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On the weak decomposition property (δw)

by

El Hassan Zerouali and Hassane Zguitti (Rabat)

Abstract. We study a new class of bounded linear operators which strictly contains
the class of bounded linear operators with the decomposition property (δ) or the weak
spectral decomposition property (weak-SDP). We treat general local spectral properties
for operators in this class and compare them with the case of operators with (δ).

1. Introduction

1.1. Definitions. Throughout this paper, X is a Banach space and L(X)
denotes the space of all bounded linear operators on X. For T ∈ L(X), let
N(T ), σ(T ), σap(T ), σcom(T ) and σs(T ) denote the null space, the spec-
trum, the approximate point spectrum, the compression spectrum and the
surjectivity spectrum of T , respectively.

Let D(λ, r) be the open disc centred at λ ∈ C and with radius r ≥ 0; the
corresponding closed disc will be denoted by D(λ, r). For a closed subset F
in C, the associated glocal spectral analytic space XT (F ) is the vector space
of elements x ∈ X for which there exists an analytic function f : C\F → X
such that (T − µ)f(µ) = x for µ ∈ C \ F . The local resolvent set %T (x)
of T at x ∈ X is defined as the set of all λ ∈ C for which there exists an
analytic X-valued function f on some open neighbourhood U of λ such that
(T − µ)f(µ) = x for all µ ∈ U . The local spectrum of T at x is σT (x) =
C\%T (x) (see [13]). Note that σT (x) is a closed subspace of σ(T ) and it may
be empty.

We say that T has the single-valued extension property (SVEP) at λ ∈ C
if there exists r > 0 such that for every open subset U ⊂ D(λ, r), the
only analytic solution of the equation (T − µ)f(µ) = 0 is the constant
function f ≡ 0. In this case, σT (x) = ∅ if and only if x = 0, and we have
XT (F ) = XT (F ), where XT (F ) = {x ∈ X : σT (x) ⊆ F}. The operator
T is said to satisfy the Dunford condition (C) if XT (F ) is closed for all
closed subsets F in C; and T has the Bishop property (β) if for every open
subset U and for any sequence (fn)n of analytic X-valued functions on U
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with (T − λ)fn(λ) → 0 as n → ∞ uniformly on compact subsets of U , we
have fn(λ) → 0 as n → ∞ uniformly on compact subsets of U . For more
details, see [3, 13].

An operator T ∈ L(X) is said to be decomposable provided that for every
finite open cover {U1, . . . , Un} of C, there exist closed T -invariant subspaces
X1, . . . ,Xn of X such that

(1) σ(T |Xi) ⊆ Ui for i = 1, . . . , n, X1 + · · ·+Xn = X.

The class of decomposable operators contains all normal operators and more
generally all spectral operators. Operators with totally disconnected spec-
trum are decomposable by the Riesz functional calculus. In particular, com-
pact and algebraic operators are decomposable.

A weaker version of decomposable operators is given by operators that
have the weak spectral decomposition property. Namely, T is said to have
the weak spectral decomposition property (weak-SDP) if, for every finite open
cover {U1, . . . , Un} of C, there exist closed T -invariant subspaces X1, . . . ,Xn

of X such that

(2) σ(T |Xi) ⊆ Ui for i = 1, . . . , n, X1 + · · ·+Xn = X.

E. Albrecht [1] gives an example that shows that the class of bounded lin-
ear operators with weak-SDP contains strictly the class of decomposable
operators.

An operator T has the decomposition property (δ) if for every finite open
cover {U1, . . . , Un} of C, we have

(3) XT (U1) + · · ·+ XT (Un) = X.

Properties (β) and (δ) are known to be dual to each other in the sense
that T has (δ) if and only if T ∗ satisfies (β). It is also known that (β) charac-
terizes operators with decomposable extensions, and in particular isometries
and subnormal operators have (β) (see [2]). Property (β) is hence conserved
by restrictions while (δ) is inherited by quotient operators. See also [13] for
more details.

Definition 1.1. Let T ∈ L(X). We say that T has the weak decom-
position property (δw) at λ ∈ C if there exists r(λ) > 0 such that for
every 0 ≤ r ≤ r(λ) and every finite open cover {U1, . . . , Un} of C with
σ(T ) \D(λ, r) ⊆ U1,

(4) XT (U1) + · · ·+ XT (Un) is dense in X.

