Locally Lipschitz continuous integrated semigroups

by

NAOKI TANAKA (Okayama)

Abstract. This paper is concerned with the problem of real characterization of locally Lipschitz continuous (n+1)-times integrated semigroups, where n is a nonnegative integer. It is shown that a linear operator is the generator of such an integrated semigroup if and only if it is closed, its resolvent set contains all sufficiently large real numbers, and a stability condition in the spirit of the finite difference approximation theory is satisfied.

1. Introduction. Let X be a Banach space and B(X) the set of all bounded linear operators from X into itself. Let n be a positive integer. A family $\{U(t); t \ge 0\}$ in B(X) is called an *n*-times integrated semigroup on X if the following conditions are satisfied:

(I1) $U(\cdot)x: [0,\infty) \to X$ is continuous for $x \in X$.

(I2)
$$U(t)U(s)x = \frac{1}{(n-1)!} \left(\int_{t}^{t+s} (t+s-r)^{n-1} U(r)x \, dr - \int_{0}^{s} (t+s-r)^{n-1} U(r)x \, dr \right)$$

. .

for $x \in X$ and $t, s \ge 0$.

(I3) U(t)x = 0 for all t > 0 implies x = 0.

Let $\{U(t); t \ge 0\}$ be an *n*-times integrated semigroup on X. Then the generator A of $\{U(t); t \ge 0\}$ is defined in the following way: $x \in D(A)$ and y = Ax if and only if

(1.1)
$$U(t)x = \int_{0}^{t} U(r)y \, dr + \frac{t^{n}}{n!} x \quad \text{for } t \ge 0.$$

The densely defined generators in the exponentially bounded case were characterized by Neubrander [10], and his result was extended to the following two cases:

²⁰⁰⁰ Mathematics Subject Classification: Primary 47D62; Secondary 47D60.

(i) Arendt [1] gave a characterization of the generator of an (n+1)-times integrated semigroup $\{U(t); t \ge 0\}$ on X which is exponentially Lipschitz continuous in the sense that $||U(t+h) - U(t)|| \le Me^{\omega(t+h)}h$ for $t \ge 0$ and $h \ge 0$, in the case where the domain of the generator is not necessarily dense in X.

(ii) Tanaka and Okazawa [14] characterized the densely defined generators of n-times integrated semigroups which are not necessarily exponentially bounded.

An integrated semigroup $\{U(t); t \ge 0\}$ on X is said to be *locally Lipschitz* continuous if for each $\tau > 0$ there exists $L_{\tau} > 0$ such that $||U(t) - U(s)|| \le L_{\tau}|t-s|$ for $t, s \in [0, \tau]$. It is shown in the final part of Section 3 that there exists a non-densely defined operator which is the generator of a locally Lipschitz continuous twice integrated semigroup on l^{∞} but not the generator of any exponentially Lipschitz continuous (n + 1)-times integrated semigroup on l^{∞} for every nonnegative integer n. The twice integrated semigroup constructed cannot be dealt with by the above-mentioned results.

We are interested in locally Lipschitz continuous (n+1)-times integrated semigroups which are not necessarily exponentially bounded and in characterizing their generators whose domains are not necessarily dense in X. If n = 0 then our objective has already been accomplished, since Kellerman and Hieber [5] showed that every locally Lipschitz continuous once integrated semigroup is always exponentially Lipschitz continuous. The main result of this paper is given by

MAIN THEOREM. Let n be a nonnegative integer. An operator A is the generator of a locally Lipschitz continuous (n+1)-times integrated semigroup $\{U(t); t \ge 0\}$ on X if and only if the following conditions are satisfied:

- (A1) A is a closed linear operator in X whose resolvent set contains (ω, ∞) for some $\omega \ge 0$.
- (A2) For each $\tau > 0$ there exists $M_{\tau} > 0$ such that

$$\left\|\prod_{l=1}^{k} (I - h_l A)^{-1} x\right\| \le M_{\tau} \|x\|_n$$

for $x \in D(A^n)$ and every finite sequence $\{h_l\}_{l=1}^k$ of positive numbers such that $h_l \omega < 1$ for $1 \le l \le k$ and $\sum_{l=1}^k h_l \le \tau$. Here $||x||_n = \sum_{j=0}^n ||A^j x||$ for $x \in D(A^n)$.

Condition (A2) can be regarded as a stability condition from the viewpoint of the finite difference approximation theory. In fact, if $\{0 = t_0 < t_1 < \cdots < t_k \leq \tau\}$ is a partition of $[0, t_k]$ with $(t_l - t_{l-1})\omega < 1$ for $1 \leq l \leq k$ and $\{x_l\}_{l=1}^k$ is a solution of the finite difference equation

$$(x_l - x_{l-1})/(t_l - t_{l-1}) = Ax_l$$
 for $1 \le l \le k$

with the initial condition $x_0 = x \in D(A^n)$, then condition (A2) gives the estimate $||x_l|| \leq M_\tau ||x||_n$ for $1 \leq l \leq k$. For this reason, condition (A2) is natural in the study of the abstract Cauchy problem

(ACP; x) $u'(t) = Au(t) \text{ for } t \ge 0, \quad u(0) = x.$

By a solution u to (ACP; x) we mean that $u \in C^1([0, \infty); X)$ and u satisfies the equation (ACP; x).

In Section 2 we investigate some basic properties of generators of locally Lipschitz continuous (n + 1)-times integrated semigroups and prove the necessity part of the main theorem. Section 3 concerns the generation of locally Lipschitz continuous (n + 1)-times integrated semigroups on X and the relationship between the main theorem and some previous results.

2. Basic properties of generators of locally Lipschitz continuous integrated semigroups. Let n be a nonnegative integer. Let A be the generator of a locally Lipschitz continuous (n + 1)-times integrated semigroup $\{U(t); t \ge 0\}$ on X. Then it is known [9] that A is a closed linear operator in X with the following properties:

(2.1)
$$U(t)x \in D(A), \quad AU(t)x = U(t)Ax \quad \text{for } x \in D(A) \text{ and } t \ge 0,$$

(2.2)
$$\int_{0} U(s)x \, ds \in D(A), \quad A \int_{0} U(s)x \, ds = U(t)x - \frac{t^{n+1}}{(n+1)!} x$$
for $x \in X$ and $t > 0$.

