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Some new inhomogeneous Triebel–Lizorkin spaces on
metric measure spaces and their various characterizations

by

Dachun Yang (Beijing)

Abstract. Let (X, %, µ)d,θ be a space of homogeneous type, i.e. X is a set, % is a
quasi-metric on X with the property that there are constants θ ∈ (0, 1] and C0 > 0 such
that for all x, x′, y ∈ X,

|%(x, y)− %(x′, y)| ≤ C0%(x, x′)θ[%(x, y) + %(x′, y)]1−θ,

and µ is a nonnegative Borel regular measure on X such that for some d > 0 and all
x ∈ X,

µ({y ∈ X : %(x, y) < r}) ∼ rd.
Let ε ∈ (0, θ], |s| < ε and max{d/(d+ ε), d/(d+ s+ ε)} < q ≤ ∞. The author introduces
new inhomogeneous Triebel–Lizorkin spaces F s∞q(X) and establishes their frame charac-
terizations by first establishing a Plancherel–Pólya-type inequality related to the norm
‖ · ‖F s∞q(X), which completes the theory of function spaces on spaces of homogeneous
type. Moreover, the author establishes the connection between the space F s∞q(X) and
the homogeneous Triebel–Lizorkin space Ḟ s∞q(X). In particular, he proves that bmo(X)
coincides with F 0

∞2(X).

1. Introduction. Analysis on metric spaces has recently aroused an
increasing interest; see [25, 20, 9, 22]. Especially, the theory of function
spaces on metric measure spaces, or more generally, spaces of homogeneous
type in the sense of Coifman and Weiss [2, 3] has been well developed;
see [23, 24, 13–18, 31, 34]. The homogeneous Besov and Triebel–Lizorkin
spaces on spaces of homogeneous type have been studied in [16, 11]. In [13],
the inhomogeneous Besov and Triebel–Lizorkin spaces on spaces of homo-
geneous type were introduced by use of the generalized Littlewood–Paley
g-functions when p, q ≥ 1. In [14], the inhomogeneous Triebel–Lizorkin
spaces were generalized to the cases where 0 < p0 < p ≤ 1 ≤ q < ∞ via
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the generalized Littlewood–Paley S-functions. Using the discrete Calderón
reproducing formulae of [15], Han and the present author [18] further devel-
oped the theory of the inhomogeneous Besov and Triebel–Lizorkin spaces
when p ≤ 1 or q ≤ 1. Some applications are given in [17, 18, 31, 33].

The main purpose of this paper is to generalize inhomogeneous Triebel–
Lizorkin spaces on spaces of homogeneous type to the case p = ∞. The
theory of the corresponding homogeneous spaces has been established in [34].
However, due to the inhomogeneity, some new ideas and techniques are
necessary.

We begin by recalling some necessary definitions and notation for spaces
of homogeneous type.

A quasi-metric % on a set X is a function % : X ×X → [0,∞) satisfying:

(i) %(x, y) = 0 if and only if x = y;
(ii) %(x, y) = %(y, x) for all x, y ∈ X;

(iii) there exists a constant A ∈ [1,∞) such that for all x, y, z ∈ X,

%(x, y) ≤ A[%(x, z) + %(z, y)].

Any quasi-metric defines a topology for which the balls

B(x, r) = {y ∈ X : %(y, x) < r}
for all x ∈ X and all r > 0 form a basis.

We set diamX = sup{%(x, y) : x, y ∈ X} and Z+ = N ∪ {0}. We also
make the following conventions. We write f ∼ g when there is a constant
C > 0 independent of the main parameters such that C−1g < f < Cg.
Throughout the paper, we denote by C a positive constant which is inde-
pendent of the main parameters, but it may vary from line to line. Constants
with subscripts, such as C1, do not change in different occurrences. For any
q ∈ [1,∞], we denote by q′ its conjugate index, namely, 1/q+ 1/q′ = 1. If A
is a set then χA denotes the characteristic function of A.

Definition 1. Let d > 0 and θ ∈ (0, 1]. A space of homogeneous type,
(X, %, µ)d,θ, is a set X together with a quasi-metric % and a nonnegative
Borel regular measure µ on X, such that there exists a constant C0 > 0
such that for all 0 < r < diamX and all x, x′, y ∈ X,

µ(B(x, r)) ∼ rd,(1.1)

|%(x, y)− %(x′, y)| ≤ C0%(x, x′)θ[%(x, y) + %(x′, y)]1−θ.(1.2)

The above notion was introduced in [17]; it is a variant of the space of
homogeneous type introduced by Coifman and Weiss [2]. In [23], Maćıas and
Segovia have proved that one can replace the quasi-metric % of the space
of homogeneous type in the sense of Coifman and Weiss by another quasi-
metric % which yields the same topology and (X,%, µ) is as in Definition 1
with d = 1.
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In the most part of this paper, µ(X) can be infinite or finite. This means
that the spaces of homogeneous type considered by us include various frac-
tals. It is well known that spaces of homogeneous type in the sense of Defini-
tion 1 include metric measure spaces, the Euclidean space, the C∞-compact
Riemannian manifolds, the boundaries of Lipschitz domains and, in particu-
lar, the Lipschitz manifolds introduced recently by Triebel [30], as well as the
isotropic and anisotropic d-sets in Rn. It has been proved by Triebel [28, 29]
that the isotropic and anisotropic d-sets in Rn include various kinds of self-
affine fractals, for example, the Cantor set, the generalized Sierpiński carpet
and so forth. We particularly point out that the spaces of homogeneous type
in the sense of Definition 1 also include the postcritically finite self-similar
fractals studied by Kigami [21] and by Strichartz [26], and the metric spaces
with heat kernel studied by Grigor’yan, Hu and Lau [8]. More examples of
spaces of homogeneous type can be found in [2, 3, 25].

Let us now recall the definition of the space of test functions.

Definition 2 ([10]). Fix γ > 0 and β > 0. A function f defined on X
is said to be a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0 if f
satisfies the following conditions:

(i) |f(x)| ≤ C rγ

(r + %(x, x0))d+γ ;

(ii) |f(x)− f(y)| ≤ C
(

%(x, y)
r + %(x, x0)

)β rγ

(r + %(x, x0))d+γ

for %(x, y) ≤ 1
2A

[r + %(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and
the norm of f in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.
Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy to
check that G(β, γ) is a Banach space with respect to the norm in G(β, γ).
Also, let the dual space (G(β, γ))′ be all linear functionals L from G(β, γ)
to C with the property that there exists C ≥ 0 such that for all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing between h ∈ (G(β, γ))′ and f ∈
G(β, γ). Clearly, for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all f ∈
G(x0, r, β, γ) with x0 ∈ X and r > 0.
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It is well known that even when X = Rn, G(β1, γ) is not dense in G(β2, γ)
if β1 > β2, which will bring us some inconvenience. To overcome this defect,
in what follows, for a given ε ∈ (0, θ], we let G

◦
(β, γ) be the completion of

the space G(ε, ε) in G(β, γ) when 0 < β, γ < ε.

Definition 3 ([11]). A sequence {Sk}k∈Z+ of linear operators is said to
be an approximation to the identity of order ε ∈ (0, θ] if there exists C1 > 0
such that for all k ∈ Z+ and all x, x′, y, y′ ∈ X, Sk(x, y), the kernel of Sk, is
a function from X ×X into C satisfying

(i) |Sk(x, y)| ≤ C1
2−kε

(2−k + %(x, y))d+ε ;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C1

(
%(x, x′)

2−k + %(x, y)

)ε 2−kε

(2−k + %(x, y))d+ε

for %(x, x′) ≤ 1
2A

(2−k + %(x, y));

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C1

(
%(y, y′)

2−k + %(x, y)

)ε 2−kε

(2−k + %(x, y))d+ε

for %(y, y′) ≤ 1
2A

(2−k + %(x, y));

(iv) |[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C1

(
%(x, x′)

2−k + %(x, y)

)ε( %(y, y′)
2−k + %(x, y)

)ε 2−kε

(2−k + %(x, y))d+ε

for %(x, x′) ≤ 1
2A

(2−k + %(x, y)) and %(y, y′) ≤ 1
2A

(2−k + %(x, y));

(v)
�

X

Sk(x, y) dµ(y) = 1;

(vi)
�

X

Sk(x, y) dµ(x) = 1.

Remark 1. By Coifman’s construction [4], one can construct an approx-
imation to the identity of order θ such that Sk(x, y) has a compact support
when one variable is fixed, namely, there is a constant C2 > 0 such that for
all k ∈ Z+, Sk(x, y) = 0 if %(x, y) ≥ C22−k.

We also need the following construction given by Christ [1], which pro-
vides an analogue of the grid of Euclidean dyadic cubes on spaces of homo-
geneous type, and the discrete Calderón reproducing formulae in [15].

