Integrated version of the Post–Widder inversion formula for Laplace transforms

by

JOSÉ E. GALÉ, MARÍA M. MARTÍNEZ and PEDRO J. MIANA (Zaragoza)

Abstract. We establish an inversion formula of Post–Widder type for λ^{α} -multiplied vector-valued Laplace transforms ($\alpha > 0$). This result implies an inversion theorem for resolvents of generators of α -times integrated families (semigroups and cosine functions) which, in particular, provides a unified proof of previously known inversion formulae for α -times integrated semigroups.

1. Introduction. Let X be a Banach space and let $L^1_{loc}([0,\infty);X)$ denote the vector space of functions $f:[0,\infty)\to X$ which are Bochner integrable on [0, R] for all R > 0. For a function $f \in L^1_{loc}([0, \infty); X)$, the Laplace transform \hat{f} is given by

$$\hat{f}(\lambda) = \int_{0}^{\infty} f(t) e^{-\lambda t} dt$$

for those complex values λ for which the integral exists. It is a well known fact that any Laplace transformable function $f \in L^1_{loc}([0,\infty);X)$ is determined by its Laplace transform, as the following theorem shows.

THEOREM 1.1 ([ABHN, Theorem 1.7.7]). Let $f \in L^1_{loc}([0,\infty);X)$ be such that $\hat{f}(\lambda)$ converges for some $\lambda \in \mathbb{C}$. Let t > 0 be a Lebesgue point of f. Then

$$f(t) = \lim_{n \to \infty} (-1)^n \frac{1}{n!} \left(\frac{n}{t}\right)^{n+1} \hat{f}^{(n)}\left(\frac{n}{t}\right).$$

Recall that t > 0 is a *Lebesgue point* of a function $f \in L^1_{loc}([0,\infty);X)$ if $\lim_{h\to 0} h^{-1} \int_t^{t+h} \|f(s) - f(t)\| ds = 0$. Every point of continuity is a Lebesgue point of f and almost all points are Lebesgue points of f (see [ABHN, p. 16]).

The above theorem provides us with a vector-valued version of the classical Post–Widder inversion formula for the Laplace transform; see [P, W].

[161]

DOI: 10.4064/sm206-2-4

²⁰¹⁰ Mathematics Subject Classification: Primary 44A10; Secondary 47D62.

Key words and phrases: vector-valued Laplace transform, real inversion, Post-Widder formula, α -times integrated semigroup, α -times integrated cosine function.

Such a limit is known as a real inversion formula since only properties of $\hat{f}(\lambda)$ for large real λ are involved. In recent years, the Post–Widder formula has been fruitfully used in numerical applications (see for instance [MCPS, SB]).

The main result of this note, Theorem 2.1 below, is an integrated Post–Widder formula for λ^{α} -multiplied Laplace transforms (and Laplace–Stieltjes transforms) of vector-valued functions. This theorem allows us to obtain inversion formulae for resolvents of generators of (α -times) integrated semigroups and integrated cosine families of operators. Such formulae in particular recover and extend to α -times integrated semigroups other previously known results in the literature (see [C, VV]). The paper ends with a discussion of the canonical example of an integrated family, formed by the so-called Riesz kernels.

2. The main result. Let X be an arbitrary complex Banach space and let $f: (0, \infty) \to X$ be a measurable function such that

(2.1)
$$\sup_{t>0} \|t^{-\gamma} e^{-\omega t} f(t)\| =: M < \infty$$

for some $\gamma > -1$ and $\omega \ge 0$. Clearly, the Laplace transform \hat{f} exists at least on the open right half-plane $\Re \lambda > \omega$.

The following is the main result of the paper.

THEOREM 2.1. Let γ , ω and f be as above. Then, for every $\alpha \in (0, \gamma+1)$ and for any Lebesgue point t > 0 of f,

$$f(t) = \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} \frac{(-1)^n}{n!} \left(\frac{n}{s}\right)^{n+1} \frac{d^n}{d\lambda^n} (\lambda^{\alpha} \hat{f}(\lambda)) \Big|_{\lambda = n/s} ds.$$

This formula may be considered as an α -times integrated version of the Post–Widder formula. In the next lemma it is shown that the conditions on f and on α ensure that the Post–Widder approximant

$$L_{n,s}[\lambda^{\alpha}\hat{f}(\lambda)] := \frac{(-1)^n}{n!} \left(\frac{n}{s}\right)^{n+1} \frac{d^n}{d\lambda^n} (\lambda^{\alpha}\hat{f}(\lambda)) \bigg|_{\lambda=n/s} \quad (s>0)$$

is Bochner integrable near the origin for n sufficiently large, so that the integral in Theorem 2.1 is actually convergent.

LEMMA 2.2. Let $f: (0, \infty) \to X$, γ , ω and α be as in the assumptions of Theorem 2.1. Then the function $L_{n,(\cdot)}[\lambda^{\alpha} \hat{f}(\lambda)]$ is Bochner integrable in (0,t) for every t > 0 and every $n > \omega t$.

