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Integrated version of the Post—Widder inversion formula
for Laplace transforms

by

Jost E. GALE, MAR{fA M. MARTINEZ and PEDRO J. MIANA (Zaragoza)

Abstract. We establish an inversion formula of Post—-Widder type for A*-multiplied
vector-valued Laplace transforms (a > 0). This result implies an inversion theorem for
resolvents of generators of a-times integrated families (semigroups and cosine functions)
which, in particular, provides a unified proof of previously known inversion formulae for
a-times integrated semigroups.

1. Introduction. Let X be a Banach space and let L{ ([0,00); X) de-
note the vector space of functions f : [0,00) — X which are Bochner inte-
grable on [0, R] for all R > 0. For a function f € LL ([0, 00); X), the Laplace

0 loc
transform f is given by
o0
F) = e at
0
for those complex values A\ for which the integral exists. It is a well known
fact that any Laplace transformable function f € Li ([0,00); X) is deter-

loc
mined by its Laplace transform, as the following theorem shows.

THEOREM 1.1 (JABHN, Theorem 1.7.7]). Let f € Li ([0,00); X) be such

loc

that f(/\) converges for some A € C. Let t > 0 be a Lebesgue point of f.

Then -
o= jm ra (5) 0 (5)

Recall that ¢ > 0 is a Lebesgue point of a function f € Li ([0, 00); X) if
limy, .o h™1 S?h | £(s)— f(t)||ds = 0. Every point of continuity is a Lebesgue
point of f and almost all points are Lebesgue points of f (see [ABHN, p. 16]).

The above theorem provides us with a vector-valued version of the clas-
sical Post-Widder inversion formula for the Laplace transform; see [Pl [W].
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Such a limit is known as a real inversion formula since only properties of f (N
for large real A\ are involved. In recent years, the Post—Widder formula has
been fruitfully used in numerical applications (see for instance [MCPS| [SB]).

The main result of this note, Theorem below, is an integrated Post—
Widder formula for A*-multiplied Laplace transforms (and Laplace—Stieltjes
transforms) of vector-valued functions. This theorem allows us to obtain in-
version formulae for resolvents of generators of (a-times) integrated semi-
groups and integrated cosine families of operators. Such formulae in partic-
ular recover and extend to a-times integrated semigroups other previously
known results in the literature (see [Cl [VV]). The paper ends with a discus-
sion of the canonical example of an integrated family, formed by the so-called
Riesz kernels.

2. The main result. Let X be an arbitrary complex Banach space and
let f:(0,00) — X be a measurable function such that

(2.1) sup [t Ve “Hf (1) =2 M < oo
t>0

for some v > —1 and w > 0. Clearly, the Laplace transform f exists at least
on the open right half-plane R\ > w.
The following is the main result of the paper.

THEOREM 2.1. Let~y, w and f be as above. Then, for every a € (0,v+1)
and for any Lebesque point t > 0 of f,

t

“1" /n n+l gp .
£t = Tim — (¢ — g1 Y () e o)

— ds.
n—oo I'(«) n! s d\m y
0

A=n/s

This formula may be considered as an a-times integrated version of the
Post—Widder formula. In the next lemma it is shown that the conditions on
f and on « ensure that the Post—Widder approximant

—1" /n n+l gn .
Lobefol= SR (1) monfon| >0

n! S

A=n/s

is Bochner integrable near the origin for n sufficiently large, so that the
integral in Theorem is actually convergent.

LEMMA 2.2. Let f: (0,00) — X, 7, w and « be as in the assumptions
of Theorem . Then the function Ly, (y[\*f(\)] is Bochner integrable in
(0,t) for every t > 0 and every n > wt.

Proof. First of all, notice that, due to the growth conditions on f, the
integral SSO f(u)uFe** du is Bochner convergent for every A > w and k > 0.
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Now, take t > 0 and n > wt. Thus if s € (0,¢) then n > ws, so we get

R (_l)n n n a+1+k oo
Ln,s[)\af(A)] — n‘ Z C’?:in <S> S f(u)uke—(n/s)u du,
T k=0 0

where C, = (=1)F(7)(n — k)!(,*,) for k = 0,...,n. Then note that, for
the constant M appearing in ([2.1)),

n\ @tithk oo
’ 0
n a+1+k o0
: M<> S W Tke=((n/s)=wu g,
S
0
(n/s)> 1tk
((n/s) —w)y Ltk

<MD (y+k+ Dol (K =0,...,n),

=M

I(y+k+1)

provided that 7 > —1. Therefore, the function L, s[A\*f(\)] is integrable in
(0,t) whenever a € (0,7+1). =

REMARK 2.3. Inordertoensurethe Bochner integrability of L,, (. A f(N)]
near the origin, it is enough to assume that the given function f is in
Ll ([0,00); X), it is Laplace transformable, and its Laplace transform f
satisfies

o

| AR RN () dA < 0o for every k € Nand R > 0.
R

Under these weaker assumptions, the inversion formula in Theorem [2.1] also
holds.

