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Integrated version of the Post–Widder inversion formula
for Laplace transforms

by

José E. Galé, Maŕıa M. Mart́ınez and Pedro J. Miana (Zaragoza)

Abstract. We establish an inversion formula of Post–Widder type for λα-multiplied
vector-valued Laplace transforms (α > 0). This result implies an inversion theorem for
resolvents of generators of α-times integrated families (semigroups and cosine functions)
which, in particular, provides a unified proof of previously known inversion formulae for
α-times integrated semigroups.

1. Introduction. Let X be a Banach space and let L1
loc([0,∞);X) de-

note the vector space of functions f : [0,∞) → X which are Bochner inte-
grable on [0, R] for all R > 0. For a function f ∈ L1

loc([0,∞);X), the Laplace
transform f̂ is given by

f̂(λ) =
∞�

0

f(t)e−λt dt

for those complex values λ for which the integral exists. It is a well known
fact that any Laplace transformable function f ∈ L1

loc([0,∞);X) is deter-
mined by its Laplace transform, as the following theorem shows.

Theorem 1.1 ([ABHN, Theorem 1.7.7]). Let f ∈ L1
loc([0,∞);X) be such

that f̂(λ) converges for some λ ∈ C. Let t > 0 be a Lebesgue point of f .
Then

f(t) = lim
n→∞

(−1)n
1
n!

(
n

t

)n+1

f̂ (n)

(
n

t

)
.

Recall that t > 0 is a Lebesgue point of a function f ∈ L1
loc([0,∞);X) if

limh→0 h
−1

	t+h
t ‖f(s)−f(t)‖ ds = 0. Every point of continuity is a Lebesgue

point of f and almost all points are Lebesgue points of f (see [ABHN, p. 16]).
The above theorem provides us with a vector-valued version of the clas-

sical Post–Widder inversion formula for the Laplace transform; see [P, W].
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Such a limit is known as a real inversion formula since only properties of f̂(λ)
for large real λ are involved. In recent years, the Post–Widder formula has
been fruitfully used in numerical applications (see for instance [MCPS, SB]).

The main result of this note, Theorem 2.1 below, is an integrated Post–
Widder formula for λα-multiplied Laplace transforms (and Laplace–Stieltjes
transforms) of vector-valued functions. This theorem allows us to obtain in-
version formulae for resolvents of generators of (α-times) integrated semi-
groups and integrated cosine families of operators. Such formulae in partic-
ular recover and extend to α-times integrated semigroups other previously
known results in the literature (see [C, VV]). The paper ends with a discus-
sion of the canonical example of an integrated family, formed by the so-called
Riesz kernels.

2. The main result. Let X be an arbitrary complex Banach space and
let f : (0,∞)→ X be a measurable function such that

(2.1) sup
t>0
‖t−γe−ωtf(t)‖ =: M <∞

for some γ > −1 and ω ≥ 0. Clearly, the Laplace transform f̂ exists at least
on the open right half-plane <λ > ω.

The following is the main result of the paper.

Theorem 2.1. Let γ, ω and f be as above. Then, for every α ∈ (0, γ+1)
and for any Lebesgue point t > 0 of f ,

f(t) = lim
n→∞

1
Γ (α)

t�

0

(t− s)α−1 (−1)n

n!

(
n

s

)n+1 dn

dλn
(λαf̂(λ))

∣∣∣∣
λ=n/s

ds.

This formula may be considered as an α-times integrated version of the
Post–Widder formula. In the next lemma it is shown that the conditions on
f and on α ensure that the Post–Widder approximant

Ln,s[λαf̂(λ)] :=
(−1)n

n!

(
n

s

)n+1 dn

dλn
(λαf̂(λ))

∣∣∣∣
λ=n/s

(s > 0)

is Bochner integrable near the origin for n sufficiently large, so that the
integral in Theorem 2.1 is actually convergent.