Proof. First of all, notice that, due to the growth conditions on f, the integral $\int_0^\infty f(u)u^k e^{-\lambda u} du$ is Bochner convergent for every $\lambda > \omega$ and $k \ge 0$.

Now, take t > 0 and $n > \omega t$. Thus if $s \in (0, t)$ then $n > \omega s$, so we get

$$L_{n,s}[\lambda^{\alpha}\hat{f}(\lambda)] = \frac{(-1)^n}{n!} \sum_{k=0}^n C_{k,n}^{\alpha} \left(\frac{n}{s}\right)^{\alpha+1+k} \int_0^{\infty} f(u) u^k e^{-(n/s)u} \, du,$$

where $C_{k,n}^{\alpha} := (-1)^k {n \choose k} (n-k)! {\alpha \choose n-k}$ for $k = 0, \ldots, n$. Then note that, for the constant M appearing in (2.1),

$$\begin{pmatrix} \frac{n}{s} \end{pmatrix}^{\alpha+1+k} \int_{0}^{\infty} |f(u)| u^{k} e^{-(n/s)u} du$$

$$\leq M \left(\frac{n}{s}\right)^{\alpha+1+k} \int_{0}^{\infty} u^{\gamma+k} e^{-((n/s)-\omega)u} du$$

$$= M \frac{(n/s)^{\alpha+1+k}}{((n/s)-\omega)^{\gamma+1+k}} \Gamma(\gamma+k+1)$$

$$\leq M \Gamma(\gamma+k+1) n^{\alpha+k+1} s^{\gamma-\alpha} \quad (k=0,\ldots,n),$$

provided that $\gamma > -1$. Therefore, the function $L_{n,s}[\lambda^{\alpha} \hat{f}(\lambda)]$ is integrable in (0,t) whenever $\alpha \in (0, \gamma + 1)$.

REMARK 2.3. In order to ensure the Bochner integrability of $L_{n,(\cdot)}[\lambda^{\alpha} \hat{f}(\lambda)]$ near the origin, it is enough to assume that the given function f is in $L^{1}_{\text{loc}}([0,\infty);X)$, it is Laplace transformable, and its Laplace transform \hat{f} satisfies

$$\int_{R}^{\infty} \lambda^{\alpha+k+1} \widehat{f}^{(k)}(\lambda) \, d\lambda < \infty \quad \text{ for every } k \in \mathbb{N} \text{ and } R > 0.$$

Under these weaker assumptions, the inversion formula in Theorem 2.1 also holds.

Proof of Theorem 2.1. Let t > 0 be a Lebesgue point of f. Denote

$$\mathcal{I}_n(t) := \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} L_{n,s}[\lambda^{\alpha} \hat{f}(\lambda)] \, ds.$$

The convergence of this integral for $n > \omega t$ follows from Lemma 2.2. As before, write

$$L_{n,s}[\lambda^{\alpha}\hat{f}(\lambda)] = \frac{(-1)^n}{n!} \sum_{k=0}^n C_{k,n}^{\alpha} \left(\frac{n}{s}\right)^{\alpha+1+k} \int_0^{\infty} f(u) u^k e^{-(n/s)u} \, du$$

for $s \in (0, t)$ and $n > \omega t$. Using Fubini's Theorem we get

$$\mathcal{I}_n(t) = \frac{(-1)^n}{n!} \frac{1}{\Gamma(\alpha)} \sum_{k=0}^n C_{k,n}^{\alpha} \int_0^\infty u^k f(u) \mathcal{K}_n(u) \, du$$

where

$$\mathcal{K}_n(u) := \int_0^t (t-s)^{\alpha-1} \left(\frac{n}{s}\right)^{\alpha+k+1} e^{-(n/s)u} \, ds \quad (u>0).$$

Making the change of variable z = (n/s)u - (n/t)u, we obtain

$$\mathcal{K}_n(u) = \frac{ne^{-(n/t)u}}{u^{\alpha+k}} t^{\alpha-k-1} \int_0^\infty z^{\alpha-1} (tz+nu)^k e^{-z} dz$$
$$= \frac{ne^{-(n/t)u}}{u^{\alpha+k}} t^{\alpha-1} \sum_{j=0}^k \binom{k}{j} \left(\frac{nu}{t}\right)^{k-i} \Gamma(\alpha+j).$$

Then

$$\mathcal{I}_n(t) = \frac{(-1)^n}{n!} n t^{\alpha - 1} \int_0^\infty u^{-\alpha} f(u) e^{-(n/t)u} \varPhi_{n,t,\alpha}(u) \, du$$

where, for u > 0,

$$\Phi_{n,t,\alpha}(u) := \sum_{k=0}^{n} C_{k,n}^{\alpha} \sum_{j=0}^{k} \binom{k}{j} \left(\frac{nu}{t}\right)^{k-j} \frac{\Gamma(\alpha+j)}{\Gamma(\alpha)} = (-1)^{n} \left(\frac{nu}{t}\right)^{n};$$

see [VV, Lemma 3.1] for the general formula. Hence we get

(2.2)
$$\mathcal{I}_n(t) = \frac{n^{n+1}}{n!} t^{\alpha - n - 1} \int_0^\infty u^{n - \alpha} e^{-(n/t)u} f(u) \, du.$$