To investigate some properties of the generator of a locally Lipschitz continuous (n + 1)-times integrated semigroup, we use a method similar to that due to Sanekata [12], but more delicate arguments are required here. For each $\lambda \in \mathbb{C}$ with Re $\lambda > 0$, define $R_0(\lambda) \in B(X)$ by

$$R_0(\lambda)x = \lambda^{n+1} \int_0^1 e^{-\lambda t} U(t)x \, dt \quad \text{for } x \in X.$$

LEMMA 2.1. There exists M > 0 such that

$$||R_0(\lambda)|| \le M|\lambda|^n \quad \text{for } \lambda \in \mathbb{C} \text{ with } \operatorname{Re} \lambda > 0.$$

Proof. Let $\lambda \in \mathbb{C}$ and $\operatorname{Re} \lambda > 0$. Let $x \in X$ and $x^* \in X^*$. By the local Lipschitz continuity of $\{U(t); t \geq 0\}$, we see that $\langle x^*, U(t)x \rangle$ is Lipschitz continuous on [0,1] and $|(d/dt)\langle x^*, U(t)x \rangle| \leq L ||x^*|| ||x||$ for almost all $t \in (0,1)$, where L > 0 is a constant. By integration by parts we have

$$\langle x^*, R_0(\lambda)x \rangle = \lambda^n \Big(-e^{-\lambda} \langle x^*, U(1)x \rangle + \int_0^1 e^{-\lambda t} (d/dt) \langle x^*, U(t)x \rangle dt \Big).$$

The desired inequality follows readily from this equality.

For each $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > 0$, define $Q_0(\lambda) \in B(X)$ by

$$Q_0(\lambda)x = \lambda^{n+1}e^{-\lambda}U(1)x + \sum_{k=0}^n e^{-\lambda}\frac{\lambda^k}{k!}x \quad \text{ for } x \in X.$$

LEMMA 2.2. (i) There exists M > 0 such that

$$||Q_0(\lambda)|| \le M e^{-\operatorname{Re}\lambda} (1+|\lambda|)^{n+1} \quad \text{for } \lambda \in \mathbb{C} \text{ with } \operatorname{Re}\lambda > 0.$$

(ii) For each $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > 0$ we have

(2.3)
$$R_0(\lambda)(\lambda I - A)x = (I - Q_0(\lambda))x \quad for \ x \in D(A),$$

(2.4)
$$R_0(\lambda)x \in D(A), \quad (\lambda I - A)R_0(\lambda) = (I - Q_0(\lambda))x \quad \text{for } x \in X.$$

Proof. Let $\lambda \in \mathbb{C}$ and $\operatorname{Re} \lambda > 0$. Since $\max_{0 \le k \le n} (1/k!) \le e$ and

$$(1+|\lambda|)^{n+1} \ge \sum_{k=0}^{n+1} |\lambda|^k,$$

assertion (i) is easily verified. To prove (ii), let $x \in X$. Since

$$R_0(\lambda)x = \lambda^{n+1} \Big(e^{-\lambda} \int_0^1 U(s)x \, ds + \int_0^1 \lambda e^{-\lambda t} \Big(\int_0^t U(s)x \, ds \Big) dt \Big),$$

it follows from (2.2) that $R_0(\lambda)x \in D(A)$ and

(2.5)
$$(\lambda I - A)R_0(\lambda)x = \frac{\lambda^{n+1}}{(n+1)!}e^{-\lambda}x + \int_0^1 \lambda e^{-\lambda t} \frac{(\lambda t)^{n+1}}{(n+1)!}x dt - \lambda^{n+1}e^{-\lambda}U(1)x.$$

Integration by parts yields

$$\int_{0}^{1} \lambda e^{-\lambda t} \, \frac{(\lambda t)^{n+1}}{(n+1)!} \, dt = 1 - e^{-\lambda} \sum_{k=0}^{n+1} \frac{\lambda^k}{k!}.$$

Substituting this equality into (2.5) we obtain (2.4). Since A is closed, by (2.1) we have $R_0(\lambda)z \in D(A)$ and $AR_0(\lambda)z = R_0(\lambda)Az$ for $z \in D(A)$. This fact together with (2.4) implies (2.3).

PROPOSITION 2.3. (i) The resolvent set of A contains a region

$$\Omega = \{\lambda \in \mathbb{C} \setminus \mathbb{R}; \operatorname{Re} \lambda \ge \alpha \log |\operatorname{Im} \lambda| + \beta, \operatorname{Re} \lambda \ge \gamma \} \\ \cup \{\lambda \in \mathbb{R}; \lambda \ge \gamma \},$$

where α, β and γ are positive numbers.

(ii) There exists M > 0 such that

$$\|(\lambda I - A)^{-1}\| \le M |\lambda|^n \quad \text{for } \lambda \in \Omega.$$

Proof. Let $\xi \in \mathbb{R}$ and $\eta \in \mathbb{R}$ satisfy

$$\eta \neq 0, \quad \xi \ge \alpha \log |\eta| + \beta, \quad \xi \ge \gamma,$$

where α , β and γ are yet to be determined. Then we have $|\eta|^{\alpha} \leq e^{-\beta+\xi}$. If $\alpha > 0$ is chosen such that $\alpha = n+1$, then $e^{-\xi}((1+|\xi|)^{n+1}+|\eta|^{n+1})$ vanishes as $\xi \to \infty$ and $\beta \to \infty$. This fact implies that the positive numbers γ and β can be chosen so large that $||Q_0(\lambda)|| \leq 1/2$ for $\lambda \in \Omega$, by Lemma 2.2(i). Since $(I-Q_0(\lambda))^{-1} \in B(X)$ exists and $||(I-Q_0(\lambda))^{-1}|| \leq 2$ for $\lambda \in \Omega$, the proposition follows from Lemmas 2.1 and 2.2.

To prove the necessity part of the main theorem, we define

$$T_h(t)x = h^{-1}(U(t+h) - U(t))A^n x + \sum_{k=0}^{n-1} \frac{t^k}{k!} A^k x$$

for $x \in D(A^n)$, $t \ge 0$ and $h \ne 0$, and

$$\varepsilon_h(t) = \frac{t^n}{n!} - \frac{1}{h} \left(\frac{(t+h)^{n+1}}{(n+1)!} - \frac{t^{n+1}}{(n+1)!} \right)$$

for $t \ge 0$ and $h \ne 0$.