Lemma 1. Let X be a space of homogeneous type. Then there exists a
collection

{Qkα ⊂ X : k ∈ Z, α ∈ Ik}
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of open subsets, where Ik is some index set , and constants δ ∈ (0, 1) and
C3, C4 > 0 such that

(i) µ(X \⋃αQ
k
α) = 0 for each fixed k and Qk

α ∩Qkβ = ∅ if α 6= β;
(ii) for any α, β, k, l with l ≥ k, either Ql

β ⊂ Qkα or Qlβ ∩Qkα = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that Qk

α⊂Qlβ;
(iv) diam(Qkα) ≤ C3δ

k;
(v) each Qkα contains some ball B(zkα, C4δ

k), where zkα ∈ X.

In fact, we can think of Qk
α as being a dyadic cube with diameter roughly

δk and centered at zkα. In what follows, we always suppose δ = 1/2. See [16]
for how to remove this restriction. Also, in the following, for k ∈ Z+ and
τ ∈ Ik, we will denote by Qk,ν

τ , ν = 1, . . . , N(k, τ), the set of all cubes
Qk+j
τ ′ ⊂ Qkτ , where j is a fixed large positive integer. Denote by yk,ντ a point

in Qk,ντ . For any dyadic cube Q and any f ∈ L1
loc(X), we set

mQ(f) =
1

µ(Q)

�

Q

f(x) dµ(x).

The plan of this paper is as follows. In the next section, we first in-
troduce the norm ‖ · ‖F s∞q(X). By using the Calderón reproducing formulae
of [15], we then establish an inequality of Plancherel–Pólya type related to
this norm; see Theorem 1 below. Applying this inequality, we show that
‖ · ‖F s∞q(X) is independent of the choice of approximations to the identity
(Proposition 1) and the choice of the spaces of distributions (Theorem 2).
We then introduce the inhomogeneous Triebel–Lizorkin spaces F s

∞q(X) in
Definition 5 and prove in Theorem 3 that if 1 ≤ q ≤ ∞, these spaces can be
characterized quite similarly to the Euclidean case in [6].

In Section 3, we first give the frame characterization of the spaces
F s∞q(X) (Theorems 4 and 5). We then establish the connection between
F s∞q(X) and the homogeneous Triebel–Lizorkin space Ḟ s∞q(X) in Theorem 6,
which is new even when X = Rn. The relation between F spq(X) and Ḟ s∞q(X)
is also stated in Theorem 7. Finally, we verify that bmo(X) = F 0

∞2(X) in
Proposition 4.

Applications of our results to duality, interpolation and boundedness of
Calderón–Zygmund operators will be discussed in another paper; cf. [6, 32].

2. Triebel–Lizorkin space F s∞q(X). In this section, we first introduce
the norm ‖·‖F s∞q(X) in spaces of distributions by using approximations to the
identity. Via an inequality of Plancherel–Pólya type related to this norm, we
then prove that ‖·‖F s∞q(X) is independent of the choice of the approximations
to the identity. Under some restrictions, we also verify that the definition of
‖ · ‖F s∞q(X) is independent of the choice of spaces of distributions. Finally,
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we introduce the inhomogeneous Triebel–Lizorkin space F s
∞q(X) and give

some of their basic properties.

Definition 4. Let ε ∈ (0, θ], |s| < ε and {Sk}k∈Z+ be an approximation
to the identity of order ε as in Definition 3, D0 = S0 and Dk = Sk − Sk−1
for k ∈ N. If

max{d/(d+ ε), d/(d+ s+ ε)} < q ≤ ∞
and 0 < β, γ < ε, for any f ∈ (G

◦
(β, γ))′, we define the norm ‖f‖F s∞q(X) by

‖f‖F s∞q(X) = max
{

sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q}

,

where Q0,ν
τ with τ ∈ I0 and ν = 1, . . . , N(0, τ) are as in the preceding section

and {Qlα : l ∈ N, α ∈ Il} is as in Lemma 1.

To verify that Definition 4 is independent of the choice of approxima-
tions to the identity, we only need to establish the following inequality of
Plancherel–Pólya type by using Lemma 1.

Theorem 1. Let ε ∈ (0, θ], |s| < ε, {Sk}k∈Z+ and {Gk}k∈Z+ be two ap-
proximations to the identity of order ε as in Definition 3, D0 = S0, E0 = G0,
Dk = Sk − Sk−1 and Ek = Gk − Gk−1 for k ∈ N. Let max{d/(d + ε),
d/(d+ s+ ε)} < q ≤ ∞, and 0 < β, γ < ε. Then there is a constant C > 0
such that for all f ∈ (G

◦
(β, γ))′,

max
{

sup
τ∈I0

ν=1,...,N(0,τ)

m
Q0,ν
τ

(|E0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) sup
x∈Qk,ντ ⊂Qlα

|Ek(f)(x)|q
]1/q}

≤ C max
{

sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q}

,

where Q0,ν
τ and {Qlα} are as above.

To prove Theorem 1, we first recall the following discrete Calderón re-
producing formula of [15].
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Lemma 2. Let Sk an Dk be as in Theorem 1. Then there exists a family
of functions S̃0,ν

τ (x) for τ ∈ I0 and ν = 1, · · · , N(0, τ) such that for any
fixed yk,ντ ∈ Qk,ντ with k ∈ N, τ ∈ Ik and ν ∈ {1, . . . , N(k, τ)} and all

f ∈ (G◦(β1, γ1))′ with 0 < β1 < ε and 0 < γ1 < ε,

f(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )D0,ν

τ,1(f)S̃0,ν
τ (x)(2.1)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )Dk(f)(yk,ντ )D̃k(x, yk,ντ ),

where the series converges in (G
◦
(β′1, γ

′
1))′ for β1 < β′1 < ε and γ1 < γ′1 < ε.

The function S̃0,ν
τ (x) for τ ∈ I0 and ν = 1, . . . , N(0, τ) satisfies

(i) � X S̃0,ν
τ (x) dµ(x) = 1;

(ii) there is a constant C > 0 such that

|S̃0,ν
τ (x)| ≤ C 1

(1 + %(x, y))d+ε

for all x ∈ X and y ∈ Q0,ν
τ ;

(iii) for any given ε′ ∈ (0, ε),

|S̃0,ν
τ (x)− S̃0,ν

τ (z)| ≤ C%(x, z)ε
′ 1
(1 + %(x, y))d+ε

for all x, z ∈ X and all y ∈ Q0,ν
τ satisfying

%(x, z) ≤ 1
2A

(1 + %(x, y)).

Furthermore, for τ ∈ I0 and ν = 1, . . . , N(0, τ),

D0,ν
τ,1(f) =

�

X

D0,ν
τ,1(y)f(y) dµ(y),

where
D0,ν
τ,1(y) =

1

µ(Q0,ν
τ )

�

Q0,ν
τ

D0(z, y) dµ(z).

Moreover , D̃k(x, y) for k ∈ N satisfies conditions (i) and (ii) of Definition 3
with ε replaced by ε′ ∈ (0, ε), and

�

X

D̃k(x, y) dµ(y) =
�

X

D̃k(x, y) dµ(x) = 0, k ∈ N.

Remark 2. Property (iii) of S̃0,ν
τ (x) for τ ∈ I0 and ν = 1, . . . , N(0, τ) in

Lemma 2 is not exactly the same as in [15]. However, by a careful check on
the proof there, one can find that S̃0,ν

τ (x) for τ ∈ I0 and ν = 1, . . . , N(0, τ)
does satisfy (iii) of Lemma 2.
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Proof of Theorem 1. With the notation of Theorem 1 and Lemma 2, we
first recall that for all y ∈ Q0,ν′

τ ′ with τ ′ ∈ I0 and ν ′ = 1, . . . , N(0, τ ′) and all
x ∈ X,

(2.2) |E0(S̃0,ν′
τ ′ )(x)| ≤ C 1

(1 + %(x, y))d+ε ,

and for all k′ ∈ N, all x, y ∈ X and any ε′ ∈ (0, ε),

(2.3) |E0(D̃k′)(x, y)| ≤ C2−k
′ε′ 1

(1 + %(x, y))d+ε′ ;

see [10, 13, 17] for the proof.
From (2.1), it follows that for τ ∈ I0 and ν = 1, . . . , N(0, τ),

mQ0,ν
τ

(|E0(f)|) ≤ sup
x∈Q0,ν

τ

|E0(f)(x)|

≤
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′

τ ′ )m
Q0,ν′
τ ′

(|D0(f)|) sup
x∈Q0,ν

τ

|E0(S̃0,ν′

τ ′ )(x)|

+
∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )| sup

x∈Q0,ν
τ

|E0(D̃k′)(x, y
k′,ν′
τ ′ )|

= G1 +G2.

