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Biorthogonal wavelets, MRA’s and
shift-invariant spaces

by

Marcin Bownik (Ann Arbor, MI) and Gustavo Garrigós (Madrid)

Abstract. We give a characterization of biorthogonal wavelets arising from MRA’s
of multiplicity D entirely in terms of the dimension function. This improves the previous
characterization in [8] removing an unnecessary angle condition. Besides we characterize
Riesz wavelets arising from MRA’s, and present new proofs based on shift-invariant space
theory, generalizing the 1-dimensional results appearing in [17].

1. Introduction. Let Γ = AZn denote a fixed lattice in Rn and M
be an expansive matrix preserving the lattice: MΓ ⊂ Γ . A collection of
functions Ψ = {ψ1, . . . , ψL} in L2(Rn) is said to be a (Riesz) wavelet family
if the system

ψlj,γ(x) = |detM |j/2ψl(M jx− γ), j ∈ Z, γ ∈ Γ, l = 1, . . . , L,

is a Riesz basis of L2(Rn); that is, span{ψlj,γ} = L2(Rn) and there are
constants a, b > 0 such that

a
∑

l,j,γ

|clj,γ|2 ≤
∥∥∥
∑

l,j,γ

clj,γψ
l
j,γ

∥∥∥
2

2
≤ b

∑

l,j,γ

|clj,γ|2

for every finite sequence of scalars {clj,γ} (see [16, §8.5], [2]). We say that
a wavelet family Ψ arises from an MRA (or is associated with an MRA)
whenever the family of subspaces

VJ = span{ψlj,γ | j < J, γ ∈ Γ, l = 1, . . . , L}, J ∈ Z,(1.1)

forms a multiresolution analysis of L2(Rn). That is,

(i) VJ ⊂ VJ+1,
⋃
J∈Z VJ = L2(Rn);

(ii) f(x) ∈ VJ ⇔ f(Mx) ∈ VJ+1;
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(iii) ∃ϕ1, . . . , ϕD ∈ V0 : {ϕdγ ≡ ϕd(· − γ) | γ ∈ Γ, d = 1, . . . ,D} is a Riesz
basis of V0.

As usual, a set of functions Φ = {ϕ1, . . . , ϕD} as in (iii) will be called a
scaling family for the MRA, while the integer D denotes the multiplicity of
{VJ}J∈Z.

In this paper we shall be interested in pairs (Ψ, Ψ̃) of biorthogonal wavelet
families, that is, those wavelet families Ψ = {ψ1, . . . , ψL}, Ψ̃ = {ψ̃1, . . . , ψ̃L}
satisfying

〈ψlj,γ , ψ̃l
′
j′,γ′〉 = δl,l′δγ,γ′δj,j′ , ∀j, j′ ∈ Z, γ, γ′ ∈ Γ, l, l′ = 1, . . . , L,

or equivalently, so that the systems {ψlj,γ}, {ψ̃lj,γ} are dual Riesz bases of

L2(Rn). We say that such a couple (Ψ, Ψ̃) arises from a pair of biorthogonal
MRA’s when the corresponding systems {VJ}J∈Z, {ṼJ}J∈Z as in (1.1) have
respective scaling families Φ = {ϕ1, . . . , ϕD}, Φ̃ = {ϕ̃1, . . . , ϕ̃D} satisfying

〈ϕdγ, ϕ̃d
′
γ′〉 = δd,d′δγ,γ′ , ∀γ, γ′ ∈ Γ, d, d′ = 1, . . . ,D.

The concepts of biorthogonal wavelets and MRA’s play an important role
in applications and have been considerably developed in the literature since
the work of Cohen and Daubechies [9, 10].

In a previous paper [8], the second author together with A. Calogero
provided a characterization of those pairs of biorthogonal wavelet families
(Ψ, Ψ̃) which arise from biorthogonal MRA’s. This result extended to the
biorthogonal situation (and higher multiplicity) a well known theorem for
dyadic orthonormal wavelets in L2(R), proved independently by G. Gripen-
berg [14] and X. Wang [21] in the mid-90’s (see [16, Theorem 7.3.2] and
references therein). In both cases, the characterization relied on a discretiza-
tion technique introduced by P. Auscher some years before [2], which relates
the space V0 in (1.1) with the “spaced-valued” function:

ξ ∈ Rn 7→F(ξ) = span{(ψ̂l(M∗j(ξ+γ)))γ∈Γ ∗}j≥1, l=1,...,L⊆`2(Γ ∗),(1.2)

and similarly Ṽ0 with the corresponding F̃(ξ) (with Γ ∗ denoting the dual
lattice of Γ ). Then, the main result in [8] stated that a couple of biorthogonal
wavelets (Ψ, Ψ̃) arises from biorthogonal MRA’s if and only if the following
two conditions are satisfied:

(I) ∃D ≥ 1 : dimF(ξ) = dim F̃(ξ) = D, a.e. ξ ∈ Rn;

(II) ess-infξ∈Rn Angle(F(ξ), F̃(ξ)) > 0.

As in the theorem of Gripenberg–Wang, the first condition admits an
explicit expression in terms of the so-called dimension function:
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DΨ,Ψ̃ (ξ) := |detA|−1
L∑

l=1

∞∑

j=1

∑

γ∈Γ

̂̃
ψl(M∗j(ξ + γ)) ψ̂l(M∗j(ξ + γ)),(1.3)

as a consequence of the identity dimF(ξ) = dim F̃(ξ) = DΨ,Ψ̃ (ξ), a.e. ξ ∈
Rn, whenever Ψ, Ψ̃ are biorthogonal wavelet families (see [8, §2]). The second
condition, however, seemed to be a special constraint of the biorthogonal set-
ting, which trivially holds when Ψ = Ψ̃ . In [8] we used the notion of “angle”
between two D-dimensional spaces E,F (with E ∩ F⊥ = {0}) given by

Angle(E,F ) = ‖C1/2
e,e C

−1
e,f C

1/2
f ,f ‖−1,(1.4)

where Ce,f = (〈ei, fj〉)1≤i,j≤D denotes the correlation (or Gramian) matrix
associated with two bases e = {e1, . . . , eD}, f = {f1, . . . , fD} of E and
F , respectively. This definition was naturally obtained from the identity
Angle(E,F ) = ‖SE,F ‖−1, where SE,F denotes the projection onto E “par-
allel” to F⊥ (i.e., ranSE,F = E and kerSE,F = F⊥; see [8, Proposition
4.5]). In [8], however, we were not able to show the independence of condi-
tions (I) and (II), limiting ourselves to find very mild assumptions on the
biorthogonal pair (Ψ, Ψ̃) so that (II) holds (see [8, Cor. 4.17]).