LEMMA 2.4. Let $x \in D(A^n)$ and $\lambda \in \Omega$. Then

$$(2.6) \quad (\lambda I - A)^{-1}x = \int_{0}^{\tau_{0}} e^{-\lambda t} T_{h}(t) x \, dt + e^{-\lambda \tau_{0}} T_{h}(\tau_{0}) (\lambda I - A)^{-1} x + \left(e^{-\lambda \tau_{0}} \varepsilon_{h}(\tau_{0}) + \int_{0}^{\tau_{0}} \lambda e^{-\lambda t} \varepsilon_{h}(t) \, dt \right) (\lambda I - A)^{-1} A^{n} x - h^{-1} \int_{0}^{h} U(s) A^{n+1} (\lambda I - A)^{-1} x \, ds$$

for any $\tau_0 > 0$ and $h \neq 0$.

Proof. Let $x \in D(A^n)$, $\lambda \in \Omega$, $\tau_0 > 0$ and $h \neq 0$. Integration by parts yields

$$\int_{0}^{\tau_{0}} e^{-\lambda t} (U(t+h) - U(t)) A^{n} x \, dt$$

= $e^{-\lambda \tau_{0}} \int_{0}^{\tau_{0}} (U(s+h) - U(s)) A^{n} x \, ds$
+ $\int_{0}^{\tau_{0}} \lambda e^{-\lambda t} \left(\int_{0}^{t} (U(s+h) - U(s)) A^{n} x \, ds \right) dt.$

By (2.2) we see that the right-hand side belongs to D(A) and

$$\begin{split} A \int_{0}^{\tau_{0}} e^{-\lambda t} (U(t+h) - U(t)) A^{n} x \, dt \\ &= e^{-\lambda \tau_{0}} \left(U(\tau_{0}+h) A^{n} x - \frac{(\tau_{0}+h)^{n+1}}{(n+1)!} \, A^{n} x - U(\tau_{0}) A^{n} x + \frac{\tau_{0}^{n+1}}{(n+1)!} \, A^{n} x \right) \\ &+ \int_{0}^{\tau_{0}} \lambda e^{-\lambda t} \left(U(t+h) A^{n} x - \frac{(t+h)^{n+1}}{(n+1)!} \, A^{n} x \right) \\ &- U(t) A^{n} x + \frac{t^{n+1}}{(n+1)!} \, A^{n} x \right) \\ &- \left(U(h) A^{n} x - \frac{h^{n+1}}{(n+1)!} \, A^{n} x \right). \end{split}$$

The last term on the right-hand side is equal to $-A \int_0^h U(s) A^n x \, ds$ by (2.2). By integration by parts we have

$$A\int_{0}^{\tau_{0}} e^{-\lambda t} \sum_{k=0}^{n-1} \frac{t^{k}}{k!} A^{k} x \, dt = e^{-\lambda \tau_{0}} \sum_{k=1}^{n} \frac{(\tau_{0}A)^{k}}{k!} x + \lambda \int_{0}^{\tau_{0}} e^{-\lambda t} \sum_{k=1}^{n} \frac{(tA)^{k}}{k!} x \, dt.$$

The desired equality is obtained by combining the equalities above.

Let $\tau > 0$ and choose $\tau_0 > 2\tau$. By the local Lipschitz continuity of $\{U(t); t \geq 0\}$ there exists $M_{\tau} > 0$ such that $||T_h(t)x|| \leq M_{\tau}||x||_n$ for $t \in [0, \tau_0]$ and $h \in (0, 1]$. Here and below M_{τ} denotes various constants depending on τ .

Let α , β and γ be the positive numbers in Proposition 2.3(i), and let $\alpha_0 > \max\{\alpha, (n+1)/(\tau_0-2\tau)\}, \beta_0 > \beta, \omega_0 > \max\{\gamma, \beta_0\}$ and $\eta_0 = \exp((\omega_0 - \beta_0)/\alpha_0)$. Then we define $\Gamma = \Gamma_1 \cup \Gamma_2$, where $\Gamma_1 = \{\zeta = \xi + i\eta; \xi = \alpha_0 \log |\eta| + \beta_0, |\eta| \ge \eta_0\}$ and $\Gamma_2 = \{\zeta = \omega_0 + i\eta; |\eta| \le \eta_0\}$. Here *i* stands for the imaginary unit. Notice that Γ is oriented so that Im ζ increases along Γ .

LEMMA 2.5. Let $x^* \in X^*$ and $x \in D(A^n)$. Then there exist a measurable function f on $(0, \tau_0)$ and a holomorphic function g on Ω such that

(2.7)
$$|f(t)| \le M_{\tau} ||x^*|| ||x||_n$$
 for almost all $t \in (0, \tau_0)$,

(2.8)
$$|g(\zeta)| \le M_{\tau} |\zeta|^n ||x^*|| \, ||x||_n \quad \text{for } \zeta \in \Omega,$$

(2.9)
$$\langle x^*, (\lambda I - A)^{-1} x \rangle = \int_0^{\tau_0} e^{-\lambda t} f(t) dt + \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{\lambda - \zeta} e^{-\zeta \tau_0} g(\zeta) d\zeta$$

for $\lambda > \omega_0$.

Proof. Let $x^* \in X^*$ and $x \in D(A^n)$. Since $\langle x^*, U(t)A^n x \rangle$ is Lipschitz continuous on $[0, \tau_0]$, it is differentiable for almost all $t \in (0, \tau_0)$, so that the limit $f(t) := \lim_{h \downarrow 0} \langle x^*, T_h(t)x \rangle$ exists for almost all $t \in (0, \tau_0)$. Clearly,

f is measurable and satisfies (2.7). If $\alpha_0 \tau_0 > n+1$ and $\lambda > \omega_0$ then $\int_{\Gamma} |\lambda - \zeta|^{-1} e^{-(\operatorname{Re} \zeta)\tau_0} |\zeta|^n |d\zeta| < \infty$ and the integral

$$\int_{R-s_R i}^{R+s_R i} |\lambda-\zeta|^{-1} e^{-(\operatorname{Re}\zeta)\tau_0} |\zeta|^n \, |d\zeta|$$

tends to zero as $R \to \infty$, where $s_R = \exp((R - \beta_0)/\alpha_0)$. Since $\Gamma \subset \Omega$, by Cauchy's integral formula we have

$$e^{-\lambda\tau_0}T_h(\tau_0)(\lambda I - A)^{-1}x = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{\lambda - \zeta} e^{-\zeta\tau_0}T_h(\tau_0)(\zeta I - A)^{-1}x \, d\zeta$$

for $\lambda > \omega_0$ and $h \in (0,1]$. Here we have used Proposition 2.3(ii) and the condition $\alpha_0 \tau_0 > n + 1$. Since $U(\cdot)z : [0,\infty) \to X$ is differentiable for $z \in D(A)$, the limit $g(\zeta) := \lim_{h \downarrow 0} \langle x^*, T_h(\tau_0)(\zeta I - A)^{-1}x \rangle$ exists for all $\zeta \in \Omega$. By Proposition 2.3(ii) we see that g satisfies (2.8). Taking the weak limit in (2.6) as $h \downarrow 0$ we obtain (2.9) by Lebesgue's convergence theorem. Here we have used the strong continuity of $\{U(t); t \ge 0\}$ and U(0) = 0.