For G1, the estimate (2.2) and the fact that

inf
x∈Q0,ν

τ

{1 + %(x, y)} ∼ sup
z∈Q0,ν′

τ ′

{1 + %(y0,ν
τ , z)}

for all y ∈ Q0,ν′
τ ′ yield

G1 ≤ C sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|D0(f)|)
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

× inf
y∈Q0,ν′

τ ′

1

(1 + %(y0,ν
τ , y))d+ε

≤ C sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|D0(f)|)
�

X

1

(1 + %(y0,ν
τ , y))d+ε

dµ(y)

≤ C sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|D0(f)|),

which is the desired estimate.
To estimate G2, we first recall the well known inequality

(2.4)
(∑

j

|aj|
)q
≤
∑

j

|aj |q
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for all aj ∈ C and q ∈ (0, 1]. From the estimate (2.3), and the inequality
(2.4) if q ≤ 1 or the Hölder inequality if q > 1, it follows that

G2 ≤ C
∞∑

k′=1

2−k
′ε′
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|

× 1

(1+%(y0,ν
τ , yk

′,ν′
τ ′ ))d+ε′

≤





C

∞∑

k′=1

2−k
′(ε′+s+d)

{ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|Dk′(f)(yk

′,ν′
τ ′ )|q

}1/q
, q ≤ 1,

C

∞∑

k′=1

2−k
′ε′
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′

τ ′ )|Dk′(f)(yk
′,ν′

τ ′ )|q
]1/q

×
[ �

X

1

(1 + %(y0,ν
τ , y))d+ε′

dµ(y)
]1/q′

, q > 1,

≤





C

∞∑

k′=1

2−k
′(ε′+s+d)

{ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|Dk′(f)(yk

′,ν′
τ ′ )|q

}1/q
, q ≤ 1,

C

∞∑

k′=1

2−k
′(ε′+s+d/q)

[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|Dk′(f)(yk

′,ν′
τ ′ )|q

]1/q
, q > 1

≤ C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

,

where we chose ε′ ∈ (0, ε) such that ε′+ s > 0 and we used the arbitrariness
of yk

′,ν′

τ ′ and the trivial estimate

(2.5)
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|Dk′(f)(yk

′,ν′
τ ′ )|q

]1/q

≤ C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

.

Thus, we have obtained the desired estimate for G2.
To finish the proof of Theorem 1, we need the following estimates: for

all k ∈ N, x ∈ X and ε′ ∈ (0, ε),

(2.6) |Ek(S̃0,ν′
τ ′ )(x)| ≤ C2−kε

′ 1

(1 + %(x, y0,ν′
τ ′ ))d+ε

,
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and for all k, k′ ∈ N, x, y ∈ X and ε′ ∈ (0, ε),

(2.7) |EkD̃k′(x, y)| ≤ C2−|k−k
′|ε′ 2−(k∧k′)ε′

(2−(k∧k′)ε′ + %(x, y))d+ε′
;

here and in what follows, k ∧ k′ = min{k, k′}.
The proof of (2.7) can be found in [10, 13, 17]. For the reader’s conve-

nience, we now give some details for the proof of (2.6). By the vanishing
moment of Ek and the regularity of D̃k′ , we obtain

|Ek(S̃0,ν′
τ ′ )(x)| =

∣∣∣
�

X

Ek(x, y)S̃0,ν′
τ ′ (y) dµ(y)

∣∣∣

=
∣∣∣

�

X

Ek(x, y)[S̃0,ν′
τ ′ (y)− S̃0,ν′

τ ′ (x)] dµ(y)
∣∣∣

≤
�

%(x,y)≤ 1
2A (1+%(x,y0,ν′

τ ′ ))

|Ek(x, y)| |S̃0,ν′
τ ′ (y)− S̃0,ν′

τ ′ (x)| dµ(y)

+
�

%(x,y)> 1
2A (1+%(x,y0,ν′

τ ′ ))

|Ek(x, y)|[|S̃0,ν′
τ ′ (y)|+ |S̃0,ν′

τ ′ (x)|] dµ(y)

≤
�

%(x,y)≤ 1
2A (1+%(x,y0,ν′

τ ′ ))

2−kε

(2−k + %(x, y))d+ε

%(x, y)ε
′

(1 + %(x, y0,ν′
τ ′ ))d+ε

dµ(y)

+
�

%(x,y)> 1
2A (1+%(x,y0,ν′

τ ′ ))

2−kε

(2−k + %(x, y))d+ε

×
[

1

(1 + %(y, y0,ν′
τ ′ ))d+ε

+
1

(1 + %(x, y0,ν′
τ ′ ))d+ε

]
dµ(y)

≤ C2−kε
′ 1

(1 + %(x, y0,ν′
τ ′ ))d+ε

,

which is just (2.6).
For any l ∈ N and α ∈ Il, from (2.1), it follows that

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) sup
x∈Qk,ντ ⊂Qlα

|Ek(f)(x)|q
]1/q

≤ C
{

1
µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )m

Q0,ν′
τ ′

(|D0(f)|) sup
x∈Qk,ντ

|Ek(S̃0,ν′
τ ′ )(x)|

]q}1/q
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+ C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )| sup

x∈Qk,ντ
|EkD̃k′(x, y

k′,ν′
τ ′ )|

]q}1/q

= H1 +H2.

The estimate (2.6) and Lemma 1 lead us to

H1 ≤ C sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|D0(f)|)
{

1
µ(Qlα)

∞∑

k=l

2k(s−ε′)q∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )

× χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

[ �

X

1

(1 + %(yk,ντ , y))d+ε
dµ(y)

]q}1/q

≤ C sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|D0(f)|)
{ ∞∑

k=l

2k(s−ε′)q
}1/q

≤ C sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|D0(f)|),

where we chose ε′ ∈ (0, ε) such that ε′ > s.
To estimate H2, by (2.7), we further decompose H2 into

H2 ≤ C
{

1
µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|2−|k−k′|ε′

× 2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]q}1/q

≤ C
{

1
µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ l∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|2−(k−k′)ε′

× 2−k
′ε′

(2−k′ + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]q}1/q
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+ C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|2−|k−k′|ε′

× 2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]q}1/q

= J1 + J2.

For J1, by (2.5), (2.4) if q ≤ 1 or the Hölder inequality if q > 1, we then
have

J1≤





C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ l∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−(k−k′)ε′q|Dk′(f)(yk
′,ν′
τ ′ )|q

]q}1/q

, q≤ 1,

C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
( l∑

k′=1

2−(k−k′)ε′
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

|Dk′(f)(yk
′,ν′
τ ′ )|q

]1/q

×
[ �

X

2−k
′ε′

(2−k′ + %(yk,ντ , y))d+ε′
dµ(y)

]1/q′)q}1/q

, q > 1,

≤C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

×





{ ∞∑

k=l

2k(s−ε′)q
}1/q{ l∑

k′=1

2k
′(ε′−s)q

}1/q
, q ≤ 1,

{ ∞∑

k=l

2k(s−ε′)q
}1/q{ l∑

k′=1

2k
′(ε′−s)

}
, q > 1,

≤ C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

,

where we chose ε′ ∈ (0, ε) such that ε′ > s.
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To estimate J2, let zlα be the center of Ql
α, as in Lemma 1. Choose

m1 ∈ N such that B(zlα, A
2C32m1−l) ⊃ Qlα, and for all y ∈ Ql

α and x 6∈
B(zlα, A

2C32m1−l), %(x, y)≥ 2−l, where m1 is independent of P . By Lemma 1
again, there is m ∈ N independent of Ql

α such that B(zlα, A
2C32m1−l) ⊂⋃m

i=1Q
l+1
τ i

, where τ i ∈ Il+1 for i = 1, . . . ,m. With this choice, we now
further decompose J2 into

J2 ≤ C
{

1
µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|2−|k−k′|ε′

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂

⋃m
i=1 Q

l+1
τi
}(k
′, τ ′, ν ′)

× 2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]q}1/q

+ C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|2−|k−k′|ε′

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ∩

⋃m
i=1 Q

l+1
τi

=∅}(k
′, τ ′, ν ′)

× 2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]q}1/q

= J1
2 + J2

2 .

For J1
2 , the inequality (2.4) if q ≤ 1 or the Hölder inequality if q > 1

yields

J1
2 ≤ C

m∑

i=1

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′

τ ′ )|Dk′(f)(yk
′,ν′

τ ′ )|2−|k−k′|ε′

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
τi
}(k
′, τ ′, ν ′)

2−(k∧k′)ε′

(2−(k∧k′)+%(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]q}1/q
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≤





C

m∑

i=1

{
1

µ(Ql+1
τ i

)

∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
τi
}(k
′, τ ′, ν ′)

[ ∞∑

k=l

2(k−k′)sq−|k−k′|ε′q+k′d(1−q)

×
�

X

2−(k∧k′)ε′q

(2−(k∧k′) + %(x, yk
′,ν′
τ ′ ))(d+ε′)q

dµ(x)
]}1/q

, q ≤ 1,

C

m∑

i=1

{
1

µ(Ql+1
τ i

)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q2(k−k′)s−|k−k′|ε′

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
τi
}(k
′, τ ′, ν ′)

2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]

×
[ ∞∑

k′=l+1

2(k−k′)s−|k−k′|ε′

×
�

X

2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , y))d+ε′
dµ(y)

]q/q′}1/q

, q > 1,

≤





C

m∑

i=1

{
1

µ(Ql+1
τ i

)

∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
τi
}(k
′, τ ′, ν ′)

}1/q

, q ≤ 1,

C

m∑

i=1

{
1

µ(Ql+1
τ i

)

∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
τi
}(k
′, τ ′, ν ′)

[ ∞∑

k=l

2(k−k′)s−|k−k′|ε′

×
�

X

2−(k∧k′)ε′

(2−(k∧k′) + %(x, yk
′,ν′
τ ′ ))d+ε′

dµ(x)
]}1/q

, q > 1,

≤ C
m∑

i=1

{
1

µ(Ql+1
τ i

)

∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
τi
}(k
′, τ ′, ν ′)

}1/q
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≤ C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

,

where we used the arbitrariness of yk
′,ν′

τ ′ and we chose ε′ ∈ (0, ε) such that
ε′ > |s| and q > max{d/(d+ ε′), d/(d+ s+ ε′)}.