In this paper we show that condition (II) is indeed redundant, and in fact
it is just a consequence of the biorthogonality of the wavelet pair (Ψ, Ψ̃). This
was already shown in the 1-dimensional (dyadic) case by H. Kim, R. Kim and
J. Lim, in a recent work [17] where an elegant approach to the whole problem
is given. This is based on an interpretation of wavelets and MRA’s in terms
of shift-invariant spaces, as developed in the works of de Boor, DeVore, Ron
[3], Aldroubi [1], and others. Our goal in this paper is to combine these
ideas with recent results by the first author [4], in order to give a new proof
of the main theorem in [8] in which the “angle condition” (II) has been
eliminated. As a consequence, we obtain the following new characterization
for biorthogonal MRA wavelets, which generalizes to higher multiplicities
(and higher dimensions) the results in [17].

Theorem 1.5. Let Ψ = {ψ1, . . . , ψL}, Ψ̃ = {ψ̃1, . . . , ψ̃L} be a pair of
biorthogonal wavelet families in L2(Rn). Then, the following statements are
equivalent :

(1) (Ψ, Ψ̃) arise from a pair of biorthogonal MRA’s.
(2) ∃D ≥ 1 : DΨ,Ψ̃ (ξ) = D, a.e. ξ ∈ Rn.

(3) Either Ψ or Ψ̃ is associated with an MRA.
(4) Both Ψ and Ψ̃ are associated with an MRA.

We emphasize the crucial role played by the notion of “angle” between
shift-invariant spaces, for which we shall use a definition (due to Aldroubi
[1]) equivalent to (1.4) in the case of finite-dimensional spaces.
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In addition, we shall combine the ideas in [17] with recent results about
generalized MRA’s in [5, 18] to obtain as well a characterization for Riesz
wavelets arising from an MRA (not necessarily biorthogonal). This will be
our Theorem 3.3 below, which we shall furnish with a variety of examples
to illustrate the sharpness and independence of the conditions now used.

The paper is organized as follows. In §2 we present the relevant theory of
shift-invariant spaces including an exhaustive study of the concept of “an-
gle”. In §3 we characterize Riesz wavelets arising from MRA’s, and leave for
§4 the proof of Theorem 1.5 and some of its corollaries. Finally, a collection
of further comments, new examples and open questions is given in §5.

2. Shift-invariant spaces

2.1. General theory. Throughout this paper the Fourier transform is
normalized by

f̂(ξ) =
�

Rn
f(x)e−i〈x,ξ〉 dx, ξ ∈ Rn, f ∈ L1(Rn).

We denote by Γ ∗ = 2π(A∗)−1Zn the dual lattice of Γ , and by D = (A∗)−1Tn
= (A∗)−1[0, 2π)n the fundamental domain of Γ ∗. That is, {D+γ}γ∈Γ ∗ forms
a partition of Rn.

A closed subspace S of L2(Rn) is said to be Γ-invariant (or shift-invariant
with respect to Γ ) if f(· − γ) ∈ S for all f ∈ S and γ ∈ Γ . The Γ -invariant
space generated by a family Φ ⊂ L2(Rn) is denoted by

S(Φ) := span{ϕγ = ϕ(· − γ) | γ ∈ Γ, ϕ ∈ Φ}.
It is not difficult to show, using Zorn’s lemma, that every Γ -invariant space
S can be written as S = S(Φ) for a countable family Φ ⊂ L2(Rn). Actually,
Φ can be taken to be orthogonal and so that the system {ϕγ}γ∈Γ, ϕ∈Φ is a
tight frame of S (see, e.g., [19, Theorem 1.2.10] or [4, Theorem 3.3]).

A main question in the theory of Γ -invariant spaces is whether these
admit an orthonormal basis of the form {ϕγ}γ∈Γ, ϕ∈Φ for some Φ ⊂ L2(Rn).
In the study of this and other related problems a fundamental role is played
by the following isometric isomorphism, which in this paper we shall call the
Helson transform:

H : L2(Rn) → L2(D; l2(Γ ∗)), f 7→ Hf(ξ) = (2π)−n/2(f̂(ξ + γ))γ∈Γ ∗.

Following [3, 4, 15], we define a range function J as any “space-valued”
mapping

J : D ⊂ Rn → {closed subspaces of `2(Γ ∗)},
and we say that J is measurable when the operator-valued function of the
orthogonal projectors ξ 7→ PJ(ξ) is weakly measurable, i.e., ξ 7→ 〈PJ(ξ)u, v〉
is measurable for every u, v ∈ `2(Γ ∗). A fundamental property of the Helson
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transform is that it assigns to every Γ -invariant space a measurable range
function [15, Theorem 8, p. 59].

Proposition 2.1. If S = S(Φ) for Φ ⊂ L2(Rn) countable, then

JS(ξ) := span{Hϕ(ξ) | ϕ ∈ Φ}, ξ ∈ D,
is a measurable range function. Moreover , we can write

S = {f ∈ L2(Rn) | Hf(ξ) ∈ JS(ξ) for a.e. ξ ∈ D}.
Observe, in particular, that JS(ξ) is independent (for a.e. ξ) of the choice

of Φ. An elementary proof of Proposition 2.1, which includes as well a con-
verse, can be found in [4, Proposition 1.5]. We shall need two more results.