Set $R(\lambda) = (\lambda I - A)^{-1}$ for $\lambda \in \Omega$. By applying the resolvent equation $(\lambda - \mu)R(\lambda)R(\mu) = R(\mu) - R(\lambda)$ for $\lambda, \mu \in \Omega$, the following lemma can be proved by induction.

LEMMA 2.6. Let $k \geq 2$. Then

(2.10)
$$\prod_{l=1}^{n} R(\lambda_l) = (-1)^{k-1} \int_{D_{k-1}} F_{\lambda_k,\dots,\lambda_1}(\sigma_1,\dots,\sigma_{k-1}) \, d\sigma_1 \cdots d\sigma_{k-1}$$

for every finite sequence $\{\lambda_l\}_{l=1}^k$ with $\lambda_l > \omega_0$ for $1 \le l \le k$, where

$$F_{\lambda_k,\dots,\lambda_1}(\sigma_1,\dots,\sigma_{k-1})$$

$$= R^{(k-1)} \left(\lambda_1 \sigma_1 + \dots + \lambda_{k-1} \sigma_{k-1} + \lambda_k \left(1 - \sum_{l=1}^{k-1} \sigma_l\right)\right),$$

$$D_{k-1} = \left\{ (\sigma_1,\dots,\sigma_{k-1}); \ \sigma_l \ge 0 \ for \ 1 \le l \le k-1 \ and \ \sum_{l=1}^{k-1} \sigma_l \le 1 \right\}.$$

LEMMA 2.7. For $x \in D(A^n)$ and every finite sequence $\{h_l\}_{l=1}^k$ of positive numbers with $h_l \omega_0 < 1$ for $1 \leq l \leq k$ and $k \geq 1$, we have

(2.11)
$$\left\| \prod_{l=1}^{k} (I - h_{l}A)^{-1}x \right\| \leq M_{\tau} \left(1 + \frac{1}{2\pi} \int_{\Gamma} \prod_{l=1}^{k} |1 - \zeta h_{l}|^{-1} e^{-(\operatorname{Re}\zeta)\tau_{0}} |\zeta|^{n} |d\zeta| \right) \|x\|_{n}.$$

Proof. Let $x \in D(A^n)$ and $x^* \in X^*$. Let $k \ge 2$ and let $\{\lambda_l\}_{l=1}^k$ be any sequence such that $\lambda_l > \omega_0$ for $1 \le l \le k$. If $(\sigma_1, \ldots, \sigma_{k-1}) \in D_{k-1}$ then $\lambda_1 \sigma_1 + \cdots + \lambda_{k-1} \sigma_{k-1} + \lambda_k (1 - \sum_{l=1}^{k-1} \sigma_l) > \omega_0$. By (2.9) and (2.10) we see that $\langle x^*, \prod_{l=1}^k R(\lambda_l) x \rangle$ can be written as

$$\int_{D_{k-1}} d\sigma_1 \cdots d\sigma_{k-1} \left(\int_0^{\tau_0} t^{k-1} e^{-(\lambda_1 \sigma_1 + \dots + \lambda_{k-1} \sigma_{k-1} + \lambda_k (1 - \sum_{l=1}^{k-1} \sigma_l))t} f(t) dt \right)$$

$$+\frac{1}{2\pi i}\int_{\Gamma}(-1)^{k-1}r_{\zeta}^{(k-1)}\Big(\lambda_{1}\sigma_{1}+\cdots+\lambda_{k-1}\sigma_{k-1}+\lambda_{k}\Big(1-\sum_{l=1}^{k-1}\sigma_{l}\Big)\Big)e^{-\zeta\tau_{0}}g(\zeta)\,d\zeta\Big),$$

where $r_{\zeta}(\lambda) = (\lambda - \zeta)^{-1}$ for $\lambda > \omega_0$ and $\zeta \in \Gamma$. Changing the variable, by Lemma 2.6 we have

$$\int_{D_{k-1}} d\sigma_1 \cdots d\sigma_{k-1} \int_0^\infty t^{k-1} e^{-(\lambda_1 \sigma_1 + \dots + \lambda_{k-1} \sigma_{k-1} + \lambda_k (1 - \sum_{l=1}^{k-1} \sigma_l))t} dt$$
$$= (\lambda_1 \cdots \lambda_k)^{-1}.$$

$$\int_{\Gamma} |r_{\zeta}^{(k-1)}(\lambda_{1}\sigma_{1} + \dots + \lambda_{k-1}\sigma_{k-1} + \lambda_{k}(1 - \sigma_{1} - \dots - \sigma_{k-1}))e^{-\zeta\tau_{0}}g(\zeta)| |d\zeta|
\leq ((-1)^{k-1}r_{\omega_{0}}^{(k-1)}(\lambda_{1}\sigma_{1} + \dots + \lambda_{k-1}\sigma_{k-1} + \lambda_{k}(1 - \sigma_{1} - \dots - \sigma_{k-1})) + 1)
\times M_{\tau} ||x^{*}|| ||x||_{n}$$

and the right-hand side is integrable on D_{k-1} , we apply Fubini's theorem to find

$$(-1)^{k-1} \int_{D_{k-1}} d\sigma_1 \cdots d\sigma_{k-1} \int_{\Gamma} r_{\zeta}^{(k-1)} \Big(\sum_{l=1}^{k-1} \lambda_l \sigma_l + \lambda_k \Big(1 - \sum_{l=1}^{k-1} \sigma_l \Big) \Big) e^{-\zeta \tau_0} g(\zeta) \, d\zeta$$
$$= \int_{\Gamma} \prod_{l=1}^k (\lambda_l - \zeta)^{-1} e^{-\zeta \tau_0} g(\zeta) \, d\zeta.$$

The desired inequality is obtained by combining these equalities. \blacksquare

Once the following lemma is shown, the proof of the necessity part of the main theorem is completed, since the right-hand side of (2.11) is bounded by $M_{\tau} ||x||_n$, under the condition $\alpha_0 > (n+1)/(\tau_0 - 2\tau)$.