Notice that for every non-negative integer $n > \alpha + 1$,

$$\frac{n^{n+1}}{n!} t^{\alpha - n - 1} \int_{0}^{\infty} u^{n - \alpha} e^{-(n/t)u} \, du = \frac{n^{\alpha}}{n!} \Gamma(n + 1 - \alpha),$$

which tends to 1 $(n \to \infty)$, since $\Gamma(u+1) \sim u^{u+1/2}e^{-u}\sqrt{2\pi}$ as $u \to \infty$ (see [T]). Thus, to obtain the assertion of the theorem, it is enough to check that

$$\mathcal{J}_n(t) := \mathcal{I}_n(t) - \frac{n^{\alpha}}{n!} \Gamma(n+1-\alpha) f(t) \to 0 \quad \text{as } n \to \infty.$$

To do so, set

$$G(s) := \int_{t}^{s} (f(u) - f(t)) \, du = F(s) - F(t) - f(t)(s - t),$$

where $F(s) := \int_0^s f(u) \, du$ for $s \ge 0$. Then $||F(s)|| \le \tilde{M}s^{\gamma+1}e^{\omega s}$ $(s \ge 0)$ for some $\tilde{M} > 0$. This readily implies that the function G is exponentially bounded, that is, there exist some constants $\mu \ge 0$ and C > 0 such that $||G(s)|| \le Ce^{\mu s}$ for every $s \ge 0$. We may assume that $\mu \ge \omega$. On the other hand, the fact that t is a Lebesgue point of f implies that ||G(s)|| = o(|s-t|) as $s \to t$.

164

By integration by parts, for $n > \max{\{\mu t, \alpha\}}$ we have

$$\begin{aligned} \mathcal{J}_n(t) &= \frac{n^{n+1}}{n!} t^{\alpha - n - 1} \int_0^\infty u^{n - \alpha} e^{-(n/t)u} (f(u) - f(t)) \, du \\ &= \frac{n^{n+1}}{n!} t^{\alpha - n - 1} \int_0^\infty \left(\frac{n u^{n - \alpha}}{t} - (n - \alpha) u^{n - \alpha - 1} \right) e^{-(n/t)u} G(u) \, du \\ &= \frac{n^{n+1}}{n!} t^{\alpha - n - 1} \int_0^\infty \left(\frac{n u}{t} - (n - \alpha) \right) u^{n - \alpha - 1} e^{-(n/t)u} G(u) \, du \\ &= \frac{n^{n+2}}{n!} \frac{1}{t} \int_0^\infty \left(y - \frac{n - \alpha}{n} \right) y^{n - \alpha - 1} e^{-ny} G(ty) \, dy. \end{aligned}$$

Let now $\varepsilon > 0$ and choose $0 < \delta < 1$ such that if $|y - 1| < \delta$ then

(2.3)
$$\frac{1}{t} \|G(ty)\| < \varepsilon |y-1|.$$

Divide $\mathcal{J}_n(t)$ into three integrals $\mathcal{J}_{1,n}(t)$, $\mathcal{J}_{2,n}(t)$ and $\mathcal{J}_{3,n}(t)$ whose intervals of integration are $(0, 1 - \delta)$, $(1 - \delta, 1 + \delta)$ and $(1 + \delta, \infty)$, respectively.

First, we are going to estimate $\mathcal{J}_{1,n}(t)$. Take $n > (\alpha + 1)/\delta$. In this case, the function $y \mapsto y^{n-\alpha-1}e^{-ny}$ is increasing on $(0, 1-\delta)$, and therefore

$$\begin{aligned} \|\mathcal{J}_{1,n}(t)\| &\leq \frac{n^{n+2}}{n!} \frac{1}{t} \int_{0}^{1-\delta} \left| y - \frac{n-\alpha}{n} \right| y^{n-\alpha-1} e^{-ny} \|G(ty)\| \, dy \\ &\leq \frac{n^{n+2}}{n!} \frac{1}{t} (1-\delta)^{n-\alpha-1} e^{-n(1-\delta)} \int_{0}^{1-\delta} \|G(ty)\| \, dy =: a_n, \end{aligned}$$

where we have used that $\delta/(\alpha+1) \leq (n-\alpha)/n - y < 1$ for all $y \in (0, 1-\delta)$. Then, by Stirling's formula,

$$a_n = O(n^{3/2}((1-\delta)e^{\delta})^n)$$
 as $n \to \infty$,

and therefore $a_n \to 0$ as $n \to \infty$, since $(1-\delta)e^{\delta} < 1$. Therefore, $\|\mathcal{J}_{1,n}(t)\| < \varepsilon$ for *n* large enough.

