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Tiling and spectral properties of
near-cubic domains

by

Mihail N. Kolountzakis (Iraklio) and Izabella Łaba (Vancouver)

Abstract. We prove that if a measurable domain tiles R or R2 by translations, and
if it is “close enough” to a line segment or a square respectively, then it admits a lattice
tiling. We also prove a similar result for spectral sets in dimension 1, and give an example
showing that there is no analogue of the tiling result in dimensions 3 and higher.

1. Introduction. Let E be a measurable set in Rn such that 0< |E|<∞.
We will say that E tiles Rn by translations if there is a set T ⊂ Rn such
that, up to sets of measure 0, the sets E + t, t ∈ T , are mutually disjoint
and

⋃
t∈T (E+ t) = Rn. We call any such T a translation set for E, and write

E + T = Rn. A tiling E + T = Rn is called periodic if it admits a period
lattice of rank n; it is a lattice tiling if T itself is a lattice. Here and below,
a lattice in Rn will always be a set of the form TZn, where T is a linear
transformation of rank n.

It is known ([19], [18]) that if a convex set E tiles Rn by translations,
it also admits a lattice tiling. A natural question is whether a similar result
holds if E is “sufficiently close” to being convex, e.g. if it is close enough (in
an appropriate sense) to an n-dimensional cube. In this paper we prove that
this is indeed so in dimensions 1 and 2; we also construct a counterexample
in dimensions n ≥ 3.

A major unresolved problem in the mathematical theory of tilings is
the periodic tiling conjecture, which asserts that any E which tiles Rn by
translations must also admit a periodic tiling. (See [3] for an overview of
this and other related questions.) The conjecture has been proved for all
bounded measurable subsets of R ([16], [12]) and for topological discs in
R2 ([2], [8]). Our Theorem 2 and Corollary 1 prove the conjecture for near-
square domains in R2. We emphasize that no assumptions on the topology
of E are needed; in particular, E is not required to be connected and may
have infinitely many connected components.
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Our work was also motivated in part by a conjecture of Fuglede [1]. We
call a set E spectral if there is a discrete set Λ ⊂ Rn, which we call a spectrum
for E, such that {e2πiλ·x : λ ∈ Λ} is an orthogonal basis for L2(E). Fuglede
conjectured that E is spectral if and only if it tiles Rn by translations, and
proved it under the assumption that either the translation set T or the
spectrum Λ is a lattice. This problem was addressed in many recent papers
(see e.g. [4], [7], [10], [13]–[17]), and in particular the conjecture has been
proved for convex regions in R2 ([9], [5], [6]).

It follows from our Theorem 1 and from Fuglede’s theorem that the con-
jecture is true for E ⊂ R such that E is contained in an interval of length
strictly less than 3|E|/2. (This was proved in [15] in the special case when
E is a union of finitely many intervals of equal length.) In dimension 2,
we obtain the “tiling ⇒ spectrum” part of the conjecture for near-square
domains. Namely, if E ⊂ R2 tiles R2 and satisfies the assumptions of Theo-
rem 2 or Corollary 1, it also admits a lattice tiling, hence it is a spectral set
by Fuglede’s theorem on the lattice case of his conjecture. We do not know
how to prove the reverse implication.

Our main results are the following.

Theorem 1. Suppose E ⊆ [0, L] is measurable with measure 1 and L =
3/2− ε for some ε > 0. Let Λ ⊂ R be a discrete set containing 0. Then

(a) if E + Λ = R is a tiling , it follows that Λ = Z;
(b) if Λ is a spectrum of E, it follows that Λ = Z.

The upper bound L < 3/2 in Theorem 1 is optimal: the set [0, 1/2] ∪
[1, 3/2] is contained in an interval of length 3/2, tiles Z with the translation
set {0, 1/2} + 2Z, and has the spectrum {0, 1/2} + 2Z, but does not have
either a lattice translation set or a lattice spectrum. This example has been
known to many authors; an explicit calculation of the spectrum is given e.g.
in [14].