Proof of Theorem[2.1. Let t > 0 be a Lebesgue point of f. Denote
To(t) == —— | (t = ) Ly [A*F (V)] ds.
0

The convergence of this integral for n > wt follows from Lemma As
before, write

n N a+1+k o0
Ln,s[/\af()\)] _ (—1) ZCﬁn<Z) +1+ S f(u)uke_(n/s)u du

0

for s € (0,t) and n > wt. Using Fubini’s Theorem we get

DT LS G | o) du

I,(t) =
n(t) n! Fa)kfo 5
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where
t n a+k+1
Kn(u) o= | (¢ —5)*! <S> e/ ds  (u > 0).
0
Making the change of variable z = (n/s)u — (n/t)u, we obtain
—(n/t)u o0
ne a—k— a— —z
Kn(u) = Wt k-l S Ytz +nu)ke > dz
—(n/t)u k k=i
ne .
e 12( )( > Ila+ 7).
j=
Then -
Tn(t) = (_1,) nt® | f(w)em DB, o (u) du
n!
0

where, for u > 0,

ot =S 3 () (7)o ()

see [VV] Lemma 3. ] for the general formula. Hence we get
nntl o0
(2.2) To(t) = ——t* " | un e 0" f(u) du.
n!
0

Notice that for every non-negative integer n > o + 1,

nntl o0 no
—— ol S WM Gy = —P(n+1—a),
n! n!
0

which tends to 1 (n — 00), since I'(u + 1) ~ u®/2e"%/21 as u — oo
(see [T]). Thus, to obtain the assertion of the theorem, it is enough to check
that

«

n—'F(n—I—l—a)f(t)—M) as n — oo.
n!

TIn(t) =T, (t) —

To do so, set
G(s) ==\ (f(u) = f(t))du = F(s) = F(t) = f(t)(s — 1),
t

where F(s) := {) f(u)du for s > 0. Then [|F(s)|| < Ms1te¥s (s > 0)
for some M > 0. This readily implies that the function G is exponentially
bounded, that is, there exist some constants 4 > 0 and C' > 0 such that
|G(s)|| < Cets for every s > 0. We may assume that x4 > w. On the other
hand, the fact that ¢ is a Lebesgue point of f implies that ||G(s)| = o(|s—t|)
as s — 1.
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By integration by parts, for n > max{ut, a} we have
nn—|—1 0

Tult) = "t L moe I (f () — f(1)) du

n!

( (n— oz)u”_o‘_1> e~ (DG (w) du
— toa—n—1 S <77;5u . (Tl - a)>unale(n/t)uG(u) du
0

n"t21°T n—a\ p-a-1 —n
= - S <y — )y L™ G (ty) dy.
0

n

Let now € > 0 and choose 0 < ¢ < 1 such that if |y — 1| < § then
1
(2.3) LGl <ely -1}

Divide J,(t) into three integrals J1,(t), J2,n(t) and J3,(t) whose intervals
of integration are (0,1 —4), (1 — 9,1+ 0) and (1 + ¢, 00), respectively.

First, we are going to estimate J; ,,(t). Take n > (a+1)/d. In this case,
the function y — 3"~ *"le™™ is increasing on (0,1 — J), and therefore

n" 21 i n—ol h—a-1_—ny
1@l <2 1 = S e te Gty dy
' 0
n" 21 n—a—1_—n(1- iy
=T G ) dy = an,

0
where we have used that §/(a+1) < (n—a)/n—y < 1forally € (0,1—9).
Then, by Stirling’s formula,
an = Om*2((1 = 6)ed")  asn — oo,

and therefore a,, — 0 as n — 0o, since (1—§)e® < 1. Therefore, || J1,(t)|| < €
for n large enough.

