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Order convexity and concavity of Lorentz spaces
Λp,w, 0 < p <∞

by

Anna Kamińska (Memphis, TN) and Lech Maligranda (Lule̊a)

Abstract. We study order convexity and concavity of quasi-Banach Lorentz spaces
Λp,w, where 0 < p < ∞ and w is a locally integrable positive weight function. We show
first that Λp,w contains an order isomorphic copy of lp. We then present complete criteria
for lattice convexity and concavity as well as for upper and lower estimates for Λp,w. We
conclude with a characterization of the type and cotype of Λp,w in the case when Λp,w is
a normable space.

0. Introduction. The purpose of this paper is to characterize order
convexity and concavity in quasi-Banach Lorentz spaces Λp,w, where w is
a locally integrable arbitrary weight and 0 < p < ∞. First results on this
topic in Lorentz spaces belong to Creekmore [7], who has studied the spaces
Lp,q with 1 < p, q < ∞, as well as to Carothers [4] and Reisner [24], who
considered the Lorentz spaces Λp,w with a decreasing weight w and p ≥ 1.
These spaces have been further investigated by the authors in [14], where
convexity and concavity properties as well as the type and cotype of Λp,w
have been characterized by means of several equivalent integral inequalities
as well as by indices of w and its integral W (t) =

� t
0w. It is well known

that Λp,w are Banach spaces whenever w is decreasing and p ≥ 1 ([18]).
The present article is a continuation of [14]. We extend our study to 0 < p
<∞ and an arbitrary weight w such that Λp,w is a quasi-Banach space. In
this general setting, when the weight is not decreasing and 0 < p < ∞ is
arbitrary, different methods and techniques must be used.

The paper is organized as follows. In the preliminaries we set up notations
and we recall the definitions, notions and results which will be used later on.
Among other results, we recall that Λp,w is a quasi-normed space whenever
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W satisfies a growth condition called ∆2 (see [10]). Moreover, in Theorem
A, we present several equivalent conditions for normability of Λp,w, that is,
for the existence of a norm equivalent to the original quasi-norm of the space
([1, 23, 25]).

The first main result, proved in the second section, states that Λp,w,
0 < p < ∞, contains an order isomorphic copy of lp. This is an extension
of the analogous result for w decreasing and p ≥ 1 due to Figiel, Johnson
and Tzafriri [9]. We then apply this fact in the next sections, proving as
corollaries that Λp,w cannot be normable for 0 < p < 1 and that it cannot
be r-convex (resp. r-concave) for r > p (resp. r < p).

In Section 3, we present criteria for r-convexity and for an upper r-
estimate in Λp,w. While these criteria are different for r 6= p, they coincide
for r = p. We show for instance that for r < p, Λp,w is r-convex whenever
the Hardy operator H(r) is bounded, which is equivalent to the fact that the
upper Matuszewska–Orlicz index β(W ) is strictly less than p/r, that is, for
some ε > 0, W (t)/tp/r−ε is pseudo-decreasing. A consequence of this fact
is that Λp,w is L-convex ([11]). For the same r < p, Λp,w satisfies an upper
r-estimate if and only if W (t)/tp/r is pseudo-decreasing. If r = p, then we
prove that Λp,w is p-convex if and only if it satisfies an upper p-estimate,
which is equivalent to the fact that W (t)/t is pseudo-decreasing.

Section 4 contains criteria for r-concavity and for a lower r-estimate
in Λp,w. While characterizations of lower r-estimate or r-concavity for r = p
are counterparts of the corresponding theorems in Section 3 for convexity,
the integral characterization of r-concavity with r 6= p requires more ef-
fort. We introduce here a new integral condition called Dp, which plays an
analogous role in studying concavity to the role of condition Bp in studying
convexity of Λp,w. It is well known (Theorem A) that Λp,w, 1 < p < ∞, is
1-convex if and only if w satisfies condition Bp, that is, for some B > 0,

γ�

x

t−pw(t) dt ≤ Bx−pW (x) for all x ∈ I,

where I = (0, 1] or I = (0,∞), and γ = 1 or ∞, respectively. We show
(Theorem 5) that Λp,w, 0 < p < 1, is 1-concave if and only if w satisfies
condition Dp, that is, there exists A > 0 such that

x�

0

t−pw(t) dt ≤ Ax−pW (x) for all x ∈ I.

We then apply some modifications of this condition to the study of r-
concavity of these spaces. We conclude the paper with characterizations
of type and cotype in normable Λp,w spaces. Most results contained in this
article were announced in the research report [13].
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1. Preliminaries. We begin with some introductory definitions and re-
sults. Recall first that a quasi-Banach space X ([12]) is a complete metrizable
real vector space whose topology is given by a quasi-norm ‖ ‖ satisfying the
following three conditions: ‖x‖ > 0, x ∈ X, x 6= 0; ‖λx‖ = |λ| ‖x‖, λ ∈ R,
x ∈ X; and ‖x1 + x2‖ ≤ C(‖x1‖ + ‖x2‖), x1, x2 ∈ X, where C ≥ 1 is a
constant independent of x1 and x2. Given 0 < p ≤ 1, if ‖ ‖ satisfies the
first two conditions and ‖x1 + x2‖p ≤ ‖x1‖p + ‖x2‖p, x1, x2 ∈ X, then ‖ ‖
is called a p-norm. A quasi-Banach space (X, ‖ ‖) is said to be p-normable,
0 < p ≤ 1, if there exists an equivalent p-norm in X. A 1-normable space
is simply called normable. If a quasi-Banach space X is a vector lattice
and ‖ ‖ is monotone, i.e. ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|, we say that X is
a quasi-Banach lattice. A quasi-Banach lattice X is said to be p-convex ,
0 < p < ∞, respectively q-concave, 0 < q < ∞, ([8, 11, 17]) if there is a
constant K > 0 such that