Proposition 2.2. Suppose Φ ⊂ L2(Rn) is countable. Then the following
statements hold :

(1) The system {ϕγ}γ∈Γ, ϕ∈Φ is orthonormal in L2(Rn) if and only if the
system {|detA|−1/2Hϕ(ξ)}ϕ∈Φ is orthonormal in `2(Γ ∗) for a.e. ξ ∈ D.

(2) Likewise, {ϕγ}γ∈Γ, ϕ∈Φ is a Riesz system in L2(Rn) if and only if the
system {|detA|−1/2Hϕ(ξ)}ϕ∈Φ is a Riesz system in `2(Γ ∗) for a.e. ξ ∈ D.

Proof. A proof in the case when Γ = Zn can be found in [4, Theorem 2.3].
The general situation follows easily by changing variables. Indeed, define
the isometry DAf(x) = |detA|1/2f(Ax). If {ϕγ}γ∈Γ, ϕ∈Φ is an orthonormal
system (ONS) then {DAϕk}k∈Zn, ϕ∈Φ is also an ONS. Now, using the case
Γ = Zn this is equivalent to {|detA|−1/2Hϕ(ξ)}ϕ∈Φ being an ONS of `2(Γ ∗)
for a.e. ξ ∈ D. The situation for a Riesz system is similar.

Observe from the previous propositions that if S is Γ -invariant and Φ ⊂
S is countable, then {ϕγ}γ∈Γ,ϕ∈Φ is an orthonormal basis (or Riesz basis)
of S = S(Φ) if and only if {|detA|−1/2Hϕ(ξ)}ϕ∈Φ is a basis for the space
JS(ξ), and a.e. ξ ∈ D. As an application we obtain the following:

Corollary 2.3. Let {Vj}j∈Z be an MRA in L2(Rn). Then the multi-
plicity D of {Vj}j∈Z is a constant depending only on the space V0, and not
on the choice of a scaling family Φ.

The second result characterizes Γ -invariant spaces with finite multiplic-
ity.

Proposition 2.4. Let S be a Γ -invariant space. Then dimJS(ξ) = D
∈ Z+, a.e. ξ ∈ D, if and only if there exist ϕ1, . . . , ϕD ∈ S such that
{ϕdγ}d=1,...,D, γ∈Γ is an orthonormal basis (ONB) of S.

Proof. If dimJS(ξ) = D, then it is possible to construct measurable
L2(D; `2(Γ ∗))-functions v1, . . . ,vD such that {v1(ξ), . . . ,vD(ξ)} is an ONB
of JS(ξ) for a.e. ξ ∈ D (see, e.g., [8, Lemma 3.17]). Thus, defining

ϕ̂d(ξ) := |detA|1/2vdγ(ξ − γ), ξ ∈ D + γ, γ ∈ Γ ∗, d = 1, . . . ,D,
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we haveHϕd = vd and the result follows from the two previous propositions.
The converse is also immediate from the two previous propositions.

2.2. The angle between shift-invariant spaces. We begin with the follow-
ing definition of angle between subspaces of L2(Rn), taken from the work of
Aldroubi [1, 20].

Definition 2.5. The angle R(E,F ) between two closed subspaces E,F
of a Hilbert space H is defined as

R(E,F ) = inf
{‖PE(f)‖
‖f‖

∣∣∣∣ f ∈ F \ {0}
}
,(2.6)

where PE denotes the orthogonal projector onto E.

We point out that R(E,F ) is actually the cosine of the angle Θ(E,F )
between E and F as it is defined in [1], i.e., cosΘ(E,F ) = R(E,F ). Observe
also that, even though always R(E,F ) = R(F⊥, E⊥) (see [20, Lemma 1]), in
general, we cannot expect that R(E,F ) = R(F,E). The following example
is illustrative.

Example 2.7. Suppose Z1, Z2 are two measurable subsets of Rn. Con-
sider the following subspaces of L2(Rn):

L2
Z1

= {f ∈ L2(Rn) | Supp f̂ ⊂ Z1}, L2
Z2

= {f ∈ L2(Rn) | Supp f̂ ⊂ Z2},
which are actually invariant with respect to all translations in Rn. Now, if
Z2⊂Z1 (modulo null sets) then R(L2

Z1
, L2

Z2
)=1. Otherwise R(L2

Z1
, L2

Z2
)=0.

The next general result gives an explicit expression for the angle between
spaces with the same finite dimension, showing that in this case R(E,F ) =
R(F,E) = Angle(E,F ), as defined in (1.4).

Proposition 2.8. Let E,F be vector subspaces of a Hilbert space H
with dimE = dimF = d, and e = {e1, . . . , ed}, f = {f1, . . . , fd} be their
respective orthonormal bases. If E ∩ F⊥ = {0}, then

R(E,F ) = ‖C−1
e,f ‖−1,

where Ce,f = (〈ei, fj〉)1≤i,j≤d is the correlation matrix of e and f .

Proof. Take any y =
∑d

j=1 yjfj ∈ F , where yj = 〈y, fj〉, and observe

that, from the formula for the projector PEy =
∑d

i=1〈y, ei〉ei, we have

‖PEy‖2 =
∥∥∥

d∑

j=1

yj

d∑

i=1

〈fj , ei〉ei
∥∥∥

2
=

d∑

i=1

∣∣∣
d∑

j=1

yj〈fj , ei〉
∣∣∣
2

= |Ce,f Y|2,

where Y denotes the column matrix with entries y1, . . . , yd. As E∩F⊥ = {0},
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the matrix Ce,f is invertible (see, e.g., [8, Lemma 4.3]) and therefore

inf
y∈F\{0}

‖PEy‖
‖y‖ = inf

(y1,...,yd)∈Cd\{0}

|Ce,fY|
|Y|

=
[

sup
(z1,...,zd)∈Cd\{0}

|C−1
e,fZ|
|Z|

]−1

= ‖C−1
e,f ‖−1,

where Z is the column matrix with entries z1, . . . , zd.