LEMMA 2.8. There exists $M_{\tau} > 0$ such that

$$\prod_{l=1}^{k} |1 - \zeta h_l|^{-1} \le M_\tau \exp(2\tau \operatorname{Re} \zeta)$$

for $\zeta \in \Gamma$ and every finite sequence $\{h_l\}_{l=1}^k$ of positive numbers with $h_l \omega_0 \leq 1/2$ for $1 \leq l \leq k$ and $\sum_{l=1}^k h_l \leq \tau$.

Proof. Let $\zeta = \xi + i\eta \in \Gamma$ and let $\{h_l\}_{l=1}^k$ be a finite sequence of positive numbers such that $h_l \omega_0 \leq 1/2$ for $1 \leq l \leq k$ and $\sum_{l=1}^k h_l \leq \tau$. We divide the set $\{1, \ldots, k\}$ into the disjoint sets $I_1 = \{l; h_l \xi \in [0, 1/2]\}$ and $I_2 = \{l; \zeta = \xi + i\eta \in \Gamma_1, h_l \xi > 1/2\}$. If $l \in I_1$ then

$$|1 - \zeta h_l|^{-1} \le (1 - (\operatorname{Re} \zeta)h_l)^{-1} \le \exp(2(\operatorname{Re} \zeta)h_l).$$

Here we have used the fact $(1-t)^{-1} \leq \exp(2t)$ for $t \in [0, 1/2]$. If $l \in I_2$ then

$$|1 - \zeta h_l|^{-1} \le |\eta|^{-1} h_l^{-1} \le 2\xi/|\eta|.$$

Hence

$$\prod_{l=1}^{k} |1 - \zeta h_l|^{-1} \le \exp(2\xi\tau) \sup\{(2(\alpha_0 \log |\eta| + \beta_0)/|\eta|)^{|I_2|}; |\eta| \ge \eta_0\},\$$

where $|I_2|$ denotes the number of elements in I_2 . To estimate $|I_2|$, let $\xi + i\eta \in \Gamma_1$ and $h_l \xi > 1/2$. Since $\xi = \alpha_0 \log |\eta| + \beta_0 > 0$ we have

$$|I_2|/2 = \sum_{l \in I_2} (1/2) < \xi \sum_{l \in I_2} h_l \le (\alpha_0 \log |\eta| + \beta_0)\tau,$$

so that $|I_2| \leq 2(\alpha_0 \log |\eta| + \beta_0)\tau$. Since $\lim_{t\to\infty} (\alpha_0 \log t + \beta_0)/t = 0$, it follows that the set $\{\eta; 2(\alpha_0 \log |\eta| + \beta_0)/|\eta| > 1\}$ is bounded in \mathbb{R} . These facts together imply that $(2(\alpha_0 \log |\eta| + \beta_0)/|\eta|)^{|I_2|}$ is bounded from above for $|\eta| \geq \eta_0$. The proof is thus complete.

3. Generation of locally Lipschitz continuous integrated semigroups. Let A be an operator in X satisfying conditions (A1) and (A2). For simplicity of notation, we write $J_h = (I - hA)^{-1}$ for $h \in (0, h_0]$, where $h_0 > 0$ is such that $h_0\omega < 1$. Let $\lambda, \mu \in (0, h_0]$ and set $A_{k,l} = J_{\lambda}^k - J_{\mu}^l$ for $k, l \ge 0$. To prove the sufficiency part of the main theorem, let $\tau > 0$ and $z \in D(A^{n+1})$. For $0 \le k \le [\tau/\lambda]$ and $0 \le l \le [\tau/\mu]$ we define

$$a_{k,l} = \max_p \|J_{\sigma}^p A_{k,l} z\|,$$

where $\sigma = \lambda \mu / (\lambda + \mu)$ and the maximum is taken over all nonnegative integers p such that $\sigma p + \lambda k + \mu l \leq 2\tau$. The use of the quantity $a_{k,l}$ is a new idea.

LEMMA 3.1. For
$$0 \le k \le [\tau/\lambda]$$
 and $0 \le l \le [\tau/\mu]$ we have
 $a_{k,l} \le M_{2\tau}((k\lambda - l\mu)^2 + k\lambda^2 + l\mu^2)^{1/2} ||Az||_n.$

Proof. Let $0 \le k \le [\tau/\lambda]$ and consider any nonnegative integer p such that $\sigma p + k\lambda \le 2\tau$. Since

$$J^p_{\sigma}A_{k,0}z = J^p_{\sigma}\sum_{j=1}^k (J^j_{\lambda}z - J^{j-1}_{\lambda}z) = \lambda \sum_{j=1}^k J^p_{\sigma}J^j_{\lambda}Az$$

and $\|J_{\sigma}^p J_{\lambda}^j Az\| \leq M_{2\tau} \|Az\|_n$ for $1 \leq j \leq k$ (by condition (A2)), we have $a_{k,0} \leq M_{2\tau} \|Az\|_n k\lambda$. Similarly, $a_{0,l} \leq M_{2\tau} \|Az\|_n l\mu$.

