Assume that $\left.\pi\right|_{N}$ is a (continuous) nonunitary character of N. Denote by \mathfrak{n} the Lie algebra of N. Let U be in $\mathfrak{V}_{G}(e)$. First, for all s in G distinct from e we have

$$
s=s_{1} \ldots s_{\tau_{U}(s)}
$$

hence

$$
\begin{equation*}
|\pi(s)|=\left|\pi\left(s_{1}\right)\right| \ldots\left|\pi\left(s_{\tau_{U}(s)}\right)\right| \leq e^{k_{U} \tau_{U}(s)} \leq e^{k_{U} w_{G}(s)} \tag{1}
\end{equation*}
$$

where

$$
e^{k_{U}}=\sup _{s \in U}|\pi(s)|
$$

By hypothesis, there exist two real linear forms α and β on \mathfrak{n}, with $\alpha \neq 0$, such that

$$
\pi(\exp X)=e^{\langle\alpha+i \beta, X\rangle}, \quad X \in \mathfrak{n}
$$

Fix X in \mathfrak{n} such that $\langle\alpha, X\rangle=1$. Then for all t in \mathbb{R}, from (1) we have

$$
e^{t}=|\pi(\exp (t X))| \leq e^{k_{U} w_{G}(\exp (t X))}
$$

Let $V=U \cap G_{1}$. By Theorem 1.12

$$
w_{G}(\exp (t X))=\left.w_{G}\right|_{G_{1}}(\exp (t X)) \leq c\left(w_{G_{1}}(\exp (t X))\right)^{1 / 2}
$$

and by Proposition 1.4,

$$
w_{G_{1}}(\exp (t X))<2+c_{V}\|t X\|
$$

hence

$$
e^{t} \leq e^{k_{U} c \sqrt{2+c_{V}|t|\|X\|}}
$$

This last inequality is false for t large enough.
2. Spectral synthesis for nilpotent Lie groups. Let G be a connected Lie group, \mathfrak{g} its Lie algebra, and \mathfrak{g}^{*} the dual vector space of \mathfrak{g}. The set of equivalence classes of irreducible continuous unitary representations of G is denoted by \widehat{G}. When G is abelian, by Schur's lemma, \widehat{G} is in bijection with the group of continuous characters of G into the multiplicative group U of complex numbers of norm 1 . When G is not abelian, \widehat{G} is not known in general. In 1962, A. Kirillov managed to determine \widehat{G} when G is nilpotent and simply connected [11]: the unitary dual \widehat{G} of G is described by the orbits of the elements of \mathfrak{g}^{*} under the coadjoint action of G; this action is defined by the relation

$$
x \cdot l=l \circ \operatorname{Ad}\left(x^{-1}\right), \quad l \in \mathfrak{g}^{*}, x \in G
$$

From now on, G denotes a simply connected real nilpotent Lie group with Lie algebra \mathfrak{g}. For l in \mathfrak{g}^{*}, there exists a polarization \mathfrak{m} at l, i.e. a subalgebra \mathfrak{m} of \mathfrak{g} which is maximal isotropic for the skew-symmetric bilinear form

$$
B_{l}(X, Y)=l[X, Y], \quad X, Y \in \mathfrak{g} .
$$

Denote by M the connected subgroup $\exp \mathfrak{m}$ of G associated to \mathfrak{m}. The map

$$
\chi_{l, M}: M \rightarrow U, \quad \exp X \mapsto e^{i\langle l, X\rangle},
$$

is a character of M. We write

$$
\pi_{l, M}=\operatorname{ind}_{M}^{G} \chi_{l, M} .
$$

Then $\pi_{l, M}$ is irreducible and the correspondence

$$
\mathfrak{g}^{*} / \operatorname{Ad}^{*}(G) \rightarrow \widehat{G}, \quad[l] \mapsto\left[\pi_{l, M}\right],
$$

is a bijective mapping, called Kirillov's bijection, where

$$
l \sim l^{\prime} \Leftrightarrow \exists x \in G: l^{\prime}=\operatorname{Ad}^{*}(x) l .
$$

The set \widehat{G} is also in bijection with $\operatorname{Prim}(G)$, the space of primitive ideals of the C^{*}-algebra of G by [6], and by [3] in bijection with
Prim ${ }^{*} L^{1}(G)$

$$
=\left\{\operatorname{Ker} \pi| | \pi \text { a } * \text {-topologically irreducible representation of } L^{1}(G)\right\} .
$$

We equip these two sets with the Jacobson topology: for a subset S of $L^{1}(G)$, we define its hull by

$$
h(S)=\left\{J \in \operatorname{Prim}^{*} L^{1}(G)| | S \subset J\right\},
$$

and for a subset C of $\operatorname{Prim}^{*} L^{1}(G)$ or $\operatorname{Prim}(G)$, we define its kernel by

$$
k(C)=\bigcap_{J \in C} J
$$

Then, by definition, C is closed in $\operatorname{Prim}^{*} L^{1}(G)$, respectively in $\operatorname{Prim}(G)$, if and only if $C=h(k(C))$. By Brown's theorem [4], Kirillov's bijection is a homeomorphism.

The Jacobson topology is in general not Hausdorff, but always accessible, i.e. each point is closed, which means that every element in $\operatorname{Prim}^{*} L^{1}(G)$, respectively in $\operatorname{Prim}(G)$, is maximal. This follows from the fact that the coadjoint orbits of nilpotent Lie groups are closed [18].

Problem. Given a closed subset C of $\operatorname{Prim}^{*} L^{1}(G)$, can we determine the set $\mathcal{J}(C)$ of closed two-sided ideals of $L^{1}(G)$ with hull C ?