Corollary 2.9. Let E, F be subspaces of a Hilbert space H with the
same finite dimension, or the same finite co-dimension. Then R(E,F ) =
R(F,E).

Our next results concern the angle between Γ -invariant spaces.

Proposition 2.10. Suppose S1,S2 are two Γ-invariant spaces of L2(Rn).
Then

R(S1, S2) = ess-inf
ξ∈D

R(JS1(ξ), JS2(ξ)).(2.11)

Proof. Let PS1 be the orthogonal projector of L2(Rn) onto S1, and de-
note by P1(ξ) = PJS1 (ξ) the corresponding orthogonal projector from `2(Γ ∗)
onto JS1(ξ). Then, for every f ∈ L2(Rn) the Helson transform gives the
equality

H(PS1f)(ξ) = P1(ξ)(Hf(ξ)), a.e. ξ ∈ D
(see, e.g., [4, Lemma 1.4]). Further, restricting the above to f ∈ S2 we see
that

H(PS1|S2f)(ξ) = H(PS1PS2f)(ξ)

= P1(ξ)P2(ξ)(Hf(ξ)) = P1(ξ)|JS2(ξ)(Hf(ξ)),

for a.e. ξ ∈ D. Thus, in the notation of [4, §4], P1(ξ)|JS2(ξ) is the range
operator corresponding to PS1 |S2 in the Γ -invariant space S2. Now we can
use [4, Theorem 4.6] which states:

inf
{‖PS1(f)‖

‖f‖ | f ∈ S2 \ {0}
}

= ess-inf
ξ∈D

inf
{‖P1(ξ)v‖

‖v‖

∣∣∣∣ v ∈ JS2(ξ) \ {0}
}
,

establishing (2.11).

As an immediate consequence of Proposition 2.10 and Corollary 2.9 we
have the following.

Corollary 2.12. Let S1, S2 be Γ -invariant spaces of L2(Rn) satisfying

dimJS1(ξ) = dimJS2(ξ) <∞ or dimJS1(ξ)⊥ = dimJS2(ξ)⊥ <∞
for a.e. ξ ∈ D. Then R(S1, S2) = R(S2, S1).
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We conclude with the following result, giving necessary and sufficient
conditions for the existence of biorthogonal Riesz bases for two Γ -invariant
spaces.

Proposition 2.13. Let D ∈ Z+ and S1, S2 be Γ -invariant spaces of
L2(Rn) satisfying

dimJS1(ξ) = dimJS2(ξ) = D for a.e. ξ ∈ D.(2.14)

If R(S1, S2)>0, then for any ϕ1, . . . , ϕD ∈S1 so that {ϕdγ}d=1,...,D, γ∈Γ is a
Riesz basis of S1 (with constants a, b), there exist ϕ̃1, . . . , ϕ̃D ∈ S2 so that
{ϕ̃dγ}d=1,...,D, γ∈Γ is a Riesz basis of S2 (with constants b−1, R(S2, S1)−1/2a−1)
and satisfying the biorthogonality relation

〈ϕdγ , ϕ̃d
′
γ′〉 = δd,d′δγ,γ′ , d, d′ = 1, . . . ,D, γ, γ′ ∈ Γ.(2.15)

Conversely , if {ϕdγ}d=1,...,D, γ∈Γ , {ϕ̃dγ}d=1,...,D, γ∈Γ are biorthogonal Riesz
bases of S1 and S2, then (2.14) holds and R(S1, S2) = R(S2, S1) > 0.

Proof. Since R(S2, S1) > 0,

R(S2, S1) ‖f‖ ≤ ‖PS2f‖ ≤ ‖f‖, ∀f ∈ S1.

Thus, if {ϕdγ}d,γ is a Riesz basis for S1 (with constants a, b), so is the sys-
tem {PS2(ϕdγ) = (PS2ϕ

d)γ}d,γ for S2 (with constants R(S2, S1)1/2a, b). In
this last claim it should be observed that span{PS2(ϕdγ)}d,γ = S2 because of
R(S1, S2) > 0 (alternatively, one can use (2.14)). Now, we invoke [4, Theo-
rem 5.2 (and the subsequent Remark)], which guarantees the existence of a
dual Riesz basis for {PS2(ϕdγ)}d,γ in S2 of the form {ϕ̃dγ}d,γ (with constants
b−1, R(S2, S1)−1/2a−1). Thus,

〈ϕdγ, ϕ̃d
′
γ′〉 = 〈ϕdγ , PS2(ϕ̃d

′
γ′)〉 = 〈PS2(ϕdγ), ϕ̃d

′
γ′〉 = δd,d′δγ,γ′ ,

establishing the first part of the proposition.
Conversely, suppose {ϕdγ}d,γ, {ϕ̃dγ}d,γ are Riesz bases (with constants

a, b and ã, b̃) of S1, S2, resp., which are biorthogonal, i.e., (2.15) holds. By
the second statement of Proposition 2.2, {|detA|−1/2Hϕd(ξ)}Dd=1 is a Riesz
basis for JS1(ξ), for a.e. ξ ∈ D, and hence dimJS1(ξ) = D for a.e. ξ ∈ D.
Analogously, dimJS2(ξ) = D for a.e. ξ ∈ D, which shows (2.14). It remains
to show that R(S1, S2) = R(S2, S1) > 0.