We will say that T has (δw) if it has (δw) at every λ ∈ C.

The decomposition property (δ) and the Dunford condition (C) charac-
terize the decomposability of bounded linear operators. Indeed, T ∈ L(X)
is decomposable if and only if it has both (C) and (δ).



Weak decomposition property (δw) 19

Operators with (δw) and (C) are called quasi-decomposable and have
been treated in the literature (see [1, 9]). It is clear that quasi-decomposable
operators satisfy weak-SDP.

In this paper we investigate the properties of operators with (δw). Our
main objective is to compare them systematically with operators having (δ).
Examples showing that the class of operators with (δw) is different from
known classes are given at the end of this section. In Section 2 we show
that the adjoints of operators with (δw) have the single-valued extension
property but may fail to satisfy the Dunford condition (C).

We also link the (δw) property with generalized derivations to obtain
results on the stability of this property under some transformations.

The localizable spectrum and the support points set are introduced in
Section 3. A description of these spectral sets is given for operators with (δw).

Section 4 is devoted to property (δw) for multipliers.

1.2. Examples. From the definition, it follows that (δ) and weak-SDP
each imply (δw). The question of whether (δw) implies (δ) or weak-SDP
arises naturally.

We now exhibit operators satisfying (δw) without satisfying (δ) or weak-
SDP. This shows that the class of operators considered here is strictly larger
than the class of operators with (δ) or with weak-SDP.

A first example uses the classical shift on the Hardy space.

Example 1.1. Let B be the backward unilateral shift on X1 = l2(N).
The operator B has the decomposition property (δ) and does not have weak-
SDP. Indeed, since B∗ is an isometry and isometries have the Bishop prop-
erty (β), it follows that B has (δ). According to Beurling’s characterization
of the subspaces invariant under B∗ (see [8]), it is easy to see that B does
not have weak-SDP. In particular, B satisfies (δw) but not weak-SDP.

An example with (δw) but without (δ) is provided by the operator R0 ∈
L(X2), for some Banach space, of Albrecht [1], since weak-SDP implies (δw).

Now set R = 3I + R0 and take T = B ⊕ R ∈ L(X1 ⊕ X2). It is not
difficult to see that for every closed subset F in C,

(X1 ⊕ X2)T (F ) = X1B(F )⊕ X2R(F ).

Thus T has (δw). If T had weak-SDP, then for an open cover {U, V } of C
there would exist closed T -invariant subspaces Y and Z of X1 ⊕ X2 such
that σ(T |Y )⊆U , σ(T |Z) ⊆ V and Y + Z is dense in X1 ⊕X2. If Y and Z
are trivial then Y = Y1 ⊕ Y2 and Z = Z1 ⊕ Z2, where Y1 and Z1 (resp. Y2

and Z2) are closed B-invariant subspaces (resp. R-invariant subspaces) of
X1 (resp. X2). Then σ(B|Y1) ⊆ U , σ(B|Z1) ⊆ V and Y1 + Z1 is dense in
X1. Now suppose that Y or Z is not trivial. Since σ(R0) = D(0, 1) we have
η(σ(B)) ∩ η(σ(R)) = ∅, where η(·) is the polynomially convex hull. Then it
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follows from [19] that Y = Y1⊕Y2 and Z = Z1⊕Z2. Hence B has weak-SDP,
which is not the case. Thus T has (δw) but neither (δ) nor weak-SDP.

Example 1.2. Let T be the unilateral weighted shift on X = l2(N)
defined by

Ten =

{
0 if n = p! for some p ∈ N,

en+1 otherwise.

The adjoint operator of T is given by

T ∗en =

{
0 if n = 0 or n = p! + 1 for some p ∈ N,

en−1 otherwise.

Since σp(T ) = σp(T ∗) = {0}, (SVEP) holds for T and T ∗. It is also clear

that Tn!en = 0 for all n ≥ 1 and hence σT (en) = {0}. It follows that XT ({0})
(⊆ XT ({0})) is dense in X. Thus T has (δw). Since σ(T ) = D(0, 1) = σ(T ∗),
T does not have the Dunford property (C). Indeed, otherwise

{0} = σ(T |XT ({0})) = σ(T |X) = D(0, 1).