When $\mathcal{J}(C)=\{k(C)\}$, the subset C is said to be of synthesis or spectral. The first result of spectral synthesis is the famous theorem of N. Wiener
stating that \emptyset is of synthesis in $\operatorname{Prim}^{*} L^{1}(\mathbb{R})$, i.e. each proper closed ideal of $L^{1}(\mathbb{R})$ is contained in the kernel of a $*$-topologically irreducible representation of $L^{1}(\mathbb{R})$. I. Segal [20] next showed that each point of $\operatorname{Prim}^{*} L^{1}(\mathbb{R})$ is of synthesis; then I. Kaplansky [10] generalized this result to $\operatorname{Prim}^{*} L^{1}(G)$ where G is abelian. The first result when G is not abelian was obtained by H. Leptin [12] who showed that if G is nilpotent of step 2, then each point in $\operatorname{Prim}^{*} L^{1}(G)$ is of synthesis. If G is nilpotent of step 3, J. Ludwig [14] showed that $\mathcal{J}(\{\operatorname{Ker} \pi\})$ is in bijection with $\mathcal{J}(\{\operatorname{Ker} \chi\})$ where χ is a character of $L_{w}^{1}\left(\mathbb{R}^{n}\right)$, and w is a weight of polynomial growth on \mathbb{R}^{n}. J. Ludwig shows that $\mathcal{J}(\{\operatorname{Ker} \pi\})$ then contains in general an infinity of elements, and consequently $\{\operatorname{Ker} \pi\}$ is not of synthesis in these cases. If G is nilpotent of step 4, the computations become much more difficult and no general result is known. We have however the following theorem due to J. Ludwig [13], which gives the existence of a smallest element in $\mathcal{J}(C)$:

Theorem. Let G be a locally compact group with polynomial growth such that $L^{1}(G)$ is symmetric, and C a closed subset of $\operatorname{Prim}^{*} L^{1}(G)$. Then there exists a single closed two-sided ideal $j(C)$ of $L^{1}(G)$ such that

$$
h(j(C))=C
$$

and

$$
\left(J \triangleleft L^{1}(G), h(J) \subset C\right) \Rightarrow j(C) \subset J
$$

This theorem applies in particular when G is a simply connected nilpotent Lie group [6]. For example, if G is abelian, then $j(C)$ is the closure in $L^{1}(G)$ of the ideal of $L^{1}(G)$ of functions for which the support of the Fourier transform is compact and disjoint from C [19].

Notice that for a closed subset C of $\operatorname{Prim}^{*} L^{1}(G)$, each element of $\mathcal{J}(C)$ is contained in $k(C)$. Hence there exists a "minimal" ideal and a "maximal" ideal with hull C. The subset C is then of synthesis if and only if these two ideals are equal.

Let π be an element of \widehat{G}. In order to determine $\mathcal{J}(\{\operatorname{Ker} \pi\})$ when the step of G is larger than 3 , it is natural to begin with the determination of $j(\{\operatorname{Ker} \pi\})$, since the latter is contained in each element of $\mathcal{J}(\{\operatorname{Ker} \pi\})$. The result obtained by J. Ludwig when G is of step 3 forces us to look for this ideal not in $L^{1}(G)$ but in a weighted L^{1}-algebra on \mathbb{R}^{n}.

By Kirillov's bijection, π is associated to the orbit $O(l)$ of a certain linear form l on \mathfrak{g}, and the easiest case is when the orbit $O(l)$ is a single point. The rest of this paper is devoted to the determination of $j(\{\operatorname{Ker} \pi\})$ in this case. This will be done in a quite general class of algebras which contain weighted algebras, and for nilpotent Lie groups of any step. The principal result of this paper is based in fact on a general property of $C^{\infty}(G)$-modules of finite dimension, where G is solvable. This property is dealt with in [2].

Notation. By [3], the set $\operatorname{Prim}^{*} L^{1}(G)$ is in bijection with $\mathfrak{g}^{*} / \operatorname{Ad}^{*}(G)$. In order to make the reading easier, closed subsets C of $\operatorname{Prim}^{*} L^{1}(G)$ and closed subsets of \widehat{G} will be identified with closed $\operatorname{Ad}^{*}(G)$-invariant subsets of \mathfrak{g}^{*}. So, for π_{l} in \widehat{G}, associated to the orbit $O(l)$ of a linear form l on \mathfrak{g}, the minimal ideal $j\left(\left\{\operatorname{Ker} \pi_{l}\right\}\right)$ of $L^{1}(G)$ and the set $\mathcal{J}\left(\left\{\operatorname{Ker} \pi_{l}\right\}\right)$ of closed two-sided ideals of $L^{1}(G)$ with hull $\left\{\operatorname{Ker} \pi_{l}\right\}$ will be denoted $j(l)$ and $\mathcal{J}(l)$ respectively.

Conventions. Unless otherwise stated, a function will always be complex-valued. For any group, e will indicate the identity element. For a normed algebra A the relation $I \triangleleft A$ means that I is a closed two-sided ideal of A.
3. Polynomials and group algebras. In the following, λ will indicate a Haar measure on a simply connected nilpotent Lie group G and $d \lambda(x)$ will be denoted by $d x$.
3.1. Notation. Let G be a locally compact group, λ a left Haar measure on G, and w a weight on G. We denote by $L_{w}^{1}(G)$ the subalgebra of $L^{1}(G)$ of measurable functions f such that $\int_{G}|f| w d \lambda$ is finite, and we define a norm $\left\|\|_{w}\right.$ on $L_{w}^{1}(G)$ by

$$
\|f\|_{w}=\int_{G}|f| w d \lambda
$$

We thus obtain the Beurling algebra $L_{w}^{1}(G)$. The algebra of polynomials on G is denoted by $\mathcal{P}(G)$. For X in \mathfrak{g} and for a C^{∞} function f on G, we let $X * f$ be the left derivative of f in direction X, and $f * X$ the right derivative of f in direction X :

$$
\begin{array}{ll}
X * f(y)=\left.\frac{d}{d t} f(\exp (-t X) y)\right|_{t=0}, & y \in G \\
f * X(y) & =\left.\frac{d}{d t} f(y \exp (t X))\right|_{t=0},
\end{array} \quad y \in G
$$

A basis $\left(X_{1}, \ldots, X_{d}\right)$ of \mathfrak{g} being fixed, for a multi-index $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ of \mathbb{N}^{d}, denoted by α, and a C^{∞} function f on G, we write

$$
\begin{aligned}
X^{\alpha} * f & =X_{1}^{\alpha_{1}} * \ldots * X_{d}^{\alpha_{d}} * f, \quad f * X^{\alpha}=f * X_{1}^{\alpha_{1}} * \ldots * X_{d}^{\alpha_{d}} \\
|\alpha| & =\alpha_{1}+\ldots+\alpha_{d}
\end{aligned}
$$