By [4, Theorem 5.2 (and the subsequent Remark)] the dual Riesz basis
of {ϕdγ}d,γ in S1 is again of the form {ϕ]dγ }d,γ for some {ϕ]1, . . . , ϕ]D} ⊂ S1.
Therefore, the orthogonal projection PS1 onto S1 can be given as

PS1f =
D∑

d=1

∑

γ∈Γ
〈f, ϕ]dγ 〉ϕdγ =

D∑

d=1

∑

γ∈Γ
〈f, ϕdγ〉ϕ]dγ for all f ∈ L2(Rn).
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Observe in particular that PS1ϕ̃
d
γ = ϕ]dγ for all γ, d. Pick now a function

f ∈ S2 \ {0}, and expand it as

f =
D∑

d=1

∑

γ∈Γ
cdγϕ̃

d
γ , where ã

D∑

d=1

∑

γ∈Γ
|cdγ|2 ≤ ‖f‖2 ≤ b̃

D∑

d=1

∑

γ∈Γ
|cdγ|2.

Then PS1f =
∑D

d=1
∑

γ∈Γ c
d
γϕ

]d
γ , and

‖PS1f‖2
‖f‖2 ≥

b−1∑
d,γ |cdγ|2

b̃
∑

d,γ |cdγ|2
=

1

b̃b
,

since {ϕ]dγ } is a Riesz basis with constants b−1, a−1. This shows R(S1, S2) ≥
(b̃b)−1/2 and completes the proof of Proposition 2.13.

Remark 2.16. The previous proposition holds as well (and with the
same proof) when we let D = ∞ in (2.14). In this case, the condition
R(S1, S2)>0 in the first statement must be replaced byR(S1,S2)R(S2,S1)>0.

As an application to MRA theory we have the following characterization.

Corollary 2.17. Let {Vj}j∈Z, {Ṽj}j∈Z be two multiresolution analyses
in L2(Rn) with the same multiplicity. Then {Vj , Ṽj}j∈Z are biorthogonal if
and only if R(V0, Ṽ0) > 0.

The previous corollary tells us that for a given multiresolution analysis
{Vj}j∈Z, there may be many other MRA’s {Ṽj}j∈Z so that {Vj , Ṽj}j∈Z are
biorthogonal. In particular, we can produce a large collection of biorthogo-
nal wavelets from a fixed scaling function ϕ, by just choosing appropriate
biorthogonal scaling functions ϕ̃. This contrasts with the fact that a Riesz
wavelet ψ can have at most one partner ψ̃ so that (ψ, ψ̃) are biorthogonal
wavelets. The following example (in the 1-dimensional dyadic case) is quite
illustrative.

Example 2.18: The Haar and Shannon MRA’s in L2(R). Following the
notation in [16, Ch. 2], we define the Haar MRA from V0 = S(ϕ), where ϕ =
χ[−1,0] is the Haar scaling function. Analogously, we consider the Shannon

MRA, letting V ]
0 = S(ϕ]) with ϕ̂] = χ[−π,π]. It is well known that these two

MRA’s lead to the Haar and Shannon (orthonormal) wavelets, respectively.
Observe now that

R(V0, V
]

0 ) = ess-inf
ξ∈[−π,π)

∣∣∣
∑

k∈Z
ϕ̂](ξ + 2kπ)ϕ̂(ξ + 2kπ)

∣∣∣

= inf
ξ∈[−π,π)

sin ξ/2
ξ/2

=
2
π
> 0,

and therefore, {Vj , V ]
j } are biorthogonal MRA’s. Thus, we can also construct
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a pair of biorthogonal wavelets following the classical Cohen–Daubechies
procedure [9, 10]. First let ̂̃ϕ = ϕ̂]/ϕ̂, so that {ϕ, ϕ̃} are biorthogonal scaling
functions. Now, consider the low-pass filters:

m0(ξ) =
1 + eiξ

2
and m̃0(ξ) =

χ[−π/2,π/2]+2πZ(ξ)

m0(ξ)
,

so that the following scaling equations hold:

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ) and ̂̃ϕ(2ξ) = m̃0(ξ) ̂̃ϕ(ξ), a.e. ξ ∈ R.
Next, we define the high-pass filters:

m1(ξ) = eiξ m̃0(ξ + π) and m̃1(ξ) = eiξm0(ξ + π).

Then the candidates for biorthogonal wavelets are:

ψ̂(ξ) = m1(ξ/2)ϕ̂(ξ/2)

= eiξ/2
ϕ̂(ξ/2)

m0(ξ/2 + π)
χ[π,3π]+4πZ(ξ) = ieiξ/2

4
ξ
χ[π,3π]+4πZ(ξ)

and
̂̃
ψ(ξ) = m̃1(ξ/2) ̂̃ϕ(ξ/2)

= eiξ/2
(
m0(ξ/2 + π)
ϕ̂(ξ/2)

)
χ[−2π,2π](ξ) = ieiξ/2

ξ

4
χ[−2π,2π](ξ).

We observe that, although with this definition the systems {ψj,k}j,k∈Z,
{ψ̃j,k}j,k∈Z are always biorthogonal, one has to check separately that they
satisfy the Bessel property, and hence, constitute a pair of dual Riesz bases
in L2(R). Now, following [12, p. 268], the Bessel property for a sequence
{%j,k}j,k∈Z in L2(R) holds provided the function %̂ satisfies the two estimates

∑

k∈Z
|%̂(ξ+2πk)|2(1−ε) ≤ C and

∑

j∈Z
|%̂(2jξ)|2ε ≤ C, a.e. ξ∈R,(2.19)

for some constants ε, C > 0. This condition is easily verified for % = ψ, ψ̃,
when 0 < ε < 1/2, and thus (ψ, ψ̃) are biorthogonal wavelets.

Finally, it is very easy to construct examples of non-biorthogonal MRA’s.

Example 2.20: Non-biorthogonal MRA’s. Consider the following per-
turbations of the Shannon scaling function: ϕ̂(a) = χ[−a,2π−a], 0 < a < 2π.

Then the basic MRA spaces take the form V
(a)

0 = S(ϕ(a)) = L2
[−a,2π−a], in

the notation of Example 2.7. Thus

R(V (a)
0 , V

(a′)
0 ) = 0, ∀a 6= a′,

and the pair of MRA’s {V (a)
j , V

(a′)
j }j∈Z cannot be biorthogonal.