The same argument shows that T ∗ has (δw) and fails (C). So T and T ∗ do
not have (δ). To see that T does not have weak-SDP, suppose that there
exist nontrivial closed T -invariant subspaces X1, X2 of X such that

σ(T |X1) ⊆ D(0, 1/2),

σ(T |X2) ⊆ C \D(0, 1/4) and X1 +X2 is dense in X.

In particular 0 6∈ σT (x) for all x ∈ X2 \ {0}. But
⋂
n≥0 T

n(X) = {0} implies

that 0 ∈ σT (x) for every nonzero x ∈ X. Contradiction.

2. Properties of operators with (δw). In this section we generalize
some known results for operators with (δ) to the class of operators with (δw).

Theorem 2.1. If T ∈ L(X) has (δw) at λ, then T ∗ has (SVEP) at λ.

Proof. Let U ⊂ D(λ, ε) be an open set and ϕ(·) be an analyticX∗-valued
function on U such that (T ∗ − µ)ϕ(µ) = 0 for all µ ∈ U . Choose ε < r(λ)
such that U ∩ D(λ, ε/4)) 6= ∅ and U ∩ (C \ D(λ, ε/2)) 6= ∅. As T has (δw)
at λ, it follows that

(5) XT (D(λ, ε/2)) + XT (C \D(λ, ε/4)) is dense in X.

For each x ∈ XT (D(λ, ε/2))+XT (C\D(λ, ε/4)) there are x1 ∈ XT (D(λ, ε/2))
and x2 ∈ XT (C \D(λ, ε/4)) such that x = x1 + x2. Let f1(µ) and f2(µ) be
analytic X-valued functions on C\D(λ, ε/2) and D(λ, ε/4) respectively such
that xi = (T − µ)fi(µ) for i = 1, 2.

Now for µ ∈ U ∩D(λ, ε/4), we have

〈ϕ(µ), x2〉 = 〈ϕ(µ), (T − µ)f2(µ)〉 = 〈(T ∗ − µ)ϕ(µ), f2(µ)〉 = 0.
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Since µ → 〈ϕ(µ), x2〉 is an analytic function on U which vanishes on U ∩
D(λ, ε/4), it is identically null, and hence 〈ϕ(µ), x2〉 = 0 for all µ ∈ U . Sim-
ilarly, 〈ϕ(µ), x1〉 = 0 on U . Then 〈ϕ(µ), x〉 = 0 for all x ∈ XT (D(λ, ε/2)) +
XT (C \D(λ, ε/4)). It follows from (5) that ϕ ≡ 0.

The following corollaries are immediate.

Corollary 2.1. If T ∈ L(X) has (δw), then T ∗ has (SVEP), in par-
ticular

σ(T ) = σap(T ).

Recall that T ∈ L(X) is said to be semi-Fredholm (resp. Fredholm) if
T (X) is closed and either N(T ) or X/T (X) is finite-dimensional (resp. both
are). The semi-Fredholm spectrum is defined by σsF(T ) := {λ ∈ C : T − λ is
not semi-Fredholm on X}.

Corollary 2.2. If T ∈ L(X) has (δw) and (SVEP), then every point
of σ(T ) \ σsF(T ) is an isolated point.

Proof. It follows from Corollary 2.1 that T ∗ has (SVEP); then the result
follows by [16, Corollary 1.8].

Remark 2.1. 1) Corollary 2.1 generalizes [13, Proposition 1.4] concern-
ing the case when T has (δ) or weak-SDP.

2) It is well known that T having (δ) implies that T ∗ satisfies the Dun-
ford condition (C) and hence has (SVEP). As shown by Example 1.2,
if T has (δw) then T ∗ does not necessarily have (C).

3) Corollary 2.2 together with [11, Lemma 1] yields the following result:
If T has (δw), then σsF(T ) consists of all cluster points of σ(T ) and the
isolated points λ ∈ σ(T ) for which XT ({λ}) is infinite-dimensional.
This extends Corollary 1 of K. B. Laursen [11].

Just as for operators with (δ), property (δw) is inherited by quotients
and some limits, and is preserved by functional calculus as shown by the
next propositions.

Proposition 2.1. Let T ∈ L(X) have (δw) and let S ∈ L(Y ). If RT =
SR for some R ∈ L(X,Y ) with dense range, then S has (δw).