We denote by $\mathcal{S}(G)$ the Schwartz space of C^{∞} functions f on G such that for all positive integers N,

$$
p_{N}(f)=\sum_{|\alpha| \leq N} \int_{G}\left|X^{\alpha} * f\right| w^{N} d \lambda
$$

is finite, where w is the weight w_{U} defined in 1.3. One can check that the definition of $\mathcal{S}(G)$ is independent of the choice of the basis of \mathfrak{g} and of U. We have (see [17])

$$
p_{N}(g * f) \leq p_{N}(g)\|f\|_{w^{N}}
$$

We denote by $\mathcal{D}(G)$ the subspace of $\mathcal{S}(G)$ of functions with compact support. The space $\mathcal{S}(G)$ equipped with the convolution multiplication and with the family of seminorms $\left(p_{N}\right)_{N \in \mathbb{N}}$ is then a Fréchet algebra and $\mathcal{S}(G)$ is dense in $\left(L^{1}(G),\| \|_{1}\right)$.
3.2. The determination of the "minimal ideal" in Section 5 will be given for a quite general class of algebras. Indeed, in this paper we consider a Banach subalgebra $(A,\| \|)$ of $L^{1}(G)$ containing $\mathcal{S}(G)$ as a dense subspace and satisfying

$$
\left\{\begin{array}{l}
\exists N \in \mathbb{N}, \forall f \in \mathcal{S}(G):\|f\| \leq p_{N}(f) \\
\forall f \in A:\|f\|_{1} \leq\|f\|
\end{array}\right.
$$

which means that the norm $\|\|$ of A makes the injections of $\mathcal{S}(G)$ into A and of A into $L^{1}(G)$ continuous.
3.3. Recall that the characters of G, i.e. the continuous homomorphisms of the group G into \mathbb{C}^{\times}, are of the form $\exp X \mapsto \chi_{l}(\exp X)=e^{i l(X)}$ where l is an \mathbb{R}-linear form on \mathfrak{g} with complex values such that $l[X, Y]$ is zero for all X and Y in \mathfrak{g}. For real-valued l we obtain the unitary characters of G.

For l in \mathfrak{g}^{*} such that l is zero on \mathfrak{g}_{1}, we denote by \mathcal{P}_{l} the vector space of polynomials P, with complex coefficients, such that the continuous linear form $P \chi_{l}$ on $\mathcal{S}(G)$ mapping f to $\int_{G} f P \chi_{l} d \lambda$ extends to a continuous linear form on A, meaning that there exists a positive number c such that for all f in $\mathcal{S}(G)$, we have

$$
\left|\int_{G} f P \chi_{l} d \lambda\right| \leq c\|f\|
$$

Let G be a group and s be an element of G. For a function $f: G \rightarrow \mathbb{C}$, we denote by $L_{s} f$ or ${ }_{s} f$ the left translate of f by s, mapping t to $f\left(s^{-1} t\right)$, and by $R_{s} f$ or f_{s} the right translate of f by s, mapping t to $f(t s)$.

Let P be in \mathcal{P}_{l} and f, g be elements of A. Then $P \chi_{l}$ defines a continuous linear form on A by definition, and consequently $\left\langle P \chi_{l}, g * f\right\rangle$ exists. For g in A, we write $\check{g} *\left(P \chi_{l}\right)$ for the continuous linear form on A defined by

$$
\left\langle\check{g} *\left(P \chi_{l}\right), f\right\rangle=\left\langle P \chi_{l}, g * f\right\rangle
$$

In the same way, $P \chi_{l} * \check{g}$ denotes the continuous linear form on A defined by

$$
\left\langle P \chi_{l} * \check{g}, f\right\rangle=\left\langle P \chi_{l}, f * g\right\rangle
$$

3.4. Theorem. The vector space \mathcal{P}_{l} is finite-dimensional.

Proof. 1) Let f be in $\mathcal{S}(G), Q$ a polynomial and χ_{q} a unitary character of G. After an easy computation, for all x in G we have

$$
\left(f *\left(Q \chi_{q}\right)\right)(x)=P(x) \chi_{q}(x)
$$

where P is another polynomial.
2) Let Q be in \mathcal{P}_{l} and g in $\mathcal{S}(G)$. By 1),

$$
g *\left(Q \chi_{l}\right)=Q_{g} \chi_{l}
$$

where Q_{g} is a polynomial, and for all f in $\mathcal{S}(G)$,

$$
\begin{aligned}
\left|\left\langle g *\left(Q \chi_{l}\right), f\right\rangle\right| & =\left|\left\langle Q \chi_{l}, \check{g} * f\right\rangle\right| \leq\left\|Q \chi_{l}\right\|_{\text {op }}\|\check{g} * f\| \\
& \leq\left\|Q \chi_{l}\right\|_{\text {op }} p_{N}(\check{g} * f) \leq\left\|Q \chi_{l}\right\|_{\text {op }} p_{N}(\check{g})\|f\|_{w^{N}}
\end{aligned}
$$

where N is an integer depending on Q and l. Hence $g *\left(Q \chi_{l}\right)$ is in the dual space of $L_{w^{N}}^{1}(G)$, and so

$$
\left\|Q_{g} / w^{N}\right\|_{\infty}<\infty
$$

Denote by \mathcal{P}_{N} the vector space of polynomials P such that $\left\|P / w^{N}\right\|_{\infty}$ is finite. Since the weight w^{N} has a polynomial growth, the space \mathcal{P}_{N} is finitedimensional and we have shown that for all Q in \mathcal{P}_{l} and all g in $\mathcal{S}(G)$, $g *\left(Q \chi_{l}\right)$ belongs to $\mathcal{P}_{N} \chi_{l} \cap \mathcal{P}_{l} \chi_{l}$.
3) Let Q be in \mathcal{P}_{l}. Since the weak star topology on \mathcal{P}_{N} with respect to $L_{w^{N}}^{1}(G)$ coincides with the norm topology, and since for any approximate identity $\left(g_{n}\right)$ in $\mathcal{S}(G),\left(g_{n} * Q \chi_{l}\right)$ converges in the weak star topology to $Q \chi_{l}$, it follows that $\left(g_{n} * Q \chi_{l}\right)$ inside \mathcal{P}_{N} converges to $Q \chi_{l}$ in the operator norm, and so $Q \chi_{l} \in \mathcal{P}_{N}$. Hence $\mathcal{P}_{l} \subset \mathcal{P}_{N}$.
3.5. Notation. Until the end of this paper, W indicates a nonzero subspace of \mathcal{P}_{l} which is invariant under left and right translations, and $W \chi_{l}$ is denoted by W_{l}. We also write

$$
I(W)=\left\{f \in A \mid \forall P \in W:\left\langle P \chi_{l}, f\right\rangle=0\right\}=\left(W \chi_{l}\right)^{\circ} .
$$

We then have the following proposition.
3.6. Proposition. The vector space W is invariant under translations and under convolution by elements of $\mathcal{S}(G)$. So $I(W)$ is a closed two-sided ideal of A.