Lemma 2.2. Let f : (0,∞) → X, γ, ω and α be as in the assumptions
of Theorem 2.1. Then the function Ln,(·)[λαf̂(λ)] is Bochner integrable in
(0, t) for every t > 0 and every n > ωt.

Proof. First of all, notice that, due to the growth conditions on f , the
integral

	∞
0 f(u)uke−λu du is Bochner convergent for every λ > ω and k ≥ 0.
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Now, take t > 0 and n > ωt. Thus if s ∈ (0, t) then n > ωs, so we get

Ln,s[λαf̂(λ)] =
(−1)n

n!

n∑
k=0

Cαk,n

(
n

s

)α+1+k∞�

0

f(u)uke−(n/s)u du,

where Cαk,n := (−1)k
(
n
k

)
(n − k)!

(
α
n−k
)

for k = 0, . . . , n. Then note that, for
the constant M appearing in (2.1),(

n

s

)α+1+k∞�

0

|f(u)|uke−(n/s)u du

≤M
(
n

s

)α+1+k∞�

0

uγ+ke−((n/s)−ω)u du

= M
(n/s)α+1+k

((n/s)− ω)γ+1+k
Γ (γ + k + 1)

≤MΓ (γ + k + 1)nα+k+1sγ−α (k = 0, . . . , n),

provided that γ > −1. Therefore, the function Ln,s[λαf̂(λ)] is integrable in
(0, t) whenever α ∈ (0, γ + 1).

Remark 2.3. Inorder to ensure theBochner integrabilityofLn,(·)[λαf̂(λ)]
near the origin, it is enough to assume that the given function f is in
L1

loc([0,∞);X), it is Laplace transformable, and its Laplace transform f̂
satisfies

∞�

R

λα+k+1f̂ (k)(λ) dλ <∞ for every k ∈ N and R > 0.

Under these weaker assumptions, the inversion formula in Theorem 2.1 also
holds.

Proof of Theorem 2.1. Let t > 0 be a Lebesgue point of f . Denote

In(t) :=
1

Γ (α)

t�

0

(t− s)α−1Ln,s[λαf̂(λ)] ds.

The convergence of this integral for n > ωt follows from Lemma 2.2. As
before, write

Ln,s[λαf̂(λ)] =
(−1)n

n!

n∑
k=0

Cαk,n

(
n

s

)α+1+k∞�

0

f(u)uke−(n/s)u du

for s ∈ (0, t) and n > ωt. Using Fubini’s Theorem we get

In(t) =
(−1)n

n!
1

Γ (α)

n∑
k=0

Cαk,n

∞�

0

ukf(u)Kn(u) du
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where

Kn(u) :=
t�

0

(t− s)α−1

(
n

s

)α+k+1

e−(n/s)u ds (u > 0).

Making the change of variable z = (n/s)u− (n/t)u, we obtain

Kn(u) =
ne−(n/t)u

uα+k
tα−k−1

∞�

0

zα−1(tz + nu)ke−z dz

=
ne−(n/t)u

uα+k
tα−1

k∑
j=0

(
k

j

)(
nu

t

)k−i
Γ (α+ j).

Then

In(t) =
(−1)n

n!
ntα−1

∞�

0

u−αf(u)e−(n/t)uΦn,t,α(u) du

where, for u > 0,

Φn,t,α(u) :=
n∑
k=0

Cαk,n

k∑
j=0

(
k

j

)(
nu

t

)k−j Γ (α+ j)
Γ (α)

= (−1)n
(
nu

t

)n
;

see [VV, Lemma 3.1] for the general formula. Hence we get

(2.2) In(t) =
nn+1

n!
tα−n−1

∞�

0

un−αe−(n/t)uf(u) du.

Notice that for every non-negative integer n > α+ 1,

nn+1

n!
tα−n−1

∞�

0

un−αe−(n/t)u du =
nα

n!
Γ (n+ 1− α),

which tends to 1 (n → ∞), since Γ (u + 1) ∼ uu+1/2e−u
√

2π as u → ∞
(see [T]). Thus, to obtain the assertion of the theorem, it is enough to check
that

Jn(t) := In(t)− nα

n!
Γ (n+ 1− α)f(t)→ 0 as n→∞.

