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Sequential closedness of Boolean algebras of projections
in Banach spaces

by

D. H. Fremlin (Colchester), B. de Pagter (Delft)
and W. J. Ricker (Eichstätt)

Abstract. Complete and σ-complete Boolean algebras of projections acting in a
Banach space were introduced by W. Bade in the 1950’s. A basic fact is that every complete
Boolean algebra of projections is necessarily a closed set for the strong operator topology.
Here we address the analogous question for σ-complete Boolean algebras: are they always
a sequentially closed set for the strong operator topology? For the atomic case the answer
is shown to be affirmative. For the general case, we develop criteria which characterize
when a σ-complete Boolean algebra of projections is sequentially closed. These criteria
are used to show that both possibilities occur: there exist examples which are sequentially
closed and others which are not (even in Hilbert space).

1. Introduction. In the Banach space setting, σ-complete and com-
plete Boolean algebras (briefly, B.a.’s) of projection operators were inten-
sively studied by W. Bade ([1], [2]). Such objects are a natural extension of
the fundamental notion of the resolution of the identity of a normal operator
in Hilbert space. The definition of such (σ-)complete B.a.’s of projections
(see Section 2) is directly connected to the (non-metrizable) strong operator
topology. Accordingly, the theory of such B.a.’s is somewhat different to the
theory of abstract B.a.’s.

It was already noted from the outset of the theory that there are subtle
topological and order-theoretic distinctions between the notions of σ-comp-
leteness and completeness. For instance, let X denote the Hilbert space
`2([0, 1]) and Σ the family of all Borel subsets of [0, 1]. For each E ∈ Σ de-
fine a self-adjoint projection P (E) by P (E)x = χEx for each x ∈ X. Then
P (E) ∈ L(X), where L(X) denotes the space of all bounded linear operators
on (any Banach space) X, and M = P (Σ) ⊆ L(X) is a σ-complete B.a. of
projections which fails to be complete. For a general σ-complete B.a. of pro-
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jectionsM in a Banach space X, the distinction is somewhat delicate. For,
if Y is the closed subspace of X generated by {Bxn : B ∈ M, n ∈ N}, then
the restrictionsM|Y = {B|Y : B ∈ M} form a complete B.a. of projections
in Y ([6, XVII, Lemma 3.21]). In particular, whenever X is separable the
notions of σ-complete and complete coincide.

It is known that every complete B.a. of projectionsM⊆ L(X) is neces-
sarily a τs-closed set for the strong operator topology τs in L(X) ([6, XVII,
Corollary 3.7]). This raises the following

Question. Is every σ-complete B.a. of projections in a Banach space X
necessarily a sequentially τs-closed subset of L(X)?

An equivalent formulation of this question appears in 323Z (Problem)
of [8]. The aim of this paper is to give a complete answer to this question.

The above example given in X = `2([0, 1]) is immediately relevant. The
B.a. M given there fails to be τs-closed in L(X), but it is sequentially τs-
closed. That is, if {Pn}∞n=1 ⊆ M is any τs-convergent sequence, with limit
Q ∈ L(X) say, then actually Q ∈ M. This is no accident. It is shown in
[14, p. 367] that wheneverM⊆ L(X) is Bade atomic and σ-complete, then
it is always sequentially τs-closed in L(X). Here Bade atomic means that
there is a family of atoms {Pα}α∈A in M which generate M in the sense
that, for every 0 6= P ∈ M, there exists a non-empty subset B ⊆ A with
P =

∑
α∈B Pα; summability of the series is meant as the τs-limit of the net

of partial sums over all finite subsets of B. The above-mentioned example in
`2([0, 1]) is clearly Bade atomic in this sense. In Section 2 we will show that
the above-mentioned result concerning Bade atomic B.a.’s of projections can
actually be further extended to include arbitrary atomic, σ-complete B.a.’s
of projections, where atomic is meant purely in the sense of abstract Boolean
algebras. By way of examples it is shown that this extension is genuine. So,
the atomic case is now completely understood.

Section 3 is concerned with presenting criteria which characterize pre-
cisely whether or not a given σ-complete B.a.M is sequentially τs-closed in
L(X). The idea is to represent M as the range of an L(X)-valued spectral
measure defined on some σ-algebra of sets Σ, and then to consider certain
families Φ of non-negative measures on Σ induced by so-called Bade func-
tionals ([6, XVII, Lemma 3.12]). The criteria presented are based on the
notion of sequential Φ-completeness of the σ-algebra Σ (see Section 3 for
the definition).

The most interesting part of the paper, perhaps, is the final Section 4,
which is concerned with examples. It turns out that to exhibit measur-
able spaces (Ω,Σ) and families of non-negative measures Φ for which Σ
is not sequentially Φ-complete and then, based on the properties of Φ, to
construct non-atomic, σ-complete B.a.’s of projections in some appropriate
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non-separable Banach space, is rather non-trivial. Briefly, the answer to the
above Question turns out to be no, in general. There exist examples of non-
atomic, σ-complete B.a.’s of projections M ⊆ L(X) which are sequentially
τs-closed but not τs-closed and others which fail to be sequentially τs-closed
(even in a Hilbert space!). In the latter case, we point out that the sequen-
tial closure of M, formed in the non-metrizable space Ls(X) = (L(X), τs),
is always a σ-complete B.a. of projections ([13, Corollary 2.1]). Finally, we
remark that there seems to be a distinct lack of concrete examples of non-
atomic, σ-complete but not complete B.a.’s of projections in Banach spaces
available. In particular, such B.a.’s should not admit any separating vector
([11, Lemma 1]). Hopefully, the examples of Section 4 go some way towards
rectifying this situation.

2. Atomic Boolean algebras. Let X be a Banach space. All B.a.’s
of projections M ⊆ L(X) are assumed to have the identity operator I on
X as their unit. We say thatM is complete (resp. σ-complete) in the sense
of Bade if it is complete (resp. σ-complete) as an abstract B.a. and if, for
every family (resp. countable family) D ⊆M, we have

( ∧

D∈D
D
)

(X) =
⋂

D∈D
D(X)

and ( ∨

D∈D
D
)

(X) = sp
{ ⋃

D∈D
D(X)

}
,

the closed subspace of X generated by
⋃
D∈DD(X); see [1] or [6, Chapter

XVII], for example.
Let M ⊆ L(X) be a B.a. of projections. A non-zero element P ∈ M is

called an atom if, whenever Q ∈ M satisfies Q ≤ P , then either Q = 0 or
Q = P . We say that M is atomic if for every 0 6= Q ∈ M there exists an
atom P ≤ Q (see e.g. [16, Section 9]). Before proving the main result of this
section, we first clarify the relation between atomic and Bade atomic B.a.’s.