Now, applying to J2,(t) the estimate (2.3]), we get
nn+2 1496

| o)) < ™ |

1-6
1446
nn+2 +

o 1|yn—a—1e—ny dy

=&

— y—1+1- n;a’!y — 1y e dy
16

nn+2 144 9 n— 1
S e | <(y -7+ <1 - n) (y + 1)>y”_“_ e "y

1-6
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nn+200 2 n—ao n—a n—a—1_-—n
zsn'gy—l—l—Ty—l-Q—n Y e "dy

0

n—o

:€$<Fm—a+m—<L% >nnn—a+n

+<2_”;a>ﬁrm—a0

(I'(n—a+1)+2anl(n — «)).
I'(n—p+1)=1for all § > 0 implies that

n

nOé
=
n!
nf
n!

Thus, the fact that lim, .

«

lim n—(F(n—a—l—l)—l—QanF(n—a}):1+2a.

n—oo n!

Hence, || J2,(t)|| < 2(1 4+ «)e for all sufficiently large n.

To estimate J3,(t), take ng € N such that ng > put and let n > ng.
Thus, the function y — ¢y "0~ %~ ("=70)¥ i5 decreasing on (1 + 8, 00). Then
we have

ntt2 1 % n—ao
| Tsm(0)] < (

)ywle”yuaay)u dy

+2 o
= n” 9 S yn—no—ae—(n—no)yynoe—(no—ut)ydy

146
n"t2 C (14 )0 T
— no ,—(no—pt) .
a1 en—no)(1+9) S y"oe T dy =: by,
146

<

As before, Stirling’s formula applies to show that b, — 0 as n — oo, and we
find that || J3,(t)|| < € for large enough n. The proof is complete. =

REMARK 2.4. There are some particular cases in which the inversion
formula in Theorem can be obtained as a consequence of Theorem [I.1
for example, when the function is the integral of order a@ > 0 of a suitable
function.

For o > 0, set jo(t) := t* ' '(a)™, ¢t > 0. Let g € L{..([0,00); X) be an
exponentially bounded function. Thus, f := j, * g satisfies the assumptions
of Theorem where * is the usual convolution on R*. Notice that A f(\)
= g(A) for appropriate complex values of A. Therefore, by Theorem and
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the dominated convergence theorem, for every ¢ > 0,

ity () 0 (55))o

t n+1
TR S SRR Gt ) Y SRR A
_7}1—>Holof(a (S)(t s) " (s) g . ds
t

f(t)

n+1 A R

f—on () i

ds.

n! A=n/s

S

Thus the interest of Theorem relies upon the fact that it provides an
inversion formula for those functions ¢ : (w,00) — X which are not neces-
sarily a Laplace transform, but such that A™%p(\) is a Laplace transform
for some a > 0; see [ABHN|, Example 2.2.4]. Important classes of functions
in this situation involve general a-times integrated semigroups or integrated
cosine functions (see next section).

To end this section, we point out that there exists a well known version
of Theorem [I.1]in which the Laplace-Stieltjes transform Lg of vector-valued
Lipschitz continuous functions is considered. If F : Rt — X is a Lipschitz
continuous function, that is,

wup IF () = F(s)]

< o0,
ts>0 [t — |

then the Laplace—Stieltjes transform of F' is given by
oo
Ls(F)(A) :=—F(0)+ A | e MF(t) at
0
for those A greater than the exponential growth bound of F'. It follows from
Theorem that if F/: R™ — X is a Lipschitz continuous function such
that F/(0) = 0 then
—1)" [\t dr [ Ls(F)(A

t>0.

n—oo n! t dA" A

>\:n/s7
See [ABHN, Theorem 2.3.1].

As a consequence of Theorem [2.1] we further obtain the following inver-
sion formula for Laplace—Stieltjes transforms:

COROLLARY 2.5. Let F : Rt — X be a Lipschitz continuous function
such that F(0) = 0. Let t > 0. Then

_1\n t n n+l gn
Ft) = lim &Y g() B e ds.
0

n—oo n! dA™ A=n/s
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Proof. Under these assumptions, F(A) =A~'Lg(F)()) for A large enough.
Moreover, ||F(t)|| < Ct for every t > 0 and some C > 0. Then it suffices to
apply Theorem fora=1n

3. Applications. We show here that Theorem [2.1] applies to a-times
integrated semigroups and a-times integrated cosine families, obtaining in
this way appropriate inversion formulae of Euler’s type for these families.

3.1. Euler’s exponential type formula for a-times integrated
semigroups. Let X be a Banach space and let a > 0. A strongly continuous
family (S4(t))t>0 € B(X) of bounded operators on X is called an a-times
integrated semigroup if S,(0) = 0 and

t+s S
(3.1) I'(a)Sa(t)Sals) = | (t+s—r)* " Sa(r)dr — | (t+5— 1) Sa(r) dr
t 0

for every s,t > 0. Moreover, (S,(t))¢>0 is called non-degenerate if S (t)z =0
for all t > 0 implies x = 0. A 0-times integrated non-degenerate semigroup
is a Cp-semigroup.