4. Hull

Definition. For a Banach algebra A, we denote by $\operatorname{Prim}(A)$ the set of primitive ideals of A, i.e. the set of the kernels of algebraically irreducible representations of A in Banach spaces. The kernel of a subset C of $\operatorname{Prim}(A)$ is the set

$$
k(C)=\bigcap_{J \in C} J
$$

and the hull of a subset S of A is the set

$$
h(S)=\{J \in \operatorname{Prim}(A) \mid S \subset J\}
$$

Notation. For a Banach algebra A, the set $\operatorname{Prim}(A)$ is equipped with the Jacobson topology: by definition, a subset C of $\operatorname{Prim}(A)$ is closed in $\operatorname{Prim}(A)$ if and only if $C=h(k(C))$. We denote by $\mathcal{J}(C)$ the set of closed two-sided ideals of A with hull C :

$$
\mathcal{J}(C)=\{J \triangleleft A \mid h(J)=C\}
$$

In the present case, the set $\left\{\operatorname{Ker} \chi_{l}\right\}$ is closed in $\operatorname{Prim}(A)$, and as stipulated in Section 2, the set $\mathcal{J}\left(\left\{\operatorname{Ker} \chi_{l}\right\}\right)$ will be denoted $\mathcal{J}(l)$ by abuse of notation.
4.1. Proposition. With the above hypothesis on A, we have

$$
\operatorname{Prim}(A)=\left\{\operatorname{Ker}\left(\left.\pi\right|_{A}\right) \mid \pi \in \widehat{G}\right\} .
$$

Proof. 1) Let π be a unitary topologically irreducible representation of G; denote also by π the corresponding representation of $L^{1}(G)$. Since A is dense in $L^{1}(G),\left.\pi\right|_{A}$ is topologically irreducible on the Hilbert space \mathcal{H}. Let

$$
\mathcal{H}_{0}=\operatorname{Span}\{\pi(f) \xi \mid \xi \in \mathcal{H}, f \in A, \pi(f) \text { of finite rank }\}
$$

Since $\pi(\mathcal{S}(G))$ contains many operators of finite rank, \mathcal{H}_{0} is an A-invariant nontrivial subspace of \mathcal{H} and the restriction of π to \mathcal{H}_{0} defines a simple module of A (see [6]). Hence $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$ is a primitive ideal:

$$
\left\{\operatorname{Ker}\left(\left.\pi\right|_{A}\right) \mid \pi \in \widehat{G}\right\} \subset \operatorname{Prim}(A)
$$

Let us prove the other inclusion. If (T, V) is a simple A-module on a Banach space V then $\left(\left.T\right|_{\mathcal{S}(G)}, V\right)$ is a topologically irreducible $\mathcal{S}(G)$-module. Hence by [16] there exists a $\pi \in \widehat{G}$ such that

$$
\operatorname{Ker}\left(\left.T\right|_{\mathcal{S}(G)}\right)=\operatorname{Ker}\left(\left.\pi\right|_{\mathcal{S}(G)}\right)
$$

By [15] we know that $\operatorname{Ker}\left(\left.\pi\right|_{\mathcal{S}(G)}\right)$ is dense in $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$. Hence $\operatorname{Ker} T$ contains $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$.
2) Let us prove that $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$ is a maximal two-sided ideal of A. Let M be a closed two-sided ideal of A containing $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$. Suppose that $M \neq$ $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$. Then there exists g in M such that $g \notin \operatorname{Ker}\left(\left.\pi\right|_{A}\right)$. By [15], the two-sided ideal

$$
R=\{f \in \mathcal{S}(G) \mid \pi(f) \text { of finite rank }\}
$$

is dense in $\mathcal{S}(G)$ and then in A. Hence $R * g * R$ is not contained in $\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$ and so M contains an element h such that $\pi(h)=P_{\lambda}$ is the orthogonal projector onto a C^{∞} vector λ of \mathcal{H}_{π}. Let f in $\mathcal{S}(G)$ be such that $\pi(f)=P_{\mu}$ is also a one-dimensional orthogonal projector with $\langle\lambda, \mu\rangle \neq 0$. Then

$$
\pi(f)=|\langle\lambda, \mu\rangle|^{-2} P_{\mu} \circ P_{\lambda} \circ P_{\mu}=\pi\left(\langle\lambda, \mu\rangle^{-2} f * h * f\right)
$$

Hence

$$
f-\langle\lambda, \mu\rangle^{-2} f * h * f \in \operatorname{Ker} \pi \subset M
$$

and consequently $f \in M$. Since R is generated as an ideal by those elements f, this shows that M contains the ideal R and finally $M=A$ since M is closed. This proves that $\operatorname{Ker} T=\operatorname{Ker}\left(\left.\pi\right|_{A}\right)$.

The aim of this section is to determine the hull of $I(W)$ where W is defined in 3.5. Since W is finite-dimensional, we have the following proposition.
4.2. Proposition. The space W is invariant under derivations: for all X in \mathfrak{g} and all P in $W, X * P$ and $P * X$ belong to W.

By [5], we have:
4.3. Proposition. There exists a function deg on the complex vector space of polynomials on G such that for all X in \mathfrak{g} and all polynomials P, we have

$$
\operatorname{deg}(X * P)<\operatorname{deg} P .
$$

Hence for all X in \mathfrak{g}, there exists a natural k such that for all P in W, $X^{k} * P$ is zero.
4.4. Proposition. The hull $h(I(W))$ of $I(W)$ contains $\operatorname{Ker} \chi_{l}$.