Proof. Note that R(XT (F )) ⊆ YS(F ) for every closed subset F of C. Let
{U1, . . . , Un} be an open cover of C. Since T has (δw), we have

Y = R(X) ⊆ R(XT (U1) + · · ·+ XT (Un))

⊆ R(XT (U1)) + · · ·+R(XT (Un)) ⊆ YS(U1) + · · ·+ YS(Un).

For T ∈ L(X) and S ∈ L(Y ), let δS,T be the generalized derivation
induced by T and S defined on L(X,Y ) by δS,T (R) = SR − RT for all
R ∈ L(X,Y ).
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Next we give an asymptotic version of Proposition 2.1.

Theorem 2.2. Let Tk ∈ L(X) be a sequence of operators with (δw) and
let S ∈ L(Y ). Suppose that there exist Rk ∈ L(X,Y ) with dense range such
that rδS,Tk (Rk)→ 0 as k →∞. Then S has (δw).

Proof. Let {U1, . . . , Un} be an open cover of C. Choose an open cover
{V1, . . . , Vn} of C such that Vi ⊆ V i ⊆ Ui for i = 1, . . . , n. Since rk :=
rδS,Tk (Rk)→ 0 as k →∞ and the sets (V i +D(0, rk)) ∩ σ(S) are compact,

there exists k0 ≥ 0 such that

(V i +D(0, rk0)) ∩ σ(S) ⊆ Ui for i = 1, . . . , n.

Hence by [13, Proposition 3.4.2], for i = 1, . . . , n,

Rk0(XT (V i)) ⊆ YS(V i+D(0, rk0)) = YS((V i+D(0, rk0))∩σ(S)) ⊆ YS(U i).

Now we proceed as in the proof of Proposition 2.1.

The following corollary is immediate by setting Rn = (T −λ)−1 for some
λ 6∈ σ(T ) in Theorem 2.2.

Corollary 2.3. Let Tn be operators with (δw) norm converging to T .
If T commutes with Tn for all n ≥ 0, then T has (δw).

Proposition 2.2. Let T have (δw) and let f : U → X be an analytic
function on an open neighbourhood U of σ(T ). Then f(T ) has (δw).

Proof. We recall that Xf(T )(F ) = XT (f−1(F )) for all closed subsets f
of C (see [13, Theorem 3.3.6]). Let {U1, . . . , Un} be an open cover of C. Since
{f−1(U1), . . . , f−1(Un)} is an open cover of σ(T ) and T has (δw), it follows
that

X = XT (f−1(U1)) + · · ·+ XT (f−1(Un))

⊆ XT (f−1(U1)) + · · ·+ XT (f−1(Un))

= Xf(T )(U1) + · · ·+ Xf(T )(Un).

Hence f(T ) has (δw).

Proposition 2.3. Let T ∈ L(X) have (δw) and let S ∈ L(Y ) satisfy
the Dunford condition (C). Then δS,T has (SVEP).

Proof. Let R : U → L(X,Y ) be an analytic function on an open con-
nected set U of C such that (δS,T − µ)R(µ) = 0 for all µ ∈ U . If µ ∈ U and
x ∈ X, then (δS,T − µ)R(µ)x = 0 implies SR(µ)x = R(µ)(T + µ)x. Hence
R(µ)x ∈ YS(σT (x) + µ). Now let D1,D2 ⊆ U be two closed discs with
nonempty interiors and dist(D1,D2) > ε. Then R(µ)x ∈ YS(σT (x) + Di)
for all µ ∈ Di. Since S satisfies the Dunford condition (C), YS(σT (x) +Di)
is a closed subspace and by the identity theorem for analytic functions,
R(µ)x ∈ YS(σT (x) + Di) for all µ ∈ U . Then if diam(σT (x)) ≤ ε, we have
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R(µ)x ∈ YS(σT (x)+D1)∩YS(σT (x)+D2) = YS(∅) = {0}. Hence R(µ)x = 0
for all x with diam(σT (x)) ≤ ε and all µ ∈ U .

Now since T has (δw), there exists an open cover {U1, . . . , Un} of σ(T )
with diam(Ui) ≤ ε such that XT (U1) + · · ·+ XT (Un) is dense in X. Hence
R(µ)x = 0 for all x ∈ X, which proves the proposition.