To do so, set

G(s) :=
s�

t

(f(u)− f(t)) du = F (s)− F (t)− f(t)(s− t),

where F (s) :=
	s
0 f(u) du for s ≥ 0. Then ‖F (s)‖ ≤ M̃sγ+1eωs (s ≥ 0)

for some M̃ > 0. This readily implies that the function G is exponentially
bounded, that is, there exist some constants µ ≥ 0 and C > 0 such that
‖G(s)‖ ≤ Ceµs for every s ≥ 0. We may assume that µ ≥ ω. On the other
hand, the fact that t is a Lebesgue point of f implies that ‖G(s)‖ = o(|s−t|)
as s→ t.
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By integration by parts, for n > max{µt, α} we have

Jn(t) =
nn+1

n!
tα−n−1

∞�

0

un−αe−(n/t)u(f(u)− f(t)) du

=
nn+1

n!
tα−n−1

∞�

0

(
nun−α

t
− (n− α)un−α−1

)
e−(n/t)uG(u) du

=
nn+1

n!
tα−n−1

∞�

0

(
nu

t
− (n− α)

)
un−α−1e−(n/t)uG(u) du

=
nn+2

n!
1
t

∞�

0

(
y − n− α

n

)
yn−α−1e−nyG(ty) dy.

Let now ε > 0 and choose 0 < δ < 1 such that if |y − 1| < δ then

(2.3)
1
t
‖G(ty)‖ < ε|y − 1|.

Divide Jn(t) into three integrals J1,n(t), J2,n(t) and J3,n(t) whose intervals
of integration are (0, 1− δ), (1− δ, 1 + δ) and (1 + δ,∞), respectively.

First, we are going to estimate J1,n(t). Take n > (α+ 1)/δ. In this case,
the function y 7→ yn−α−1e−ny is increasing on (0, 1− δ), and therefore

‖J1,n(t)‖ ≤ nn+2

n!
1
t

1−δ�

0

∣∣∣∣y − n− α
n

∣∣∣∣yn−α−1e−ny‖G(ty)‖ dy

≤ nn+2

n!
1
t
(1− δ)n−α−1e−n(1−δ)

1−δ�

0

‖G(ty)‖ dy =: an,

where we have used that δ/(α+ 1) ≤ (n−α)/n− y < 1 for all y ∈ (0, 1− δ).
Then, by Stirling’s formula,

an = O(n3/2((1− δ)eδ)n) as n→∞,
and therefore an → 0 as n→∞, since (1−δ)eδ < 1. Therefore, ‖J1,n(t)‖ < ε
for n large enough.

Now, applying to J2,n(t) the estimate (2.3), we get

‖J2,n(t)‖ ≤ εn
n+2

n!

1+δ�

1−δ

∣∣∣∣y − n− α
n

∣∣∣∣|y − 1|yn−α−1e−ny dy

= ε
nn+2

n!

1+δ�

1−δ

∣∣∣∣y − 1 + 1− n− α
n

∣∣∣∣|y − 1|yn−α−1e−ny dy

≤ εn
n+2

n!

1+δ�

1−δ

(
(y − 1)2 +

(
1− n− α

n

)
(y + 1)

)
yn−α−1e−ny dy
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= ε
nn+2

n!

∞�

0

(
y2 −

(
1 +

n− α
n

)
y +

(
2− n− α

n

))
yn−α−1e−ny dy

= ε
nα

n!

(
Γ (n− α+ 2)−

(
1 +

n− α
n

)
nΓ (n− α+ 1)

+
(

2− n− α
n

)
n2Γ (n− α)

)
= ε

nα

n!
(Γ (n− α+ 1) + 2αnΓ (n− α)).