∥∥∥
( n∑

i=1

|xi|p
)1/p∥∥∥ ≤ K

( n∑

i=1

‖xi‖p
)1/p

,

respectively ( n∑

i=1

‖xi‖q
)1/q

≤ K
∥∥∥
( n∑

i=1

|xi|q
)1/q∥∥∥,

for every choice of vectors x1, . . . , xn ∈ X. We also say that X satisfies an
upper p-estimate, 0 < p < ∞ (resp. a lower q-estimate, 0 < q < ∞), if
the above condition defining p-convexity (resp. q-concavity) is satisfied by
elements x1, . . . , xn ∈ X with disjoint supports ([11, 17]). We easily observe
that for 0 < p ≤ 1, p-convexity implies p-normability and this in turn yields
an upper p-estimate.

Given 0< p<∞ and a quasi-Banach lattice X let X (p) = {x : |x|p ∈ X}
denote the p-convexification of X equipped with the quasi-norm ‖x‖X(p) =
‖|x|p‖1/p. It is clear thatX(p) is 1-convex (resp. 1-concave) iffX is 1/p-convex
(resp. 1/p-concave). Notice also that a quasi-Banach space is normable iff it
is 1-convex.

Let further I = (0, 1] or I = (0,∞), and L0 ≡ L0(I, | |) be the set of all
Lebesgue measurable functions f : I → R+, where | | denotes the Lebesgue
measure on I. By γ we will always denote 1 in the case when I = (0, 1]
and ∞ when I = (0,∞). We also agree that “decreasing” or “increasing”
will mean “non-increasing” or “non-decreasing” respectively. For f ∈ L0 we
define its decreasing rearrangement as f ∗(t) = inf{s > 0 : df (s) ≤ t}, t > 0,
where df (s) = |{t : |f(t)| > s}| is the distribution function of f . Given
0 < r <∞, the Hardy operators on L0 are defined as follows:

H(r)f(t) =
(

1
t

t�

0

f∗r(s) ds
)1/r

, H(r)f(t) =
(

1
t

γ�

t

f∗r(s) ds
)1/r

.
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For r = 1, H(1)f will be denoted by f ∗∗ and H(1)f by f∗∗. It is well known
([2, 16]) that (f+g)∗∗ ≤ f∗∗+g∗∗. One can also show that for any 0 < r <∞,
and f1, . . . , fn ∈ L0,

H(r)
(( n∑

i=1

|fi|r
)1/r)

≤
( n∑

i=1

(H(r)(|fi|))r
)1/r

,

H(r)

(( n∑

i=1

|fi|r
)1/r)

≥
( n∑

i=1

(H(r)(|fi|))r
)1/r

.

The Lorentz space Λp,w, 0 < p <∞, is a subspace of L0 such that

‖f‖ = ‖f‖p,w :=
( �

I

f∗pw
)1/p

=
( �

I

f∗p(t)w(t) dt
)1/p

<∞,

where a measurable weight function w : I → (0,∞) satisfies the conditions

W (t) :=
t�

0

w <∞ for all t ∈ I,

∞�

0

w =∞ in the case when I = (0,∞).

The functional ‖ ‖p,w admits several equivalent formulas ([2, 4, 5, 16]). In
fact for f ∈ Λp,w, 0 < p <∞,

‖f‖ =
( �

I

f∗pw
)1/p

=
(∞�

0

W (df (t)) d(tp)
)1/p

=
(
−

�

I

W (t) d(f∗p(t))
)1/p

.

If in addition w is decreasing then

‖f‖ =
(

sup
τ

�

I

|f(τ(t))|pw(t) dt
)1/p

,

and if w is increasing then

‖f‖ =
(

inf
τ

�

I

|f(τ(t))|pw(t) dt
)1/p

,

where both the supremum and infimum are taken over all measure preserving
transformations τ : I → I.

It is well known that the functional ‖ ‖p,w is a norm if and only if w is
decreasing and 1 ≤ p < ∞ ([18]). Moreover, for any 0 < p < ∞, ‖ ‖p,w is a
quasi-norm if and only if W satisfies condition ∆2, i.e. W (2t) ≤ KW (t) for
all t ∈ 1

2I and some K > 0 ([10]). Indeed, if W satisfies condition ∆2 then
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for any f, g ∈ Λp,w,

‖f + g‖ ≤ 21/p
((
−

�

I

W (t) df∗p(t/2)
)1/p

+
(
−

�

I

W (t) dg∗p(t/2)
)1/p)

≤ 21/pK
((
−

�

I

W (t/2) df∗p(t/2)
)1/p

+
(
−

�

I

W (t/2) dg∗p(t/2)
)1/p)

≤ C(‖f‖+ ‖g‖).
On the other hand, assuming that ‖ ‖ is a quasi-norm and choosing f =
χ(0,x/2] and g = χ(x/2,x] we obtain

W 1/p(x) = ‖χ(0,x]‖ ≤ C(‖χ(0,x/2]‖+ ‖χ(x/2,x]‖) = 2CW 1/p(x/2)

for all x ∈ I, that is, W satisfies condition ∆2.
Since we deal further with the functional ‖ ‖p,w which is at least a quasi-

norm, we will assume in what follows that W satisfies condition ∆2.
Given an arbitrary F : I → R+ we define the Matuszewska–Orlicz lower

and upper indices as follows:

α(F ) = sup{p ∈ R : F (at) ≤ CapF (t)

for some C > 0 and all t ∈ I, 0 < a ≤ 1},
β(F ) = inf{p ∈ R : F (at) ≤ CapF (t)

for some C > 0 and all at ∈ I, a ≥ 1}.
If F is increasing then 0 ≤ α(F ) ≤ β(F ) ≤ ∞. A function F : I → R+ is
called pseudo-increasing (resp. pseudo-decreasing) if there exists a constant
K > 0 such that F (s) ≤ KF (t) (resp. F (s) ≥ KF (t)) for any 0< s< t;
s, t ∈ I. As usual two functions F,G : I → R+ are said to be equivalent if
there exist positive constants C1, C2 such that C1F (t) ≤ G(t) ≤ C2F (t) for
every t ∈ I.

Recall also the following result due to Matuszewska and Orlicz [21].

Lemma A ([21, 16]). If F : I → (0,∞) is pseudo-increasing (resp.
pseudo-increasing and F satisfies condition ∆2) and F (t)/t is pseudo-de-
creasing (resp. pseudo-increasing) on I, then there exists a positive concave
(resp. convex ) function on I equivalent to F .

In the theorem below we summarize all known results characterizing
normability of Λp,w.

Theorem A. Let 1 < p <∞. The following conditions are equivalent.

(i) Λp,w is normable.
(ii) The Hardy operator f ∗∗(t) = t−1

� t
0 f
∗(s) ds is bounded in Λp,w.

(iii) The weight w satisfies condition Sp, that is, for some A > 0 and
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1/p+ 1/p′ = 1,

( x�

0

w
)1/p

( x�

0

(
1
t

t�

0

w

)1−p′

dt

)1/p′

≤ Ax for all x ∈ I.

(iv) The weight w satisfies condition Bp, that is, there exists B > 0 such
that γ�

x

t−pw(t) dt ≤ Bx−pW (x) for all x ∈ I.

(v) There is C > 0 such that
γ�

x

t−p−1W (t) dt ≤ Cx−pW (x) for all x ∈ I.

(vi) β(W ) < p, i.e. there exists ε > 0 such that W (x)/xp−ε is pseudo-
decreasing.

Notice that Boyd proved equivalence of (ii) and (vi) in [3] when w is
decreasing but his techniques work just as well for general w (see also
[16, Ch. II, Th. 6.6]). Ariño and Muckenhoupt introduced condition Bp
and showed the equivalence of (ii) and (iv) in [1]; Sawyer proved in [25]
that conditions (i)–(iv) are equivalent, and Raynaud in [23] demonstrated
the equivalence of (ii) and (vi). We add here condition (v), which is an easy
consequence of (iv) and integration by parts. A direct proof of the equiva-
lence of (iv) and (vi) together with a simple proof of the fact that Bp implies
Bp−ε was given by Maligranda in [20]. The equivalence of (v) and (vi) was
proved in [19].

2. Copies of lp in Λp,w. We start by showing that Λp,w contains an
order copy of lp. In the case when w is decreasing and 1 ≤ p <∞, this fact
has been proved in [9] (for increasing weight see [5]; see also [6]). Notice that
the proof we provide here is different than the one in [9] or [5], because of
the lack of monotonicity of w.

Theorem 1. Let 0 < p <∞. The Lorentz space Λp,w contains an order
isomorphic copy of lp.

Proof. Let I = (0, 1] and ε > 0. We shall construct a sequence {fj}∞j=1
⊂ Λp,w with disjoint supports which spans an isomorphic copy of lp in Λp,w.
Let k1 = 1, N 3 N1 > k1 and b1 > 0 be such that bp1W (2−k1) = 1 and
bp1W (2−N1) < ε/4. Setting

f1 = b1χ(1−2−k1 ,1),

we have

‖f1‖ = 1,
2−N1�

0

f∗p1 w < ε/4.
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By induction we find sequences (Nj) and (kj) of natural numbers and a
sequence (bj) of positive numbers such that letting

fj = bjχ(1−∑j
i=1 2−ki ,1−∑j−1

i=1 2−ki)

for j = 1, 2, . . . with k1 = 1 and
∑
∅ = 0, we have

‖fj‖ = bpjW (2−kj ) = 1,

2−Nj�

0

f∗pj w = bjW (2−Nj ) < ε/4j , kj < Nj < kj+1 − 1,

for j = 1, 2, . . . It is clear that bj < bj+1 and
( ∞∑

j=1

fpj

)∗
=
∞∑

j=1

bpjχBj ,

where Bj are intervals with |Bj | = 2−kj , j = 1, 2, . . . , and
⋃∞
j=1Bj is an

interval (0, α) with α ≤ 1.
Let now (ai) ∈ lp with ‖(ai)‖pp =

∑∞
i=1 |ai|p = 1. Setting N0 = 0 and

C = max(2p−1, 1) we have

∥∥∥
∞∑

i=1

aifi

∥∥∥
p

=
∞∑

j=0

2−Nj�

2−Nj+1

(
aj+1fj+1 +

∑

i6=j+1

aifi

)∗p
(t)w(t) dt

≤ C
∞∑

j=0

2−Nj�

2−Nj+1

(aj+1fj+1)∗p(t/2)w(t) dt

+ C

∞∑

j=0

2−Nj�

2−Nj+1

( ∑

i6=j+1

aifi

)∗p
(t/2)w(t) dt.