Theorem 2. Let E ⊂ R2 be a measurable set such that [0, 1]2 ⊂ E ⊂
[−ε, 1 + ε]2 for ε > 0 small enough. Assume that E tiles R2 by translations.
Then E also admits a tiling with a lattice Λ ⊂ R2 as the translation set.

Our proof works for ε < ε0 ≈ 0.05496; we do not know what is the
optimal upper bound for ε.

Corollary 1. Let E ⊂ R2 be a measurable set such that |E| = 1 and
E is contained in a square of sidelength 1 + ε for ε > 0 small enough. If E
tiles R2 by translations, then it also admits a lattice tiling.

Theorem 3. Let n ≥ 3. Then for any ε > 0 there is a set E ⊂ Rn with
[0, 1]n ⊂ E ⊂ [−ε, 1 + ε]n such that E tiles Rn by translations, but does not
admit a lattice tiling.
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Fig. 1. Examples of near-square regions which tile R2. Note that the second region also
admits aperiodic (hence non-lattice) tilings.

2. The one-dimensional case. In this section we prove Theorem 1.
We shall need the following crucial lemma.

Lemma 1. Suppose that E ⊆ [0, L] is measurable with measure 1 and
that L = 3/2− ε for some ε > 0. Then

|E ∩ (E + x)| > 0 whenever 0 ≤ x < 1.(1)

Proof. We distinguish the cases (i) 0 ≤ x ≤ 1/2, (ii) 1/2 < x ≤ 3/4, and
(iii) 3/4 < x < 1.

(i) This is the easy case as E ∪ (E + x) ⊆ [0, L+ 1/2] = [0, 2− ε]. Since
this interval has length less than 2, the sets E and E + x must intersect in
positive measure.

(ii) Let x = 1/2+α, 0 < α ≤ 1/4. Suppose that |E ∩ (E + x)| = 0. Then
1 + 2α ≤ 3/2 and

|(E ∩ [0, x]) ∪ (E ∩ [x, 2x])| ≤ x,
as the second set does not intersect the first when shifted back by x. This
implies that

|E| ≤ x+ (3/2− ε− 2x) = 3/2− ε− x = 1− ε− α < 1,

a contradiction as |E| = 1.
(iii) Let x = 3/4 + α, 0 < α < 1/4. Suppose that |E ∩ (E + x)| = 0.

Then

|(E ∩ [0, 3/4− α− ε]) ∪ (E ∩ [3/4 + α, 3/2− ε])| ≤ 3/4− α− ε,
for the second set translated to the left by x does not intersect the first.
This implies that

|E| ≤ (3/4− α− ε) + 2α+ ε = 3/4 + α < 1,

a contradiction.

We need to introduce some terminology. If f is a non-negative integrable
function on Rd and Λ is a subset of Rd, we say that f + Λ is a packing if,
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almost everywhere, ∑

λ∈Λ
f(x− λ) ≤ 1.(2)

We say that f + Λ is a tiling if equality holds almost everywhere. When
f = χE is the indicator function of a measurable set, this definition coincides
with the classical geometric notions of packing and tiling.

We shall need the following theorem from [10].

Theorem 4. If f, g ≥ 0,
�
f(x) dx =

�
g(x) dx = 1 and both f + Λ and

g + Λ are packings of Rd, then f + Λ is a tiling if and only if g + Λ is a
tiling.

Proof of Theorem 1. (a) Suppose E + Λ is a tiling. From Lemma 1 it
follows that any two elements of Λ differ by at least 1. This implies that
χ[0,1] + Λ is a packing, hence it is also a tiling by Theorem 4. Since 0 ∈ Λ,
we have Λ = Z.

(b) Suppose that Λ is a spectrum of E. Write

δΛ =
∑

λ∈Λ
δλ

for the measure of one unit mass at each point of Λ. Our assumption that
Λ is a spectrum for E implies that

|χ̂E |2 + Λ = R

is a tiling (see, for example, [10]). This, in turn, implies that Λ had density 1.
Here and below, we say that a set A ⊂ R has density % if

lim
N→∞

#(A ∩ [−N,N ])
2N

= %.