3. The localizable spectrum for operators with (δw). For a
bounded operator T , the localizable spectrum σloc(T ) of T is the set of all
points λ ∈ σ(T ) such that

(6) XT (D(λ, r)) 6= {0} for every r > 0.

We list some elementary observations related to the localizable spectrum:

(a) If T does not have (SVEP), then σloc(T ) = σ(T ). Indeed, XT (∅) is
nontrivial and contained in XT (D(λ, r)) for all λ and r.

(b) σp(T ) ⊂ σloc(T ), because σT (x) ⊆ {λ} for any eigenvector associated
with the eigenvalue λ.

(c) The localizable spectrum may be strictly contained in the spectrum;
for example, if T is the unilateral forward unweighted shift on the
Hardy space, then σloc(T ) = ∅, while σ(T ) is the closed unit disk. On
the other hand, if T satisfies (δ) or weak-SDP, then σloc(T ) = σ(T ).
See [7, 18].

If T is decomposable, then T has (δ) and (δ∗). Thus σloc(T ) = σloc(T
∗).

This is still valid if (δ) is replaced by (δw).

Proposition 3.1. If T ∈ L(X) has (δw), then

σcom(T ) ⊆ σloc(T
∗) ⊆ σloc(T ).

In particular if both T and T ∗ have (δw), then σloc(T ) = σloc(T
∗).

Proof. The first inclusion is trivial since σcom(T ) = σp(T ∗). Suppose
λ 6∈ σloc(T ) and let r > 0 be such that XT (D(λ, r)) = {0}. It follows
that XT (D(λ, r)) = {0} and because T satisfies (δw), we see that XT (C \
D(λ, r/2)) is dense. Now, from [13, Proposition 2.5.1] we have the inclusion

X ∗T ∗(D(λ, r/4)) ⊆ (XT (C \D(λ, r/2)))⊥.

Thus X ∗T ∗(D(λ, r/4)) = {0}, and (SVEP) for T ∗ leads to X∗T ∗(D(λ, r/4))
= {0}. The proof is complete.

In contrast with decomposable operators, Example 1.2 provides an op-
erator T with (δw) and (δ∗w) such that σloc(T ) 6= σ(T ).

In the proposition above, the inclusion σcom(T ) ⊆ σloc(T ) may be strict.
Let T be the operator given in Example 1.2. Then σcom(T ) = {0}. In-
deed, {0} ⊆ σcom(T ) ⊆ σloc(T

∗) ⊆ σloc(T ). On the other hand, since⋂
n≥0 T

n(H) = {0}, we obtain 0 ∈ σT (x) for every nonzero x, and therefore
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we conclude that σloc(T ) = {0}. Thus

σcom(T ) = σloc(T
∗) = σloc(T ) = {0}.

If T is any normal operator without eigenvectors, then σcom(T ) = ∅ while
the equality σloc(T ) = σ(T ) always holds.

Proposition 3.2. Let T ∈ L(X), S ∈ L(Y ), and let R ∈ L(X,Y ) be
injective such that RT = SR. If T has (δw), then

(7) σcom(T ) ⊆ σloc(S).

Proof. Since RT = SR, we obtain R(XT (F )) ⊆ YS(F ) for every closed
set F , and as R is injective, it follows that σloc(T ) ⊂ σloc(S). Proposition
3.1 allows us to conclude.

Remark 3.1. The inclusion (7) may be strict. To see this, let T = S
be a normal operator without eigenvectors and R the identity map. Then T
has (δw) and σcom(T ) = ∅ ⊂ σloc(S) = σ(S).

A notion closely related to the localizable spectrum is provided by the
support points set introduced in [17] by taking, in (6), the glocal spectral an-
alytic space instead of the analytic spectral space. More precisely, according
to [17], λ ∈ C is a support point for T if

(8) XT (D(λ, r)) 6= {0} for every r > 0.

The set of all support points for T is denoted spt(T ). It is trivial from (6)
and (8) that σp(T ) ⊆ spt(T ) ⊆ σloc(T ) and that the last inclusion is an
equality if and only if T has (SVEP). It is also not difficult to see that
spt(T ) = σ(T ) if T is decomposable, or more generally if T has weak-SDP
or (δ). The latter equality fails to be true in general for operators with (δw)
as shown by Example 1.2.