We will estimate separately each term of the right side of the above inequal-
ity. Since kj+1 − 1 > Nj the following equality holds for j = 0, 1, . . . :

Pj+1 :=
2−Nj�

2−Nj+1

(aj+1fj+1)∗p(t/2)w(t) dt = |aj+1|p
2−(kj+1−1)�

2−Nj+1

bpj+1w(t) dt.

By condition ∆2 for W ,

2−(kj+1−1)�

2−Nj+1

bpj+1w ≤ b
p
j+1W (2−(kj+1−1)) ≤ Kbpj+1W (2−kj+1) = K,

and so
Pj+1 ≤ K|aj+1|p, j = 0, 1, . . .
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It is clear that

Qj+1 :=
2−Nj�

2−Nj+1

( ∑

i6=j+1

aifi

)∗p
(t/2)w(t) dt ≤

2−Nj�

2−Nj+1

( ∑

i6=j+1

fi

)∗p
(t/2)w(t) dt

for j = 0, 1, . . . Moreover,

( ∑

i6=j+1

fi

)∗p
=

∞∑

i=j+2

bpiχBi +
j∑

i=1

bpiχEi ,

where Ei are intervals such that |Ei| = 2−ki , i = 1, . . . , j, and
⋃∞
i=j+2Bi ∪⋃j

i=1Ei is also an interval. As kj+2 − 2 ≥ Nj+1,

∣∣∣
∞⋃

i=j+2

2Bi
∣∣∣ ≤ 2

∞∑

i=kj+2

2−i = 2−(kj+2−2) ≤ 2−Nj+1 ,

whence

2−Nj�

2−Nj+1

( ∞∑

i=j+2

bpiχBi

)
(t/2)w(t) dt = 0, j = 0, 1, . . .

Now, since Nj > kj and |Ei| = 2−ki , we have χ2Ei∩(0,2−Nj ) ≤ χ(0,2−kj ),
i = 1, . . . , j. Thus

2−Nj�

2−Nj+1

( j∑

i=1

bpiχEi

)
(t/2)w(t) dt ≤

j∑

i=1

2−Nj�

0

bpjχ2Ei(t)w(t) dt

≤ j
2−Nj�

0

f∗pj (t)w(t) dt < jε/4j < ε/2j .

Therefore, Q1 = 0 and

Qj+1 < ε/2j, j = 1, 2, . . .

Combining the above inequalities, for any (ai) ∈ lp with ‖(ai)‖p ≤ 1 we
obtain

∥∥∥
∞∑

i=1

aifi

∥∥∥ ≤ (KC)1/p
( ∞∑

j=0

|aj+1|p + ε
)1/p

,

and thus for all (ai) ∈ lp and some M > 0,

∥∥∥
∞∑

i=1

aifi

∥∥∥ ≤M‖(ai)‖p.
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On the other hand, since fj have disjoint supports, for any (ai) ∈ lp,
∥∥∥
∞∑

i=1

aifi

∥∥∥
p

=
∞∑

j=0

2−Nj�

2−Nj+1

(
|aj+1fj+1|+

∣∣∣
∑

i6=j+1

aifi

∣∣∣
)∗p

w

≥
∞∑

j=0

|aj+1|p
2−Nj�

2−Nj+1

f∗pj+1w,

and as Nj < kj+1 < Nj+1,

2−Nj�

2−Nj+1

f∗pj+1w =
�

I

f∗pj+1w −
2−Nj+1�

0

f∗pj+1w ≥ 1− ε/4j+1,

and so ∥∥∥
∞∑

i=1

aifi

∥∥∥ ≥ (1− ε/4)1/p‖(ai)‖p.

This completes the proof.

3. Convexity of Λp,w. In view of Theorems A and 1, we obtain the
following characterization of r-convexity of Λp,w for r 6= p. Notice that con-
ditions (i), (ii) and (iv) have also been studied in [23].

Theorem 2. If 0 < r < p <∞ then the following assertions are equiv-
alent.

(i) Λp,w is r-convex.
(ii) The Hardy operator H(r) is bounded in Λp,w, that is, the quasi-norms

‖f‖ and ‖H(r)f‖ are equivalent.
(iii) The weight w satisfies condition Bp/r, that is, for some B > 0,

γ�

x

t−p/rw(t) dt ≤ Bx−p/rW (x) for all x ∈ I.

(iv) β(W ) < p/r or equivalently for some ε > 0, W (t)/tp/r−ε is pseudo-
decreasing.

If r > p then Λp,w is not r-convex.

Remark. (a) If 0 < p < 1 then Λp,w is not normable. This fact, already
noticed in [10], is a consequence of Theorem 1 as well.

(b) The space Λp,w, 0 < p < ∞, is L-convex (for the definition and
consequences see [11]). Indeed, by ∆2-condition for W , β(W ) <∞ ([21, 19])
and so β(W ) < p/r for some r > 0. Hence in view of Theorem 2, Λp,w is
r-convex and thus L-convex by Theorem 2.2 of [11].
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Proposition 1. Let 0 < p < ∞. Given two weight functions w1 and
w2, the Lorentz spaces Λp,w1 and Λp,w2 coincide and there exists a constant
C such that C−1‖f‖p,w1 ≤ ‖f‖p,w2 ≤ C‖f‖p,w1 for any f , if and only if W1
and W2 are equivalent.