Lemma 2.1. Let X be a Banach space and M ⊆ L(X) be a B.a. of
projections.

(i) If M is Bade atomic, then it is atomic.
(ii) If M is Bade complete, then M is Bade atomic if and only if it is

atomic.

Proof. Statement (i) follows immediately from the definition of Bade
atomic (see Section 1). For the proof of (ii) it suffices to show that if M
is atomic and Bade complete, then M is Bade atomic. To this end, let
{Pα : α ∈ A} be the collection of all atoms in M. Given 0 6= Q ∈ M,
let B = {α ∈ A : Pα ≤ Q}. It is clear that Q =

∨
α∈B Pα. Denoting by
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F the collection of all finite subsets of B and defining PF =
∑

α∈F Pα for
all F ∈ F , it is clear that PF ↑F Q in M. Since M is Bade complete, we
may conclude by Lemma XVII.3.4 in [6] that Q = limF∈F PF in Ls(X), i.e.,
Q =

∑
α∈B Pα as a τs-summable series.

Theorem 2.2. Let X be a Banach space. Then every atomic, Bade σ-
complete B.a. of projections in X is sequentially closed in Ls(X).

Proof. Let M ⊆ L(X) be a Bade σ-complete, atomic B.a. and suppose
that {Hn}∞n=1 ⊆ M is a sequence satisfying Hn → H in Ls(X) for some
H ∈ L(X). It is clear that H is a projection and commutes with all members
of M. Since M is σ-complete, the projections

Q = lim infHn =
∞∨

n=1

∞∧

k=n

Hk, R = lim supHn =
∞∧

n=1

∞∨

k=n

Hk

both belong to M. We claim that Q ≤ H ≤ R. Indeed, the sequence
{H̃n}∞n=1, defined by H̃n =

∧∞
k=nHk, increases to Q in the order of M

and so, by Lemma XVII.3.4 in [6], H̃n → Q in Ls(X). Since H̃n ≤ Hn

(i.e., H̃nHn = H̃n) for each n = 1, 2, . . . and both H̃n → Q and Hn → H
in Ls(X), we deduce that QH = Q, that is, Q ≤ H. A similar argument
yields H ≤ R, which proves our claim. Therefore, it is sufficient to show
that Q = R. Since M is atomic, it suffices to prove that PQ = PR for all
atoms P in M.

Given a fixed atom P ∈ M, we have PHn → PH in Ls(X) as n → ∞.
Since PHn ∈ {0, P} for all n, it follows that there exists N ∈ N such that
either PHn = 0 or PHn = P for all n ≥ N . In the first case,

PQ = P (lim infHn) = lim inf(PHn) = 0

= lim sup(PHn) = P (lim supHn) = PR,

and similarly, in the second case we find that PQ = P = PR. Hence, in
either case PQ = PR.

Remark 2.3. Let X be a Banach space and M ⊆ L(X) be a Bade
σ-complete B.a. of projections. Suppose that {Pn}∞n=1 is any sequence in
M such that Pn → P in Ls(X) as n → ∞. Then P is a projection and it
commutes with all elements ofM. It follows from the proof of Theorem 2.2
that always

lim inf Pn ≤ P ≤ lim supPn,

where lim inf Pn and lim supPn exist in M. The proof of Theorem 2.2
is based on the fact that if, in addition, M is atomic, then necessarily
lim inf Pn = lim supPn always holds. This is not true in general for non-
atomic M, even if M is Bade complete; see Remark 4.5.
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In the remainder of this section we exhibit examples of Bade σ-complete
B.a.’s of projections which are atomic but not Bade atomic. In view of
Lemma 2.1(ii) such B.a.’s cannot be Bade complete. We discuss these ex-
amples in some detail, since we will use such types of B.a.’s again in other
sections of the paper.

First we recall some terminology and facts from the theory of Banach
lattices. For details we refer the reader to any of the books on this subject
(e.g. [9]). Let (Y, ‖ · ‖) be a Dedekind complete Banach lattice with positive
cone Y +. Then

BY = {P ∈ L(Y ) : P 2 = P and 0 ≤ Py ≤ y for all y ∈ Y +}
is the B.a. of all band projections in Y . Note that ‖P‖ ≤ 1 for any P ∈ BY .
Since Y is assumed to be Dedekind complete, BY is an abstractly complete
B.a. of projections and has the property that an upwards directed system
{Pα} ⊆ BY increases to P ∈ BY in the order of BY if, and only if, Pαy ↑α Py
in the order of Y for every y ∈ Y +. Moreover, each P ∈ BY is disjointness
preserving (i.e., |Py1|∧ |Py2| = 0 whenever |y1|∧ |y2| = 0 in Y ) and satisfies
|Py| = P |y| for every y ∈ Y . If, in addition, Y has order continuous norm,
then it follows that BY is Bade complete.

Let (Ω,Σ) be a measurable space and let X = ca(Σ) denote the (real)
Banach space of all σ-additive measures µ : Σ → R with norm ‖µ‖ = |µ|(Ω),
where |µ| denotes the variation measure of µ. If µ, ν ∈ X, then we write
µ ≤ ν whenever µ(E) ≤ ν(E) for all E ∈ Σ. Equipped with this order,
X is a Dedekind complete Banach lattice with order continuous norm. In
fact, X is an abstract L-space, meaning that ‖µ+ ν‖ = ‖µ‖+ ‖ν‖ whenever
µ, ν ∈ X+. We point out that two elements µ, ν ∈ X are disjoint (i.e.,
|µ| ∧ |ν| = 0) if, and only if, µ ⊥ ν, that is, µ and ν are mutually singular as
measures ([9, p. 11]). Moreover, we note that the principal band generated
by an element µ ∈ ca(Σ) consists precisely of those ν ∈ ca(Σ) which are
absolutely continuous with respect to µ. This principal band will be denoted
by AC(µ). The positive cone of ca(Σ) is denoted by ca+(Σ).