Finally, to finish the proof of Theorem 1, we estimate J2
2 by first consid-

ering the case q ≤ 1. In this case, the inequality (2.4) and Lemma 1 tell us
that

J2
2 ≤ C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )q|Dk′(f)(yk

′,ν′
τ ′ )|q2−|k−k′|ε′q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ∩

⋃m
i=1 Q

l+1
τi

=∅}(k
′, τ ′, ν ′)

× 2−(k∧k′)ε′q

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))(d+ε′)q

]}1/q

≤ C
{

1
µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∑

α′∈Il+1
α′ 6=τ1,...,τm

∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )q|Dk′(f)(yk

′,ν′
τ ′ )|q2−|k−k′|ε′q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
α′ }

(k′, τ ′, ν ′)
2−(k∧k′)ε′q

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))(d+ε′)q

]}1/q

≤ C
{

1
µ(Qlα)

∞∑

k=l

[ ∞∑

j=0

∑

α′∈Il+1
α′ 6=τ1,...,τm

χ{α′ : %(zl+1
α′ ,z

l
α)∼2j−l}(α

′)

×
∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2(k−k′)sq−|k−k′|ε′q−(k∧k′)ε′q2k
′sqµ(Qk

′,ν′
τ ′ )q

× |Dk′(f)(yk
′,ν′
τ ′ )|qχ{(k′,τ ′,ν′) :Qk

′,ν′
τ ′ ⊂Q

l+1
α′ }

(k′, τ ′, ν ′)

×
�

{y∈Qlα : %(y,yk
′,ν′
τ ′ )∼C2j−l}

1

%(y, yk
′,ν′
τ ′ )(d+ε′)q

dµ(y)
]}1/q
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≤ C
{ ∞∑

j=0

2−j(d+ε′)q
∑

α′∈Il+1
α′ 6=τ1,...,τm

χ{α′ : %(zl+1
α′ ,z

l
α)∼2j−l}(α

′)
1

µ(Ql+1
α′ )

×
∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
α′ }

(k′, τ ′, ν ′)

×
[ ∞∑

k=l

2(k−k′)sq−|k−k′|ε′q+k′d(1−q)−(k∧k′)ε′q+l[(d+ε′)q−d]
]}1/q

≤ C
{ ∞∑

j=0

2j[d−(d+ε′)q]
}1/q

× sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

≤ C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

,

where we used the arbitrariness of yk
′,ν′
τ ′ and we chose ε′ ∈ (0, ε) such that

ε′ > s and q > max{d/(d+ ε′), d/(d+ s+ ε′)}.
We now finish the estimate for J2

2 by considering the case q > 1. In this
case, the Hölder inequality and Lemma 1 yield

J2
2 ≤ C

{
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

×
[ ∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q2(k−k′)s−|k−k′|ε′

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ∩

⋃m
i=1 Q

l+1
τi

=∅}(k
′, τ ′, ν ′)

2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]

×
[ ∞∑

k′=l+1

2(k−k′)s−|k−k′|ε′ �

X

2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , y))d+ε′
dµ(y)

]q/q′}1/q

≤ C
{

1
µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )χ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)
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×
[ ∑

α′∈Il+1
α′ 6=τ1,...,τm

∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× 2(k−k′)s−|k−k′|ε′χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
α′ }

(k′, τ ′, ν ′)

× 2−(k∧k′)ε′

(2−(k∧k′) + %(yk,ντ , yk
′,ν′
τ ′ ))d+ε′

]}1/q

≤ C
{

1
µ(Qlα)

∞∑

k=l

[ ∞∑

j=0

∑

α′∈Il+1
α′ 6=τ1,...,τm

χ{α′ : %(zl+1
α′ ,z

l
α)∼2j−l}(α

′)

×
∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2(k−k′)s−|k−k′|ε′−(k∧k′)ε′2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
α′ }

(k′, τ ′, ν ′)

×
�

{y∈Qlα : %(y,yk
′,ν′
τ ′ )∼C2j−l}

1

%(y, yk
′,ν′
τ ′ )d+ε′

dµ(y)
]}1/q

≤ C
{ ∞∑

j=0

2−j(d+ε′)
∑

α′∈Il+1
α′ 6=τ1,...,τm

χ{α′ : %(zl+1
α′ ,z

l
α)∼2j−l}(α

′)
1

µ(Ql+1
α′ )

×
∞∑

k′=l+1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sqµ(Qk

′,ν′
τ ′ )|Dk′(f)(yk

′,ν′
τ ′ )|q

× χ{(k′,τ ′,ν′) :Qk
′,ν′
τ ′ ⊂Q

l+1
α′ }

(k′, τ ′, ν ′)

×
[ ∞∑

k=l

2(k−k′)s−|k−k′|ε′−(k∧k′)ε′+lε′
]}1/q

≤ C
{ ∞∑

j=0

2−jε
′
}1/q

× sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

≤ C sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q

,
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where we used the arbitrariness of yk
′,ν′
τ ′ and we chose ε′ ∈ (0, ε) such that

ε′ > |s|.
This finishes the proof of Theorem 1.

Remark 3. From the proof of Theorem 1, it is easy to see that the
key role played by {Ek}k∈Z is in the estimates (2.2), (2.3), (2.6) and (2.7).
However, to establish these estimates, we only need to use the regularity (iii)
as in Definition 3 of Ek for k ∈ Z+; see also [10, 13, 17]. This means that
if we replace the operators Ek by some other operators Dk for k ∈ Z+
whose kernels have the same properties as the kernels of Ek except for the
regularity (ii) of Definition 3, then the conclusion Theorem 1 still holds.
This observation is useful in some applications.

From Theorem 1, Lemma 1 and the construction of the cubes {Qk,ν
τ :

k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)}, it is easy to deduce the following
proposition.

Proposition 1. With the notation of Theorem 1, for all f ∈ (G
◦
(β, γ))′,

max
{

sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q}

∼ max
{

sup
τ∈I0

ν=1,...,N(0,τ)

m
Q0,ν
τ

(|E0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Ek(f)(x)|q dµ(x)
]1/q}

.

Proof. By Theorem 1, Lemma 1 and the construction of the cubes {Qk,ν
τ :

k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)}, we have

max
{

sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q}

≤ max
{

sup
τ∈I0

ν=1,...,N(0,τ)

m
Q0,ν
τ

(|D0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) sup
x∈Qk,ντ ⊂Qlα

|Dk(f)(x)|q
]1/q}
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≤ C max
{

sup
τ∈I0

ν=1,...,N(0,τ)

m
Q0,ν
τ

(|E0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ ) inf
x∈Qk,ντ ⊂Qlα

|Ek(f)(x)|q
]1/q}

≤ C max
{

sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|E0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Ek(f)(x)|q dµ(x)
]1/q}

.

By symmetry the proof of Proposition 1 is complete.

From Proposition 1, we deduce that the definition of the norm ‖·‖F s∞q(X)

with |s| < ε and max{d/(d+ ε), d/(d+ s + ε)} < q ≤ ∞ is independent of
the choice of approximations to the identity. We now verify that under some
restrictions on β and γ, it is also independent of the choice of spaces of
distributions.

Theorem 2. Let ε ∈ (0, θ], |s| < ε and max{d/(d+ ε), d/(d+ s+ ε)} <
q ≤ ∞. If f ∈ (G

◦
(β1, γ1))′ with max{0, d(1 − 1/q)+ − s − d} < β1 < ε,

0<γ1 < ε and ‖f‖F s∞q(X) <∞, then f ∈ (G
◦
(β2, γ2))′ with max{0, d(1−1/q)+

− s− d} < β2 < ε, 0 < γ2 < ε.