Now, let $1 \leq k \leq [\tau/\lambda]$ and $1 \leq l \leq [\tau/\mu]$, and consider any positive integer p with $p\sigma + k\lambda + l\mu \leq 2\tau$. By the resolvent equation we have

$$J_{\lambda}v = J_{\sigma}\left(\frac{\mu}{\lambda+\mu}v + \frac{\lambda}{\lambda+\mu}J_{\lambda}v\right),$$

$$J_{\mu}w = J_{\sigma}\left(\frac{\lambda}{\lambda+\mu}w + \frac{\mu}{\lambda+\mu}J_{\mu}w\right) \quad \text{for } v, w \in X.$$

Using these equalities with $v = J_{\lambda}^{k-1} z$ and $w = J_{\mu}^{l-1} z$ we find

$$J^p_{\sigma}A_{k,l}z = \frac{\lambda}{\lambda+\mu} J^{p+1}_{\sigma}A_{k,l-1}z + \frac{\mu}{\lambda+\mu} J^{p+1}_{\sigma}A_{k-1,l}z.$$

Since $\sigma \leq \lambda$ and $\sigma \leq \mu$, we notice that $(p+1)\sigma + k\lambda + (l-1)\mu \leq 2\tau$ and $(p+1)\sigma + (k-1)\lambda + l\mu \leq 2\tau$. By the definition of $a_{k,l-1}$ and $a_{k-1,l}$ we have

$$a_{k,l} \le \frac{\lambda}{\lambda+\mu} a_{k,l-1} + \frac{\mu}{\lambda+\mu} a_{k-1,l}.$$

The desired inequality is proved by induction. (See also [7] and [16, Chapter XIV, Section 7].) \blacksquare

Proof of the sufficiency part of the main theorem. Let $x \in X$ and $\tau > 0$. Choose $c > \omega$ and set $C = (cI - A)^{-(n+1)}$. By Lemma 3.1 we have

$$\begin{aligned} \|J_{\lambda}^{[t/\lambda]}Cx - J_{\mu}^{[s/\mu]}Cx\| \\ &\leq M_{2\tau}(([t/\lambda]\lambda - [s/\mu]\mu)^2 + [t/\lambda]\lambda^2 + [s/\mu]\mu^2)^{1/2} \|ACx\|_n \end{aligned}$$

for $\lambda, \mu \in (0, h_0]$ and $t \in [0, \tau]$. This implies that $S(t)x = \lim_{\lambda \downarrow 0} J_{\lambda}^{[t/\lambda]} Cx$ exists for all $t \ge 0$ and the family $\{S(t); t \ge 0\}$ is a locally Lipschitz continuous *C*-regularized semigroup on *X*.

Let $z \in X$ and $t \ge 0$. Since

$$J_{\lambda}^{[t/\lambda]}Cz - Cz = \sum_{k=1}^{[t/\lambda]} (J_{\lambda}^{k}Cz - J_{\lambda}^{k-1}Cz) = A\left(\lambda \sum_{k=1}^{[t/\lambda]} J_{\lambda}^{k}Cz\right)$$
$$= A \int_{\lambda}^{([t/\lambda]+1)\lambda} J_{\lambda}^{[s/\lambda]}Cz \, ds,$$

by the closedness of A we have $\int_0^t S(s) z \, ds \in D(A)$ and

(3.1)
$$A\int_{0}^{t} S(s)z \, ds = S(t)z - Cz.$$

For k = 1, ..., n + 1, define a family $\{V_k(t); t \ge 0\}$ in B(X) by

$$V_k(t)z = \int_0^t \int_0^{t_1} \cdots \int_0^{t_{k-1}} S(t_k)z \, dt_k \cdots dt_1$$

for $z \in X$ and $t \ge 0$. Then it is proved similarly to [13, Lemma] that the following hold for $k = 1, \ldots, n + 1$.

- (i) $V_k(t)z \in D(A^k)$ and $\int_0^t (cI A)^{k-1} V_{k-1}(s) z \, ds \in D(A)$ for $z \in X$ and $t \ge 0$.
- (ii) $(cI A)^k V_k(t) \in B(X)$ and there exist $K_k > 0$ and $\omega_k \ge 0$ such that

(3.2)
$$||(cI - A)^k V_k(t) - (cI - A)^k V_k(s)|| \le \max(M_{2\tau}, 1) K_k e^{\omega_k t} (t - s)$$

for $0 \le s \le t \le \tau$ and $\tau > 0$.

(iii) We have

$$(cI - A)^{k}V_{k}(t) = c(cI - A)^{k-1}V_{k}(t) - (cI - A)^{k-1}V_{k-1}(t) + \frac{t^{k-1}}{(k-1)!}(cI - A)^{k-1}C \quad \text{for } t \ge 0.$$

By the above fact with k = n + 1, the family $\{U(t); t \ge 0\}$ in B(X) defined by $U(t) = (cI - A)^{n+1}V_{n+1}(t)$ for $t \ge 0$ is locally Lipschitz continuous. By [14, Lemma 4.8] we see that $\{U(t); t \ge 0\}$ is an (n+1)-times integrated semigroup on X.

To prove that A is the generator of $\{U(t); t \ge 0\}$, let $u \in D(A)$. The (n+1)-fold integration of (3.1) implies

$$U(t)u = \frac{t^{n+1}}{(n+1)!}u + \int_{0}^{t} U(s)Au\,ds$$

for $t \ge 0$. Hence $A \subset \mathfrak{A}$, where \mathfrak{A} denotes the generator of $\{U(t); t \ge 0\}$. Since the intersection of the resolvent sets of A and \mathfrak{A} is nonempty, we have $A = \mathfrak{A}$.

The following asserts that a densely defined operator in X is the generator of an *n*-times integrated semigroup on X if and only if it satisfies conditions (A1) and (A2) of this paper.

COROLLARY 1. Let n be a nonnegative integer. Let A be a densely defined linear operator in X. Then the following statements are mutually equivalent.

- (i) A is the generator of an n-times integrated semigroup on X.
- (ii) A is closed and the resolvent set $\varrho(A)$ of A contains (ω, ∞) for some $\omega \ge 0$. For each $\tau > 0$ there exists $M_{\tau} > 0$ such that

$$\left\|\prod_{l=1}^{k} (I - h_l A)^{-1} x\right\| \le M_{\tau} \|x\|_n$$

for $x \in D(A^n)$ and every finite sequence $\{h_l\}_{l=1}^k$ of positive numbers with $h_l \omega < 1$ for $1 \le l \le k$ and $\sum_{l=1}^k h_l \le \tau$. (iii) A is closed and $\varrho(A) \supset (\beta, \infty)$ for some $\beta \ge 0$. For each $\tau > 0$

(iii) A is closed and $\rho(A) \supset (\beta, \infty)$ for some $\beta \ge 0$. For each $\tau > 0$ there exists $K_{\tau} > 0$ such that

$$\sup\{\|\lambda^k (\lambda I - A)^{-k} x\|; \ 0 \le k/\lambda \le \tau, \ \lambda > \beta, \ k \ge 1\} \le K_\tau \|x\|_n$$

for $x \in D(A^n)$.