Let Y ⊆ ca(Σ) be any band. Then Y is itself a Dedekind complete Ba-
nach lattice with order continuous norm. In particular, the B.a. BY of all
band projections in Y is a Bade complete B.a. Given µ ∈ ca(Σ) and E ∈ Σ,
let µE ∈ ca(Σ) be defined by µE(F ) = µ(E ∩ F ) for all F ∈ Σ. Since
|µE| = |µ|E ≤ |µ| and Y is solid in ca(Σ), it follows that µE ∈ Y whenever
µ ∈ Y and E ∈ Σ. Given E ∈ Σ, the mapping PY (E) : Y → Y defined by

PY (E)µ = µE , µ ∈ Y,(1)

is a band projection in Y . The map PY : Σ → L(Y ) given by E 7→ PY (E)
for E ∈ Σ is clearly finitely additive, multiplicative (i.e., PY (E ∩ F ) =
PY (E)PY (F ) for all E,F ∈ Σ) and PY (Ω) = I. Actually, PY is σ-additive
in Ls(Y ) because ‖PY (E)µ‖ = |µE |(Ω) ≤ |µ|(E) for E ∈ Σ, and each µ ∈ Y
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is σ-additive on Σ. Hence, PY is a spectral measure in Y . It follows that the
rangeMY = PY (Σ) of PY is a Bade σ-complete B.a. in L(Y ) (see Corollary
XVII.3.10 in [6]). In particular, MY is a σ-subalgebra (in the sense of [16,
Section 23]) of the Bade complete B.a. BY of all band projections in Y . For
the case Y = ca(Σ) we will omit the subscript Y and simply writeM and P .

Lemma 2.4. Let (Ω,Σ) be a measurable space, Y a band in ca(Σ) and
MY = PY (Σ) be the range of the spectral measure PY : Σ → Ls(Y ) given
by (1). Then BY =MY , the τs-closure of MY in L(Y ).

Proof. The closedness of BY in Ls(Y ) can easily be verified directly in
this situation; it also follows from the Bade completeness of BY by Corollary
XVII.3.7 in [6]. Hence, MY ⊆ BY .

An application of the Hahn decomposition theorem yields the following:

Fact 1. If Q ∈ BY and µ ∈ Y, then there exists A ∈ Σ with PY (A)µ
= Qµ.

As a consequence we also have:

Fact 2. If Q ∈ BY and µ1, . . . , µn ∈ Y, then there exists A ∈ Σ such
that

PY (A)µj = Qµj , j = 1, . . . , n.

Indeed, define µ = |µ1| ∨ · · · ∨ |µn|. By Fact 1, there exists A ∈ Σ with
PY (A)µ = Qµ. Observe that, since both PY (A) and Q are band projections,
the collection of all ν ∈ Y satisfying PY (A)ν = Qν is a band in Y . In
particular, PY (A)µ = Qµ implies that PY (A)ν = Qν for all ν ∈ Y satisfying
|ν| ≤ µ. This establishes Fact 2.

To complete the proof of the lemma, fix Q ∈ BY . For any finite sub-
set F ⊆ Y , Fact 2 guarantees the existence of a set AF ∈ Σ such that
PY (AF )µ = Qµ for all µ ∈ F . Directing the collection F of all finite sub-
sets of Y by inclusion, it is now clear that the net {PY (AF ) : F ∈ F} is
τs-convergent to Q. Accordingly, Q ∈ MY and so BY ⊆MY .

Example 2.5. A Bade σ-complete B.a. of projections which is atomic,
but not Bade atomic.

Let Ω = [0, 1] and Σ be the σ-algebra of all Borel subsets of Ω. Let
Y = ca(Σ) and M = P (Σ) with P = PY given by (1). The atoms in M
are all projections of the form P ({w}) with w ∈ Ω. If ∅ 6= E ∈ Σ, then
P ({w}) ≤ P (E) for all w ∈ E, so it is clear that M is an atomic B.a.

Let λ ∈ ca(Σ) denote Lebesgue measure (or any other non-zero, contin-
uous measure). Since P ({w})λ = 0 for every w ∈ Ω, it is clear that I cannot
be the τs-limit of sums of the form

∑
w∈F P ({w}) = P (F ) with F ⊆ Ω a

finite set. Hence, M is not Bade atomic.
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In view of Lemma 2.1(ii) we see thatM cannot be Bade complete. This
also follows immediately from Lemma 2.4. Indeed, it is easily verified that
the band projection Pλ ∈ BY =M onto the principal band AC(λ) generated
by λ does not belong to M.

We conclude this section with some comments about the connection be-
tweenM and its τs-closureM being Bade atomic. The following observation
is routine to verify.

Lemma 2.6. Let X be a Banach space and M ⊆ L(X) be a Bade σ-
complete B.a. of projections. If P ∈ M is an atom, then P is also an atom
in the Bade complete B.a. M.

The next result is a consequence of Lemma 2.6 and of Lemma XVII.3.4
in [6], together with the fact that if {Pα}α∈A is the collection of all the
atoms in a Bade σ-complete B.a. M, then M is Bade atomic if, and only
if, I =

∑
α∈A Pα as a τs-summable series in Ls(X). We leave the details to

the reader.

Proposition 2.7. Let X be a Banach space and M⊆ L(X) be a Bade
σ-complete B.a. of projections. Then M is Bade atomic if , and only if , M
is atomic and every atom of M belongs to M.

We remark that both requirements onM are necessary. Indeed, the B.a.
M of Example 2.5 is not Bade atomic, all atoms of M = BY belong to M
and M is not atomic. On the other hand, let Ω = [0, 1] and Σ denote the
σ-algebra of all subsets of Ω which are either countable or co-countable.
Again let Y = ca(Σ) and M = P (Σ), where P = PY is the spectral
measure given by (1). Denote by λ the measure on Σ which takes the value
0 on all countable sets and the value 1 on all co-countable sets. It turns out
that ca(Σ) ∼= `1(Ω) ⊕ 〈λ〉, where 〈λ〉 denotes the 1-dimensional subspace
generated by λ. Let Pc denote the (band) projection in ca(Σ) onto 〈λ〉. It
can be verified that M is an atomic Bade σ-complete B.a. (the atoms in
M are all projections of the form P ({w}) with w ∈ Ω), but is not Bade
atomic. In this case, M is atomic as well (the atoms in M are the atoms
inM together with Pc), but an additional atom Pc exists inM which does
not occur in M.

3. Criteria for sequential closedness. Theorem 2.2 raises the ques-
tion of whether or not there is a similar result for Bade σ-complete B.a.’s
which are not atomic. In the final section this will be answered using the
criteria of this section.

Let (Ω,Σ) be a measurable space and Φ ⊆ ca+(Σ). The σ-algebra Σ
is said to be sequentially Φ-complete if, whenever {An}∞n=1 ⊆ Σ satisfies
ν(An 4 Am) → 0 as n,m → ∞ for every ν ∈ Φ, then there exists A ∈ Σ
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with ν(A4 An)→ 0 as n→∞ for every ν ∈ Φ. Of course, B 4 C denotes
the symmetric difference of any pair of subsets B, C of Ω.