Now, applying to $\mathcal{J}_{2,n}(t)$ the estimate (2.3), we get

$$\begin{aligned} \|\mathcal{J}_{2,n}(t)\| &\leq \varepsilon \frac{n^{n+2}}{n!} \int_{1-\delta}^{1+\delta} \left| y - \frac{n-\alpha}{n} \right| |y-1| y^{n-\alpha-1} e^{-ny} \, dy \\ &= \varepsilon \frac{n^{n+2}}{n!} \int_{1-\delta}^{1+\delta} \left| y - 1 + 1 - \frac{n-\alpha}{n} \right| |y-1| y^{n-\alpha-1} e^{-ny} \, dy \\ &\leq \varepsilon \frac{n^{n+2}}{n!} \int_{1-\delta}^{1+\delta} \left((y-1)^2 + \left(1 - \frac{n-\alpha}{n}\right) (y+1) \right) y^{n-\alpha-1} e^{-ny} \, dy \end{aligned}$$

J. E. Galé et al.

$$\begin{split} &= \varepsilon \frac{n^{n+2}}{n!} \int_{0}^{\infty} \left(y^2 - \left(1 + \frac{n-\alpha}{n} \right) y + \left(2 - \frac{n-\alpha}{n} \right) \right) y^{n-\alpha-1} e^{-ny} \, dy \\ &= \varepsilon \frac{n^{\alpha}}{n!} \left(\Gamma(n-\alpha+2) - \left(1 + \frac{n-\alpha}{n} \right) n \Gamma(n-\alpha+1) \right. \\ &\qquad + \left(2 - \frac{n-\alpha}{n} \right) n^2 \Gamma(n-\alpha) \right) \\ &= \varepsilon \frac{n^{\alpha}}{n!} (\Gamma(n-\alpha+1) + 2\alpha n \Gamma(n-\alpha)). \end{split}$$

Thus, the fact that $\lim_{n\to\infty} \frac{n^{\beta}}{n!} \Gamma(n-\beta+1) = 1$ for all $\beta \ge 0$ implies that

$$\lim_{n \to \infty} \frac{n^{\alpha}}{n!} (\Gamma(n - \alpha + 1) + 2\alpha n \Gamma(n - \alpha)) = 1 + 2\alpha$$

Hence, $\|\mathcal{J}_{2,n}(t)\| < 2(1+\alpha)\varepsilon$ for all sufficiently large n.

To estimate $\mathcal{J}_{3,n}(t)$, take $n_0 \in \mathbb{N}$ such that $n_0 > \mu t$ and let $n > n_0$. Thus, the function $y \mapsto y^{n-n_0-\alpha} e^{-(n-n_0)y}$ is decreasing on $(1+\delta,\infty)$. Then we have

$$\begin{aligned} \|\mathcal{J}_{3,n}(t)\| &\leq \frac{n^{n+2}}{n!} \frac{1}{t} \int_{1+\delta}^{\infty} \left(y - \frac{n-\alpha}{n} \right) y^{n-\alpha-1} e^{-ny} \|G(ty)\| \, dy \\ &\leq \frac{n^{n+2}}{n!} \frac{C}{t} \int_{1+\delta}^{\infty} y^{n-\alpha} e^{-ny} e^{\mu ty} \, dy \\ &= \frac{n^{n+2}}{n!} \frac{C}{t} \int_{1+\delta}^{\infty} y^{n-n_0-\alpha} e^{-(n-n_0)y} y^{n_0} e^{-(n_0-\mu t)y} \, dy \\ &\leq \frac{n^{n+2}}{n!} \frac{C}{t} \frac{(1+\delta)^{n-n_0-\alpha}}{e^{(n-n_0)(1+\delta)}} \int_{1+\delta}^{\infty} y^{n_0} e^{-(n_0-\mu t)y} \, dy =: b_n. \end{aligned}$$

As before, Stirling's formula applies to show that $b_n \to 0$ as $n \to \infty$, and we find that $\|\mathcal{J}_{3,n}(t)\| < \varepsilon$ for large enough n. The proof is complete.

REMARK 2.4. There are some particular cases in which the inversion formula in Theorem 2.1 can be obtained as a consequence of Theorem 1.1 for example, when the function is the integral of order $\alpha > 0$ of a suitable function.

For $\alpha > 0$, set $j_{\alpha}(t) := t^{\alpha-1} \Gamma(\alpha)^{-1}$, t > 0. Let $g \in L^{1}_{loc}([0,\infty); X)$ be an exponentially bounded function. Thus, $f := j_{\alpha} * g$ satisfies the assumptions of Theorem 2.1, where * is the usual convolution on \mathbb{R}^{+} . Notice that $\lambda^{\alpha} \hat{f}(\lambda) = \hat{g}(\lambda)$ for appropriate complex values of λ . Therefore, by Theorem 1.1 and

the dominated convergence theorem, for every t > 0,

$$f(t) = j_{\alpha} * \left(\lim_{n \to \infty} (-1)^n \frac{1}{n!} \left(\frac{n}{(\cdot)} \right)^{n+1} \hat{g}^{(n)} \left(\frac{n}{(\cdot)} \right) \right)(t)$$

$$= \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \frac{(-1)^n}{n!} \left(\frac{n}{s} \right)^{n+1} \hat{g}^{(n)} \left(\frac{n}{s} \right) ds$$

$$= \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \frac{(-1)^n}{n!} \left(\frac{n}{s} \right)^{n+1} \frac{d^n}{d\lambda^n} (\lambda^{\alpha} \hat{f}(\lambda)) \Big|_{\lambda = n/s} ds.$$

Thus the interest of Theorem 2.1 relies upon the fact that it provides an inversion formula for those functions $\varphi : (\omega, \infty) \to X$ which are not necessarily a Laplace transform, but such that $\lambda^{-\alpha}\varphi(\lambda)$ is a Laplace transform for some $\alpha > 0$; see [ABHN, Example 2.2.4]. Important classes of functions in this situation involve general α -times integrated semigroups or integrated cosine functions (see next section).