Proof. The sufficiency follows from the formula ‖f‖= (−
�
IW d(f∗p))1/p.

The necessity is a consequence of the equality ‖χ(0,x]‖pp,wi = Wi(x), i = 1, 2.

Theorem 3. Given 0 < p, r < ∞, the following conditions are equiva-
lent.

(i) Λp,w satisfies an upper r-estimate.
(ii) W (t)/tp/r is pseudo-decreasing and r ≤ p.

(iii) W (tr/p) is equivalent to a concave function and r ≤ p.

If in addition 0 < r < 1, then each of the above conditions is equivalent to

(iv) Λp,w is r-normable.

Proof. By Theorem 1, r ≤ p. Moreover, the equivalence of (ii) and (iii)
is a consequence of Lemma A. In view of Kalton’s result (Theorem 2.3(ii)
in [11]) any L-convex quasi-Banach lattice is r-normable for 0 < r < 1 iff it
satisfies an upper r-estimate. Hence (i) is equivalent to (iv). Now it remains
to show that (i) is equivalent to (ii).

Since (Λp,w)(1/r) = Λp/r,w, it is enough to prove that Λp,w, 1 ≤ p < ∞,
satisfies an upper 1-estimate iff W (t)/tp is pseudo-decreasing. Let us begin
with the sufficiency part, taking any {fi}ni=1 ⊂ Λp,w with disjoint supports.
By Lemma A, W 1/p(t) is equivalent to a concave function and in view of
Proposition 1 we assume without loss of generality that W 1/p is concave.
Since also W 1/p(0) = 0, W 1/p is subadditive ([16, p. 51]). Then d∑n

i=1 fi
=∑n

i=1 dfi , and by subadditivity of W 1/p and the Minkowski inequality,

∥∥∥
n∑

i=1

fi

∥∥∥ =
(∞�

0

(
W 1/p

( n∑

i=1

dfi(t)
))p

d(tp)
)1/p

≤
(∞�

0

( n∑

i=1

W 1/p(dfi(t))
)p
d(tp)

)1/p

≤
n∑

i=1

(∞�

0

W (dfi(t)) d(tp)
)1/p

=
n∑

i=1

‖fi‖.

In order to prove the necessity, given 0 < s ≤ t, t ∈ I, set n = [t/s] and

fi = χ
( (i−1)t

2n , it2n ]
, i = 1, . . . , 2n.
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By an upper 1-estimate for Λp,w, there exists C > 0 such that

W 1/p(t) = ‖χ(0,t]‖ =
∥∥∥

2n∑

i=1

|fi|
∥∥∥ ≤ C

2n∑

i=1

‖fi‖ = C

2n∑

i=1

W 1/p(t/2n)

= 2CnW 1/p(t/2n) ≤ 2C(t/s)W 1/p(t/2n) ≤ 2C(t/s)W 1/p(s),

which means that W (t)/tp is pseudo-decreasing.

Theorem 4. Given 0 < p <∞ the following properties are equivalent.

(i) Λp,w is p-convex.
(ii) Λp,w satisfies an upper p-estimate.

(iii) W (t)/t is pseudo-decreasing.
(iv) There exists a decreasing weight w0 such that Λp,w = Λp,w0 and ‖ ‖p,w

and ‖ ‖p,w0 are equivalent.

Moreover , for 0 < p ≤ 1 each of the above properties is equivalent to

(v) Λp,w is p-normable.

Proof. Since (i)⇒(ii) is obvious and (ii)⇒(iii) follows from Theorem 3,
we start with (iii)⇒(iv). By Lemma A, there exists a positive concave func-
tion W0 on I equivalent to W . Thus W0 is absolutely continuous on I and so
W0(t) =

� t
0w0 for some decreasing positive function w0, and then in view of

Proposition 1, Λp,w = Λp,w0 and ‖ ‖p,w and ‖ ‖p,w0 are equivalent. In order
to prove that (iv) yields (i), we assume without loss of generality that w is
decreasing and applying a suitable formula for ‖ ‖p,w, for any finite sequence
{fi}ni=1 ⊂ Λp,w we obtain
∥∥∥
( n∑

i=1

|fi|p
)1/p∥∥∥ ≤

( n∑

i=1

sup
τ

�

I

|fi(τ(t))|pw(t) dt
)1/p

=
( n∑

i=1

‖fi‖p
)1/p

.

For 0 < p ≤ 1, the immediate implications (i)⇒(v) and (v)⇒(ii) complete
the proof.

4. Concavity of Λp,w. We begin the discussion of concavity of Λp,w
with a lemma which provides a number of equivalent integral conditions.
Notice that the equivalence of the first three conditions does not require
assuming ∆2 for W .

Lemma 1. Let 0 < p <∞. The following conditions are equivalent.

(i) α(W ) > p or equivalently W (x)/xp+ε is pseudo-increasing for some
ε > 0.

(ii) The weight w satisfies condition Dp, that is, there exists A > 0 such
that x�

0

t−pw(t) dt ≤ Ax−pW (x) for all x ∈ I.
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(iii) There is B > 0 such that
x�

0

t−p−1W (t) dt ≤ Bx−pW (x) for all x ∈ I.

(iv) The weight w satisfies condition D′p, that is, for some C > 0,
x�

0

(x− t)pt−pw(t) dt ≤ CW (x) for all x ∈ I.