(iv) A is closed and $\varrho(A) \neq \emptyset$. The problem (ACP;x) has a unique solution for each $x \in D(A^{n+1})$.

Proof. If A is the generator of an *n*-times integrated semigroup $\{U(t); t \ge 0\}$ on X, then it is also the generator of the locally Lipschitz continuous (n + 1)-times integrated semigroup $\{V(t); t \ge 0\}$ on X defined by $V(t)x = \int_0^t U(s)x \, ds$ for $x \in X$ and $t \ge 0$. We therefore deduce from the Main Theorem that (i) implies (ii). The implication (ii)⇒(iii) is obvious. It was proved by Oharu [11] that (iii) implies (iv). The implication (iv)⇒(i) was shown in [9, Theorem 3.3]. ■

We next deduce the Arendt theorem from the Main Theorem (although Arendt's original proof is quite elegant).

COROLLARY 2. Let n be a nonnegative integer. Then A is the generator of an exponentially Lipschitz continuous (n + 1)-times integrated semigroup on X if and only if it is a closed linear operator in X and there exist M > 0and $a \ge 0$ such that $\varrho(A) \supset (a, \infty)$ and

(3.3)
$$\|(1/(k-1)!)(d/d\lambda)^{k-1}((\lambda I - A)^{-1}/\lambda^n)\| \le M(\lambda - a)^{-k}$$

for $\lambda > a$ and $k \ge 1$.

Proof. The necessity part is straightforward. We prove the sufficiency part using the Main Theorem. Since $A(\lambda I - A)^{-1} = \lambda(\lambda I - A)^{-1} - I$ for $\lambda > a$, it is shown inductively that

$$A^{n}(\lambda I - A)^{-1}x = \lambda^{n}(\lambda I - A)^{-1}x - \sum_{l=0}^{n-1} \lambda^{l}A^{n-1-l}x$$

for $x \in D(A^n)$ and $\lambda > a$. Dividing this equality by λ^n and differentiating the resulting equality k - 1 times, we find

$$\begin{aligned} \|(\lambda I - A)^{-k}x\| &\leq \frac{1}{(k-1)!} \|(d/d\lambda)^{k-1}((\lambda I - A)^{-1}/\lambda^n)A^nx\| \\ &+ \lambda^{-k} \sum_{l=0}^{n-1} \binom{n-l+k-2}{n-l-1} \lambda^{-(n-l-1)} \|A^{n-l-1}x\| \end{aligned}$$

for $x \in D(A^n)$, $\lambda > a$ and $k \ge 1$. By (3.3) the first term on the righthand side is estimated by $M(\lambda - a)^{-k} ||A^n x||$ for $\lambda > a$. Since $(1 - t)^{-k} = \sum_{p=0}^{\infty} {\binom{k+p-1}{p} t^p}$ for |t| < 1 and $k \ge 0$, the second term is bounded by $\lambda^{-k}(1 - 1/\lambda)^{-k} \max_{0 \le p \le n-1} ||A^p x||$ for $\lambda > \max(a, 1)$. Let $\beta = \max(a, 1)$ and $K = \max(M, 1)$. Then we have $(\beta, \infty) \subset \rho(A)$ and $||(\lambda I - A)^{-k} x|| \le K(\lambda - \beta)^{-k} ||x||_n$ for $x \in D(A^n)$, $\lambda > \beta$ and $k \ge 1$.

By an argument similar to that in [8, Section 4] there exists a norm $N(\cdot)$ on the Banach space $D(A^n)$ equipped with the norm $\|\cdot\|_n$ such that $\|x\| \leq N(x) \leq K \|x\|_n$ for $x \in D(A^n)$ and $N((\lambda I - A)^{-1}x) \leq (\lambda - \beta)^{-1}N(x)$ for $x \in D(A^n)$ and $\lambda > \beta$. This fact shows that

$$\left\|\prod_{l=1}^{k} (I - h_l A)^{-1} x\right\| \le K \prod_{l=1}^{k} (1 - h_l \beta)^{-1} \|x\|_n$$

for $x \in D(A^n)$ and every finite sequence $\{h_l\}_{l=1}^k$ of positive numbers with $h_l\beta < 1$ for $1 \le l \le k$. Since $(1-t)^{-1} \le \exp(2t)$ for $0 \le t \le 1/2$, we see that condition (A2) is satisfied with $M_{\tau} = K \exp(2\beta\tau)$ and $\omega = 2\beta$. By the Main Theorem together with (3.2), A is the generator of an (n+1)-times integrated semigroup $\{U(t); t \ge 0\}$ on X and $||U(t) - U(s)|| \le \max(M_{2\tau}, 1)Le^{bt}(t-s)$ for $0 \le s \le t \le \tau$ and $\tau > 0$. This means that A is the generator of an exponentially Lipschitz continuous (n + 1)-times integrated semigroup on X.

EXAMPLE. Let $X = l^{\infty}$. Let (a_k) be the sequence in \mathbb{C} defined by $a_k = k + ie^{k^2}$ for $k \ge 1$, and define a linear operator A in X by $D(A) = \{x = (x_k) \in X; (a_k x_k) \in X\}$ and $Ax = (a_k x_k)$ for $x = (x_k) \in D(A)$. Then:

- (i) D(A) is not dense in X.
- (ii) A is not the generator of any exponentially Lipschitz continuous (n+1)-times integrated semigroup on X, for any nonnegative integer n.
- (iii) A is the generator of the locally Lipschitz continuous twice integrated semigroup $\{U(t); t \ge 0\}$ on X defined by

$$U(t)x = \left(\int_{0}^{t} (t-s)\exp(a_{k}s)x_{k}\,ds\right)$$

for $x = (x_k) \in X$ and $t \ge 0$.

Proof. Since $\lim_{k\to\infty} |a_k| = \infty$ we have $\lim_{k\to\infty} x_k = 0$ for $x = (x_k) \in D(A)$, which implies (i). To prove (ii), assume to the contrary that A is the generator of an exponentially Lipschitz continuous (n+1)-times integrated semigroup $\{S(t); t \ge 0\}$ on X for some nonnegative integer n. By (2.2) we have $S(t)x = (\int_0^t ((t-s)^n/n!) \exp(a_k s) x_k ds)$ for $x = (x_k) \in X$ and

 $t \ge 0$, since the *k*th component $f_k(t)$ of S(t)x must satisfy the equation $f_k(t) = \int_0^t a_k f_k(s) \, ds + (t^{n+1}/(n+1)!) x_k$ for $t \ge 0$.