Given any Φ ⊆ ca+(Σ), let XΦ denote the band generated by Φ in ca(Σ)
and let X ′Φ denote the dual space of XΦ, which is itself a Banach lattice.
The absolute weak-star topology |σ|(X ′Φ,XΦ) on X ′Φ is that determined by
the family of seminorms {qν : ν ∈ XΦ}, where

qν(ξ) = 〈|ν|, |ξ|〉, ξ ∈ X ′Φ.
Each bounded Σ-measurable function g on Ω defines an element of X ′Φ by

〈ν, g〉 =
�

Ω

g dν, ν ∈ XΦ,

and
qν(g) = 〈|ν|, |g|〉 =

�

Ω

|g| d|ν|

for each ν ∈ XΦ. For Y = XΦ, the spectral measure defined by (1) is
denoted simply by PΦ : Σ → L(XΦ), in which case MΦ = PΦ(Σ) is a Bade
σ-complete B.a. of projections in XΦ.

We require the following technical result. Recall if P,Q are two commut-
ing projections in a Banach space X, then P4Q is defined to be the projec-
tion P (I−Q)+(I−P )Q which, in turn, equals (P ∨Q)− (P ∧Q) whenever
P,Q are elements of a B.a. of projections on X (since P ∨Q = P +Q−PQ
and P ∧Q = PQ).

Lemma 3.1. Let X be a Banach space and M ⊆ L(X) be a B.a. such
that M = sup{‖P‖ : P ∈ M} < ∞. Let P,Q ∈ M. Then, for each x ∈ X,
we have

(2M)−1‖Px−Qx‖ ≤ ‖(P 4Q)x‖ ≤ 2M‖Px−Qx‖.
Proof. Suppose first that PQ = 0. Then

‖(P +Q)x‖ = ‖(P −Q)(Px−Qx)‖ ≤ 2M‖Px−Qx‖.
Also, since P −Q = (P −Q)(P +Q), it follows that

‖Px−Qx‖ ≤ ‖P −Q‖ ‖Px+Qx‖ ≤ 2M‖Px+Qx‖.
Now suppose that P,Q are arbitrary. Since (P − PQ)(Q− PQ) = 0 we

see from the above that

‖Px−Qx‖ = ‖(P − PQ)x− (Q− PQ)x‖
≤ 2M‖(P − PQ)x+ (Q− PQ)x‖ = 2M‖(P 4Q)x‖.

Similarly,

‖(P 4Q)x‖ = ‖(P − PQ)x+ (Q− PQ)x‖
≤ 2M‖(P − PQ)x− (Q− PQ)x‖ = 2M‖Px−Qx‖.



Sequential closedness of Boolean algebras 53

In the following theorem some characterizations of sequential Φ-com-
pleteness of Σ are presented.

Theorem 3.2. Let (Ω,Σ) be a measurable space and Φ ⊆ ca+(Σ). The
following statements are equivalent.

(i) Σ is sequentially Φ-complete.
(ii) {χA : A ∈ Σ} ⊆ X ′Φ is sequentially complete for the |σ|(X ′Φ,XΦ)

topology.
(iii) The Bade σ-complete B.a. MΦ is sequentially closed in Ls(XΦ).

Proof. (i)⇒(iii). Let {PΦ(An)}∞n=1 ⊆ MΦ converge to P in Ls(XΦ),
in which case {PΦ(An)}∞n=1 is Cauchy in Ls(XΦ). Lemma 3.1 implies that
‖PΦ(An 4Am)µ‖ → 0 as m,n→∞ for every µ ∈ XΦ. In particular, for all
ν ∈ Φ ⊆ XΦ, we see that

0 ≤ ν(An4Am) = ‖νAn4Am‖ = ‖PΦ(An 4Am)ν‖ → 0

as m,n→∞. By hypothesis there is A ∈ Σ such that

‖PΦ(An 4A)ν‖ = ν(An4A)→ 0, ν ∈ Φ,
as n → ∞. The same conclusion holds for any µ ∈ ca(Σ) satisfying |µ| ≤∑∞

j=1 cjνj for some 0 ≤ cj ∈ R and νj ∈ Φ and, by a standard approximation
argument and using Lemma 3.1, it follows that PΦ(An)→ PΦ(A) in Ls(XΦ).
Accordingly, P = PΦ(A) ∈ MΦ.

(iii)⇒(ii). Let {χAn}∞n=1 ⊆ X ′Φ be |σ|(X ′Φ,XΦ)-Cauchy. The identities
qµ(χAn − χAm) = |µ|(An 4 Am), for each µ ∈ XΦ, together with Lemma
3.1, imply that {PΦ(An)}∞n=1 is Cauchy in Ls(XΦ). Hence, by sequential
completeness of Ls(XΦ) and sequential closedness of MΦ, there is A ∈ Σ
such that PΦ(An) → PΦ(A) in Ls(XΦ). Arguing as above, it follows that
χAn → χA in X ′Φ with respect to |σ|(X ′Φ,XΦ).

(ii)⇒(i). Let {An}∞n=1 ⊆ Σ satisfy ν(An 4 Am) → 0 as m,n → ∞ for
all ν ∈ Φ. Via a routine argument (similar to the one used above), it follows
that actually |µ|(An 4 Am) → 0 as m,n → ∞ for every µ ∈ XΦ. Hence,
{χAn}∞n=1 is a |σ|(X ′Φ,XΦ)-Cauchy sequence in X ′Φ and so, by hypothesis,
there exists A ∈ Σ such that χAn → χA with respect to |σ|(X ′Φ,XΦ). In
particular, for each ν ∈ Φ we conclude that

ν(A4An) = qν(χA − χAn)→ 0, n→∞,
that is, Σ is sequentially Φ-complete.

Let M ⊆ L(X) be a Bade σ-complete B.a. of projections in a Banach
space X. Any spectral measure P : Σ → Ls(X), defined on some measur-
able space (Ω,Σ) and satisfying P (Σ) = M, is said to represent M. Such
spectral measures always exist (see e.g. [6, Corollary XVII.3.10]), but are
surely not unique. Given x ∈ X, any x′ ∈ X ′ with the properties:
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(i) 〈Bx, x′〉 ≥ 0 for all B ∈ M,
(ii) 〈Bx, x′〉 = 0 for some B ∈ M if and only if Bx = 0,

is called a Bade functional for x (relative toM); see [6, Lemma XVII.3.12].
In this case, the set function 〈P (·)x, x′〉 : E 7→ 〈P (E)x, x′〉 for E ∈ Σ
belongs to ca+(Σ) and is mutually absolutely continuous to the X-valued
vector measure P (·)x : E 7→ P (E)x for E ∈ Σ. In view of property (ii), for
each x ∈ X the measures {〈P (·)x, x′〉 : x′ ∈ B(P ;x)}, where

B(P ;x) = {x′ ∈ X ′ : x′ is a Bade functional for x}
are all mutually absolutely continuous. Any family of measures of the form

B(P ) = {〈P (·)x, ϕx〉 : x ∈ X, ϕx ∈ B(P ;x)} ⊆ ca+(Σ)(2)

is called a Bade family relative to P .