Proof. Let h ∈ G(ε, ε). With the notation of Lemma 2, we first claim
that for τ ∈ I0 and ν = 1, . . . , N(0, τ),

(2.8) |〈S̃0,ν
τ , h〉| ≤ C‖h‖G(β2,γ2)

1

(1 + %(y0,ν
τ , x0))d+γ2

,

and for all k ∈ N and all x, y ∈ X,

(2.9) |〈D̃k(·, y), h〉| ≤ C2−kβ2‖h‖G(β2,γ2)
1

(1 + %(y, x0))d+γ2
;

see [10, 13, 17, 18] for the proofs.
By (2.8), (2.9) and Lemma 2, we obtain

|〈f, h〉|

≤ C‖h‖G(β2,γ2)

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|) 1

(1 + %(y0,ν
τ , x0))d+γ2

+
∞∑

k=1

2−kβ2
∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )| 1

(1 + %(yk,ντ , x0))d+γ2

}
.
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If q ≤ 1, by (2.4), (2.5) and Proposition 1, we have

|〈f, h〉| ≤ C‖h‖G(β2,γ2)‖f‖F s∞q(X)(2.10)

×
{ �

X

1
(1 + %(y, x0))d+γ2

dµ(y) +
∞∑

k=1

2−k(β2+s+d)
}

≤ C‖h‖G(β2,γ2)‖f‖F s∞q(X),

where we used the fact that β2 > −s − d. If q > 1, the Hölder inequality,
(2.5) and Proposition 1 then tell us that

|〈f, h〉| ≤ C‖h‖G(β2,γ2)

{
‖f‖F s∞q(X)

�

X

1
(1 + %(y, x0))d+γ2

dµ(y)(2.11)

+
∞∑

k=1

2−kβ2
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )|q
]1/q

×
[ �

X

1
(1 + %(y, x0))d+γ2

dµ(y)
]1/q′}

≤ C‖h‖G(β2,γ2)‖f‖F s∞q(X)

{
1 +

∞∑

k=1

2−k(β2+s+d/q)
}

≤ C‖h‖G(β2,γ2)‖f‖F s∞q(X),

where we used the fact that β2 > −s− d/q in this case.
Suppose now h ∈ G◦(β2, γ2). We choose hn ∈ G(ε, ε) for any n ∈ N such

that
‖hn − h‖G(β2,γ2) → 0

as n→∞. The estimates of (2.10) and (2.11) show that for all n,m ∈ N,

|〈f, hn − hm〉| ≤ C‖f‖F s∞q(X)‖hn − hm‖G(β2,γ2),

which shows that limn→∞〈f, hn〉 exists and is independent of the choice of
hn. Therefore, we define

〈f, h〉 = lim
n→∞

〈f, hn〉.

By (2.10) and (2.11), for all h ∈ G
◦
(β2, γ2),

|〈f, h〉| ≤ C‖f‖F s∞q(X)‖h‖G(β2,γ2).

Thus, f ∈ (G◦(β2, γ2))′. This finishes the proof of Theorem 2.

We now introduce the space F s∞q(X).

Definition 5. Let ε ∈ (0, θ], {Sk}k∈Z+ be an approximation to the
identity of order ε as in Definition 3, D0 = S0 and Dk = Sk − Sk−1 for
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k ∈ N. Let |s| < ε,

max{d/(d+ ε), d/(d+ s+ ε)} < q ≤ ∞,
max{s+, d(1− 1/q)+ − s− d} < β < ε and 0 < γ < ε. We define the inho-
mogeneous Triebel–Lizorkin space F s∞q(X) to be the set of all f ∈ (G◦(β, γ))′

such that

‖f‖F s∞q(X) = max
{

sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|),

sup
l∈N

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q}

<∞,

where Q0,ν
τ with τ ∈ I0 and ν = 1, . . . , N(0, τ) are as in the preceding section

and {Qlα : l ∈ N, α ∈ Il} is as in Lemma 1.

Proposition 1 and Theorem 2 tell us that the definition of F s
∞q(X) is

independent of the choice of approximations to the identity and spaces of
distributions.

Remark 4. To guarantee that the definition of F s
∞q(X) is independent

of the choice of the distribution space (G
◦
(β, γ))′, we only need the restriction

max{0, d(1− 1/q)+ − s− d} < β < ε

and 0 < γ < ε; see Theorem 3. However, if s+ < β < ε and 0 < γ < ε,
we prove below that the space of test functions, G(β, γ), is contained in
F s∞q(X). Thus, F s∞q(X) is non-empty for β and γ as in Definition 5.

Proposition 2. Let ε ∈ (0, θ] and |s| < ε.

(i) If max{d/(d+ ε), d/(d+ s+ ε)} < p, q ≤ ∞, then

Bs
p,min(p,q)(X) ⊂ F spq(X) ⊂ Bs

p,max(p,q)(X).

(ii) If f ∈ G(β, γ) with max{0, s} < β < ε and 0 < γ < ε, then f ∈
F s∞q(X) with max{d/(d+ ε), d/(d+ s+ ε)} < q ≤ ∞.

Proof. The proof of (i) is trivial; see [27, Proposition 2.3.2/2, p. 47] and
[29, Proposition 2.3].

Let f ∈ G(β, γ) and {Dk}k∈Z+ be as in Definition 5. To verify (ii), we
first claim that for all k ∈ Z+ and all x ∈ X,

(2.12) |Dk(f)(x)| ≤ C2−kβ‖f‖G(β,γ)
1

(1 + %(x, x0))d+γ ;

see (2.8) and (2.9) and also [10, 13, 17, 18] for the proof.
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From (2.12) and Definition 5, it follows that

‖f‖F s∞q(X) ≤ C‖f‖G(β,γ) max
{

1,
∞∑

k=1

2k(s−β)q
}
≤ C‖f‖G(β,γ),

which finishes the proof of Proposition 2.

The following theorem gives a new characterization of the spaces F s
∞q(X)

when |s| < ε and 1 ≤ q ≤ ∞.

Theorem 3. Let ε ∈ (0, θ], |s| < ε and 1 ≤ q ≤ ∞. Let {Dk}k∈Z+ be

as in Definition 5. Then f ∈ F s∞q(X) if and only if f ∈ (G
◦
(β, γ))′ with

max{s+,−s− d/q} < β < ε and 0 < γ < ε, and

sup
l∈Z+

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q

<∞,

where we used the notation of Lemma 1. Moreover , in this case,

‖f‖F s∞q(X) ∼ sup
l∈Z+

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q

.

Proof. By the Hölder inequality and Lemma 1, it is easy to see that
there is a constant C > 0 such that for all f ∈ F s

∞q(X),

(2.13) ‖f‖F s∞q(X) ≤ C sup
l∈Z+

sup
α∈Il

[
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
]1/q

.

Lemma 1 again tells us that to establish the reverse inequality, it suffices
to verify that there is a constant C > 0 such that for all f ∈ F s

∞q(X) and
τ ∈ I0,

(2.14)
[

1
µ(Q0

τ )

�

Q0
τ

|D0(f)(x)|q dµ(x)
]1/q

≤ C‖f‖F s∞q(X).

By the construction of {Q0,ν
τ : τ ∈ I0, ν = 1, . . . , N(0, τ)}, we can further

control the left-hand side of (2.14) by
[

1
µ(Q0

τ )

�

Q0
τ

|D0(f)(x)|q dµ(x)
]1/q

≤
[

1
µ(Q0

τ )

N(0,τ)∑

ν=1

µ(Q0,ν
τ ) sup

x∈Q0,ν
τ

|D0(f)(x)|q
]1/q

≤ sup
ν=1,...,N(0,τ)

sup
x∈Q0,ν

τ

|D0(f)(x)|.
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Using Lemma 2 and repeating the estimates for G1 and G2 as in the proof
of Theorem 1, we can verify that for all τ ∈ I0 and ν = 1, . . . , N(0, τ),

sup
x∈Q0,ν

τ

|D0(f)(x)| ≤ C‖f‖F s∞q(X),

where C > 0 is independent of τ , ν and f . This shows (2.4) and completes
the proof of Theorem 3.

3. Some characterizations. We first establish the frame character-
ization of the spaces F s∞q(X). The frame characterizations of the spaces
Bs
pq(X) and F spq(X) with p 6= ∞ can be found in [32, 17]. To this end, we

first introduce a space of sequences, f s∞q(X). Let

(3.1) λ = {λk,ντ : k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)}

be a sequence of complex numbers. The space f s∞q(X) with s ∈ R and
0 < q ≤ ∞ is the set of all λ as in (3.1) such that

‖λ‖fs∞q(X) = max
{

sup
τ∈I0

ν=1,...,N(0,τ)

|λ0,ν
τ |, sup

l∈N
sup
α∈Il

[
1

µ(Qlα)

×
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqµ(Qk,ντ )|λk,ντ |qχ{(k,τ,ν) :Qk,ντ ⊂Qlα}
(k, τ, ν)

]1/q}
<∞.

Theorem 4. Let ε ∈ (0, θ] and |s| < ε. Let λ be a sequence as in (3.1).
With the notation of Lemma 2, if max{d/(d + ε), d/(d + s + ε)} < q ≤ ∞
and ‖λ‖fs∞q(X) <∞, then the series

(3.2)
∑

τ∈I0

N(0,τ)∑

ν=1

λ0,ν
τ µ(Q0,ν

τ )S̃0,ν
τ (x) +

∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )D̃k(x, yk,ντ )

converges in (G◦(β, γ))′ with

(3.3) max{0, d(1− 1/q)+ − s− d} < β < ε, 0 < γ < ε.