It is also possible to obtain an MRA which is not biorthogonal to the
Haar MRA. For this we can consider a scaling function ϕ̂K = χK , where K
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is a suitable “scaling set” having a point of density at ξ = 2π. In this way,
V K

0 = S(ϕK) = L2
K and

R(V0, V
K

0 ) = inf
ξ∈K

sin ξ/2
ξ/2

= 0.

Examples of such pathological scaling sets K are presented in [7, Prop. C].

3. Riesz wavelets. Let now Ψ = {ψ1, . . . , ψL} be a Riesz wavelet fam-
ily and {VJ}J∈Z the collection of subspaces defined in (1.1). Recall from (1.2)
the definition of the spaces F(ξ) = span{Hψlj,0(ξ)}l=1,...,L, j<0. Following [17,
§2] we observe that

S(V0) = S({ψlj,0}l=1,...,L, j<0).(3.1)

Indeed, the inclusion “⊇” is obvious from V0 ⊇ {ψlj,0}l=1,...,L, j<0. Conversely,

V0 = span{ψlj,γ}l=1,...,L, j<0, γ∈Γ

⊆ span{ψl(M∗j(·+ γ))}l=1,...,L, j<0, γ∈Γ = S({ψlj,0}l=1,...,L, j<0),

and therefore “⊆” holds in (3.1). In particular, we conclude from Proposi-
tion 2.1 that

JS(V0)(ξ) = F(ξ), a.e. ξ ∈ D.(3.2)

The following result appears to be new in the literature and generalizes [17,
Theorem 2.6].

Theorem 3.3. Let Ψ = {ψ1, . . . , ψL} be a Riesz wavelet family. Then Ψ
is associated with an MRA if and only if V0 given by (1.1) is Γ -invariant
and there exists an integer D ≥ 1 such that dimF(ξ) = D, a.e. ξ ∈ D. In
this case, L = D(|detM | − 1) and F(ξ) = JV0(ξ), a.e. ξ ∈ D.

Proof. The necessary condition is easy. If Ψ is associated with an MRA,
then there exist ϕ1, . . . , ϕD ∈ V0 such that {ϕdγ}d,γ is a Riesz basis of V0.
Hence, V0 is Γ -invariant and S(V0) = V0. Moreover, from Propositions 2.1
and 2.2, {Hϕd(ξ)}Dd=1 is also a Riesz basis of JV0(ξ) = F(ξ), a.e. ξ ∈ D,
implying dimF(ξ) = D, a.e. ξ ∈ D.

Conversely, if V0 is Γ -invariant and dimJV0(ξ) = dimF(ξ) = D, a.e.
ξ ∈ D, then by Proposition 2.2, V0 has an ONB of the form {ϕdγ}d,γ , and
hence {VJ}J∈Z is an MRA. To show that L = D(|detM | − 1) we quote the
following result from [18].

Theorem 3.4. Let Ψ = {ψ1, . . . , ψL} be a Riesz wavelet family. Then
the following statements are equivalent :

(1) There exists Ψ̃ = {ψ̃1, . . . , ψ̃L} ⊂ L2(Rn) such that {ψ̃lj,γ}l,j,γ is a
dual Riesz basis of {ψlj,γ}l,j,γ.

(2) V0 is Γ -invariant.
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(3) There exists Ψ ] = {ψ]1, . . . , ψ
]
L} ⊂ L2(Rn) such that {ψ]l;j,γ}l,j,γ is an

ONB of L2(Rn) and

VJ = V ]
J := span{ψ]l;j,γ | j < J, γ ∈ Γ, l = 1, . . . , L}, ∀J ∈ Z.

Going back to Theorem 3.3, since V0 is Γ -invariant, it must equal V ]
0 ,

and therefore,

D = dimF(ξ) = dimJV0(ξ) = dimJ
V ]0

(ξ) = dimF ](ξ), a.e. ξ ∈ D.
Thus, using the formula for the dimension function of an orthonormal
wavelet family (see, e.g., [8, §2]), we must have

D = dimF ](ξ) = DΨ](ξ)

= |detA|−1
L∑

l=1

∞∑

j=1

∑

γ∈Γ
|ψ̂]l (M∗j(ξ + γ))|2, a.e. ξ ∈ D.

Integrating over D and deperiodizing the integral on the right we obtain

D =
L∑

l=1

∞∑

j=1

∑

γ∈Γ

�

D
|ψ̂]l (M∗j(ξ + γ))|2 dξ

=
L∑

l=1

∞∑

j=1

|detM |−j ‖ψ]l ‖22 =
L

|detM | − 1
.

In the particular case L = |detM | − 1, Theorem 3.3 admits a more
explicit statement where dimF(ξ) = D is replaced by a simpler verifiable
condition in terms of Ψ .

Theorem 3.5. Suppose L = |detM |−1. If Ψ = {ψ1, . . . , ψL} is a Riesz
wavelet family , then Ψ is associated with an MRA if and only if V0 is Γ -
invariant and

L∑

l=1

∞∑

j=1

∑

γ∈Γ
|ψ̂l(M∗j(ξ + γ))|2 > 0, a.e. ξ ∈ D.(3.6)

In this case, the MRA {VJ}J∈Z has multiplicity 1.

Proof. The direct implication is easy. If Ψ arises from an MRA, we
know from Theorem 3.3 that dimF(ξ) = D, a.e. ξ ∈ D, for some D ≥ 1.
By the definition of F(ξ) (see (1.2)) this implies that some vector
(ψ̂l(M∗j(ξ + γ)))γ∈Γ ∗, j ≥ 1, l = 1, . . . , L, is not zero, and therefore, (3.6)
must hold. Conversely, if (3.6) holds, then dimF(ξ) ≥ 1, a.e. ξ ∈ D. More-
over, if V0 is Γ -invariant we can use Theorem 3.4 which guarantees the
existence of a Riesz wavelet family Ψ̃ = {ψ̃1, . . . , ψ̃L} so that (Ψ, Ψ̃) are
biorthogonal wavelet families. Proceeding as in the last step of Theorem 3.3
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we see that
�

D
DΨ,Ψ̃ (ξ)

dξ

|D| =
L∑

l=1

〈ψl, ψ̃l〉
|detM | − 1

= 1.