Assume that the function S, : [0,00) — B(X) has a Laplace transform
whenever A > w for some w € R. In this case, there exists a unique operator
A on X satisfying (w,00) C p(A) and such that

(e e]
RO\ A) = (A=A =2 [ e M8 () dt, A >w.
0
Such an operator A is called the generator of (S (t))t>0. See [ABHN] [H2]
for the general theory of integrated semigroups.

COROLLARY 3.1. Let A: D(A) C X — X be the generator of an a-times
integrated semigroup (S (t))i>0 such that ||Sa(t)|| < Ct7e*, t > 0, for some
¥>a—1and w > 0. Then, for everyt > 0 and every x € X,

n+1 n+1
So(t)r = lim 78 (Z) R(Z,A) x ds.

Proof. Let © € X. Set f(t) := Sa(t)x for t > 0. Notice that f is con-
tinuous on [0,00) since (Sq(t))t>0 is strongly continuous. By definition,
R\, A)x = N\ (A (M) for X\ large enough. Moreover, the resolvent equation
gives us ((—=1)"/n!)(d"/dA")R(\, A)z = R(A\, A)""'z. Now, the claim fol-
lows directly from Theorem since a € (0,7+1). m

The above corollary extends previous results in this setting (see [C, The-
orem 3.1] for n-times integrated semigroups, n € N, and [VV] Theorem 3.1]
for exponentially bounded a-times integrated semigroups and 0 < a < 1),
and provides a unified proof for them.
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A large number of examples of a-times integrated semigroups satisfying
the assumptions of Corollary [3.1| can be found in [HI].

3.2. a-times integrated cosine functions. Let X be a Banach space
and let & > 0. A strongly continuous family (Cq(t)):>0 € B(X) is an a-times
integrated cosine function if Cy(0) = 0 and

(3.2)  2I'(@)Ca(t)Cals)
t+s s
= | (t+s—1) " Calr)dr =\ (t+s—1)* " Calr) dr
t 0

+ S (r—t+s)*1Cu(r) dr + S (r+t—28)*"10u(r)dr
t—s 0
for every 0 < s < t. The family (Cy(t))i>0 is called non-degenerate if
Cyo(t)r = 0 for every ¢ > 0 implies z = 0. If the Laplace transform of
Co(+) : [0,00) — B(X) converges in (w, 00) for some w > 0, then there exists
a unique operator A on X such that

o0
AR(NA) = AN = A)h =2 | e MCo(t)dt, A >w.
0
See for example [EK| [M2]. This operator A is called the generator of
(Ca(t))e>0- A O-times integrated cosine function is the usual cosine func-
tion.
As a consequence of Theorem [2.1] one obtains the following result, which
seems to be new.

COROLLARY 3.2. Let A : D(A)
times integrated cosine function (Cy
v>a—1 and w > 0 satisfying ||Cy(t
re X andt >0,

C X — X be the generator of an a-
(t))t>0 for which there exist constants
)| < Ct7et fort > 0. Then, for every

Co(t)z = lim 7S(t—s)°"1( m) (’;) W(AR(AQ,A)) / ds.
0 : A=n/s

Proof. Similar to the proof of Corollary .

Particular examples of generators of a-times integrated cosine functions
are provided by those of a-times integrated semigroups. In fact, if an oper-
ator B on a Banach space is such that B and —B are both generators of
a-times integrated semigroups then A = B? is the generator of an a-times
integrated cosine function; see [AKL [EK]. In this case the explicit calculation
of (d™/d\")(AR(N\?, A)) is simple:

d’n

1 o o
W(AR(AQ,A)) = 5[R(\, —iB) 4 R(N,iB)" .
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ExaMpPLE 3.3. For a,t > 0, the Riesz kernel is the function Rf‘_l de-
fined by

—s a—1
R0 = C (s, s>

These kernels play a central role in the study of Banach algebras ’]ia) (t%e*?)
of Sobolev type, which are in close relationship with a-times integrated
semigroups and integrated cosine functions. Here, we are not concerned with
these algebras, whose definition and first properties can be seen in [GM], for
instance. Among these properties, we mention that the function R?_l is a

multiplier of the Banach algebra ’Lfa) (t>e“!) with respect to either the usual
convolution product * or the cosine convolution product *. on R, which
are given for f,g € ’TJ&O‘) (t%et) by
t
frg(t):=\f(t—s)g(s)ds, >0,
0
and

o0 o0

f e g(t) = %(f wg(t)+ | f(s = Dg(s)ds+ | gls = )f(s)ds), >0,

t
In both cases, as a multiplier, | RS < Ct¥e“t (t > 0).