Proof. For X in \mathfrak{g} and P in $W, \pi(X)\left(P \chi_{l}\right)=X *\left(P \chi_{l}\right)=(X * P) \chi_{l}+$ $i\langle l, X\rangle\left(P \chi_{l}\right)$ defines a representation π of the Lie algebra \mathfrak{g} in W_{l}. By Lie's theorem (see [7]), there exists a nonzero element P in W such that for all X in $\mathfrak{g}, \pi(X)\left(P \chi_{l}\right)=\lambda(X)\left(P \chi_{l}\right)$ where λ is a linear form on \mathfrak{g}. Since $\operatorname{deg}(X * P)<\operatorname{deg} P$, we have $\lambda(X)=i\langle l, X\rangle$ and so $(X * P) \chi_{l}=0$. Hence $X * P=0$ and the polynomial P is constant. Consequently, $\chi_{l} \in W_{l}$ and hence $I(W) \subset \operatorname{Ker} \chi_{l}$ and $\operatorname{Ker} \chi_{l} \subset h(I(W))$.

Notation. For f in $L^{1}(G)$, the Fourier transform of f at l is denoted $\widehat{f}(l)$ and is defined by

$$
\widehat{f}(l)=\int_{G} f \bar{\chi}_{l} d \lambda .
$$

Let P be a polynomial in the variables X_{1}, \ldots, X_{d}. We define the differential operator $P(D)$ in the $D_{j}=i \partial / \partial X_{j}$ with

$$
D^{\alpha}=\prod_{i=1}^{d} D_{j}^{\alpha_{j}}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)
$$

We have the well known result:
4.5. Lemma. For all f in A,

$$
f \in I(W) \Leftrightarrow \forall P \in W:(P(D)(\widehat{f}))(-l)=0
$$

where \widehat{f} indicates the Fourier transform of f.
4.6. Theorem. The hull $h(I(W))$ of $I(W)$ is $\left\{\operatorname{Ker} \chi_{l}\right\}$.

Proof. By Proposition 4.4, Ker $\chi_{l} \in h(I(W))$.
Let π be a topologically irreducible $*$-representation of $L^{1}(G)$ in a Hilbert space whose kernel in A contains $I(W)$. By Theorem 3.4, $I(W)$ is of finite codimension in A, hence π is finite-dimensional and defines an irreducible continuous unitary representation $\widetilde{\pi}$ of the nilpotent group G. By Lie's theorem (see [7]), $\widetilde{\pi}$ is a character. Then π is a character $\chi_{l^{\prime}}$ where l^{\prime} is a real linear form on \mathfrak{g} which is zero on $[\mathfrak{g}, \mathfrak{g}]$ by 3.3 . If l^{\prime} is different from l, there exists f in $\mathcal{S}(\mathfrak{g})$ such that $\widehat{f}\left(-l^{\prime}\right)=1$ and \widehat{f} is zero on a neighborhood of $-l$. Then f does not belong to Ker $\chi_{l^{\prime}}$ and belongs to $I(W)$ by Lemma 4.5. Since this contradicts the hypothesis, l^{\prime} is equal to l.

5. Minimal ideal

5.1. Proposition. For each closed subset C of $\operatorname{Prim}^{*}(A)$, there exists a closed two-sided ideal $j(C)$ of A with hull C such that each closed two-sided ideal of A whose hull is contained in C contains $j(C)$.

Proof. The proof given in [13] adapts to the general case.
Taking in the previous theorem $W=\mathcal{P}_{l}$, we have $j\left(\operatorname{Ker} \chi_{l}\right) \subset I\left(\mathcal{P}_{l}\right)$. The following theorem will show the other inclusion.
5.2. Lemma. Let F be a finite-dimensional A-left invariant subspace of the dual A^{\prime} of the algebra A. Then each element of F is a finite sum of functions of the form $P \chi_{q}$, where P is a polynomial, and χ_{q} a unitary character of G.

Proof. Let us show that the elements of F are C^{∞} functions on G. Let $\left(\mu_{1}, \ldots, \mu_{n}\right)$ be a basis of F. Then $\mathcal{D}(G) * \mu_{1}+\ldots+\mathcal{D}(G) * \mu_{n}$ is dense in the finite-dimensional vector space F, hence is equal to F. Every μ in F defines a tempered distribution on G. Let g be in $\mathcal{D}(G)$. For all f in $\mathcal{S}(G)$,

$$
\langle g * \mu, f\rangle=\langle\mu, \check{g} * f\rangle=\int_{G} \varphi(x)(1-\Delta)^{N}(\check{g} * f)(x) d x
$$

for a certain function φ with moderate growth, of class C^{∞} on G, and a certain integer N, where Δ indicates the Laplacian of G (by [17]).

Putting $h=(1-\Delta)^{N} \check{g}$, we then have

$$
\langle g * \mu, f\rangle=\int_{G} \psi f d \lambda \quad \text { where } \quad \psi(x)=\int_{G} h \varphi_{x} d \lambda
$$

The linear form $g * \mu$ is then given on $\mathcal{S}(G)$ by a function ψ of class C^{∞} on G. Since $\mathcal{S}(G)$ is dense in A, the linear form $g * \mu$ can be identified with ψ, and with this identification, F consists of C^{∞} functions. The lemma then results from Proposition 1 of [2].
5.3. Theorem. The smallest closed two-sided ideal of A with hull $\left\{\operatorname{Ker} \chi_{l}\right\}$ is

$$
j(l)=I\left(\mathcal{P}_{l}\right)
$$

Proof. 1) It has already been noticed that $j(l)$ is contained in $I\left(\mathcal{P}_{l}\right)$. By [15], there exists a natural integer N such that $j(l)=\overline{\left(\operatorname{Ker} \chi_{l}\right)^{N}}$.

Let us show by induction on n that if T is a continuous linear form on A which is zero on $\left(\operatorname{Ker} \chi_{l}\right)^{n}$ then T is of the form $P \chi_{l}$ where P belongs to \mathcal{P}_{l}.