The analytic core K(T ) associated with T is the (not necessarily closed)
invariant subspace of T that consists of elements x ∈ X for which there
exists c > 0 and a sequence xn ∈ X such that x0 = x, ‖xn‖ ≤ cn‖x‖
and Txn+1 = xn. The quasi-nilpotent part of T is X0(T ) := {x ∈ X :

limn→∞ ‖Tnx‖1/n = 0}. The analytic core and the quasi-nilpotent part of
an operator have been extensively studied by M. Mbekhta in [14–16]. In
particular

K(T ) = XT (C \ {0}) and X0(T ) = XT ({0}).
The question when the analytic core is closed has interested some mathe-
maticians and is central in [17], where the special case of operators with (δ)
has been developed. In the rest of this section we discuss the same phenom-
ena for operators with (δw).



Weak decomposition property (δw) 25

For operators with (SVEP), it is proved in [17, Lemma 4] that K(T ) is
not closed when 0 is a cluster point of spt(T ). For operators with (δw), we
have

Theorem 3.1. Let T be noninvertible and suppose T has (δw). If K(T )
is closed , then 0 ∈ spt(T ).

Proof. Let Fn = D(0, 1/n) and Gn = C \ F2n. Then XT (Fn) + XT (Gn)
is dense and XT (Gn) ⊆ K(T ). In particular, if XT (Fn) = {0} for some n,
then XT (Gn) ⊆ K(T ) is dense, and since K(T ) is closed, it follows that T
is onto. Now since 0 ∈ σ(T ), we have 0 ∈ σp(T ) ⊆ spt(T ).

Set σfK(T ) = {λ ∈ C : K(T − λ) is not closed}. We have

Corollary 3.1. If T has (δw), then σ(T ) \ σfK(T ) ⊆ spt(T ).

In [17, Corollary 8], it is shown that an operator T is quasinilpotent if
and only if T has (δ) and K(T ) = {0}. We note that the assumption (δ)
cannot be relaxed to (δw) as shown by Example 1.2.

4. Multipliers and (δw). We devote this section to showing that for
multipliers on semisimple Banach algebras, the notions of decomposability
and (δw) coincide.

Let A be a semisimple commutative Banach algebra. Σ(A) denotes the
spectrum of A, that is, the set of nontrivial multiplicative linear functionals
on A. For each a ∈ A, let â denote the Gelfand transform given by â(χ) =
χ(a) for all χ ∈ Σ(A). The Gelfand topology is the coarsest topology on
Σ(A) for which all the Gelfand transforms â are continuous.

For B ⊂ A and E ⊆ Σ(A), we define h(B) = {Ψ ∈ Σ(A) : Ψ(b) = 0 for
all b ∈ B} and k(E) = {a ∈ A : ϕ(a) = 0 for all ϕ ∈ E}. We say that E is
closed for the hull-kernel topology if E = hk(E). The last topology is always
coarser than the Gelfand topology, and they coincide exactly when A is a
regular algebra. For further information, see [4, 19]. For a ∈ A let Ta denote
the corresponding multiplication operator given by Ta(x) = ax for all x ∈ A.

A mapping T : A → A is called a multiplier if T (x)y = xT (y) for
all x, y ∈ A. By semisimplicity of A, every multiplier is a bounded linear
operator on A. Moreover, M(A), the set of multipliers on A, is a semi-
simple commutative unital subalgebra of L(A). The spectrum Σ(M(A))
may be represented as the disjoint union of Σ(A) and H(A), where H(A) =
{χ ∈ Σ(M(A)) : χ(a) = 0, ∀a ∈ A} and Σ(A) is canonically embedded in
Σ(M(A)). For T ∈ M(A), a, b ∈ A and χ ∈ Σ(A) we have χ(a)χ(T (b)) =
χ(b)χ(T (a)). Hence χ(T (a))/χ(a) = χ(T (b))/χ(b). This allows us to define

T̂ (χ) := χ(T ) = χ(T (a))/χ(a) for some a ∈ A such that χ(a) 6= 0. See for
instance [10] and [13].
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It is shown in [6, Proposition 1] that weak-SDP multipliers have hull-
kernel continuous transform on Σ(A). This result is extended as follows:

Proposition 4.1. Let A be a semisimple commutative Banach algebra.