To end this section, we point out that there exists a well known version of Theorem 1.1 in which the Laplace–Stieltjes transform \mathcal{L}_S of vector-valued Lipschitz continuous functions is considered. If $F : \mathbb{R}^+ \to X$ is a Lipschitz continuous function, that is,

$$\sup_{t,s \ge 0} \frac{\|F(t) - F(s)\|}{|t - s|} < \infty,$$

then the Laplace–Stieltjes transform of F is given by

$$\mathcal{L}_S(F)(\lambda) := -F(0) + \lambda \int_0^\infty e^{-\lambda t} F(t) \, dt$$

for those λ greater than the exponential growth bound of F. It follows from Theorem 1.1 that if $F : \mathbb{R}^+ \to X$ is a Lipschitz continuous function such that F(0) = 0 then

$$F(t) = \lim_{n \to \infty} \frac{(-1)^n}{n!} \left(\frac{n}{t}\right)^{n+1} \frac{d^n}{d\lambda^n} \left(\frac{\mathcal{L}_S(F)(\lambda)}{\lambda}\right) \Big|_{\lambda = n/s}, \quad t > 0.$$

See [ABHN, Theorem 2.3.1].

As a consequence of Theorem 2.1, we further obtain the following inversion formula for Laplace–Stieltjes transforms:

COROLLARY 2.5. Let $F : \mathbb{R}^+ \to X$ be a Lipschitz continuous function such that F(0) = 0. Let t > 0. Then

$$F(t) = \lim_{n \to \infty} \frac{(-1)^n}{n!} \int_0^t \left(\frac{n}{s}\right)^{n+1} \frac{d^n}{d\lambda^n} (\mathcal{L}_S(F)(\lambda)) \bigg|_{\lambda = n/s} ds$$

Proof. Under these assumptions, $\hat{F}(\lambda) = \lambda^{-1} \mathcal{L}_S(F)(\lambda)$ for λ large enough. Moreover, $||F(t)|| \leq Ct$ for every $t \geq 0$ and some C > 0. Then it suffices to apply Theorem 2.1 for $\alpha = 1$.

3. Applications. We show here that Theorem 2.1 applies to α -times integrated semigroups and α -times integrated cosine families, obtaining in this way appropriate inversion formulae of Euler's type for these families.

3.1. Euler's exponential type formula for α -times integrated semigroups. Let X be a Banach space and let $\alpha > 0$. A strongly continuous family $(S_{\alpha}(t))_{t\geq 0} \subseteq \mathcal{B}(X)$ of bounded operators on X is called an α -times integrated semigroup if $S_{\alpha}(0) = 0$ and

(3.1)
$$\Gamma(\alpha)S_{\alpha}(t)S_{\alpha}(s) = \int_{t}^{t+s} (t+s-r)^{\alpha-1}S_{\alpha}(r) dr - \int_{0}^{s} (t+s-r)^{\alpha-1}S_{\alpha}(r) dr$$

for every $s, t \ge 0$. Moreover, $(S_{\alpha}(t))_{t\ge 0}$ is called *non-degenerate* if $S_{\alpha}(t)x = 0$ for all $t \ge 0$ implies x = 0. A 0-times integrated non-degenerate semigroup is a C_0 -semigroup.

Assume that the function $S_{\alpha} : [0, \infty) \to \mathcal{B}(X)$ has a Laplace transform whenever $\lambda > \omega$ for some $\omega \in \mathbb{R}$. In this case, there exists a unique operator A on X satisfying $(\omega, \infty) \subseteq \rho(A)$ and such that

$$R(\lambda, A) := (\lambda - A)^{-1} = \lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S_{\alpha}(t) dt, \quad \lambda > \omega.$$

Such an operator A is called the generator of $(S_{\alpha}(t))_{t\geq 0}$. See [ABHN, H2] for the general theory of integrated semigroups.

COROLLARY 3.1. Let $A: D(A) \subseteq X \to X$ be the generator of an α -times integrated semigroup $(S_{\alpha}(t))_{t\geq 0}$ such that $||S_{\alpha}(t)|| \leq Ct^{\gamma}e^{\omega t}$, $t\geq 0$, for some $\gamma > \alpha - 1$ and $\omega \geq 0$. Then, for every t > 0 and every $x \in X$,

$$S_{\alpha}(t)x = \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} \left(\frac{n}{s}\right)^{n+1} R\left(\frac{n}{s}, A\right)^{n+1} x \, ds.$$

Proof. Let $x \in X$. Set $f(t) := S_{\alpha}(t)x$ for $t \ge 0$. Notice that f is continuous on $[0, \infty)$ since $(S_{\alpha}(t))_{t\ge 0}$ is strongly continuous. By definition, $R(\lambda, A)x = \lambda^{\alpha}\hat{f}(\lambda)$ for λ large enough. Moreover, the resolvent equation gives us $((-1)^n/n!)(d^n/d\lambda^n)R(\lambda, A)x = R(\lambda, A)^{n+1}x$. Now, the claim follows directly from Theorem 2.1 since $\alpha \in (0, \gamma + 1)$.