If 0 < p < 1, then each of the conditions (i)–(iv) is equivalent to

(v) There is D > 0 such that

( x�

0

t
− 1

1−pW (t)
1

1−p dt
)1−p

≤ Dx−pW (x) for all x ∈ I.

(vi) There is E > 0 such that

( x�

0

t
− p

1−pW (t)
p

1−pw(t) dt
)1−p

≤ Ex−pW (x) for all x ∈ I.

Proof. (i)⇒(ii). Since W (2−kx)/(2−kx)p+ε ≤ CW (x)/xp+ε or equiva-
lently W (2−kx) ≤ C2−k(p+ε)W (x), x > 0, k = 0, 1, . . . , it follows that

x�

0

t−pw(t) dt =
∞∑

k=0

2−kx�

2−(k+1)x

t−pw(t) dt ≤
∞∑

k=0

(2−(k+1)x)−p
2−kx�

2−(k+1)x

w

≤ x−p
∞∑

k=0

2(k+1)pW (2−kx) ≤ C2px−p
∞∑

k=0

2kp2−k(p+ε)W (x)

= C2px−pW (x)
∞∑

k=0

2−kε = Kx−pW (x).

(ii)⇒(i). First we show that if w satisfies Dp then it also satisfies Dp+ε
for some ε > 0; in fact, for all ε < p/(A − 1). Multiplying the inequality
in (ii) by x−ε−1 and integrating it from 0 to r, we obtain

r�

0

x−ε−1
( x�

0

t−pw(t) dt
)
dx ≤ A

r�

0

x−ε−1x−p
( x�

0

w
)
dx.

After changing the order of integration in both integrals we get
r�

0

t−pw(t)
( r�

t

x−ε−1 dx
)
dt ≤ A

r�

0

w(t)
( r�

t

x−ε−1x−p dx
)
dt

or
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1
ε

r�

0

t−p−εw(t) dt− r−ε

ε

r�

0

t−pw(t) dt

≤ A
(

1
ε+ p

r�

0

t−p−εw(t) dt− r−p−ε

ε+ p

r�

0

w(t) dt
)
,

and applying condition Dp gives
(

1
ε
− A

ε+ p

) r�

0

t−p−εw(t) dt ≤ r−ε

ε

r�

0

t−pw(t) dt− A

ε+ p
r−p−ε

r�

0

w

≤
(
A

ε
− A

ε+ p

)
r−p−ε

r�

0

w.

Hence, if 0 < ε < p/(A− 1) then
r�

0

t−p−εw(t) dt ≤ Ap

p+ ε− Aε r
−p−ε

r�

0

w for all r ∈ I,

i.e. w satisfies condition Dp+ε. Now, if 0 < x < y then

W (x)
xp+ε

≤
x�

0

t−p−εw(t) dt ≤
y�

0

t−p−εw(t) dt ≤ Ky−p−ε
y�

0

w = K
W (y)
yp+ε

.

(iii)⇒(ii). Since
� x
0 t
−p−1W (t) dt ≥ (x−p/2)W (x/2), it follows that

limx→0+ x−pW (x) = 0. Thus, integration by parts yields
x�

0

t−pw(t) dt =
x�

0

t−p dW (t) = t−pW (t)
∣∣x
0 −

x�

0

W (t) d(t−p)

= x−pW (x) + p

x�

0

t−p−1W (t) dt ≤ (1 + pB)x−pW (x).

(ii)⇒(iii). From the inequality x−pW (x) ≤
� x
0 t
−pw(t) dt we see that

limx→0+ x−pW (x) = 0, and so by integration by parts,
x�

0

t−p−1W (t) dt =
1
p

( x�

0

t−pw(t) dt− x−pW (x)
)
≤ A− 1

p
x−pW (x).

(ii)⇔(iv). If condition Dp holds then
x�

0

(x− t)pt−pw(t) dt ≤
x�

0

xpt−pw(t) dt ≤ A
x�

0

w.

On the other hand, if (iv) is satisfied then in view of ∆2 for W ,

CKW (x/2) ≥ CW (x) ≥
x�

0

(x− t)pt−pw(t) dt ≥ (x/2)p
x/2�

0

t−pw(t) dt,

which is condition Dp.
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(i)⇒(v). For an appropriate ε > 0,
( x�

0

t
− 1

1−pW (t)
1

1−p dt
)1−p

=
( x�

0

t
− 1

1−p (t−p−εW (t))
1

1−p t
p+ε
1−p dt

)1−p

≤ c1−px−p−εW (x)
( x�

0

t
p+ε
1−p dt

)1−p
= dx−p−εW (x)xε = dx−pW (x).

(v)⇒(i). In view of condition ∆2 we have

K−12p−1 ≤ 2p−1W (x/2) ≤ f(x) := xp
( x�

0

t
− 1

1−pW (t)
1

1−p dt
)1−p

≤ DW (x),

and so α(W ) = α(f). Moreover, for sufficiently small ε > 0,
d

dx
(x−p−εf(x))

=
(
−εx−ε−1

x�

0

t
− 1

1−pW (t)
1

1−p dt+ x−ε(1− p)x−
1

1−pW (x)
1

1−p
)

×
( x�

0

t
− 1

1−pW (t)
1

1−p dt
)−p

≥ (1− p− εD
1

1−p )x−ε−
1

1−pW (x)
1

1−p
( x�

0

t
− 1

1−pW (t)
1

1−p dt
)−p

> 0.