The result is true if $n=1$: the polynomial P is a nonzero constant.
2) Let m in \mathbb{N}^{*} be such that T is zero on $\left(\operatorname{Ker} \chi_{l}\right)^{m}$ and nonzero on $\left(\operatorname{Ker} \chi_{l}\right)^{m-1}$.
(a) Let f_{0} be in Ker χ_{l}. Then $\check{f}_{0} * T$ is a continuous linear form on A and for all u in $\left(\operatorname{Ker} \chi_{l}\right)^{m-1}$,

$$
\left\langle\check{f}_{0} * T, u\right\rangle:=\left\langle T, f_{0} * u\right\rangle=0
$$

because $f_{0} * u$ belongs to $\left(\operatorname{Ker} \chi_{l}\right)^{m}$. The induction hypothesis shows that $\check{f}_{0} * T=P_{f_{0}} \chi_{l}$ where $P_{f_{0}}$ belongs to \mathcal{P}_{l}.
(b) Let f and f_{1} in A be such that $\chi_{l}\left(f_{1}\right)=1$. Then $f-\chi_{l}(f) f_{1} \in \operatorname{Ker} \chi_{l}$, and consequently

$$
\left(f-\widehat{f}(-l) f_{1}\right)^{\vee} * T=P_{f} \chi_{l}
$$

where $P_{f} \in \mathcal{P}_{l}$ by (a), i.e.

$$
\check{f} * T=\widehat{f}(-l) \check{f}_{1} * T+P_{f} \chi_{l} \in \mathbb{C}\left(\check{f}_{1} * T\right)+\mathcal{P}_{l} \chi_{l}
$$

This shows that the complex vector space $\check{A} * T$, which is contained in A^{\prime}, is of finite dimension by Theorem 3.4.
3) Let ϕ be an element of A. By 2) and Lemma $5.2, \check{\phi} * T$ is of the form

$$
\check{\phi} * T=\sum_{j=1}^{p} P_{j} \chi_{q_{j}}
$$

where the P_{j} are polynomials and the $\chi_{q_{j}}$ are unitary characters of G which we assume to be all distinct. Let us show that $p=1$ and $q_{1}=l$.

Let f_{0} be in Ker $\chi_{l} \cap \mathcal{S}(G)$. The function $f_{0} * \phi$ belongs to Ker χ_{l}, so by 2)(a),

$$
\left(f_{0} * \phi\right)^{\vee} * T=P \chi_{l}
$$

where P belongs to \mathcal{P}_{l}. On the other hand, the computation 1) in the proof of Theorem 3.4 shows that

$$
\left(f_{0} * \phi\right)^{\vee} * T=\sum_{j=1}^{p} \check{f}_{0} * P_{j} \chi_{q_{j}}=\sum_{j=1}^{p} Q_{j} \chi_{q_{j}}
$$

where the Q_{j} are polynomials which we can assume to be all nonzero. Finally

$$
P \chi_{l}=\sum_{j=1}^{p} Q_{j} \chi_{q_{j}}
$$

In the module of linear combinations (whose coefficients are polynomials) of unitary characters of G, each finite family of distinct unitary characters of G is free. Consequently, $p=1, q_{1}=l$ and $\check{\phi} * T=Q \chi_{l}$ where Q is a polynomial. Since $\phi \in A$ and $T \in A^{\prime}, \check{\phi} * T$ is continuous on A and Q belongs to \mathcal{P}_{l}.

Let us show that T itself is in $\mathcal{P}_{l} \chi_{l}$.
4) The space \mathcal{P}_{l} being finite-dimensional, let f_{1}, \ldots, f_{M} be Schwartz functions on G such that

$$
\left(\left\langle P \chi_{l}, f_{i}\right\rangle=0 \text { for } i=1, \ldots, M\right) \Rightarrow P=0
$$

For all P in \mathcal{P}_{l} let

$$
\left\|P \chi_{l}\right\|_{l}=\max _{1 \leq i \leq M}\left|\left\langle P \chi_{l}, f_{i}\right\rangle\right| .
$$

Let $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ be an approximate unit in $\mathcal{S}(G)$. For all f in $\mathcal{S}(G)$,

$$
\begin{equation*}
\left\langle\check{\phi}_{n} * T-T, f\right\rangle=\left\langle T, \phi_{n} * f-f\right\rangle \tag{1}
\end{equation*}
$$

The sequence $\left(\phi_{n} * f-f\right)_{n \in \mathbb{N}}$ converges to 0 in $\mathcal{S}(G)$, hence in A, and T being continuous on $A,\left(\left\langle\phi_{n} * T-T, f\right\rangle\right)_{n \in \mathbb{N}}$ tends to 0 by (1). We have

$$
\left\|\check{\phi}_{n} * T-\check{\phi}_{m} * T\right\|_{l}=\max _{1 \leq i \leq M}\left|\left\langle T,\left(\phi_{n}-\phi_{m}\right) * f_{i}\right\rangle\right|
$$

This tends to 0 because $\left(\phi_{n}-\phi_{n} * f_{i}\right)_{n \in \mathbb{N}}$ tends to 0 in $\mathcal{S}(G)$, hence also in A. This shows that the sequence $\left(\check{\phi}_{n} * T\right)_{n \in \mathbb{N}}$ is Cauchy for the norm $\left\|\|_{l}\right.$, hence converges to an element $P \chi_{l}$ where P belongs to \mathcal{P}_{l}, the space $\mathcal{P}_{l} \chi_{l}$ being finite-dimensional. Let f be in $\mathcal{S}(G)$. For all Q in \mathcal{P}_{l} write

$$
\left\|Q \chi_{l}\right\|_{f}=\left\|Q \chi_{l}\right\|_{l}+\left|\left\langle Q \chi_{l}, f\right\rangle\right|
$$

Then $\left\|\|_{f}\right.$ is a norm on $\mathcal{P}_{l} \chi_{l}$ equivalent to $\| \|_{l}$, since $\mathcal{P}_{l} \chi_{l}$ is finite-dimensional. Hence the sequence $\left(\check{\phi}_{n} * T\right)_{n \in \mathbb{N}}$ converges to $P \chi_{l}$ for $\left\|\|_{f}\right.$ and the inequality

$$
\begin{aligned}
\left|\left\langle P \chi_{l}-T, f\right\rangle\right| & \leq\left|\left\langle P \chi_{l}-\check{\phi}_{n} * T, f\right\rangle\right|+\left|\left\langle\check{\phi}_{n} * T-T, f\right\rangle\right| \\
& \leq\left\|P \chi_{l}-\check{\phi}_{n} * T\right\|_{f}+\left|\left\langle\check{\phi}_{n} * T-T, f\right\rangle\right|
\end{aligned}
$$