Theorem 3.3. Let X be a Banach space and M ⊆ L(X) be a Bade σ-
complete B.a. of projections. ThenM is sequentially closed in Ls(X) if , and
only if , for every (for some) representing spectral measure P : Σ → L(X)
forM and for every (for some) Bade family of measures B(P ) relative to P ,
the σ-algebra Σ is sequentially B(P )-complete.

Proof. Suppose that P and B(P ) exist with the stated property. Let
Pn = P (An) for n = 1, 2, . . . be a sequence in M = P (Σ) which is τs-
convergent to Q ∈ L(X). Fix x ∈ X and, for ϕx ∈ B(P ;x) as in (2), let
νx = 〈P (·)x, ϕx〉. Since {Pnx}∞n=1 is Cauchy in X, it follows from Lemma 3.1
that ‖(Pn 4 Pm)x‖ → 0 as m,n → ∞. Hence, νx(An 4 Am) → 0 as
m,n → ∞. This holds for every x ∈ X and so, by hypothesis, there ex-
ists A ∈ Σ such that νx(An 4 A) → 0 as n → ∞ for every x ∈ X. Since
the vector measure P (·)x is absolutely continuous with respect to νx, it fol-
lows from a theorem of Pettis (see [5, p. 10]), that also ‖P (An4A)x‖ → 0
as n → ∞. In view of Lemma 3.1 we conclude that P (An)x → P (A)x in
X as n → ∞ for every x ∈ X. Hence, P (An) → P (A) in Ls(X) and so
Q = P (A) ∈ M. This shows that M is sequentially closed in Ls(X).

Conversely, suppose that M is sequentially closed in Ls(X). Let P :
Σ → L(X) be any representing spectral measure for M and B(P ) be any
Bade family of measures relative to P . We have to show that Σ is sequen-
tially B(P )-complete. So, let {An}∞n=1 ⊆ Σ satisfy νx(An 4 Am) → 0 as
n,m→∞ for all x ∈ X (with notation νx as above). Using the Pettis theo-
rem mentioned above and Lemma 3.1 we can conclude that {P (An)}∞n=1
⊆ M is Cauchy in Ls(X). Since Ls(X) is sequentially complete and M is
τs-closed, there exists A ∈ Σ such that P (An)→ P (A) in Ls(X). It follows
easily that νx(An4A)→ 0 as n→∞ for every x ∈ X.

4. Examples. In this section we apply the results of the previous section
to various examples. The idea is to find suitable measurable spaces (Ω,Σ)
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together with families of measures Φ ⊆ ca+(Σ) such that Σ is (or is not)
sequentially Φ-complete.

4.1. Example A. There exists a non-atomic, Bade σ-complete B.a. of
projections which is sequentially τs-closed, but not τs-closed.

Let Ω = [0, 1] and Σ be the σ-algebra of all Borel subsets of Ω. We now
let Φ ⊆ ca+(Σ) be the family of all non-negative, continuous measures on Σ.
Then XΦ = Φ−Φ is the band in ca(Σ) consisting of all continuous measures
on Σ (i.e., a measure µ ∈ ca(Σ) belongs to XΦ if, and only if, µ({w}) = 0 for
all w ∈ Ω). Before proceeding, it will be convenient to recall the following
fact, which indicates that XΦ contains an abundance of measures.

Lemma 4.1. Let F be an uncountable Borel subset of Ω = [0, 1]. Then
there exists 0 < µ ∈ Φ satisfying µ(Ω \ F ) = 0.

Proof. Two sets B1, B2 ∈ Σ are called Borel isomorphic if there is a
bijection ϕ : B1 → B2 such that both ϕ and ϕ−1 are Borel measurable (see
e.g. [12, p. 7]). In particular, if ν is a continuous Borel measure on B1, then
the image measure ν̃ : E 7→ ν(ϕ−1(E)), for each Borel set E ⊆ B2, is clearly
continuous on B2.

Now choose B1 = Ω and B2 = F , in which case there exists a Borel
isomorphism ϕ : Ω → F (see Theorems 2.8 and 2.12 in [12], for example).
Let λ be Lebesgue measure on Ω and define the image measure λ̃ on F as
above. Then the measure µ : E 7→ λ̃(E ∩ F ), for E ∈ Σ, has the required
properties.

For Y = XΦ, let PΦ = PXΦ : Σ → L(XΦ) be the spectral measure
given by (1) and define MΦ = PΦ(Σ), which is a Bade σ-complete B.a. in
L(XΦ). It follows from Lemma 4.1 that the PΦ-null sets are precisely the
countable subsets of Ω. Moreover, it is easy to see that MΦ is non-atomic.
From Lemma 2.4 we know thatMΦ = BXΦ , the B.a. of all band projections
in XΦ. For any µ ∈ XΦ we denote by Qµ ∈ BXΦ the band projection onto
the principal band AC(µ) generated by µ. We will show that Qµ 6∈ MΦ, for
which we need the following observation.

Lemma 4.2. Suppose that µ ∈ Φ satisfies µ(E) > 0 for some set E ∈ Σ.
Then there exists an uncountable Borel set F ⊆ E such that µ(F ) = 0.

Proof. We consider the case that µ = λ is Lebesgue measure on Ω =
[0, 1]. The general case then follows from [15] (Theorem 9 in Section 3 of
Chapter 15). Now λ(E) > 0 and so we can choose a compact set C ⊆ E
with λ(C) > 0. Since C is clearly an uncountable Gδ-set, it follows from
[10, Lemma 5.1] that there exists a nowhere dense, closed set F ⊆ C with
λ(F ) = 0 such that F can be mapped continuously onto Ω. In particular,
F must be uncountable.
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Lemma 4.3. For any 0 < µ ∈ Φ we have Qµ 6∈ MΦ. In particular , MΦ

is not τs-closed in L(X), and hence, is also not Bade complete.

Proof. Fix 0 < µ ∈ Φ and suppose that Qµ ∈ MΦ, i.e., Qµ = PΦ(E)
for some E ∈ Σ. Since µ(E) = µ(Ω) > 0, it follows from Lemma 4.2
that there exists an uncountable Borel set F ⊆ E such that µ(F ) = 0. By
Lemma 4.1 there is 0 < ν ∈ Φ such that ν(Ω\F ) = 0. Since PΦ(F )ν = ν and
PΦ(F )µ = µ, it is clear that ν ⊥ µ and so Qµν = 0. However, this contradicts
the fact that also Qµν = PΦ(E)ν = PΦ(E)PΦ(F )ν = PΦ(F )ν = ν.