Thus, the fact that limn→∞
nβ

n! Γ (n− β + 1) = 1 for all β ≥ 0 implies that

lim
n→∞

nα

n!
(Γ (n− α+ 1) + 2αnΓ (n− α)) = 1 + 2α.

Hence, ‖J2,n(t)‖ < 2(1 + α)ε for all sufficiently large n.

To estimate J3,n(t), take n0 ∈ N such that n0 > µt and let n > n0.
Thus, the function y 7→ yn−n0−αe−(n−n0)y is decreasing on (1 + δ,∞). Then
we have

‖J3,n(t)‖ ≤ nn+2

n!
1
t

∞�

1+δ

(
y − n− α

n

)
yn−α−1e−ny‖G(ty)‖ dy

≤ nn+2

n!
C

t

∞�

1+δ

yn−αe−nyeµty dy

=
nn+2

n!
C

t

∞�

1+δ

yn−n0−αe−(n−n0)yyn0e−(n0−µt)y dy

≤ nn+2

n!
C

t

(1 + δ)n−n0−α

e(n−n0)(1+δ)

∞�

1+δ

yn0e−(n0−µt)y dy =: bn.

As before, Stirling’s formula applies to show that bn → 0 as n→∞, and we
find that ‖J3,n(t)‖ < ε for large enough n. The proof is complete.

Remark 2.4. There are some particular cases in which the inversion
formula in Theorem 2.1 can be obtained as a consequence of Theorem 1.1—
for example, when the function is the integral of order α > 0 of a suitable
function.

For α > 0, set jα(t) := tα−1Γ (α)−1, t > 0. Let g ∈ L1
loc([0,∞);X) be an

exponentially bounded function. Thus, f := jα ∗ g satisfies the assumptions
of Theorem 2.1, where ∗ is the usual convolution on R+. Notice that λαf̂(λ)
= ĝ(λ) for appropriate complex values of λ. Therefore, by Theorem 1.1 and
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the dominated convergence theorem, for every t > 0,

f(t) = jα ∗
(

lim
n→∞

(−1)n
1
n!

(
n

(·)

)n+1

ĝ(n)

(
n

(·)

))
(t)

= lim
n→∞

1
Γ (α)

t�

0

(t− s)α−1 (−1)n

n!

(
n

s

)n+1

ĝ(n)

(
n

s

)
ds

= lim
n→∞

1
Γ (α)

t�

0

(t− s)α−1 (−1)n

n!

(
n

s

)n+1 dn

dλn
(λαf̂(λ))

∣∣∣∣
λ=n/s

ds.

Thus the interest of Theorem 2.1 relies upon the fact that it provides an
inversion formula for those functions ϕ : (ω,∞) → X which are not neces-
sarily a Laplace transform, but such that λ−αϕ(λ) is a Laplace transform
for some α > 0; see [ABHN, Example 2.2.4]. Important classes of functions
in this situation involve general α-times integrated semigroups or integrated
cosine functions (see next section).

To end this section, we point out that there exists a well known version
of Theorem 1.1 in which the Laplace–Stieltjes transform LS of vector-valued
Lipschitz continuous functions is considered. If F : R+ → X is a Lipschitz
continuous function, that is,

sup
t,s≥0

‖F (t)− F (s)‖
|t− s|

<∞,

then the Laplace–Stieltjes transform of F is given by

LS(F )(λ) := −F (0) + λ

∞�

0

e−λtF (t) dt

for those λ greater than the exponential growth bound of F . It follows from
Theorem 1.1 that if F : R+ → X is a Lipschitz continuous function such
that F (0) = 0 then

F (t) = lim
n→∞

(−1)n

n!

(
n

t

)n+1 dn

dλn

(
LS(F )(λ)

λ

)∣∣∣∣
λ=n/s

, t > 0.