Notation. The definition of the Fourier transform we use is

f̂(ξ) = �
R
e−2πiξ·xf(x) dx

for an L1 function f . If T is a tempered distribution (a bounded linear
functional on the Schwarz space S) then its Fourier transform is defined by
duality as the tempered distribution T̂ given by

T̂ (φ) = T (φ̂), φ ∈ S.
We now use the following result from [10]:

Theorem 5. Suppose that f ≥ 0 is not identically 0, that f ∈ L1(Rd),
f̂ ≥ 0 has compact support and Λ ⊂ Rd. If f + Λ is a tiling then

supp δ̂Λ ⊆ {f̂ = 0} ∪ {0}.(3)
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Let us emphasize here that the object δ̂Λ, the Fourier transform of the
tempered measure δΛ, is in general a tempered distribution and need not be
a measure.

For f = |χ̂E |2 Theorem 5 implies

supp δ̂Λ ⊆ {0} ∪ {χE ∗ χ̃E = 0},(4)

since χE ∗ χ̃E is the Fourier transform of |χ̂E|2 (where g̃(x) = g(−x)). But

{χE ∗ χ̃E = 0} = {x : |E ∩ (E + x)| = 0}.
This and Lemma 1 imply that

supp δ̂Λ ∩ (−1, 1) = {0}.
Let

Kδ(x) = max {0, 1− (1 + δ)|x|} = (1 + δ)χIδ ∗ χ̃Iδ(x),

where Iδ = [0, 1/(1 + δ)], be a Fejér kernel (we will later take δ → 0). Then

K̂δ = (1 + δ)|χ̂Iδ |2 =
1 + δ

π2x2 sin2 πx

1 + δ

is a non-negative continuous function and it follows that

K̂δ(0) =
1

1 + δ

and
{x : K̂δ(x) = 0} = (1 + δ)(Z \ {0}).(5)

Next, we use the following result from [11] (proved there in a more general
setting):

Theorem 6. Suppose that Λ ∈ R is a set with density %, that δΛ =∑
λ∈Λ δλ, and δ̂Λ is a measure in a neighborhood of 0. Then δ̂Λ({0}) = %.

Remark. The proof of Theorem 6 shows that the assumption of δ̂Λ being
a measure in a neighborhood of zero is superfluous, if one knows a priori
that δ̂Λ is supported only at zero, in a neighborhood of zero. Indeed, what
is shown in that proof is that, as t → ∞, the quantity δ̂Λ(φ(tx)) remains
bounded, for any C∞c test function φ. If δ̂Λ were not a measure near 0 but
had support only at 0, locally, this quantity would grow like a polynomial
in t of degree equal to the degree of the distribution at 0.

Applying Theorem 6 and the Remark following it we deduce that δ̂Λ is
equal to δ0 in a neighborhood of 0, since Λ has density 1.

Next, we claim that
∑

λ∈Λ
K̂δ(x− λ) = 1 for all x ∈ R.
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Indeed, take ψε to be an even, smooth, positive-definite approximate iden-
tity, supported in (−ε, ε), and take ε = ε(δ) to be small enough so that
suppψε ∗Kδ ⊂ (−1, 1). We then have, for fixed x,
∑

λ∈Λ
K̂δ(x− λ)

= lim
ε→0

∑

λ∈Λ
ψ̂ε(x− λ)K̂δ(x− λ)

= lim
ε→0

δΛ((ψ̂εK̂δ)(x− ·)) (by definition of δΛ)

= lim
ε→0

δ̂Λ(e2πixt(ψε ∗Kδ)(t)) (by definition of the FT of δΛ)

= lim
ε→0

δ0(e2πixt(ψε ∗Kδ)(t)) (for ε small enough)

= lim
ε→0

(ψε ∗Kδ)(0) = Kδ(0) = 1,

which establishes the claim. Applying this for x = 0 and isolating the term
λ = 0 we get

1 =
1

1 + δ
+
∑

06=λ∈Λ
K̂δ(−λ).