To finish the example, it remains to establish the following:

Proposition 4.4. The B.a. MΦ is sequentially closed in Ls(XΦ).

Proof. By Theorem 3.2 it suffices to show that Σ is sequentially Φ-
complete. This will be achieved in a number of steps. So, let {A(n)}∞n=1 ⊆ Σ
be any sequence such that µ(A(n)4A(m))→ 0 as m,n→∞ for all µ ∈ Φ.
Accordingly, the sequence (of equivalence classes of) {χA(n)}∞n=1 is Cauchy
in L1(µ), and so converges in L1(µ) for every µ ∈ Φ.

Step 1. For every ν ∈ ca+(Σ), the sequence {χA(n)}∞n=1 has a ν-a.e.
convergent subsequence.

To see this, let {wk}∞k=1 = {w ∈ [0, 1] : ν({w}) > 0} be the (at most
countable) set of atoms of ν. By the usual diagonalization process we can
find a subsequence {χA(nj)}∞j=1 which converges at each of the points wk
(k = 1, 2, . . .). Now decompose ν = νc+νa with νc ∈ Φ and νa purely atomic.
Since the sequence {χA(nj)}∞j=1 is convergent in L1(νc), it has a further
subsequence converging νc-a.e. This final subsequence has the property that
it converges ν-a.e. This establishes Step 1.

For any ν ∈ ca+(Σ), let Mν([0, 1]) denote the locally convex Hausdorff
space of all R-valued, ν-measurable functions defined on [0, 1], equipped with
the topology of pointwise convergence on [0, 1].

Step 2. Given ν ∈ ca+(Σ), the sequence {χA(n)}∞n=1 has a cluster point
in Mν([0, 1]).

By Step 1 there is a subsequence {χA(nk)}∞k=1, a Borel function f and a
set K ∈ Σ with ν(Kc) = 0 such that

χA(nk) → f pointwise on K as k →∞.(3)

Since {χA(nk)}∞k=1 is contained in the compact set [0, 1][0,1], this sequence
has a cluster point g ∈ [0, 1][0,1]. By (3) it follows that fχK = gχK . This
implies that g ∈Mν([0, 1]), and hence, g is a cluster point of {χA(n)}∞n=1 in
Mν([0, 1]).

Since the result of Step 2 applies to every subsequence of {χA(n)}∞n=1, this
shows that {χA(n)}∞n=1 is relatively countably compact in Mν([0, 1]) for all
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ν ∈ ca+(Σ). It follows from [3, Theorem 4D] that {χA(n)}∞n=1 is relatively se-
quentially compact in R[0,1], and hence, has a subsequence {χA(nj)}∞j=1which
converges everywhere on [0, 1]. Of course, the limit function is of the form χA
for some A ∈ Σ and, by the dominated convergence theorem, it is clear that
µ(A(nj)4A)→ 0 as j →∞ for all µ ∈ Φ. Since also µ(A(n)4A(m))→ 0
as m,n→∞, we may conclude that µ(A(n)4A)→ 0 as n→∞, for every
µ ∈ Φ. This completes the proof of the proposition.

Before leaving Example A, we return to Remark 2.3.

Remark 4.5. Let (Ω,Σ), Φ, PΦ and MΦ = PΦ(Σ) still be as in Ex-
ample A. Let A0 = [0, 1/2]. Then define A1 = [0, 1/4) and A2 = [1/4, 1/2].
Now form A3 = [0, 1/8), A4 = [1/8, 1/4), A5 = [1/4, 3/8) and A6 =
[3/8, 1/2], and continue in the obvious way. For each n ≥ 0, define the
set

Bn = [1/2, 1] \ {x+ 1/2 : x ∈ An}
and then the projection Pn = PΦ(An ∪ Bn) ∈ MΦ. It can be shown that
Pn → P = PΦ([1/2, 1]) in Ls(XΦ) as n → ∞. Since lim inf Pn = 0 and
lim supPn = I (formed in the order of MΦ or in MΦ), we see that

lim inf Pn < P < lim supPn.

4.2. Example B. There exists a Bade σ-complete B.a. of projections
which fails to be sequentially τs-closed.

To produce Bade σ-complete B.a.’s of projections which fail to be se-
quentially τs-closed, we begin by exhibiting a measurable space (Ω,Σ) and a
family of measures Φ ⊆ ca+(Σ) such that Σ is not sequentially Φ-complete.

For the rest of this section let Ω = {0, 1}N, equipped with the product
topology, and Σ = B be the σ-algebra of all Borel subsets of Ω. Elements
ξ ∈ Ω will be denoted as ξ = (ξn)∞n=0 with ξn ∈ {0, 1} for all n ∈ N =
{0, 1, 2, . . .}. For each n ∈ N, let Dn = {ξ ∈ Ω : ξn = 1} and define

Φ = {µ ∈ ca+(B) : µ(Dn4Dm)→ 0 as m,n→∞}.(4)

Proposition 4.6. The Borel σ-algebra B is not sequentially Φ-complete.

To establish Proposition 4.6 it suffices to show that there is no set E∈B
with the property that µ(E 4Dn) → 0 as n → ∞ for all µ ∈ Φ or, equiv-
alently, that there is no set E ∈ B satisfying µ(Dn) → µ(E) as n → ∞ for
all µ ∈ Φ. Define

A = {µ ∈ ca+(B) : µ(Dn)→ 0 as n→∞},
J = {A ∈ B : µ(A) = 0 for all µ ∈ A},

in which case A ⊆ Φ and J is a σ-ideal in the Boolean σ-algebra B. Suppose
that there does exist a set E ∈ B such that limn→∞ µ(Dn) = µ(E) for all
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µ ∈ Φ. Then clearly E ∈ J . Define a homeomorphic involution π : Ω → Ω
by π(ξ) = (1−ξ0, 1−ξ1, . . .) for each ξ ∈ Ω, and let E] = π−1(Ω \E). Using
the observations that π−1(Dn) = Dc

n for all n ∈ N and that

µπ−1(Dn4Dm) = µ(Dn4Dm)→ 0 as m,n→∞
for all µ ∈ Φ, where µπ−1 : A 7→ µ(π−1(A)) for A ∈ B is the image measure,
it follows that µπ−1 ∈ Φ whenever µ ∈ Φ. Hence, µπ−1(Dn)→ µπ−1(E) for
all µ ∈ Φ, which implies in particular that µπ−1(E) = µ(Ω) for all µ ∈ A
and so E] ∈ J . Since Ω = E ∪ π(E]) and Ω is a complete metric space, at
least one of E or π(E]) is a non-meager set. But π is a homeomorphism and
so we can conclude that E or E] is non-meager and both E,E] ∈ J . So,
if such a set E exists, then necessarily J contains at least one non-meager
set. Hence, Proposition 4.6 follows from the following fact.