See [ABHN, Theorem 2.3.1].
As a consequence of Theorem 2.1, we further obtain the following inver-

sion formula for Laplace–Stieltjes transforms:

Corollary 2.5. Let F : R+ → X be a Lipschitz continuous function
such that F (0) = 0. Let t > 0. Then

F (t) = lim
n→∞

(−1)n

n!

t�

0

(
n

s

)n+1 dn

dλn
(LS(F )(λ))

∣∣∣∣
λ=n/s

ds.
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Proof. Under these assumptions, F̂ (λ)=λ−1LS(F )(λ) for λ large enough.
Moreover, ‖F (t)‖ ≤ Ct for every t ≥ 0 and some C > 0. Then it suffices to
apply Theorem 2.1 for α = 1.

3. Applications. We show here that Theorem 2.1 applies to α-times
integrated semigroups and α-times integrated cosine families, obtaining in
this way appropriate inversion formulae of Euler’s type for these families.

3.1. Euler’s exponential type formula for α-times integrated
semigroups. LetX be a Banach space and let α > 0. A strongly continuous
family (Sα(t))t≥0 ⊆ B(X) of bounded operators on X is called an α-times
integrated semigroup if Sα(0) = 0 and

(3.1) Γ (α)Sα(t)Sα(s) =
t+s�

t

(t+ s− r)α−1Sα(r) dr −
s�

0

(t+ s− r)α−1Sα(r) dr

for every s, t ≥ 0. Moreover, (Sα(t))t≥0 is called non-degenerate if Sα(t)x = 0
for all t ≥ 0 implies x = 0. A 0-times integrated non-degenerate semigroup
is a C0-semigroup.

Assume that the function Sα : [0,∞) → B(X) has a Laplace transform
whenever λ > ω for some ω ∈ R. In this case, there exists a unique operator
A on X satisfying (ω,∞) ⊆ ρ(A) and such that

R(λ,A) := (λ−A)−1 = λα
∞�

0

e−λtSα(t) dt, λ > ω.

Such an operator A is called the generator of (Sα(t))t≥0. See [ABHN, H2]
for the general theory of integrated semigroups.

Corollary 3.1. Let A : D(A) ⊆ X → X be the generator of an α-times
integrated semigroup (Sα(t))t≥0 such that ‖Sα(t)‖ ≤ Ctγeωt, t ≥ 0, for some
γ > α− 1 and ω ≥ 0. Then, for every t > 0 and every x ∈ X,

Sα(t)x = lim
n→∞

1
Γ (α)

t�

0

(t− s)α−1

(
n

s

)n+1

R

(
n

s
,A

)n+1

x ds.

Proof. Let x ∈ X. Set f(t) := Sα(t)x for t ≥ 0. Notice that f is con-
tinuous on [0,∞) since (Sα(t))t≥0 is strongly continuous. By definition,
R(λ,A)x = λαf̂(λ) for λ large enough. Moreover, the resolvent equation
gives us ((−1)n/n!)(dn/dλn)R(λ,A)x = R(λ,A)n+1x. Now, the claim fol-
lows directly from Theorem 2.1 since α ∈ (0, γ + 1).

The above corollary extends previous results in this setting (see [C, The-
orem 3.1] for n-times integrated semigroups, n ∈ N, and [VV, Theorem 3.1]
for exponentially bounded α-times integrated semigroups and 0 < α < 1),
and provides a unified proof for them.
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A large number of examples of α-times integrated semigroups satisfying
the assumptions of Corollary 3.1 can be found in [H1].

3.2. α-times integrated cosine functions. Let X be a Banach space
and let α > 0. A strongly continuous family (Cα(t))t≥0 ⊆ B(X) is an α-times
integrated cosine function if Cα(0) = 0 and

(3.2) 2Γ (α)Cα(t)Cα(s)

=
t+s�

t

(t+ s− r)α−1Cα(r) dr −
s�

0

(t+ s− r)α−1Cα(r) dr

+
t�

t−s
(r − t+ s)α−1Cα(r) dr +

s�

0

(r + t− s)α−1Cα(r) dr

for every 0 < s < t. The family (Cα(t))t≥0 is called non-degenerate if
Cα(t)x = 0 for every t ≥ 0 implies x = 0. If the Laplace transform of
Cα(·) : [0,∞)→ B(X) converges in (ω,∞) for some ω ≥ 0, then there exists
a unique operator A on X such that

λR(λ2, A) := λ(λ2 −A)−1 = λα
∞�

0

e−λtCα(t) dt, λ > ω.