The above corollary extends previous results in this setting (see [C, Theorem 3.1] for *n*-times integrated semigroups, $n \in \mathbb{N}$, and [VV, Theorem 3.1] for exponentially bounded α -times integrated semigroups and $0 < \alpha < 1$), and provides a unified proof for them. A large number of examples of α -times integrated semigroups satisfying the assumptions of Corollary 3.1 can be found in [H1].

3.2. α -times integrated cosine functions. Let X be a Banach space and let $\alpha > 0$. A strongly continuous family $(C_{\alpha}(t))_{t \ge 0} \subseteq \mathcal{B}(X)$ is an α -times integrated cosine function if $C_{\alpha}(0) = 0$ and

(3.2)
$$2\Gamma(\alpha)C_{\alpha}(t)C_{\alpha}(s) = \int_{t}^{t+s} (t+s-r)^{\alpha-1}C_{\alpha}(r) dr - \int_{0}^{s} (t+s-r)^{\alpha-1}C_{\alpha}(r) dr + \int_{t-s}^{t} (r-t+s)^{\alpha-1}C_{\alpha}(r) dr + \int_{0}^{s} (r+t-s)^{\alpha-1}C_{\alpha}(r) dr$$

for every 0 < s < t. The family $(C_{\alpha}(t))_{t\geq 0}$ is called *non-degenerate* if $C_{\alpha}(t)x = 0$ for every $t \geq 0$ implies x = 0. If the Laplace transform of $C_{\alpha}(\cdot) : [0, \infty) \to \mathcal{B}(X)$ converges in (ω, ∞) for some $\omega \geq 0$, then there exists a unique operator A on X such that

$$\lambda R(\lambda^2, A) := \lambda (\lambda^2 - A)^{-1} = \lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} C_{\alpha}(t) dt, \quad \lambda > \omega.$$

See for example [EK, M2]. This operator A is called the *generator* of $(C_{\alpha}(t))_{t\geq 0}$. A 0-times integrated cosine function is the usual cosine function.

As a consequence of Theorem 2.1, one obtains the following result, which seems to be new.

COROLLARY 3.2. Let $A : D(A) \subseteq X \to X$ be the generator of an α times integrated cosine function $(C_{\alpha}(t))_{t\geq 0}$ for which there exist constants $\gamma > \alpha - 1$ and $\omega \geq 0$ satisfying $||C_{\alpha}(t)|| \leq Ct^{\gamma}e^{\omega t}$ for $t \geq 0$. Then, for every $x \in X$ and t > 0,

$$C_{\alpha}(t)x = \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} \frac{(-1)^{n}}{n!} \left(\frac{n}{s}\right)^{n+1} \frac{d^{n}}{d\lambda^{n}} (\lambda R(\lambda^{2}, A)) \Big|_{\lambda = n/s} ds.$$

Proof. Similar to the proof of Corollary 3.1.

Particular examples of generators of α -times integrated cosine functions are provided by those of α -times integrated semigroups. In fact, if an operator B on a Banach space is such that B and -B are both generators of α -times integrated semigroups then $A = B^2$ is the generator of an α -times integrated cosine function; see [AK, EK]. In this case the explicit calculation of $(d^n/d\lambda^n)(\lambda R(\lambda^2, A))$ is simple:

$$\frac{d^n}{d\lambda^n}(\lambda R(\lambda^2, A)) = \frac{1}{2}[R(\lambda, -iB)^{n+1} + R(\lambda, iB)^{n+1}].$$

EXAMPLE 3.3. For $\alpha, t > 0$, the *Riesz kernel* is the function $R_t^{\alpha-1}$ defined by

$$R_t^{\alpha-1}(s) := \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \chi_{(0,t)}(s), \quad s > 0.$$

These kernels play a central role in the study of Banach algebras $\mathcal{T}^{(\alpha)}_+(t^{\alpha}e^{\omega t})$ of Sobolev type, which are in close relationship with α -times integrated semigroups and integrated cosine functions. Here, we are not concerned with these algebras, whose definition and first properties can be seen in [GM], for instance. Among these properties, we mention that the function $R^{\alpha-1}_t$ is a multiplier of the Banach algebra $\mathcal{T}^{(\alpha)}_+(t^{\alpha}e^{\omega t})$ with respect to either the usual convolution product * or the cosine convolution product $*_c$ on \mathbb{R}^+ , which are given for $f, g \in \mathcal{T}^{(\alpha)}_+(t^{\alpha}e^{\omega t})$ by

$$f * g(t) := \int_{0}^{t} f(t-s)g(s) \, ds, \quad t > 0,$$

and

$$f *_{c} g(t) := \frac{1}{2} \Big(f * g(t) + \int_{t}^{\infty} f(s-t)g(s) \, ds + \int_{t}^{\infty} g(s-t)f(s) \, ds \Big), \quad t > 0.$$

In both cases, as a multiplier, $||R_t^{\alpha-1}|| \le Ct^{\alpha}e^{\omega t}$ (t > 0).