Letting δ → 0 we obtain K̂δ(−λ) → 0 for each λ ∈ Λ \ {0}, which implies
that each such λ is an integer, as Z \ {0} is the limiting set of the zeros
of K̂δ.

To get Λ = Z notice that χ[0,1] +Λ is a packing. By Theorem 4 we again
deduce that χ[0,1] + Λ is in fact a tiling, hence Λ = Z.

3. Planar regions

Proof of Theorem 2. We denote the coordinates in R2 by (x1, x2). For
0 ≤ a ≤ b ≤ 1 we define

E1(a, b) = (E ∩ {a ≤ x1 ≤ b, x2 ≤ 0}) ∪ {a ≤ x1 ≤ b, x2 ≥ 0},
E2(a, b) = (E ∩ {a ≤ x1 ≤ b, x2 ≥ 0}) ∪ {a ≤ x1 ≤ b, x2 ≤ 0},
F1(a, b) = (E ∩ {a ≤ x2 ≤ b, x1 ≤ 0}) ∪ {a ≤ x2 ≤ b, x1 ≥ 0},
F2(a, b) = (E ∩ {a ≤ x2 ≤ b, x1 ≥ 0}) ∪ {a ≤ x2 ≤ b, x1 ≤ 0}.

We will also use Sa,b to denote the vertical strip [a, b]×R. Let v=(v1, v2)∈R2.
We will say that E2(a, b) complements E1(a′, b′) + v if E1(a′, b′) + v is po-
sitioned above E2(a, b) so that (up to sets of measure 0) the two sets are
disjoint and their union is Sa,b. In particular, we must have a′ + v1 = a and
b′ + v1 = b. We will also say that F2(a, b) complements F1(a′, b′) + v if the
obvious analogue of the above statement holds. We will write Ẽ1(a, b) =
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Sa,b \ E1(a, b), and similarly for E2. Finally, we write A ∼ B if the sets A
and B are equal up to sets of measure 0.

Lemma 2. Let 0 < s′′ < s′ < s < 2s′′. Suppose that E1(a, a + s) + v,
E1(a, a+ s′) + v′, E1(a, a+ s′′) + v′′ complement E2(b− s, b), E2(b− s′, b),
E2(b−s′′, b) respectively. Then the points v, v′, v′′ are collinear. Moreover , the
absolute value of the slope of the line through v, v′′ is bounded by ε(2s′′−s)−1.

Applying the lemma to the symmetric reflection of E about the line
x2 = 1/2, we find that the conclusions of the lemma also hold if we assume
that E2(a, a + s) + v, E2(a, a + s′) + v′, E2(a, a + s′′) + v′′ complement
E1(b − s, b), E1(b − s′, b), E1(b − s′′, b) respectively. Furthermore, we may
interchange the x1 and x2 coordinates and obtain the analogue of the lemma
with E1, E2 replaced by F1, F2.

Proof of Lemma 2. Let v = (v1, v2), v′ = (v′1, v
′
2), v′′ = (v′′1 , v

′′
2). We first

observe that if v1 = v′′1 , it follows from the assumptions that v = v′′ and
there is nothing to prove. We may therefore assume that v1 6= v′′1 . We do,
however, allow v′ = v or v′ = v′′.

It follows from the assumptions that E2(b − s′′, b) complements each of
E1(a, a+ s′′) +v′′, E1(a+ s′− s′′, a+ s′) +v′, E1(a+ s− s′′, a+ s) +v. Hence

E1(a+ s′ − s′′, a+ s′) ∼ E1(a, a+ s′′) + (v′′ − v′),
E1(a+ s− s′′, a+ s) ∼ E1(a, a+ s′′) + (v′′ − v).

Let n be the unit vector perpendicular to v − v′′ and such that n2 > 0.
For t ∈ R, let Pt = {x : x · n ≤ t}. We define for 0 ≤ c ≤ c′ ≤ 1:

αc,c′ = inf{t ∈ R : |E1(c, c′) ∩ Pt| > 0},
βc,c′ = sup{t ∈ R : |Ẽ1(c, c′) \ Pt| > 0}.