See for example [EK, M2]. This operator A is called the generator of
(Cα(t))t≥0. A 0-times integrated cosine function is the usual cosine func-
tion.

As a consequence of Theorem 2.1, one obtains the following result, which
seems to be new.

Corollary 3.2. Let A : D(A) ⊆ X → X be the generator of an α-
times integrated cosine function (Cα(t))t≥0 for which there exist constants
γ > α− 1 and ω ≥ 0 satisfying ‖Cα(t)‖ ≤ Ctγeωt for t ≥ 0. Then, for every
x ∈ X and t > 0,

Cα(t)x = lim
n→∞

1
Γ (α)

t�

0

(t− s)α−1 (−1)n

n!

(
n

s

)n+1 dn

dλn
(λR(λ2, A))

∣∣∣∣
λ=n/s

ds.

Proof. Similar to the proof of Corollary 3.1.

Particular examples of generators of α-times integrated cosine functions
are provided by those of α-times integrated semigroups. In fact, if an oper-
ator B on a Banach space is such that B and −B are both generators of
α-times integrated semigroups then A = B2 is the generator of an α-times
integrated cosine function; see [AK, EK]. In this case the explicit calculation
of (dn/dλn)(λR(λ2, A)) is simple:

dn

dλn
(λR(λ2, A)) =

1
2

[R(λ,−iB)n+1 +R(λ, iB)n+1].
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Example 3.3. For α, t > 0, the Riesz kernel is the function Rα−1
t de-

fined by

Rα−1
t (s) :=

(t− s)α−1

Γ (α)
χ(0,t)(s), s > 0.

These kernels play a central role in the study of Banach algebras T (α)
+ (tαeωt)

of Sobolev type, which are in close relationship with α-times integrated
semigroups and integrated cosine functions. Here, we are not concerned with
these algebras, whose definition and first properties can be seen in [GM], for
instance. Among these properties, we mention that the function Rα−1

t is a
multiplier of the Banach algebra T (α)

+ (tαeωt) with respect to either the usual
convolution product ∗ or the cosine convolution product ∗c on R+, which
are given for f, g ∈ T (α)

+ (tαeωt) by

f ∗ g(t) :=
t�

0

f(t− s)g(s) ds, t > 0,

and

f ∗c g(t) :=
1
2

(
f ∗ g(t) +

∞�

t

f(s− t)g(s) ds+
∞�

t

g(s− t)f(s) ds
)
, t > 0.

In both cases, as a multiplier, ‖Rα−1
t ‖ ≤ Ctαeωt (t > 0).

In view of Theorem 2.1 we have the following.

Corollary 3.4. Let α > 0 and ω ≥ 0. Then for every g ∈ T (α)
+ (tαeωt)

and t > 0 we have

Rα−1
t • g = lim

n→∞

1
Γ (α)

t�

0

(t− s)α−1

(
n

s

)n+1

e
∗(n+1)
n/s • g ds

in the norm of T (α)
+ (tαeωt), where

e
∗(n+1)
λ (r) =

rn

n!
eλ(r) (r ≥ 0)

and • is either the usual convolution ∗ or the cosine convolution ∗c in
T (α)

+ (tαeωt).

Proof. Note that for every λ > ω and n ∈ N one has

eλ := e−λ( · ) = λα
∞�

0

Rα−1
t e−λt dt

and
(−1)n

n!
dn

dλn
eλ = e

∗(n+1)
λ .
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Hence it is enough to take f(t) = Rαt • g in the formula of Theorem 2.1 to
obtain the result.