In view of Theorem [2.1] we have the following.

COROLLARY 3.4. Let a > 0 and w > 0. Then for every g € ’Zia) (t%e*?)
and t > 0 we have

n— oo S

) 1 t n n+1 (nt1)
a— T — *(n
R} " eg= lim w§)(t—s)a () € ®9ds
in the norm of T_ﬁa) (t%e“t), where
e*(nH)(r) - ex(r) (r>0)
A n A =
and e is either the usual convolution % or the cosine convolution *. in
T(a) (taewt)
i )

Proof. Note that for every A > w and n € N one has
oo
ey :=e M) =) S Rf‘_le_kt dt
0
and
(=" d" *(n+1)
nl TN )
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Hence it is enough to take f(t) = Rf* @ g in the formula of Theorem to
obtain the result. m

REMARK 3.5. The formula in the preceding corollary serves to illustrate
Theorem in a canonical situation, as regards a-times integrated semi-
groups. For simplicity, assume a > 1. The equality

¢

1 n\"tpn
R Y(r) = lim —— S (t —s)>! <> — e M/ gs >0,

n—oo F(a) 5 S n!

holds as a particular case of the fact that Theorem remains true when
one replaces functions like f with Dirac masses:
For r > 0,

_1\n n+l n+l n
5, = tim =Y (”) 5§n><”> ~ lim <”> Mt

in the sense of weak convergence of measures. In fact, for each continuous
function F' on [0, 00) with lim;_,~ F'(t) = 0 we have

00 n+1 n4+1 X
FE,(r):= 1 S (n) r"e_("/s)TF(s) ds = 2 S t”_le_"tF(:> dt,

n! o \s n! 5
with -
n
"nT j et dr = 1.
0
Therefore
nn—f—l S
Fo(r) = F(r) = == | " te ™ [F(r/t) = F(r)] dt,
0

and so by standard methods involving the partition of the integration do-
main (0, 00) into two parts {|t — 1| < 0} and {|t — 1| > ¢}, for suitable small
d > 0, one gets lim,, .o F,,(r) = F(r). (In this connection, for the sake of
completeness, let us point out that integration by parts gives us

n+l o0

n ' S tnflefnt dt = — S ynflefy dy
™ols (n—1)! n(1+6)
nfl k k 00
+ 5 n—k,n— . —(146)n + S e Y dy,
k=1 (1+6)n

and this expression tends to 0 as n — oo by the Stirling formula and the
fact that y — e~¥ is integrable.)
Corollary tells us that the above numerical limit holds indeed for

convolution and in the norm of 7, Jfa) (t%e?).
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REMARK 3.6. If S,(t) is an a-times integrated semigroup on a Banach
space X satisfying

(3.3) ISa(®)]l < Ct* (&> 0),
and
(3.4) %EI(I) Na+ 1)t *Sa(t)xr =2 (zeX),

then there exists a bounded Banach algebra homomorphism
To: T_ﬁa)(ta) — B(X)

with dense range, so that 7, extends to the multiplier algebra of ’ija) (t)
with the usual convolution *, and we get Sq(t) = mo(RY ). Conversely, if
we have a bounded Banach algebra homomorphism 7 : Tia)(to‘) — B(X)
with dense range then S, () := 7o (R$ 1) is an a-times integrated semigroup
satisfying and .

For a-times integrated cosine functions there is a similar result, with
the only difference that the homomorphism 7, has to be replaced with a
homomorphism 7, : 7, ia) (t*) — B(X) with respect to the cosine convolution
product *. in T_ﬁa) ().

Actually, the family (Rto‘_l)tzo is an a-times integrated semigroup and
an a-times integrated cosine family since it satisfies the functional equations
and (52).

Notice that starting from Corollary [3.4] with a direct proof independent
of Theorem one can prove Corollary and Corollary (for v = «
and w = 0) by just considering the image of Rf‘_l e g and of its integral
expression under the homomorphisms 7, and 7., respectively.

Thus it seems reasonable to consider the Riesz kernels as canonical in-

tegrated families, in the present setting. For all the above facts we refer the
reader to [GM], [GMM] and [M2].
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