In view of Theorem 2.1 we have the following.

COROLLARY 3.4. Let $\alpha > 0$ and $\omega \ge 0$. Then for every $g \in \mathcal{T}^{(\alpha)}_+(t^{\alpha}e^{\omega t})$ and t > 0 we have

$$R_t^{\alpha - 1} \bullet g = \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} \left(\frac{n}{s}\right)^{n + 1} e_{n/s}^{*(n+1)} \bullet g \, ds$$

in the norm of $\mathcal{T}^{(\alpha)}_{+}(t^{\alpha}e^{\omega t})$, where

$$e_{\lambda}^{*(n+1)}(r) = \frac{r^n}{n!} e_{\lambda}(r) \quad (r \ge 0)$$

and • is either the usual convolution * or the cosine convolution $*_c$ in $\mathcal{T}^{(\alpha)}_+(t^{\alpha}e^{\omega t})$.

Proof. Note that for every $\lambda > \omega$ and $n \in \mathbb{N}$ one has

$$e_{\lambda} := e^{-\lambda(\cdot)} = \lambda^{\alpha} \int_{0}^{\infty} R_{t}^{\alpha-1} e^{-\lambda t} dt$$

and

$$\frac{(-1)^n}{n!} \frac{d^n}{d\lambda^n} e_{\lambda} = e_{\lambda}^{*(n+1)}.$$

Hence it is enough to take $f(t) = R_t^{\alpha} \bullet g$ in the formula of Theorem 2.1 to obtain the result.

REMARK 3.5. The formula in the preceding corollary serves to illustrate Theorem 2.1 in a canonical situation, as regards α -times integrated semigroups. For simplicity, assume $\alpha > 1$. The equality

$$R_t^{\alpha-1}(r) = \lim_{n \to \infty} \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left(\frac{n}{s}\right)^{n+1} \frac{r^n}{n!} e^{-(n/s)r} \, ds, \quad t > 0,$$

holds as a particular case of the fact that Theorem 1.1 remains true when one replaces functions like f with Dirac masses:

For r > 0,

$$\delta_r = \lim_{n \to \infty} \frac{(-1)^n}{n!} \left(\frac{n}{\cdot}\right)^{n+1} \hat{\delta}_r^{(n)} \left(\frac{n}{\cdot}\right) = \lim_{n \to \infty} \left(\frac{n}{\cdot}\right)^{n+1} \frac{r^n}{n!} e^{-(n/\cdot)n!}$$

in the sense of weak convergence of measures. In fact, for each continuous function F on $[0, \infty)$ with $\lim_{t\to\infty} F(t) = 0$ we have

$$F_n(r) := \frac{1}{n!} \int_0^\infty \left(\frac{n}{s}\right)^{n+1} r^n e^{-(n/s)r} F(s) \, ds = \frac{n^{n+1}}{n!} \int_0^\infty t^{n-1} e^{-nt} F\left(\frac{r}{t}\right) dt,$$

with

$$\frac{n^{n+1}}{n!} \int_{0}^{\infty} t^{n-1} e^{-nt} \, dt = 1.$$

Therefore

$$F_n(r) - F(r) = \frac{n^{n+1}}{n!} \int_0^\infty t^{n-1} e^{-nt} [F(r/t) - F(r)] dt,$$

and so by standard methods involving the partition of the integration domain $(0, \infty)$ into two parts $\{|t-1| \leq \delta\}$ and $\{|t-1| > \delta\}$, for suitable small $\delta > 0$, one gets $\lim_{n\to\infty} F_n(r) = F(r)$. (In this connection, for the sake of completeness, let us point out that integration by parts gives us

$$\frac{n^{n+1}}{n!} \int_{1+\delta}^{\infty} t^{n-1} e^{-nt} dt = \frac{1}{(n-1)!} \int_{n(1+\delta)}^{\infty} y^{n-1} e^{-y} dy$$
$$= \sum_{k=1}^{n-1} \frac{(1+\delta)^{n-k} n^{n-k}}{(n-k)!} e^{-(1+\delta)n} + \int_{(1+\delta)n}^{\infty} e^{-y} dy,$$

and this expression tends to 0 as $n \to \infty$ by the Stirling formula and the fact that $y \mapsto e^{-y}$ is integrable.)

Corollary 3.4 tells us that the above numerical limit holds indeed for convolution and in the norm of $\mathcal{T}^{(\alpha)}_+(t^{\alpha}e^{\omega t})$.