We will say that x is a low point of E1(c, c′) if x ∈ Sc,c′ , x ·n = αc,c′ , and for
any open disc D centered at x we have

|D ∩E1(c, c′)| > 0.(6)

Similarly, we call y a high point of Ẽ1(c, c′) if y ∈ Sc,c′ , y · n = βc,c′ , and for
any open disc D centered at y we have

|D ∩ Ẽ1(c, c′)| > 0.(7)

It is easy to see that such points x, y actually exist. Indeed, by the
definition of αc,c′ and an obvious covering argument, for any α > αc,c′ there
are points x′ such that x′ ·n ≤ α and that (6) holds for any disc D centered
at x′. Thus the set of such points x′ has at least one accumulation point x
on the line x ·n = αc,c′ . It follows that any such x is a low point of E1(c, c′).
The same argument works for y.
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The low and high points need not be unique; however, all low points x
of E1(c, c′) lie on the same line x ·n = αc,c′ parallel to the vector v−v′′, and
similarly for high points. Furthermore, the low and high points of E1(c, c′)
do not change if E1(c, c′) is modified by a set of measure 0.

Let now A = E1(a, a+ s′′), and let x be a low point of A. Since s < 2s′′,
we have

B := E1(a, a+ s) = E1(a, a+ s′′)∪E1(a+ s− s′′, a+ s) ∼ A∪ (A+ v′′− v),

hence x is also a low point of B with respect to v − v′′. Now note that

E1(a+ s′ − s′′, a+ s′) ∼ A+ (v′′ − v′)
intersects any open neighborhood of x+ (v′′ − v′) in positive measure. But
on the other hand, E1(a+ s′− s′′, a+ s′) ⊂ B. By the extremality of x in B,
x + (v′′ − v′) lies on or above the line segment joining x and x + (v′′ − v),
hence v′′ − v′ lies on or above the line segment joining 0 and v′′ − v.

Repeating the argument in the last paragraph with x replaced by a high
point y of Ẽ1(a, a + s′′), we deduce that v′′ − v′ lies on or below the line
segment joining 0 and v′′ − v. Hence v, v′, v′′ are collinear.

Finally, we estimate the slope of the line through v, v′′. We have to prove
that

2s′′ − s
s− s′′ |v

′′
2 − v2| ≤ ε(8)

(recall that v′′1 − v1 = s − s′′). Define x as above, and let k ∈ Z. Iterating
translations by v − v′′ (in both directions), we find that x + k(v − v′′) is a
low point of B as long as it belongs to B, i.e. as long as

a ≤ x1 + k(s− s′′) ≤ a+ s.

The number of such k’s is at least s/(s− s′′)−1. On the other hand, all low
points of B lie in the rectangle a ≤ x1 ≤ a+ s, −ε ≤ x2 ≤ 0. Hence

(
s

s− s′′ − 2
)
|v′′2 − v2| ≤ ε,

which is (8).

We return to the proof of Theorem 2. Since E is almost a square, we
know roughly how the translates of E can fit together. Locally, any tiling
by E is essentially a tiling by a “solid” 1×1 square with “margins” of width
between 0 and 2ε (see Fig. 2).

We first locate a “corner”. Namely, we may assume that the tiling con-
tains E and its translates E + u, E + v, where

1 ≤ u1 ≤ 1 + 2ε, −2ε ≤ u2 ≤ 2ε,(9)

0 ≤ v1 ≤
1
2

+ ε, 1 ≤ v2 ≤ 1 + 2ε.(10)
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Fig. 2. A “corner” and a fourth near-square

This can always be achieved by translating the tiled plane and taking sym-
metric reflections of it if necessary.

Let E + w be the translate of E which fits into this corner:

v1 + 1 ≤ w1 ≤ v1 + 1 + 2ε, u2 + 1 ≤ w2 ≤ u2 + 1 + 2ε.(11)

We will prove that w = u+ v (without the ε-errors).
From (11), (9), (10) we have

1 ≤ w1 ≤
3
2

+ 3ε, −4ε ≤ w2 − v2 ≤ 4ε.