Remark 3.5. The formula in the preceding corollary serves to illustrate
Theorem 2.1 in a canonical situation, as regards α-times integrated semi-
groups. For simplicity, assume α > 1. The equality

Rα−1
t (r) = lim

n→∞

1
Γ (α)

t�

0

(t− s)α−1

(
n

s

)n+1 rn

n!
e−(n/s)r ds, t > 0,

holds as a particular case of the fact that Theorem 1.1 remains true when
one replaces functions like f with Dirac masses:

For r > 0,

δr = lim
n→∞

(−1)n

n!

(
n

·

)n+1

δ̂(n)
r

(
n

·

)
= lim

n→∞

(
n

·

)n+1 rn

n!
e−(n/·)r

in the sense of weak convergence of measures. In fact, for each continuous
function F on [0,∞) with limt→∞ F (t) = 0 we have

Fn(r) :=
1
n!

∞�

0

(
n

s

)n+1

rne−(n/s)rF (s) ds =
nn+1

n!

∞�

0

tn−1e−ntF

(
r

t

)
dt,

with
nn+1

n!

∞�

0

tn−1e−nt dt = 1.

Therefore

Fn(r)− F (r) =
nn+1

n!

∞�

0

tn−1e−nt[F (r/t)− F (r)] dt,

and so by standard methods involving the partition of the integration do-
main (0,∞) into two parts {|t− 1| ≤ δ} and {|t− 1| > δ}, for suitable small
δ > 0, one gets limn→∞ Fn(r) = F (r). (In this connection, for the sake of
completeness, let us point out that integration by parts gives us

nn+1

n!

∞�

1+δ

tn−1e−nt dt =
1

(n− 1)!

∞�

n(1+δ)

yn−1e−y dy

=
n−1∑
k=1

(1 + δ)n−knn−k

(n− k)!
e−(1+δ)n +

∞�

(1+δ)n

e−y dy,

and this expression tends to 0 as n → ∞ by the Stirling formula and the
fact that y 7→ e−y is integrable.)

Corollary 3.4 tells us that the above numerical limit holds indeed for
convolution and in the norm of T (α)

+ (tαeωt).
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Remark 3.6. If Sα(t) is an α-times integrated semigroup on a Banach
space X satisfying

(3.3) ‖Sα(t)‖ ≤ Ctα (t > 0),

and

(3.4) lim
t→0

Γ (α+ 1)t−αSα(t)x = x (x ∈ X),

then there exists a bounded Banach algebra homomorphism

πα : T (α)
+ (tα)→ B(X)

with dense range, so that πα extends to the multiplier algebra of T (α)
+ (tα)

with the usual convolution ∗, and we get Sα(t) = πα(Rα−1
t ). Conversely, if

we have a bounded Banach algebra homomorphism πα : T (α)
+ (tα) → B(X)

with dense range then Sα(t) := πα(Rα−1
t ) is an α-times integrated semigroup

satisfying (3.3) and (3.4).
For α-times integrated cosine functions there is a similar result, with

the only difference that the homomorphism πα has to be replaced with a
homomorphism γα : T (α)

+ (tα)→ B(X) with respect to the cosine convolution
product ∗c in T (α)

+ (tα).
Actually, the family (Rα−1

t )t≥0 is an α-times integrated semigroup and
an α-times integrated cosine family since it satisfies the functional equations
(3.1) and (3.2).

Notice that starting from Corollary 3.4, with a direct proof independent
of Theorem 2.1, one can prove Corollary 3.1 and Corollary 3.2 (for γ = α
and ω = 0) by just considering the image of Rα−1

t • g and of its integral
expression under the homomorphisms πα and γα, respectively.

Thus it seems reasonable to consider the Riesz kernels as canonical in-
tegrated families, in the present setting. For all the above facts we refer the
reader to [GM], [GMM] and [M2].
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