valid for all n in \mathbb{N}, gives, as $n \rightarrow \infty$,

$$
\left\langle P \chi_{l}-T, f\right\rangle=0
$$

Since $\mathcal{S}(G)$ is dense in A, this proves that $T=P \chi_{l}$ and so T is zero on $I\left(\mathcal{P}_{l}\right)$. For all T in $j(l)^{\circ}$, we know that T is zero on $\left(\operatorname{Ker} \chi_{l}\right)^{N}$ and by the preceding T belongs to $\mathcal{P}_{l} \chi_{l}$ and so to $I\left(\mathcal{P}_{l}\right)^{\circ}$. Since $\left\langle T\right.$, $\left.\left(\text { Ker } \chi_{l}\right)^{m}\right\rangle=0$ we see that T is zero on $I\left(\mathcal{P}_{l}\right)$. The Hahn-Banach theorem shows finally that $I\left(\mathcal{P}_{l}\right)$ is contained in $j(l)$.

Notation. Let J be a closed two-sided ideal of A. We associate to it the vector subspace $V(J)$ of \mathcal{P}_{l} defined by

$$
V(J)=\left\{P \in \mathcal{P}_{l} \mid \forall f \in J: P f \in \operatorname{Ker} \chi_{l}\right\}
$$

We show that the mapping $J \mapsto V(J)$ gives characterization of the closed two-sided ideals of A with hull $\left\{\operatorname{Ker} \chi_{l}\right\}$.
5.4. Proposition. Let J be a closed two-sided ideal of A. The vector subspace $V(J)$ of \mathcal{P}_{l} is invariant under translations.

Proof. The vector space generated by $\mathcal{S}(G) * V(J) * \mathcal{S}(G)$ is dense in the finite-dimensional vector space $V(J)$, hence is equal to $V(J)$. The result then follows from the formula

$$
{ }_{x}(f * P * g)_{y}={ }_{x} f * P * g_{y}
$$

valid for all f and g in $\mathcal{S}(G), P$ in $V(J)$, and x, y in G.
Notation. Denote by $\mathcal{T} \mathcal{P}_{l}$ the set of nonzero subspaces of \mathcal{P}_{l} which are invariant under left and right translations. For a topological vector space E and a subset X of E, we denote by X° the orthogonal complement of X in E, i.e. the vector space of continuous linear forms on E which are zero on X :

$$
X^{\circ}=\left\{\varphi \in E^{\prime} \mid \forall x \in X:\langle\varphi, x\rangle=0\right\}
$$

The most important result of this paper is the following theorem:
5.5. Theorem. The map

$$
\mathcal{T} \mathcal{P}_{l} \rightarrow \mathcal{J}(l), \quad W \mapsto I(W)
$$

is a decreasing bijection, with inverse

$$
\mathcal{J}(l) \rightarrow \mathcal{T} \mathcal{P}_{l}, \quad J \mapsto V(J)
$$

Proof. By Theorem 4.6, the map $W \mapsto I(W)$ is $\mathcal{J}(l)$-valued.
For any finite-dimensional subspace U of A^{\prime}, we know that U is *-weakly closed and so $\left(U^{\circ}\right)^{\circ}=U$. This shows that the mapping $W \mapsto I(W)$ is injective.

Let us show the surjectivity. Let J be an element of $\mathcal{J}(l)$. Since $J \supset j(l)$, its orthogonal J° is finite-dimensional and is contained in $j(l)^{\circ}$, which means by Theorem 5.3 that $J^{\circ} \subset \mathcal{P}_{l} \chi_{l}$ and so $J^{\circ}=W \chi_{l}$ for some translation invariant subspace W of \mathcal{P}_{l}. Hence $J=\left(W \chi_{l}\right)^{\circ}=I(W)$, which shows the surjectivity of the map $W \mapsto I(W)$ and consequently, the bijectivity of $J \mapsto V(J)$.
6. Examples. Let w be a symmetric weight with polynomial growth on G. Let N be an integer and define A_{N} as the subalgebra of $L^{1}(G)$ of classes of functions f such that $\sum_{|\alpha| \leq N} \int_{G}\left(\left|X^{\alpha} * f\right| w+\left|f * X^{\alpha}\right| w\right) d \lambda$ is finite. We define a norm on A_{N} by putting

$$
\|f\|=\sum_{|\alpha| \leq N} \int_{G}\left(\left|X^{\alpha} * f\right| w+\left|f * X^{\alpha}\right| w\right) d \lambda
$$

The algebra A_{N} with the norm $\|\|$ is a Banach algebra and satisfies the conditions given in 3.2. Consequently, Theorem 5.3 applies in this case. In particular, for N equal to zero, the weighted algebra $L_{w}^{1}(G)$ defined in 3.1 is an example of an algebra A satisfying the conditions of 3.2. The rest of this section states the principal results of the paper in this particular case.

Notation. Let G be a locally compact group and w a weight on G. We denote by $L_{w}^{\infty}(G)$ the vector space of (classes of) functions f essentially bounded by w, i.e. such that $\|f / w\|_{\infty}$ is finite, and we define a norm $\|\|$ on $L_{w}^{\infty}(G)$ by

$$
\|f\|=\|f / w\|_{\infty}
$$

The following proposition, which describes the topological dual $L_{w}^{1}(G)^{\prime}$ of $L_{w}^{1}(G)$, is known.
6.1. Proposition. Let G be a locally compact group, λ a nonzero positive left Haar measure on G, and w a weight on G. The map $\psi: L_{w}^{\infty}(G) \rightarrow$ $L_{w}^{1}(G)^{\prime}$ which takes $g \in L_{w}^{\infty}(G)$ to

$$
\psi g: L_{w}^{1}(G) \rightarrow \mathbb{C}, \quad f \mapsto\langle g, f\rangle=\int_{G} f g d \lambda,
$$

is an isometric isomorphism of Banach spaces.
In the following, the spaces $L_{w}^{1}(G)^{\prime}$ and $L_{w}^{\infty}(G)$ will be identified. The topological dual of $L_{w}^{1}(G)$ being known, it is possible to give a more vivid description of the vector space \mathcal{P}_{l} defined in 3.3:

Notation. Let w be a weight on G. We denote by $\mathcal{P}_{w}(G)$ the vector space of polynomials which are essentially bounded by w :

$$
\mathcal{P}_{w}(G)=\mathcal{P}(G) \cap L_{w}^{\infty}(G) .
$$

By 6.1, it is clear that $\mathcal{P}_{l}=\mathcal{P}_{w}(G)$ and Theorem 5.3 can be written as

$$
j(l)=I\left(\mathcal{P}_{w}(G)\right)=\left\{f \in L_{w}^{1}(G) \mid \forall P \in \mathcal{P}_{w}(G): \int_{G} P(x) f(x) \chi_{l}(x) d x=0\right\} .
$$

Particular cases. 1) If w is the constant weight equal to 1 , then $L_{w}^{1}(G)$ coincides with $L^{1}(G)$, and $\mathcal{P}_{w}(G)$ contains only constants; then $j(l)=$ $\left\{\operatorname{Ker} \chi_{l}\right\}$, which shows that $\left\{\operatorname{Ker} \chi_{l}\right\}$ is of synthesis. We find again in this case a result of [10].
2) If in a direction $X_{0}, w\left(\exp \left(t X_{0}\right)\right)$ grows at least as $|t|$, then $\mathcal{P}_{w}(G)$ contains a nonconstant polynomial, hence $j(l)$ is strictly contained in $\left\{\operatorname{Ker} \chi_{l}\right\}$ and therefore $\left\{\operatorname{Ker} \chi_{l}\right\}$ is not of synthesis. So, for a nonconstant weight w, the one-point set $\left\{\operatorname{Ker} \chi_{l}\right\}$ is not of synthesis in $L_{w}^{1}(G)$ in general.
6.2. Let us take for G the 3 -dimensional Heisenberg group H_{1}, for which the multiplication is given by

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-y x^{\prime}\right)\right)
$$

Denote by L the left regular representation of H_{1} in $C^{\infty}\left(H_{1}\right)$. Let P be the polynomial

$$
P=-x^{2}+y^{2}+z^{2}
$$

and V the vector space generated by P and its left derivatives. Then the vector space V is 10 -dimensional and $\left(1, x, y, z, x^{2}, y^{2}, x y, x z, y z, z^{2}\right)$ is a basis of V. For an element $\left(m_{i j}\right)_{1 \leq i, j \leq 10}$, denoted by M, belonging to $\operatorname{End}(V)$, denote by $\|M\|_{\text {HS }}$ its Hilbert-Schmidt norm

$$
\|M\|_{\mathrm{HS}}=\left(\sum_{1 \leq i, j \leq 10}\left|m_{i j}\right|^{2}\right)^{1 / 2}
$$

Finally, define

$$
\omega(u, v, w)=\left\|L_{(u, v, w)}\right\|_{\mathrm{HS}} .
$$

An explicit computation shows that

$$
\begin{aligned}
\omega(u, v, w)= & {\left[10+\frac{35}{4}\left(u^{2}+v^{2}\right)+7 w^{2}+\frac{7}{4} u^{2} v^{2}\right.} \\
& \left.+2\left(u^{2} w^{2}+v^{2} w^{2}\right)+\frac{21}{16}\left(u^{4}+v^{4}\right)+w^{4}\right]^{1 / 2} .
\end{aligned}
$$

The mapping ω is a weight on H_{1}. Let π be an element of the unitary dual \widehat{H}_{1} of H_{1} and let \mathfrak{h}_{1} be the Lie algebra of H_{1}. Assume that the orbit of the linear form l on \mathfrak{h}_{1} associated to π by the Kirillov bijection is one point, i.e. l is a character of \mathfrak{h}_{1}. So, π is a character of $L_{\omega}^{1}\left(H_{1}\right)$. By Theorem 5.5, the sets $\mathcal{J}(l)$ and $\mathcal{T} \mathcal{P}_{\omega}\left(H_{1}\right)$ are in bijection. The set $\mathcal{T} \mathcal{P}_{\omega}\left(H_{1}\right)$ is explicitly determined in [1].

References

[1] D. Alexander, Idéaux minimaux d'algèbres de groupes, thèse, Université de Metz, 2000.
[2] D. Alexander and J. Ludwig, Undecomposable finite dimensional representations of solvable Lie groups, preprint.
[3] J. Boidol, H. Leptin, J. Schurmann und D. Vahle, Raüme primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1-13.
[4] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407-411.
[5] S. Dhieb et J. Ludwig, Caractérisation des convoluteurs de Schwartz des groupes de Lie nilpotents, J. Funct. Anal. 144 (1997), 46-53.
[6] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 13-35.
[7] -, Algèbres enveloppantes, Cahiers Sci. 37, Gauthier-Villars, 1974.
[8] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
[9] A. Hulanicki, Subalgebra of $L_{1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
[10] I. Kaplansky, Primary ideals in group algebras, Proc. Natl. Acad. Sci. USA 35 (1949), 133-136.
[11] A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (1962), no. 4, 57-110 (in Russian); English transl.: Russian Math. Surveys 17 (1962), no. 4, 53-104.
[12] H. Leptin, Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976), 259-278.
[13] J. Ludwig, Polynomial growth and ideals in group algebras, Manuscripta Math. 30 (1980), 215-221.
[14] -, On the spectral synthesis problem for points in the dual of a nilpotent Lie group, Ark. Math. 21 (1983), 127-144.
[15] -, Minimal C^{*}-dense ideals and algebraically irreducible representations in the Schwartz algebra of a nilpotent Lie group, in: Lecture Notes in Math. 1359, Springer, Berlin, 1988, 209-217.
[16] -, Topologically irreducible representations of the Schwartz algebra of a nilpotent Lie group, Arch. Math. (Basel) 54 (1990), 284-292.
[17] J. Ludwig and C. Molitor-Braun, A restriction theorem for ideals in the Schwartz algebra of a nilpotent Lie group, ibid. 67 (1996), 199-210.
[18] L. Pukanszky, Leçons sur les représentations des groupes, Dunod, 1967.
[19] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, 1968.
[20] I. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69-105.
[21] N. Varopoulos, Analysis and Geometry on Groups, Cambridge Univ. Press, 1992.
Département de Mathématiques et d'Informatique
Université de Metz
Ile du Saulcy
57045 Metz Cedex 01, France
E-mail: alexander@poncelet.sciences.univ-metz.fr
ludwig@poncelet.sciences.univ-metz.fr