Observe also that any points (x1, x2) between E+u and E+w that belong to
tiles other than E+u or E+w must have x1 ≤ w+ε or x1 ≥ u+1−ε, since
otherwise the solid square belonging to the same tile would overlap at least
one of the solid squares belonging to E + u or E + w. A similar statement
holds for E + v and E + w. Hence w satisfies both of the following.

(A) E1(ε, 1− (w1−u1)−ε) complements E2(w1−u1 +ε, 1−ε)+(u−w),
and

1− (w1− u1)− 2ε ≥ 1 + 1−
(

3
2

+ 3ε
)
− 2ε =

1
2
− 5ε, |w1− v1− 1| ≤ 2ε.

(B) −4ε ≤ w2 − v2 ≤ 4ε, u2 + 1 ≤ w2 ≤ u2 + 1 + 2ε, and F2(r, t)
complements F1(r̃, t̃ ) + (w − v), where

r = max(0, w2 − v2) + ε, r̃ = max(0, v2 − w2) + ε,

t = 1−max(0, v2 − w2)− ε, t̃ = 1−max(0, w2 − v2)− ε.
If w = u + v, we have w − u = v, w − v = u, hence by considering the

“corner” E,E+u,E+ v we see that both (A) and (B) hold. Assuming that
ε is small enough, we shall prove that:
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1◦ All points w satisfying (A) lie on a fixed straight line l1 with slope
m1, where |m1| ≤ ε(1/2− 9ε)−1.

2◦ All points w satisfying (B) lie on a fixed straight line l2 with slope
m2, where |m2| ≥ ε−1(1− 8ε).

If ε < (13 − 3
√

3)/142 ≈ 0.05496 (the smaller root of the equation
71ε2−13ε+1/2 = 0), the upper bound for |m1| is less than the lower bound
for |m2|. It follows that there can be at most one w which satisfies both (A)
and (B), since l1 and l2 intersect only at one point. Consequently, if E+w is
the translate of E chosen as above, we must have w = u+ v. Now it is easy
to see that E + Λ is a tiling, where Λ is the lattice {ku+mv : k,m ∈ Z}.

We first prove 1◦. Suppose that w,w′, w′′, . . . (not necessarily all distinct)
satisfy (A). By the assumptions in (A), we may apply Lemma 2 with E1
and E2 interchanged and with a = 0, b = 1, s = 1 − (w1 − u1), s′ =
1 − (w′1 − u1), . . . ≥ 1/2 − 5ε. From the second inequality in (A) and the
triangle inequality we also have |s− s′′| ≤ 4ε. We find that all w satisfying
(A) lie on a line l1 with slope bounded by

ε

|2s′′ − s| ≤
ε

s′′ − |s′′ − s| ≤
ε

1/2− 9ε
.

To prove 2◦, we let w,w′, w′′ be three (not necessarily distinct) points
satisfying (B) and such that w2 ≤ w′2 ≤ w′′2 . Observe that r ≤ r′ ≤ r′′ and
t ≥ t′ ≥ t′′ (the notation is self-explanatory). We then apply the obvious
analogue of Lemma 2 with E1, E2 replaced by F1, F2 and with a = r′′,
s = t− r′′, s′ = t′ − r′′, s′′ = t′′ − r′′, b = t̃′′. From the estimates in (B) we
have

|s− s′′| = |t− t′′| ≤ |w2 − w′′2 | ≤ 2ε,

s′′ = t′′ − r′′ = 1−max(0, v2 − w′′2)−max(0, w′′2 − v2)− 2ε ≥ 1− 6ε,

hence |2s′′ − s| ≥ s′′ − |s − s′′| ≥ 1 − 8ε. We conclude that all w satisfying
(B) lie on a line l2 such that the inverse of the absolute value of its slope is
bounded by ε/(1− 8ε).