If T ∈M(A) has (δw), then T̂ |Σ(A) is hull-kernel continuous on Σ(A).

Proof. Suppose that T̂ is not hull-kernel continuous on Σ(A). There
exists a closed subset F of C such that E = {χ ∈ Σ(A) : χ(T ) ∈ F} ⊂
hk(E). Let χ ∈ hk(E) \ E. Then χ(T ) = λ 6∈ F and hence there exist open
subsets U, V of C such that λ ∈ U, F ⊆ V and U ∩ V = ∅.

Since T has (δw), it follows that

AT (C \ U) +AT (C \ V ) is dense in A.

For each x ∈ AT (C \ U), there exists y ∈ A such that x = (T − λ)y. Then
χ(x) = 0. Also for each x ∈ AT (C \ V ), ψ(x) = 0 for all ψ ∈ E and hence
χ(x) = 0. It follows that χ ≡ 0 on A. Contradiction.

We deduce the following corollary in the spirit of [13, Theorem 4.4.5].
The proof is a simple adaptation and is omitted.

Corollary 4.1. Let A be a semisimple commutative Banach algebra
and a ∈ A. Then the following statements are equivalent :

(i) Ta is decomposable.
(ii) Ta has (δw).
(iii) The Gelfand transform â is hull-kernel continuous on Σ(A).

Let T be multiplier on A. It is not hard to see that T̂ (Σ(A)) ⊂ σ(T ) =

T̂ (Σ(M(A))). We say that T has natural spectrum if

(9) σ(T ) = T̂ (Σ(A)).

Multipliers with weak-SDP or (δ) are known to have natural spectrum (see
[6, Proposition 1] and [13, Proposition 4.6.3] respectively). This may fail to
be true for an operator with (δw). We have

Proposition 4.2. If T is a multiplier with (δw), then

(10) σcom(T ) = T̂ (Σ(A)).

Proof. Let S be multiplication by T̂ on the Banach space Y of all con-
tinuous bounded C-valued functions on Σ(A) equipped with the sup-norm,
and R : A→ Y the Gelfand transform. It follows from Proposition 3.2 that
σcom(T ) ⊆ σ(S).

Let λ 6∈ T̂ (Σ(A)). If (S − λ)f = 0 then (T̂ (χ) − λ)f(χ) = 0 for all
χ ∈ Σ(A). Thus f(χ) = 0 and hence S − λ is injective. Now let g ∈ Y . The
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mapping

f(χ) =
1

T̂ (χ)− λ
g(χ)

is continuous and bounded. Moreover, it satisfies (S − λ)f = g. Thus S − λ
is surjective and then σcom(T ) ⊆ σ(S) ⊆ T̂ (Σ(A)).

On the other hand, T̂ (Σ(A)) ⊆ σcom(T ). Indeed, let λ 6∈ σcom(T ). If

λ ∈ T̂ (Σ(A)), then there exists χ ∈ Σ(A) such that T̂ (χ) = λ. Hence
χ((T −λ)a) = 0 for all a ∈ A. Since (T −λ)A is dense in A, it follows that χ
vanishes on A.

If A is a regular semisimple commutative Tauberian Banach algebra,
then it follows from the proof of [6, Proposition 5] that every multiplier T
on A has (δw). By Corollary 2.1, σ(T ) = σap(T ). Thus in Proposition 4.8.6
of [13] the assumption that Σ(A) is discrete is not necessary.

Let G be a locally compact abelian group, Γ its dual group, L1(G) the
space of C-valued functions on G integrable with respect to Haar measure
and M(G) the Banach algebra of regular complex Borel measures on G. We
recall that L1(G) is a regular semisimple commutative Tauberian Banach
algebra. Then we have the following proposition.

Proposition 4.3. Let G be a locally compact abelian group, µ ∈M(G)
and X = L1(G). Then every convolution operator Tµ : X → X, Tµ(k) =
µ ? k, has (δw) and

σcom(Tµ) = µ̂(Γ ).

Note that when G is nondiscrete there exists a measure µ ∈M(G) such
that the convolution operator Tµ does not have a natural spectrum (see for

instance [5, Corollary 3] or [13, pp. 370]). In that example µ̂(Tµ) ⊂ σ(Tµ).
Hence this also gives another example of an operator with (δw) but with
neither weak-SDP nor (δ).
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