Moreover ,

(3.4) ‖f‖F s∞q(X) ≤ C‖λ‖fs∞q(X).

Proof. The proof is similar to that of Proposition 4.1 in [17] and The-
orem 2.1 in [32]. We only give an outline. First, we need to verify that if
‖λ‖fs∞q(X) < ∞, then the series in (3.2) converges in (G

◦
(β, γ))′ with β and

γ as in (3.3). Without loss of generality, we may assume that Ik = N for all



86 D. C. Yang

k ∈ Z+. For L ∈ N, we define

fL(x) =
L∑

τ=1

N(0,τ)∑

ν=1

λ0,ν
τ µ(Q0,ν

τ )S̃0,ν
τ (x) +

L∑

k=1

L∑

τ=1

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )D̃k(x, yk,ντ ).

We note that by construction, N(k, τ) is always finite for all k ∈ Z+ and
τ ∈ Ik.

Let ψ ∈ G(β, γ) with β, γ as in (3.3). For any L1, L2 ∈ N with L1 < L2,
we write

|〈fL2 − fL1 , ψ〉| ≤
∣∣∣
〈 L2∑

τ=L1+1

N(0,τ)∑

ν=1

λ0,ν
τ µ(Q0,ν

τ )S̃0,ν
τ (·), ψ

〉∣∣∣

+
∣∣∣
〈 L2∑

k=L1+1

L2∑

τ=1

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )D̃k(·, yk,ντ ), ψ
〉∣∣∣

+
∣∣∣
〈 L1∑

k=1

L2∑

τ=L1+1

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )D̃k(·, yk,ντ ), ψ
〉∣∣∣

= M1 +M2 +M3.

The estimate (2.8) and the fact that 1 + %(y0,ν
τ , x0) ∼ 1 + %(y, x0) for all

y ∈ Q0,ν
τ tell us that

M1 ≤
L2∑

τ=L1+1

N(0,τ)∑

ν=1

|λ0,ν
τ |µ(Q0,ν

τ )|〈S̃0,ν
τ (·), ψ〉|

≤ C‖ψ‖G(β,γ)

L2∑

τ=L1+1

N(0,τ)∑

ν=1

|λ0,ν
τ |µ(Q0,ν

τ )
1

(1 + %(y0,ν
τ , x0))d+γ

≤ C‖ψ‖G(β,γ)‖λ‖fs∞q(X)

�

⋃L2
τ=L1+1

⋃N(0,τ)
ν=1 Q0,ν

τ

1
(1 + %(y, x0))d+γ dµ(y)

→ 0 as L1, L2 →∞,

since

(3.5)
�

X

1
(1 + %(y, x0))d+γ dµ(y) <∞.

Using (2.9), (2.4) if q ≤ 1 and the Hölder inequality if q > 1, and the
fact that

(3.6) 1 + %(yk,ντ , x0) ∼ 1 + %(y, x0)
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for all y ∈ Qk,ντ , we obtain

M2 ≤ C‖ψ‖G(β,γ)

L2∑

k=L1+1

L2∑

τ=1

N(k,τ)∑

ν=1

|λk,ντ |µ(Qk,ντ )2−kβ
1

(1 + %(yk,ντ , x0))d+γ

≤ C‖ψ‖G(β,γ)





L2∑

k=L1+1

2−k(β+s+d)
[ L2∑

τ=1

N(k,τ)∑

ν=1

2ksq|λk,ντ |q
]1/q

, q ≤ 1,

L2∑

k=L1+1

2−k(β+s−d/q)
[ L2∑

τ=1

N(k,τ)∑

ν=1

2ksq|λk,ντ |q
]1/q

×
[ �

X

1
(1 + %(y, x0))d+γ dµ(y)

]1/q′

, q > 1,

≤ C‖ψ‖G(β,γ)‖λ‖fs∞q(X)





L2∑

k=L1+1

2−k(β+s+d), q ≤ 1,

L2∑

k=L1+1

2−k(β+s−d/q), q > 1,

→ 0 as L1, L2 →∞,

where we used (3.3) and the trivial estimate

(3.7)
[ ∞∑

τ=1

N(k,τ)∑

ν=1

2ksq|λk,ντ |q
]1/q
≤ C‖λ‖fs∞q(X).

From (2.9), (3.6), (2.4) if q ≤ 1 and the Hölder inequality if q > 1 again,
it follows that

M3 ≤ C‖ψ‖G(β,γ)

L1∑

k=1

L2∑

τ=L1+1

N(k,τ)∑

ν=1

|λk,ντ |µ(Qk,ντ )2−kβ
1

(1 + %(yk,ντ , x0))d+γ

≤ C‖ψ‖G(β,γ)

×





L1∑

k=1

2−k(β+s+d)
[ L2∑

τ=L1+1

N(k,τ)∑

ν=1

2ksq|λk,ντ |q
]1/q

, q ≤ 1,

L1∑

k=1

2−k(β+s−d/q)
[ L2∑

τ=L1+1

N(k,τ)∑

ν=1

2ksq|λk,ντ |q
]1/q

×
[ �

⋃L2
τ=L1+1

⋃N(k,τ)
ν=1 Qk,ντ

1
(1 + %(y, x0))d+γ dµ(y)

]1/q′
, q > 1,

→ 0 as L1, L2 →∞,
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where we used (3.3), the fact that if q <∞, then

[ L2∑

τ=L1+1

N(k,τ)∑

ν=1

2ksq|λk,ντ |q
]1/q
→ 0 as L1, L2 →∞

by (3.7), and the fact that if q =∞, then
�

⋃L2
τ=L1+1

⋃N(k,τ)
ν=1 Qk,ντ

1
(1 + %(y, x0))d+γ dµ(y)→ 0 as L1, L2 →∞

by (3.5).
Thus, for any given ψ ∈ G(β, γ), {〈fL, ψ〉}L∈N is a Cauchy sequence,

which means that the series in (3.2) converges to some f ∈ (G
◦
(β, γ))′ with

β, γ as in (3.3) if λ ∈ f s∞q(X). Moreover, by repeating the argument of
Theorem 1, we can verify (3.4). This completes the proof of Theorem 4.

Combining Theorems 4 and 1, we obtain the frame characterization of
the space F s∞q(X).

Theorem 5. Let ε ∈ (0, θ], |s| < ε and max{d/(d+ ε), d/(d+ s+ ε)} <
q ≤ ∞. With the notation of Lemma 2, let λk,ντ = Dk(f)(yk,ντ ) for k ∈ N,
τ ∈ Ik and ν = 1, . . . , N(k, τ), and λ0,ν

τ = D0,ν
τ,1(f) for τ ∈ I0 and ν =

1, . . . , N(0, τ). Then f ∈ F s∞q(X) if and only if f ∈ (G
◦
(β, γ))′ with β, γ as

in Definition 5, (2.1) holds in (G
◦
(β′, γ′))′ with β < β′ < ε and γ < γ′ < ε,

and λ ∈ f s∞q(X). Moreover , in this case,

‖f‖F s∞q(X) ∼ ‖λ‖fs∞q(X).

Now we come to establish a connection between the inhomogeneous
Triebel–Lizorkin space F s∞q(X) and the homogeneous Triebel–Lizorkin
space Ḟ s∞q(X) when µ(X) = ∞. To this end, we first recall the defini-
tion of homogeneous approximations to the identity with compact support
(see [16]).

Definition 6. A sequence {Sk}∞k=−∞ of linear operators is said to be
an approximation to the identity of order ε ∈ (0, θ] if there exist C5, C6 > 0
such that for all k ∈ Z and all x, x′, y, y′ ∈ X, Sk(x, y), the kernel of Sk is a
function from X ×X into C satisfying

(i) Sk(x, y) = 0 if %(x, y) ≥ C52−k and ‖Sk‖L∞(X×X) ≤ C62dk;
(ii) |Sk(x, y)− Sk(x′, y)| ≤ C52k(d+ε)%(x, x′)ε;

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C52k(d+ε)%(y, y′)ε;
(iv) |[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C52k(d+2ε)%(x, x′)ε%(y, y′)ε;
(v) � X Sk(x, y) dµ(y) = 1;
(vi) � X Sk(x, y) dµ(x) = 1.
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The following homogeneous Triebel–Lizorkin space Ḟ s∞q(X) was intro-
duced in [34]. For 0 < β, γ < ε, we define

G0(β, γ) =
{
f ∈ G(β, γ) :

�

X

f(x) dµ(x) = 0
}
.