On the other hand, as we mentioned in §1 (see also (4.1)), DΨ,Ψ̃ (ξ) =
dimF(ξ)≥1, a.e. ξ∈D, and therefore necessarily dimF(ξ)=DΨ,Ψ̃ (ξ)≡1.

Remark 3.7. As pointed out in [17], several examples in the 1-dimen-
sional dyadic case show that the two conditions in Theorem 3.5 are inde-
pendent of each other. More examples in the higher-dimensional situation
are presented below in §5.

4. Biorthogonal Riesz wavelets. In this section we shall prove our
main result: Theorem 1.5. We assume throughout this section that (Ψ, Ψ̃) is
a pair of biorthogonal wavelet families in L2(Rn). Recall from [8, §2] that in
this case the dimension of the spaces F(ξ), F̃(ξ) can be explicitly computed:

dimF(ξ) = dim F̃(ξ) = DΨ,Ψ̃ (ξ), a.e. ξ ∈ Rn,(4.1)

where DΨ,Ψ̃ (ξ) is the dimension function defined in (1.3).

Let Z = span{ψlj,γ | j ≥ 0, γ ∈ Γ, l = 1, . . . , L}. Then, since {ψlj,γ}l,j,γ
and {ψ̃lj,γ}l,j,γ are dual Riesz bases for L2(Rn) it follows that

L2(Rn) = V0 ⊕ Z = Ṽ0
⊥
⊕ Z,(4.2)

where Ṽ0 = span{ψ̃lj,γ}l=1,...,L, j<0, γ∈Γ , the first sum is direct and the second
orthogonal. Observe that Z is Γ -invariant, and therefore, so is its comple-
ment Ṽ0 (and by a dual argument also V0).

The following general result justifies that the angle between the spaces
V0 and Ṽ0 is always positive.

Lemma 4.3 (see [17, Lemma 3.3]). Let Z, V, Ṽ be closed subspaces of a

Hilbert space H. If H = V ⊕ Z = Ṽ
⊥
⊕ Z, then R(Ṽ , V ) > 0.

We now have all the tools to prove our main result:

Proof of Theorem 1.5. It is clear that (1)⇒(4)⇒(3). By Theorem 3.3
and (4.1) it follows easily that (3)⇒(2). It remains to show that (2)⇒(1).

Assume that (2) holds, and recall that V0 and Ṽ0 are Γ -invariant. Hence,
by (4.1) and (3.2) we have

D = DΨ,Ψ̃ (ξ) = dimF(ξ) = dim F̃(ξ) = dimJV0(ξ)

= dimJṼ0
(ξ), a.e. ξ ∈ D.

Now, Proposition 2.4 gives the existence of functions ϕ1, . . . , ϕD ∈ V0 so
that {ϕdγ}d,γ is an ONB of V0. Thus, {VJ}J∈Z is an MRA, and likewise
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{ṼJ}J∈Z. Furthermore, by (4.2) and Lemma 4.3 we must have R(Ṽ0, V0) > 0,
and therefore we can apply Corollary 2.17 to conclude that {VJ , ṼJ}J∈Z are
actually biorthogonal MRA’s. This proves (1) and establishes the theorem.

Combining Theorems 3.3, 3.4 and 1.5 we obtain as well the following
corollary.

Corollary 4.4. If Ψ = {ψ1, . . . , ψL} is a Riesz wavelet family associ-
ated with an MRA, then L = D(|detM |−1) for some D ≥ 1. Moreover, there
exists Ψ̃ = {ψ̃1, . . . , ψ̃L} ⊂ L2(Rn) such that (Ψ, Ψ̃) is a pair of biorthogonal
wavelet families arising from biorthogonal MRA’s.

When L = |detM |−1, Theorem 1.5 admits other equivalent formulations
from similar arguments as in Theorem 3.5.

Corollary 4.5. Suppose L = |detM | − 1 and Ψ, Ψ̃ are biorthogonal
wavelet families in L2(Rn). Then (Ψ, Ψ̃) are associated with biorthogonal
MRA’s if and only if one of the following holds:

(1) DΨ,Ψ̃ (ξ) 6= 0, a.e. ξ ∈ D.

(2)
∑L

l=1
∑∞

j=1
∑

γ∈Γ |ψ̂l(M∗j(ξ + γ))|2 > 0, a.e. ξ ∈ D.

(3)
∑L

l=1
∑∞

j=1
∑

γ∈Γ |
̂̃
ψl(M∗j(ξ + γ))|2 > 0, a.e. ξ ∈ D.

5. Further remarks and examples. In this last section we complete
the results in the paper with various comments and examples illustrating
the sharpness of our theorems.

1. For any positive integer L ≥ 1, there exist orthonormal wavelet fami-
lies with exactly L elements: Ψ = {ψ1, . . . , ψL} (see [11]). Thus, the condi-
tion L = D(|detM | − 1) may not hold in some situations, in which case we
necessarily have non-MRA wavelets.

2. There exist orthonormal wavelet families Ψ = {ψ1, . . . , ψ|detM |−1} so
that condition (3.6) in Theorem 3.5 does not hold (while the space V0 =
span{ψlj,γ}j<0,γ,l = span{ψj,γ}⊥j≥0,γ,l is trivially shift-invariant). In the 1-
dimensional dyadic case the typical example is the Journé wavelet [16, p.
64], [17]. Similar examples in higher dimensions, for matricesM with |detM |
= 2, were presented in [8, §5].