Let $l \geq 1$. Then we have

$$|a_k|^{-l}|\exp(a_kt)| = \exp(k(t-lk))(1+k^2e^{-2k^2})^{-l/2}$$

and $\sup_{k\geq 1} \exp(k(t-lk)) = \exp(t^2/4l)$ for $t\geq 2l$. Since

$$\int_{0}^{t} \frac{(t-s)^{l-1}}{(l-1)!} \exp(a_k s) \, ds = (a_k)^{-l} \exp(a_k t) - \sum_{p=1}^{l} (a_k)^{-p} \, \frac{t^{l-p}}{(l-p)!}$$

and $|\sum_{p=1}^{l} (a_k)^{-p} t^{l-p} / (l-p)!| \le e^t$ for $t \ge 0$ and $k \ge 1$, there exist $C_l \ge c_l > 0$ such that

(3.4)
$$c_l \exp(t^2/4l) - e^t \le \sup_{k\ge 1} \left| \int_0^t \frac{(t-s)^{l-1}}{(l-1)!} \exp(a_k s) \, ds \right| \le C_l \exp(t^2/4l) + e^t$$

for $t \ge 2l$, where the second inequality is true for all $t \ge 0$. By (3.4) with l = n + 1 we see that $||S(t)|| = \sup_{k\ge 1} |\int_0^t ((t-s)^n/n!) \exp(a_k s) ds|)$ is not exponentially bounded, which contradicts the fact that $\{S(t); t\ge 0\}$ is exponentially Lipschitz continuous.

Finally, we prove (iii). We use the inequality (3.4) with l = 1 to obtain $||U(t) - U(s)|| \leq (C_1 e^{t^2/4} + e^t)(t - s)$ for $t \geq s \geq 0$, which implies that $\{U(t); t \geq 0\}$ is a locally Lipschitz continuous family in B(X). The functional equation (I2) with n = 2 is clearly satisfied. If B is the generator of $\{U(t); t \geq 0\}$ then it is obvious that $A \subset B$. Since $\varrho(A) \supset \mathbb{R}$, the intersection of $\varrho(A)$ and $\varrho(B)$ is nonempty. The above two facts together imply A = B.

REMARK 3.1. In [4], the relationship between integrated semigroups and regularized semigroups was investigated. In this direction, it is seen from the above proof that the following result holds: Let A be a closed linear operator in X with nonempty resolvent set $\rho(A)$. Let n be a nonnegative integer and $c \in \rho(A)$. Then the following statements are mutually equivalent:

- (i) A is the generator of a locally Lipschitz continuous (n + 1)-times integrated semigroup on X.
- (ii) A is the generator of a locally Lipschitz continuous C-regularized semigroup on X with $C = (cI A)^{-(n+1)}$.
- (iii) The resolvent set of A contains (ω, ∞) for some $\omega \ge 0$. For each $\tau > 0$ there exists $M_{\tau} > 0$ such that $\|\prod_{l=1}^{k} (I h_l A)^{-1} x\| \le M_{\tau} \|x\|_n$ for $x \in D(A^n)$ and every finite sequence $\{h_l\}_{l=1}^k$ of positive numbers such that $h_l \omega < 1$ for $1 \le l \le k$ and $\sum_{l=1}^k h_l \le \tau$.

REMARK 3.2. In [9], the generators of integrated semigroups were characterized in terms of the associated abstract Cauchy problems. See also [3] and [4].

REMARK 3.3. Even for any local (n + 1)-times integrated semigroup $\{U(t); t \in [0, T)\}$ which is locally Lipschitz continuous, the definition (1.1) of generators makes sense. However, we do not know whether the non-densely defined generators satisfy (2.1) and (2.2) for $t \in [0, T)$. Notice that a complex characterization of another type of "generators" was given in [2]. The problem of real characterization of the non-densely defined generators of such local integrated semigroups remains open except for our case of $T = \infty$, although a Hille–Yosida type theorem was found in [15, Theorem 4.2]. (See also [6].)

Acknowledgements. The author is greatly indebted to the referee for several helpful comments, and acknowledges support by the Grant-in-Aid for Scientific Research (C)(2) No. 16540153, Japan Society for the Promotion of Science.

References

- W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327–352.
- [2] W. Arendt, O. El-Mennaoui, V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572–595.
- [3] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math. 96, Birkhäuser, Basel, 2001.
- R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer, Berlin, 1994.
- [5] H. Kellerman and M. Hieber, *Integrated semigroups*, J. Funct. Anal. 84 (1989), 160–180.
- [6] V. Keyantuo, C. Müller and P. Vieten, *The Hille-Yosida theorem for local convoluted semigroups*, Proc. Edinburgh Math. Soc. 46 (2003), 395–413.
- Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640–665.
- [8] I. Miyadera, S. Oharu and N. Okazawa, Generation theorems of semi-groups of linear operators, Publ. Res. Inst. Math. Sci. 8 (1973), 509–555.
- I. Miyadera, M. Okubo and N. Tanaka, α-times integrated semigroups and abstract Cauchy problems, Mem. School Sci. Engrg. Waseda Univ. 57 (1993), 267–289.
- [10] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111–155.
- S. Oharu, Semigroups of linear operators in a Banach space, Publ. Res. Inst. Math. Sci. 7 (1971/72), 205–260.
- [12] N. Sanekata, Some remarks on the abstract Cauchy problem, ibid. 11 (1975), 51–65.
- [13] N. Tanaka and I. Miyadera, Some remarks on C-semigroups and integrated semigroups, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), 139–142.

- [14] N. Tanaka and N. Okazawa, Local C-semigroups and local integrated semigroups, Proc. London Math. Soc. 61 (1990), 63–90.
- [15] S. W. Wang, Hille-Yosida type theorems for local regularized semigroups and local integrated semigroups, Studia Math. 152 (2002), 45–67.
- [16] K. Yosida, Functional Analysis, 6th ed., Springer, Berlin, 1980.

Department of Mathematics Faculty of Science Okayama University Okayama 700-8530, Japan E-mail: tanaka@math.okayama-u.ac.jp

> Received March 7, 2003 Revised version October 19, 2004 (5157)

16