Therefore α(W ) = α(f) ≥ p+ ε > p.
(vi)⇔(v). For x ∈ I we have

x�

0

t
− p

1−pW (t)
p

1−pw(t) dt ≥ x
−p
1−p

x�

0

W (t)
p

1−pw(t) dt = (1− p)x
−p
1−pW (x)

1
1−p ,

x�

0

t
− 1

1−pW (t)
1

1−p dt ≥ x−
1

1−p
x�

x/2

W
1

1−p (t) dt ≥ 1
2
x
− p

1−pW (x/2)
1

1−p .

Thus integrating by parts we obtain
x�

0

t
− p

1−pW (t)
p

1−pw(t) dt = (1− p)(x−pW (x))
1

1−p + p

x�

0

t
− 1

1−pW (t)
1

1−p dt,

which in fact yields the equivalence of (v) and (vi).

Remark. Recall that for a r.i. quasi-Banach space X over (I, | |), the
lower and upper Boyd indices are defined as for a r.i. Banach space
([17, 22]), that is,

p(X) = sup{p > 0 : there exists C > 0 such that

‖Da‖ ≤ Ca−1/p for all 0 < a < 1},
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q(X) = inf{q > 0 : there exists C > 0 such that

‖Da‖ ≤ Ca−1/q for all a > 1},
where Da : X → X is a dilation operator defined on I = (0,∞) as Daf(t) =
f(at), and on I = (0, 1] as

Daf(t) =
{
f(at) for 0 ≤ t ≤ min(a−1, 1),

0 for min(a−1, 1) < t ≤ 1.

For any our weight function w, we have

p(Λp,w) = p/β(W ), q(Λp,w) = p/α(W ).

We shall sketch a proof only for I = (0,∞). Let ‖Da‖ be the operator
norm of Da on Λp,w. Then for any a > 0,

‖Da‖ ≥ sup
x>0

‖χ(0,x/a)‖
‖χ(0,x)‖

= sup
x>0

(
W (x/a)
W (x)

)1/p

.

On the other hand, since dDaf (t) = a−1df (t), a > 0, we get for any f ∈ Λp,w,

‖Daf‖ =
(∞�

0

W (a−1df (t)) d(t1/p)
)1/p

≤ sup
x>0

(
W (x/a)
W (x)

)1/p

‖f‖.

These estimates yield directly the above formulas on Boyd indices.

Theorem 5. Let 0 < p < 1. The following assertions are equivalent.

(i) Λp,w is 1-concave.
(ii) The Hardy operator f∗∗(t) = t−1

� γ
t f
∗(s) ds is bounded in Λp,w.

(iii) α(W ) > p or equivalently for some ε > 0, W (t)/tp+ε is pseudo-
increasing.

(iv) The weight w satisfies condition Dp, i.e. there exists A > 0 such that
x�

0

t−pw(t) dt ≤ Ax−pW (x) for all x ∈ I.

Proof. (i)⇒(iv). For x, y ∈ I and for any Lebesgue measurable function
f : I → R, we have

F (y) :=
x�

0

f∗(|y − t|) dt χ(0,x)(y)

=
( y�

0

f∗ +
x−y�

0

f∗
)
χ(0,x)(y) ≤ 2

( x�

0

f∗
)
χ(0,x)(y),

whence

‖F‖ ≤ 2
x�

0

f∗
( x�

0

w
)1/p

.
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(We adopt here the convention that ‖F‖ = ∞ if F 6∈ Λp,w.) On the other
hand, by the reverse Minkowski inequality which follows from 1-concavity
of Λp,w,

‖F‖ =
∥∥∥
x�

0

f∗(|y − t|) dt χ(0,x)(y)
∥∥∥ ≥ C

x�

0

‖f∗(|y − t|)χ(0,x)(y)‖ dt

for all x ∈ I. Setting

gt,x(y) = f∗(|y − t|)χ(0,x)(y) (0 < t < x, x, y ∈ I),

we obtain

‖gt,x‖ ≥
( x�

0

f∗pw
)1/p

,

which follows from the formula

g∗t,x(s) =
{
f∗(s/2)χ(0,2x−2t)(s) + f∗(s− x+ t)χ[2x−2t,x)(s) if t < x ≤ 2t,

f∗(s/2)χ(0,2t)(s) + f∗(s− t)χ[2t,x)(s) if x > 2t.

Combining the above estimates we obtain
( x�

0

f∗pw
)1/p

≤ Kx−1
x�

0

f∗
( x�

0

w
)1/p

for all x ∈ I,

for any measurable function f . We can rewrite this inequality, with the
convention ∞/∞ = 0, as

� γ
0 f
∗wχ(0,x)

(
� γ
0 f
∗(1/p)χ(0,x))p

≤ Kx−pW (x) for all x ∈ I.

Now, recall Sawyer’s duality formula ([25, Theorem 1] and [15, Corollary
1.4]). If 1 < r < ∞, then for any non-negative g ∈ L0 and any locally
integrable function h ≥ 0, we have

sup
0≤f

decreasing

� γ
0 fg

(
� γ
0 f

rh)1/r
≈
( γ�

0

( � t
0 g� t
0 h

)r′
h

)1/r′

+

� γ
0 g

(
� γ
0 h)1/r

,

where ≈ denotes the equivalence of both sides with constants independent
of g and h, and the convention ∞/∞ = 0 applies. Letting in the above
formula r = 1/p, f = f∗, g = wχ(0,x) and h = χ(0,x), we get for x ∈ I,

sup
f∗

� γ
0 f
∗wχ(0,x)

(
� γ
0 f
∗(1/p)χ(0,x))p

≈
( x�

0

t
− 1

1−pW (t)
1

1−pw(t) dt
)1−p

+
W (x)
W (γ)p

.