Proof of Corollary 1. Let Q = [0, 1] × [0, 1]. By rescaling, it suffices to
prove that for any ε > 0 there is a δ > 0 such that if E ⊂ Q, E tiles R2 by
translations, and |E| ≥ 1− δ, then E contains the square

Qε = [ε, 1− ε]× [ε, 1− ε]
(up to sets of measure 0). The result then follows from Theorem 2.

Let E be as above, and suppose that Qε \E has positive measure. Since
E tiles R2, there is a v ∈ R2 such that |E∩(E+v)| = 0 and |Qε∩(E+v)| > 0.
We then have

|E ∪ (E + v)| = |E|+ |E + v| ≥ 2− 2δ,
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but also
|E ∪ (E + v)| ≤ |Q ∪ (Q+ v)| ≤ 2− ε2,

since E ⊂ Q, E+v ⊂ Q+v, and Qε∩ (Q+v) 6= ∅ so that |Q∩ (Q+v)| ≥ ε2.
This is a contradiction if δ is small enough.

4. A counterexample in higher dimensions. In this section we
prove Theorem 3. It suffices to construct E for n = 3, since then E×[0, 1]n−3

is a subset of Rn with the required properties.
Let (x1, x2, x3) denote the Cartesian coordinates in R3. It will be conve-

nient to rescale E so that [ε, 1]3 ⊂ E ⊂ [0, 1 + ε]3.

Fig. 3. The construction of E

We construct E as follows. We let E be bounded from below and above
by the planes x3 = 0 and x3 = 1 respectively. The planes x1 = ε, x1 = 1,
x2 = ε, x2 = 1 divide the cube [0, 1 + ε]3 into 9 parts (Figure 3). The
middle part is entirely contained in E. We label by A,B,C,D, P,Q,R, S
the remaining 8 segments as shown in Figure 3. We then let

E ∩ P = P ∩ {0 ≤ x3 ≤ 1/8 or 1/2 ≤ x3 ≤ 5/8},
E ∩R = R ∩ {0 ≤ x3 ≤ 1/8 or 1/2 ≤ x3 ≤ 5/8},
E ∩Q = Q ∩ {0 ≤ x3 ≤ 1/4 or 3/8 ≤ x3 ≤ 3/4 or 7/8 ≤ x3 ≤ 1},
E ∩ S = S ∩ {0 ≤ x3 ≤ 1/4 or 3/8 ≤ x3 ≤ 3/4 or 7/8 ≤ x3 ≤ 1},
E ∩A = A ∩ {0 ≤ x3 ≤ 1/16},
E ∩ C = A ∩ {1/2 ≤ x3 ≤ 9/16},
E ∩B = B ∩ {5/16 ≤ x3 ≤ 3/4},
E ∩D = D ∩ {0 ≤ x3 ≤ 1/4 or 13/16 ≤ x3 ≤ 1}.

We also define K =
⋃
j∈Z(E + (0, 0, j)).

Let E + T be a tiling of R3, and assume that 0 ∈ T . Suppose that E+ v
and E+w are neighbors in this tiling so that the vertical sides of (E∩P )+v
and (E ∩Q) + w meet in a set of non-zero two-dimensional measure. Then
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we must have v − w = (0, 1, (v − w)3), where (v − w)3 ∈ {±1/4,±3/4}.
A similar statement holds with P,Q replaced by R,S and with the x1, x2
coordinates interchanged. We deduce that the tiling consists of copies of E
stacked into identical vertical “columns” Kij = K + (i, j, tij), arranged in a
rectangular grid in the x1x2 plane and shifted vertically so that ti+1,j − tij
and ti,j+1 − tij are always ±1/4. We will use matrices (tij) to encode such
a tiling or portions thereof.

It is easy to see that (tij), where tij = 0 if i + j is even and 1/4 if
i+ j is odd, is indeed a tiling. It remains to show that E does not admit a
lattice tiling. Indeed, the four possible choices of the generating vectors in
any lattice (tij) with tij = ±1/4 produce the configurations

(
0 t
t 2t

)
,

(
2t t
t 0

)
,

(
0 t
−t 0

)
,

(
0 −t
t 0

)
.

But it is easy to see that the corners A,B,C,D do not match if so translated.
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