Proposition 4.7. Every element of J is a meager subset of Ω.

The proof of this proposition will be via some lemmas. First we require
some further notation.

The collections of all subsets and of all finite subsets of N are denoted
by P(N) and Pf(N), respectively. For 0 ≤ m ≤ n ∈ N, define [m,n) = {k ∈
N : m ≤ k < n}. If ξ ∈ Ω, define supp(ξ) = {n ∈ N : ξn = 1}. The mapping
ξ 7→ supp(ξ) is a bijection between Ω and P(N). For n ∈ N \ {0} we will
identify {0, 1}n with a subset of Ω via the imbedding

(ξ0, . . . , ξn−1) 7→ (ξ0, . . . , ξn−1, 0, 0, . . .).

In particular, if 1 ≤ m ≤ n ∈ N, we consider {0, 1}m as a subset of {0, 1}n.
If M ∈ P(N) is non-empty, then ξM denotes the restriction of ξ to M . For
n ∈ N, the characteristic function χ[0,n) is denoted simply by χn.

By λ we denote the canonical Haar measure on Ω, i.e., the product
measure

λ =
∞⊗

n=0

λn,(5)

where λn is the probability measure on {0, 1} satisfying λn({0}) = λn({1}) =
1/2 for all n ∈ N.

Given 1 ≤ n ∈ N and δ ∈ {0, 1}n we define G(n, δ) = {ξ ∈ Ω : χnξ = δ}.
The collection

{G(n, δ) : n ∈ N \ {0}, δ ∈ {0, 1}n}(6)

is a base for the topology in Ω consisting of sets which are simultane-
ously open and closed. For each ξ ∈ Ω, the collection {G(n, χnξ)}∞n=1 is
a neighborhood base at ξ. If n,m ∈ N \ {0}, δ ∈ {0, 1}n and ε ∈ {0, 1}m,
then G(m, ε) ⊆ G(n, δ) if and only if n ≤ m and χnε = δ. Moreover, if
G(m, ε) ∩G(n, δ) 6= ∅, then either G(m, ε) ⊆ G(n, δ) or G(n, δ) ⊆ G(m, ε).
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Lemma 4.8. Let M ⊆ Ω be closed and nowhere dense and let n ∈ N\{0}
and δ ∈ {0, 1}n be given. For every integer l ≥ n, there exists an integer
m ≥ l and ε ∈ {0, 1}m such that χlε = δ and G(m, ε) ∩M = ∅.

Proof. Since the interior int(M) is empty, there exists ξ ∈ G(l, δ) \M ,
and since M is closed, it follows that there exists m ∈ N \ {0} such that
G(m,χmξ) ⊆ G(l, δ) \M . As observed above, this implies that l ≤ m and
χlε = δ, so we can take ε = χmξ.

Lemma 4.9. Let M ⊆ Ω be closed and nowhere dense and let n ∈ N\{0}
and δj ∈ {0, 1}n for j = 0, 1, . . . , k be given. Then there exists an integer
m ≥ n and elements εj ∈ {0, 1}m for j = 0, 1, . . . , k such that :

(i) G(m, εj) ⊆ G(n, δj) for all j = 0, 1, . . . , k;
(ii) G(m, εj) ∩M = ∅ for all j = 0, 1, . . . , k;
(iii) supp(εi) ∩ supp(εj) ⊆ [0, n) whenever 0 ≤ i < j ≤ k.

Proof. The proof is by induction on k. For k = 0, the statement follows
immediately from Lemma 4.8 (applied to δ = δ0 and l = n). Assume now
that the statement has been proved for some k. Let δj ∈ {0, 1}n for j =
0, 1, . . . , k + 1 be given. By the induction hypothesis there exists an integer
mk ≥ n and elements εj ∈ {0, 1}mk , for j = 0, . . . , k, such that (i), (ii)
and (iii) are satisfied (with m = mk). Now apply Lemma 4.8 to δ = δk+1
and l = mk. Then there exists an integer mk+1 ≥ mk and an element
εk+1 ∈ {0, 1}mk+1 such that χmkεk+1 = δk+1 and G(mk+1, εk+1) ∩M = ∅.
Note that χnεk+1 = δk+1.

It is now clear that (i) and (ii) are satisfied (with m = mk+1). Since
supp(εk+1) ⊆ [0, n)∪ [mk,mk+1] and supp(εj) ⊆ [0,mk), it follows that (iii)
is satisfied as well.

Before formulating the next lemma we recall that, for k ∈ N and for any
τ ∈ {0, 1}k+1, we denote by τ[0,k) ∈ {0, 1}k the restriction of τ to [0, k).

Lemma 4.10. Let {Mk}∞k=0 be a sequence of closed , nowhere dense sub-
sets of Ω and let n0 ∈ N \ {0} and δ∅ ∈ {0, 1}n0 be given. Then there exists
a sequence n0 < n1 < · · · in N with the property that , for each k ∈ N and
every τ ∈ {0, 1}k+1, there exists δτ ∈ {0, 1}nk+1 such that :

(i) δτχnk = δτ[0,k) for all τ ∈ {0, 1}k+1;
(ii) supp(δτ1) ∩ supp(δτ2) ⊆ [0, nk) whenever τ1 6= τ2 in {0, 1}k+1;

(iii) G(nk+1, δτ ) ∩Mk = ∅ for all τ ∈ {0, 1}k+1.

Proof. Suppose that n0 < n1 < · · · < nk have been constructed with
corresponding δτ ∈ {0, 1}nj for every τ ∈ {0, 1}j and every j = 0, 1, . . . , k
satisfying (i), (ii) and (iii). Choose any τ ∈ {0, 1}k+1, in which case τ[0,k) ∈
{0, 1}k, and so we can define ατ = δτ[0,k) . Now apply Lemma 4.9 to M = Mk,
n = nk and all the ατ ∈ {0, 1}nk . It follows that there exists an integer
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nk+1 > nk and elements δτ ∈ {0, 1}nk+1 (for each τ ∈ {0, 1}k+1) such that
δτχnk = ατ = δτ[0,k) with G(nk+1, δτ ) ∩Mk = ∅ for all τ ∈ {0, 1}k+1, and
supp(δτ1) ∩ supp(δτ2) ⊆ [0, nk) whenever τ1 6= τ2 in {0, 1}k+1.