Thus, for every x ∈ I,
( x�

0

t
− 1

1−pW (t)
1

1−pw(t) dt
)1−p

≤ Kx−pW (x).

This is however condition (v) of Lemma 1 and so w satisfies condition Dp.
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The implication (iv)⇒(iii) has been proved in Lemma 1.
(iii)⇒(ii). We shall apply here Theorem 2 of [22] stating that H(1) is

bounded on a r.i. quasi-Banach space X iff q(X) < 1. Although this theorem
has been proved there only for I = (0,∞), it is easily verified also for
I = (0, 1]. Now the implication follows since q(Λp,w) = p/α(W ) by the
remark before the theorem.

(ii)⇒(i). First we show that for any f ∈ Λp,w, ‖f∗∗‖ ≥ K−p‖f‖, where
K is the constant in condition ∆2. This will be done only for I = (0, 1]. In
fact, it is clear that f∗∗(t) ≥ f∗(2t)χ(0,1/2](t) for t ∈ (0, 1]. Hence

‖f∗∗‖ ≥
( 1/2�

0

f∗p(2t)w(t) dt
)1/p

.

Setting f = χ(0,a), 0 < a ≤ 1, in view of condition ∆2, we have

1/2�

0

f∗p(2t)w(t) dt =
a/2�

0

w = W (a/2) ≥ K−1W (a) = K−1
1�

0

f∗pw.

Thus, by approximating f ∗ by simple functions of the form
∑
αiχ(0,ai), the

above formula also holds for any function f in Λp,w, and so ‖f∗∗‖ ≥ K−p‖f‖.
Finally, we have

C
∥∥∥
( n∑

i=1

|fi|
)∥∥∥ ≥

∥∥∥
( n∑

i=1

|fi|
)
∗∗

∥∥∥ ≥
∥∥∥

n∑

i=1

|fi|∗∗
∥∥∥

≥
n∑

i=1

‖(fi)∗∗‖ ≥ K−p
n∑

i=1

‖fi‖,

where the first inequality follows from the boundedness of H(1), the second
from (|f | + |g|)∗∗ ≥ f∗∗ + g∗∗, and the third from the reverse Minkowski
inequality for 0 < p < 1.

The next result is a corollary of Theorems 5 and 1. Observe that condi-
tions (i)–(iii) have also been investigated in [23].

Theorem 6. If r > p > 0 then the following assertions are equivalent.

(i) Λp,w is r-concave.
(ii) The Hardy operator H(r) is bounded in Λp,w.

(iii) α(W ) > p/r, or equivalently W (t)/tp/r+ε is pseudo-increasing for
some ε > 0.

(iv) The weight w satisfies condition Dp/r, that is, there exists C > 0
such that

x�

0

t−p/rw(t) dt ≤ Cx−p/r
x�

0

w for all x ∈ I.

If 0 < r < p <∞ then Λp,w is not r-concave.
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Finally, the last two theorems completing our discussion are companions
of Theorems 3 and 4, respectively.

Theorem 7. Given 0<p, r <∞, the following properties are equivalent.

(i) Λp,w satisfies a lower r-estimate.
(ii) W (t)/tp/r is pseudo-increasing and r ≥ p.

(iii) W (tr/p) is equivalent to a convex function.

Proof. The proof, applying the reverse Minkowski inequality for 0 < p
≤ 1, is analogous to that of Theorem 3.

Theorem 8. Given 0 < p <∞, the following properties are equivalent.

(i) Λp,w is p-concave.
(ii) Λp,w satisfies a lower p-estimate.

(iii) W (t)/t is pseudo-increasing.
(iv) There exists an increasing weight w0 such that Λp,w = Λp,w0 and

‖ ‖p,w and ‖ ‖p,w0 are equivalent.

Proof. The proof is analogous to the one of Theorem 4. In fact we obtain
reverse inequalities. For instance, assuming that w is increasing, for any
{fi}ni=1 ⊂ Λp,w,

∥∥∥
n∑

i=1

|fi|p
∥∥∥ =

(
inf
τ

�

I

n∑

i=1

|fi(τ(t))|pw(t) dt
)1/p

≥
( n∑

i=1

‖fi‖p
)1/p

,

which shows that (iv) yields (i).

We conclude the paper with a corollary on the type and cotype of
normable Λp,w spaces. This is a consequence of the above characterizations
as well as the well known relations between type (resp. cotype) and upper
estimation (resp. lower estimation) [17] (see also Theorems 11, 14 and 15
in [14]).

Corollary 1. Let 1 < p <∞ and w ∈ Bp.
(a) Let 1 < r < 2. Then Λw,p has type r if and only if α(W ) > 0, r ≤ p

and W (t)/tp/r is pseudo-decreasing.
(b) Let 2 < r < ∞. Then Λw,p has cotype r if and only if r ≥ p and

W (t)/tp/r is pseudo-increasing.
(c) Let p 6= 2. Then Λp,w has cotype 2 (resp., type 2) if and only if

1 ≤ p < 2 and α(W ) > p/2 (resp., 2 < p < ∞ and β(W ) < p/2 and
α(W ) > 0).

(d) Let p = 2. Then Λ2,w has cotype 2 (resp., type 2) if and only if W (t)/t
is pseudo-increasing (resp., W (t)/t is pseudo-decreasing and α(W ) > 0).
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