Definition 7. Let ε ∈ (0, θ] and {Sk}k∈Z be an approximation to the
identity of order ε as in Definition 6 and Dk = Sk − Sk−1 for k ∈ Z. Let
|s| < ε,

max{d/(d+ ε), d/(d+ s+ ε)} < q ≤ ∞,
max{s+, d(1− 1/q)+ − s − d} < β < ε, and max{−s − d, s+} < γ < ε. We
define the Triebel–Lizorkin space Ḟ s∞q(X) to be the set of all f ∈ (G

◦
0(β, γ))′

such that

‖f‖Ḟ s∞q(X) = sup
l∈Z

sup
α∈Il

{
1

µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)
}1/q

<∞,

where the notation is as in Lemma 1.

We remark that in [34], it was proved that the space defined in Defini-
tion 7 is independent of the choices of approximations to the identity and
spaces of distributions with β, γ as in Definition 7.

On the relation between Ḟ s∞q(X) and F s∞q(X), we have the following
conclusion.

Theorem 6. Let ε ∈ (0, θ], |s| < ε and max{d/(d+ ε), d/(d+ s+ ε)} <
q ≤ ∞. For any k0 ∈ Z, let Sk0 be as in Definition 6. If f ∈ Ḟ s∞q(X), then
f − Sk0(f) ∈ F s∞q(X) and

‖f − Sk0(f)‖F s∞q(X) ≤ C‖f‖Ḟ s∞q(X),

where C > 0 is independent of f .

Remark 5. If Sk0 in Theorem 6 does not have compact support, as in
Definition 3, then the conclusion of Theorem 6 still holds. However, this
needs a more complicated computation. In fact, it is easy to see that if
ψ(x, ·) ∈ G(x, r, ε, ε) and ψ(·, y) ∈ G(y, r, ε, ε) for all x, y ∈ X and some
r > 0, and �

X

ψ(x, y) dµ(x) = 1,

then the statement of Theorem 6 is also true with Sk0 replaced by ψ. We
leave the details to the reader.

To verify Theorem 6, we need the following discrete Calderón reproduc-
ing formula (see [12]).

Lemma 3. Let ε ∈ (0, θ], |s| < ε, and {Dk}∞k=−∞ be as in Defini-

tion 7. Then there is a family of functions {D̃k(x, y)}∞k=−∞ such that for
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all yk,ντ ∈ Qk,ντ and all f ∈ (G
◦
(β, γ))′ with 0 < β, γ < ε,

(3.8) f(x) =
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ντ )Dk(x, yk,ντ )D̃k(f)(yk,ντ ),

where the series converges in (G
◦
(β′, γ′))′ with β < β′ < ε and γ < γ′ < ε

and
D̃k(f)(x) =

�

X

D̃k(x, y)f(y) dµ(y).

Moreover , D̃k(x, y) for all k ∈ Z satisfies conditions (i) and (iii) of Defini-
tion 3 with ε replaced by ε′ ∈ (0, ε) and

�

X

D̃k(x, y) dµ(x) = 0 =
�

X

D̃k(x, y) dµ(y).

Proof of Theorem 6. In what follows, we let I be the identity operator.
For simplicity, we assume that k0 = 0. By (3.8), we can write

(3.9) S0(I − S0)(f)(x)

=
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′

τ ′ )S0(I − S0)Dk′(x, y
k′,ν′

τ ′ )D̃k′(f)(yk
′,ν′

τ ′ ).

Let us first verify that for all x, y ∈ X,

(3.10) |S0(I − S0)Dk′(x, y)| ≤ C2−|k
′|ε 2−(0∧k′)ε

(2−(0∧k′) + %(x, y))d+ε
.

To this end, we consider two cases.

Case 1: k′ ≥ 0. In this case,

|S0(I − S0)Dk′(x, y)|
=
∣∣∣

�

X

�

X

[S0(x, z)− S0(x, u)]S0(u, z)Dk′(z, y) dµ(u) dµ(z)
∣∣∣

≤
{∣∣∣

�

X

�

X

[S0(x, z)− S0(x, u)][S0(u, z)− S0(u, y)]Dk′(z, y) dµ(u) dµ(z)
∣∣∣

+
∣∣∣

�

X

[S0(x, z)− S0(x, y)]Dk′(z, y) dµ(z)
∣∣∣
}
χ{(x,y) : %(x,y)≤C}(x, y)

≤ C2−k
′εχ{(x,y) : %(x,y)≤C}(x, y)

≤ C2−k
′ε 1

(1 + %(x, y))d+ε ,

which is the desired estimate.
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Case 2: k′ < 0. In this case,

|S0(I − S0)Dk′(x, y)|
=
∣∣∣

�

X

�

X

[S0(x, z)− S0(x, u)]S0(u, z)Dk′(z, y) dµ(u) dµ(z)
∣∣∣

× χ{(x,y) : %(x,y)≤C2−k′}(x, y)

=
∣∣∣

�

X

�

X

[S0(x, z)− S0(x, u)]S0(u, z)[Dk′(z, y)−Dk′(x, y)] dµ(u) dµ(z)
∣∣∣

× χ{(x,y) : %(x,y)≤C2−k′}(x, y)

≤ C2k
′(d+ε)χ{(x,y) : %(x,y)≤C2−k′}(x, y) ≤ C2k

′ε 2−kε
′

(2−k′ + %(x, y))d+ε ,

which completes the proof of (3.10).
From (3.9), (3.10), the fact that 2−(0∧k′) + %(x, yk,ντ ) ∼ 2−(0∧k′) + %(x, y)

for all y ∈ Qk′,ν′τ ′ , (2.4) when q ≤ 1 and the Hölder inequality when q > 1, it
follows that for all x ∈ Q0,ν

τ ,

|S0(I − S0)(f)(x)|

≤ C
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )|D̃k′(f)(yk

′,ν′
τ ′ )|2−|k′|ε

× 2−(0∧k′)ε

(2−(0∧k′) + %(x, yk
′,ν′
τ ′ ))d+ε

≤





C
∑

k′∈Z
2−|k

′|ε−k′(s+d)+(0∧k′)d

×
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|D̃k′(f)(yk

′,ν′
τ ′ )|q

]1/q
, q ≤ 1,

C
∑

k′∈Z
2−|k

′|ε−k′s
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|D̃k′(f)(yk

′,ν′
τ ′ )|q

]1/q

×
[ �

X

2−(0∧k′)ε

(2−(0∧k′) + %(x, y))d+ε
dµ(y)

]1/q′

, q > 1,

≤ C‖f‖Ḟ s∞q(X)





∑

k′∈Z
2−|k

′|ε−k′(s+d)+(0∧k′)d, q ≤ 1,

∑

k′∈Z
2−|k

′|ε−k′s, q > 1,

≤ C‖f‖Ḟ s∞q(X),
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since |s| < ε, where we used the estimate

(3.11)
[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|D̃k′(f)(yk

′,ν′
τ ′ )|q

]1/q
≤ C‖f‖Ḟ s∞q(X),

which in fact was proved in the proof of Theorem 2.2 in [34]; see Remark 2.3
there.

Thus, for all τ ∈ I0 and ν = 1, . . . , N(0, τ), we have

(3.12) mQ0,ν
τ

(|S0(I − S0)(f)|) ≤ C‖f‖Ḟ s∞q(X).

Now for k ∈ N, by (3.8), we write

(3.13) Dk(I − S0)(f)(x)

=
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )Dk(I − S0)Dk′(x, y

k′,ν′
τ ′ )D̃k′(f)(yk

′,ν′
τ ′ ).

We claim that for all k ∈ N, k′ ∈ Z and all x, y ∈ X,

(3.14) |Dk(I − S0)Dk′(x, y)| ≤ C2−|k−k
′|ε 2−(k∧k′)ε

(2−(k∧k′) + %(x, y))d+ε
.

To verify (3.14), we consider three cases.

Case 1: k > k′ > 0. In this case,

|Dk(I − S0)Dk′(x, y)|
=
∣∣∣

�

X

�

X

[Dk(x, z)−Dk(x, u)]S0(u, z)Dk′(z, y) dµ(u) dµ(z)
∣∣∣

≤
�

X

|Dk(x, z)| |Dk′(z, y)−Dk′(x, y)| dµ(z)χ{(x,y) : %(x,y)≤C2−k′}(x, y)

+ χ{(x,y) : %(x,y)≤C}(x, y)

×
�

X

�

X

|Dk(x, u)| |S0(u, z)− S0(x, z)| |Dk′(z, y)| dµ(u) dµ(z)

≤ C2k
′(d+ε)−kεχ{(x,y) : %(x,y)≤C2−k′}(x, y) + C2−kεχ{(x,y) : %(x,y)≤C}(x, y)

≤ C2(k′−k)ε 2−k
′ε

(2−k′ + %(x, y))d+ε ,

which is the desired estimate.

Case 2: k > 0 > k′. In this case, we estimate the left-hand side of (3.14)
in the following way:
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|Dk(I − S0)Dk′(x, y)|

=
∣∣∣

�

X

�

X

[Dk(x, z)−Dk(x, u)]S0(u, z)Dk′(z, y) dµ(u) dµ(z)
∣∣∣

≤ χ{(x,y) : %(x,y)≤C2−k′}(x, y)
{ �

X

|Dk(x, z)| |Dk′(z, y)−Dk′(x, y)| dµ(z)

+
�

X

�

X

|Dk(x, u)| |S0(u, z)− S0(x, z)| |Dk′(z, y)−Dk′(x, y)| dµ(u) dµ(z)
}

≤ C2k
′(d+ε)−kεχ{(x,y) : %(x,y)≤C2−k′}(x, y) ≤ C2(k′−k)ε 2−k

′ε

(2−k′ + %(x, y))d+ε .