Before we prove Proposition 4.7, recall that a subset F ⊆ Ω has the
Baire property if there exists an open set V ⊆ Ω such that F4V is meager .
Since the collection of all subsets with the Baire property is a σ-algebra, it
is clear that any Borel subset of Ω has the Baire property.

Proof of Proposition 4.7. Let E ∈ B be non-meager in Ω. It suffices to
show that there exists µ ∈ A with µ(E) > 0, as then E 6∈ J . Since the set
E has the Baire property and since the sets (6) form a base for the topology
in Ω, it follows that there exist n0 ∈ N \ {0} and δ∅ ∈ {0, 1}n0 such that
G(n0, δ∅)\E is meager. Let {Mk}∞k=0 be a sequence of closed, nowhere dense
sets in Ω such that

G(n0, δ∅) \ E ⊆
∞⋃

k=0

Mk.(7)

Apply Lemma 4.10 to obtain a sequence n0 < n1 < · · · in N such that, for
each k ∈ N and every τ ∈ {0, 1}k+1, there exists δτ ∈ {0, 1}nk+1 satisfying
properties (i), (ii) and (iii) of the lemma.

For each ξ ∈ Ω define d(ξ) =
⋃
k∈N supp(δξ[0,k)

) and a function f : Ω → Ω

by f(ξ) = χd(ξ). It follows from (i) of Lemma 4.10 that for each k ∈ N,

f(ξ)(n) = δξ[0,k)
(n), n ∈ [0, nk).(8)

In particular, if ξ, η ∈ Ω satisfy ξ[0,k) = η[0,k) for some k ∈ N \ {0}, then
f(ξ)χnk = f(η)χnk . This implies that f is continuous.

Choose ξ ∈ Ω. It follows from (8) that

f(ξ) ∈ G(nk, δξ[0,k)
) ⊆ G(n0, δ∅), k ∈ N \ {0}.(9)

Since G(nk, δξ[0,k)
) ∩Mk−1 = ∅ for all k ∈ N \ {0} (cf. (iii) of Lemma 4.10),

this implies that f(ξ) 6∈ ⋃∞k=0Mk. It now follows from (7) and (9) that
f(ξ) ∈ G(n0, δ∅) ∩ E ⊆ E. Accordingly,

f(Ω) ⊆ E.(10)

Let λ be Haar measure on Ω as given by (5) and define the probability
measure µ = λf−1, that is, µ(A) = λ(f−1(A)) for each A ∈ B. Then (10)
implies that µ(E) = 1. It follows from the definitions of Dn and f that

µ(Dn) = λ({ξ ∈ Ω : n ∈ d(ξ)}), n ∈ N.
Fix k ∈ N and assume that n ∈ [nk, nk+1). It follows from (i) in Lemma 4.10
that n ∈ d(ξ) if and only if n ∈ supp(δξ[0,k+1)

), and hence,

µ(Dn) = λ({ξ ∈ Ω : n ∈ supp(δξ[0,k+1)
)}), n ∈ N.
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By Lemma 4.10(ii) there is at most one τ ∈ {0, 1}k+1 such that n ∈ supp(δτ ).
If no such τ exists, then µ(Dn) = 0. If there exists τ0 ∈ {0, 1}k+1 such that
n ∈ supp(δτ0), then

{ξ ∈ Ω : n ∈ supp(δξ[0,k+1)
)} = {ξ ∈ Ω : ξ[0,k+1) = τ0}

and so µ(Dn) = 2−(k+1). Hence, µ(Dn) ≤ 2−(k+1) for all n ∈ [nk, nk+1).
Accordingly, limn→∞ µ(Dn) = 0 and so µ ∈ A. Since µ(E) > 0, the proof
of Proposition 4.7 is complete. In particular, Proposition 4.6 is thereby also
established.

Now it is clear how to construct an example of the type announced at the
beginning of this subsection. Indeed, with Φ as defined by (4), letXΦ ⊆ ca(B)
be the band generated by Φ. By Proposition 4.6, B is not sequentially Φ-
complete. Then Theorem 3.2 implies that the Bade σ-complete B.a. MΦ

(notation as in Theorem 3.2) cannot be sequentially closed in Ls(XΦ).
We are indebted to G. Debs for an invaluable conversation, leading in

particular to the suggestion that the ideal J is meager; a similar question
was examined in [4].

4.3. Concluding remarks. Finally, we indicate how the previous example
can be used to obtain an example of a Bade σ-complete B.a. of projections
in a Hilbert space which fails to be sequentially closed.

The setting is still Ω = {0, 1}N and with Φ as given by (4). Define
Ω̃ = Ω × Φ and, for every G ⊆ Ω̃ and ν ∈ Φ, let Gν = {t ∈ Ω : (t, ν) ∈ G}.
Then Γ = {G ⊆ Ω̃ : Gν ∈ B for every ν ∈ Φ} is a σ-algebra of subsets of Ω̃.
Moreover, µ : Γ → [0,∞] defined by µ(G) =

∑
ν∈Φ ν(Gν) for G ∈ Γ is a σ-

additive measure and, being decomposable, (Ω̃, Γ, µ) is a Maharam measure
space (cf. [7, Section 64]). Consider now the Hilbert space H = L2(µ). For
each A ∈ B we define P (A) ∈ L(H) by P (A)f = χA×Φf for all f ∈ H.
Then P : B → L(H) is a spectral measure and M = {P (A) : A ∈ B}
is a Bade σ-complete B.a. of (self-adjoint) projections in H. Given ν ∈ Φ
and a function f on Ω̃, define fν : t 7→ f(t, ν) for each t ∈ Ω. Then f ∈
H if and only if there exist countably many {νk}∞k=1 ⊆ Φ such that each
fνk ∈ L2(νk) with

∑∞
k=1 ‖fνk‖22 < ∞ and fν = 0 (ν-a.e.) for all other

ν ∈ Φ. This observation, together with the fact that ν(Dn 4 Dm) → 0 as
m,n→∞ for each ν ∈ Φ, and a standard truncation argument, shows that
‖P (Dn)f−P (Dm)f‖2 → 0 as m,n→∞ for each f ∈ H. Hence, there exists
a self-adjoint projection Q in H such that P (Dn)→ Q in Ls(H) as n→∞.
Assuming that Q = P (E) for some E ∈ B, it is easy to see that this would
imply ν(Dn4E)→ 0 as n→∞ for each ν ∈ Φ. However, from Example B
we know that no such set E ∈ B exists. Consequently,M is not sequentially
closed in Ls(H).
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In conclusion, we remark that in the above example the spaceH = L2(µ)
may be replaced by the Banach space X = Lp(µ) for any 1 ≤ p < ∞, and
we still maintain all the features that occur in L2(µ).
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