3. Conversely, there exist Riesz wavelets ψ ∈ L2(R) satisfying (3.6) and
for which V0 cannot be shift-invariant [17]. Such examples are due to Zalik
[22] and consist of (compactly supported) deformations of the Haar wavelet
which “cannot be obtained by an MRA”. We observe that the concepts of
a wavelet “obtained by an MRA” [22] and “arising from an MRA” [16] are
actually equivalent, as was shown by the first author in [5].

4. Theorem 3.5 cannot hold if we let L=D(|detM |−1) and D>1. In fact,
for |detM | = 2 there exist orthonormal wavelet families Ψ = {ψ1, . . . , ψ2L},
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with arbitrary L ≥ 1, so that (3.6) holds (and V0 is shift-invariant), but not
arising from an MRA. Such constructions were presented in [8, Example 5.5],
and were of the form Ψ = {χ∨T1

, . . . , χ∨T2L
}, L ≥ 1, where the sets {Tl}2

L

l=1

form a suitable partition of M ∗LT , and T is a fixed wavelet set in Rn. For
these examples we showed that

DΨ (ξ) ≥ 2L − 1 > 0, a.e. ξ ∈ D,

while Ψ arises from an MRA (of multiplicity 2L) iff ψ = χ∨T arises from an
MRA (see [8, Proposition 5.8]).

5. The dimension function associated with orthonormal wavelets has
been studied by various authors in different contexts. In [6] there is a large
collection of examples, in one and higher dimensions, of dimension functions
taking arbitrarily large values, or even being unbounded. We point out that
when ψ is a Riesz wavelet which is not orthonormal, then the “dimension
function” Dψ(ξ) is no longer integer-valued (see, e.g., Example 2.18 above).

6. Concerning the results in §4, any pair of biorthogonal wavelets with
very mild smoothness and decay properties will satisfy the conditions of
Theorem 1.5. This result has been shown by Auscher [2, Theorem 10.1], see
also [8, Corollary 4.16].

7. There also exist examples of biorthogonal wavelets (not necessarily
orthonormal) which do not arise from biorthogonal MRA’s. Such examples
do not seem to appear in the literature, so for completeness we give a simple
construction in the 1-dimensional dyadic situation. The construction follows
an idea of X. Wang in the orthonormal setting. We refer to [21, Example
3.65, p. 79] for the elementary verification of the properties stated.

Let 0 ≤ b(ξ) ≤ 1, ξ ∈ [6π/7, 8π/7), be an arbitrary measurable function,
and let 0 < α < 1. We define ψ̂(ξ) = eiξ/2|ψ̂(ξ)|, where

|ψ̂(ξ)| =





1, 4π/7 ≤ |ξ| < 6π/7,

b(ξ)α, 6π/7 ≤ ξ < 8π/7,

(1− b(ξ/4))α, 24π/7 ≤ ξ < 32π/7,

(1− b(ξ + 2π))1−α, −8π/7 ≤ ξ < −6π/7,

b(ξ/4 + 2π)1−α, −32π/7 ≤ ξ < −24π/7.

We define ̂̃ψ(ξ) = eiξ/2| ̂̃ψ(ξ)| in a completely analogous way, except that
we replace α by β = 1 − α. Since (2.19) holds for % = ψ, ψ̃, the systems
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(ψj,k)j,k∈Z, (ψ̃j,k)j,k∈Z are Bessel. By similar computations to those in [21],
∑

j∈Z
ψ̂(2jξ) ̂̃ψ(2jξ) = 1, a.e. ξ ∈ R,

tq(ξ) =
∑

j≥0

ψ̂(2jξ) ̂̃ψ(2j(ξ + 2πq)) = 0, a.e. ξ ∈ R, q ∈ 2Z+ 1,

hence by the results of [13], (ψj,k)j,k∈Z, (ψ̃j,k)j,k∈Z is a pair of dual frames.
Furthermore, by a direct calculation we also have

∑

k∈Z
ψ̂(ξ + k) ̂̃ψ(ξ + k) = 1, a.e. ξ ∈ R,

∑

k∈Z
ψ̂(2j(ξ + k)) ̂̃ψ(ξ + k) =

∑

k∈Z
ψ̂(ξ + k) ̂̃ψ(2j(ξ + k))

= 0, a.e. ξ ∈ R, j ≥ 1,

which shows biorthogonality of (ψj,k)j,k∈Z, (ψ̃j,k)j,k∈Z (see [16, Ch. 3.1]).
This shows that (ψ, ψ̃) is a biorthogonal wavelet pair. Moreover, D

ψ,ψ̃
(ξ) is

the usual Journé wavelet dimension function, i.e.,

Dψ,ψ̃(ξ) =





2, |ξ| < 2π/7,

1, 2π/7 < |ξ| < 4π/7 or 6π/7 < |ξ| < π,

0, 4π/7 < |ξ| < 6π/7.

Thus, (ψ, ψ̃) cannot arise from a pair of biorthogonal MRA’s. A limiting
case of this construction corresponds to α→ 0 and b ≡ 1. Then one obtains
the wavelet sets in Figure 5.1.

Fig. 5.1. The functions |ψ̂| = χI and | ̂̃ψ| = χ
Ĩ

when α = 0 and b ≡ 1

8. Finally, we would like to recall a fundamental open question in this
subject: does any pair of biorthogonal MRA’s have an associated pair of
biorthogonal wavelets? In particular, is it true that the Cohen–Daubechies
algorithm [9, 10] applied to any pair of biorthogonal MRA’s always yields
biorthogonal wavelets? As pointed out in Example 2.18, the biorthogonal-
ity follows automatically and the problem boils down to the verification of
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the Bessel condition (see also [12, p. 268]). It is known that the answer to
the above question is affirmative under a relatively mild decay assumption
on the scaling functions (see [10, Theorem 3.8]), where the assumption of
compactly supported scaling functions can be easily relaxed. However, the
general situation seems to remain open, with no counterexamples of wavelet
systems obtained by the Cohen–Daubechies algorithm which do not satisfy
the Bessel condition.
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