Case 3: k′ ≥ k > 0. In this case, we have

|Dk(I − S0)Dk′(x, y)|

=
∣∣∣

�

X

�

X

[Dk(x, z)−Dk(x, u)]S0(u, z)Dk′(z, y) dµ(u) dµ(z)
∣∣∣

≤
�

X

|Dk(x, z)−Dk(x, y)| |Dk′(z, y)| dµ(z)χ{(x,y) : %(x,y)≤C2−k}(x, y)

+ χ{(x,y) : %(x,y)≤C}(x, y)

×
�

X

�

X

|Dk(x, u)| |S0(u, z)− S0(u, y)| |Dk′(z, y)| dµ(u) dµ(z)

≤ C2k(d+ε)−k′εχ{(x,y) : %(x,y)≤C2−k}(x, y) + 2−k
′εχ{(x,y) : %(x,y)≤C}(x, y)

≤ C2(k−k′)ε 2−kε

(2−k + %(x, y))d+ε ,

which completes the estimate of (3.14).
For l ∈ N and α ∈ Il, from (3.13) and (3.14), it follows that

1
µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(I − S0)(f)(x)|q dµ(x)

≤ C 1
µ(Qlα)

�

Qlα

∞∑

k=l

2ksq
[∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk
′,ν′
τ ′ )2−|k−k

′|ε|D̃k′(f)(yk
′,ν′
τ ′ )|

× 2−(k∧k′)ε

(2−(k∧k′) + %(x, yk
′,ν′
τ ′ ))d+ε

]q
dµ(x).
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Then, by repeating the procedure for the estimate of H2 in the proof of The-
orem 1 and using Theorem 2.2 of [34] (see also Remark 2.3 of [34] and (3.11)),
we can further verify that

(3.15)
[

1
µ(Qlα)

�

Qlα

∞∑

k=l

2ksq|Dk(I − S0)(f)(x)|q dµ(x)
]1/q

≤ C‖f‖Ḟ s∞q(X).

Combining (3.12) and (3.15) with Definition 5 tells us that

‖f − S0(f)‖F s∞q(X) ≤ C‖f‖Ḟ s∞q(X),

which completes the proof of Theorem 6.

The following homogeneous Triebel–Lizorkin space Ḟ spq(X) and the in-
homogeneous Triebel–Lizorkin spaces F spq(X) were studied in [16, 11] and
[15, 13, 18], respectively.

Definition 8. Let ε ∈ (0, θ], |s| < ε, and {Dk}∞k=−∞ be as in Defini-
tion 7. Let max{d/(d + ε), d/(d + s + ε)} < p < ∞ and max{d/(d + ε),
d/(d+s+ε)} < q ≤ ∞. The homogeneous Triebel–Lizorkin space Ḟ spq(X) is

defined to be the set of all f ∈ (G
◦

0(β, γ))′ with max{s+,−s+d(1/p−1)+} <
β < ε and max{s − d/p, d(1/p − 1)+,−s + d(1/p − 1)} < γ < ε such
that

‖f‖Ḟ spq(X) =
∥∥∥
{ ∞∑

k=−∞
2ksq|Dk(f)|q

}1/q∥∥∥
Lp(X)

<∞.

The inhomogeneous Triebel–Lizorkin space F s
pq(X) is the set of all f ∈

(G
◦
(β, γ))′ with

max{s+,−s+ d(1/p− 1)+} < β < ε

and d(1/p− 1)+ < γ < ε such that

‖f‖F spq(X) =
∥∥∥
{
|S0(f)|q +

∞∑

k=1

2ksq|Dk(f)|q
}1/q∥∥∥

Lp(X)
<∞.

It was proved in [16, 11, 15, 13, 18] that the spaces F s
pq(X) and Ḟ spq(X) in

Definition 8 are independent of the choices of approximations to the identity
and spaces of distributions with β, γ as in Definition 8.

Using Lemma 2 and by a similar procedure to the proof of Theorem 6,
we can verify the following theorem; we omit the details.

Theorem 7. Let ε∈ (0, θ], |s|< ε, max{d/(d+ε), d/(d+s+ε)} < p <∞
and max{d/(d+ ε), d/(d+ s+ ε)} < q ≤ ∞. For any k0 ∈ Z, let Sk0 be as
in Definition 6. If f ∈ F spq(X), then f − Sk0(f) ∈ Ḟ spq(X) and
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‖f − Sk0(f)‖Ḟ spq(X) ≤ C‖f‖F spq(X),

where C > 0 is independent of f .

If s = 0, X = Rn, n/(n + 1) < p ≤ 1 and q = 2, then Theorem 7 was
obtained by Goldberg [7] by noting that in this case, the spaces Ḟ 0

p2(X)
and F 0

p2(X) are the classical Hardy spaces Hp(Rn) and hp(Rn), respec-
tively.

Next, we turn to the spaces F 0
p2(X) with d/(d + ε) < p ≤ 1; we denote

them by hp(X). If p ∈ (1,∞), it was proved in [15] that F 0
p2(X) = Lp(X)

with equivalent norms. In [11], it was proved that hp(X) can be character-
ized by the generalized Littlewood–Paley S-function, and in [14], its atomic
characterization was obtained.

Lemma 4. Let ε ∈ (0, θ], |s| < ε and d/(d+ ε) < p ≤ 1.

(i) Let {Dk}k∈Z+ be as in Definition 5. Then f ∈ hp(X) if and only if

f ∈ (G
◦
(β, γ))′ with d(1/p − 1) < β, γ < ε and for some a ∈ (0,∞),

‖Sa(f)‖Lp(X) <∞, where

(3.16) Sa(f)(x) =
{ ∞∑

k=0

�

{y : %(x,y)≤a2−k}
2kd|Dk(f)(y)|2 dµ(y)

}1/2
.

Moreover , in this case, ‖f‖hp(X) ∼ ‖Sa(f)‖Lp(X). Furthermore, the
operators Dk in (3.16) can be replaced by any other operators Dk for
k ∈ Z+ whose kernels have the same properties as the kernels of Dk

except for the regularity (ii) of Definition 3.

(ii) f ∈ hp(X) if and only if f ∈ (G
◦
(β, γ))′ with d(1/p− 1) < β, γ < ε,

there exist a sequence {λk}∞k=1 of numbers and a collection {ak}∞k=1
of (p, 2)-atoms or (p, 2)-blocks with diam(supp ak) ∼ 2−l with l ∈ Z+

such that

f =
∞∑

k=1

λkak

in (G(ε, ε))′;
∑∞

k=1 |λk|p <∞; ak is a (p, 2)-atom if diam(supp ak) ∼
2−l with l ∈ N, which means that

(a) supp ak ⊂ Bk = Bk(yk, r) = {y ∈ X : %(y, yk) ≤ rk} for some
yk ∈ X and rk ∼ 2−l with some l ∈ N,

(b) ‖ak‖L2(X) ≤ µ(Bk)1/2−1/p,

(c) � X ak(x) dµ(x) = 0;

ak is a (p, 2)-block if diam(supp ak) ∼ 1, which means ak satisfies
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only (a) and (b) for some yk ∈ X and some rk ∼ 1. Moreover ,

‖f‖hp(X) ∼ inf
{( ∞∑

k=1

|λk|p
)1/p}

,

where the infimum is taken over all the above decompositions.

Definition 9. Let ε ∈ (0, θ] and d/(d+ε) < p ≤ 1. We define the space
Λp(X) to be the set of all f ∈ Lploc(X) such that

‖f‖Λp(X)

= sup
x∈X, r∼2−l, l∈N

{
1

µ(B(x, r))2/p−1

�

B(x,r)

|f(y)−mB(x,r)(f)|2 dµ(y)
}1/2

+ sup
x∈X, r∼1

{ �

B(x,r)

|f(y)|2 dµ(y)
}1/2

<∞.

If p = 1, we denote the space Λ1(X) by bmo(X).

By the standard procedure, we can verify that the dual of hp(X) is
just Λp(X); see the proof of Theorem 5 in [7]. We omit the details.

Proposition 3. Let ε ∈ (0, θ] and d/(d + ε) < p ≤ 1. The dual of
hp(X) is the space Λp(X), in the sense of Lemma 1.8 in [17].

Using Lemma 4 and Proposition 3 and by a similar argument to that
in [19], we can verify the following proposition; we also leave the details to
the reader.

Proposition 4. The spaces bmo(X) and F 0
∞,2(X) are equal with equiv-

alent norms.
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[28] —, Fractals and Spectra, Birkhäuser, Basel, 1997.
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