REMARK 3.6. If $S_{\alpha}(t)$ is an α -times integrated semigroup on a Banach space X satisfying

 $||S_{\alpha}(t)|| \le Ct^{\alpha} \quad (t>0),$

and

(3.4)
$$\lim_{t \to 0} \Gamma(\alpha+1)t^{-\alpha}S_{\alpha}(t)x = x \quad (x \in X),$$

then there exists a bounded Banach algebra homomorphism

$$\pi_{\alpha} \colon \mathcal{T}^{(\alpha)}_{+}(t^{\alpha}) \to \mathcal{B}(X)$$

with dense range, so that π_{α} extends to the multiplier algebra of $\mathcal{T}^{(\alpha)}_{+}(t^{\alpha})$ with the usual convolution *, and we get $S_{\alpha}(t) = \pi_{\alpha}(R_t^{\alpha-1})$. Conversely, if we have a bounded Banach algebra homomorphism $\pi_{\alpha} \colon \mathcal{T}^{(\alpha)}_{+}(t^{\alpha}) \to \mathcal{B}(X)$ with dense range then $S_{\alpha}(t) \coloneqq \pi_{\alpha}(R_t^{\alpha-1})$ is an α -times integrated semigroup satisfying (3.3) and (3.4).

For α -times integrated cosine functions there is a similar result, with the only difference that the homomorphism π_{α} has to be replaced with a homomorphism $\gamma_{\alpha} \colon \mathcal{T}^{(\alpha)}_{+}(t^{\alpha}) \to \mathcal{B}(X)$ with respect to the cosine convolution product $*_c$ in $\mathcal{T}^{(\alpha)}_{+}(t^{\alpha})$.

Actually, the family $(R_t^{\alpha-1})_{t\geq 0}$ is an α -times integrated semigroup and an α -times integrated cosine family since it satisfies the functional equations (3.1) and (3.2).

Notice that starting from Corollary 3.4, with a direct proof independent of Theorem 2.1, one can prove Corollary 3.1 and Corollary 3.2 (for $\gamma = \alpha$ and $\omega = 0$) by just considering the image of $R_t^{\alpha-1} \bullet g$ and of its integral expression under the homomorphisms π_{α} and γ_{α} , respectively.

Thus it seems reasonable to consider the Riesz kernels as canonical integrated families, in the present setting. For all the above facts we refer the reader to [GM], [GMM] and [M2].

The authors would like to thank the referee for a careful reading of the text and valuable suggestions which have improved the paper.

This research has been partially supported by Projects MTM2010-16679 of the M.C.Y.T., Spain, and E-64 of the D.G. Aragón. The second author was also partially supported by a FPU Grant from the Ministry of Education of Spain.

References

[ABHN] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs Math. 96, Birkhäuser, Basel, 2001.

- [AK] W. Arendt and H. Kellerman, Integrated solutions of Volterra integrodifferential equations and applications, in: Volterra Integro-Differential Equations in Banach Spaces and Applications (Trento, 1987), G. Da Prato and M. Iannelli (eds.), Pitman Res. Notes Math. 190, Longman, New York, 1989, 21–51.
- [C] V. Cachia, Convergence at the origin of integrated semigroups, Studia Math. 187 (2008), 199–218.
- [EK] O. El-Mennaoui and V. Keyantuo, Trace theorems for holomorphic semigroups and the second order Cauchy problem, Proc. Amer. Math. Soc. 124 (1996), 1445–1458.
- [GMM] J. E. Galé, M. M. Martínez and P. J. Miana, Katznelson-Tzafriri type theorem for integrated semigroups, submitted.
- [GM] J. E. Galé and P. J. Miana, One-parameter groups of regular quasimultipliers, J. Funct. Anal. 237 (2006), 1–53.
- [H1] M. Hieber, Integrated semigroups and differential operators on L^p spaces, Math. Ann. 291 (1991), 1–16.
- [H2] —, Laplace transforms and α -times integrated semigroups, Forum Math. 3 (1991), 595–612.
- [MCPS] D. Melini, V. Cannelli, A. Piersanti and G. Spada, Post-seismic rebound of a spherical Earth: new insights from the application of the Post-Widder inversion formula, Geophys. J. Int. 174 (2008), 672–695.
- [M1] P. J. Miana, α-Times integrated semigroups and fractional derivation, Forum Math. 14 (2002), 23–46.
- [M2] —, Almost-distribution cosine functions and integrated cosine functions, Studia Math. 166 (2005), 171–180.
- [P] E. L. Post, Generalized differentiation, Trans. Amer. Math. Soc. 32 (1930), 723–781.
- [SB] G. Spada and L. Boschi, Using the Post-Widder formula to compute the Earth's viscoelastic Love numbers, Geophys. J. Int. 166 (2006), 309–321.
- [T] E. C. Titchmarsh, *The Theory of Functions*, 2nd ed., Oxford Univ. Press, 1939.
- [VV] F. Vajzović and R. Vugdalić, Two exponential formulas for α -times integrated semigroups ($\alpha \in \mathbb{R}^+$), Sarajevo J. Math. 1 (2005), 93–115.
- [W] D. V. Widder, The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc. 36 (1934), 107–200.

José E. Galé, María M. Martínez, Pedro J. Miana Departamento de Matemáticas e IUMA Universidad de Zaragoza 50009 Zaragoza, Spain E-mail: gale@unizar.es maria@unizar.es pjmiana@unizar.es

> Received June 9, 2011 Revised version September 9, 2011 (7

(7216)