Integrated version of the Post-Widder inversion formula for Laplace transforms

by

José E. Galé, María M. Martínez and Pedro J. Miana (Zaragoza)

Abstract

We establish an inversion formula of Post-Widder type for λ^{α}-multiplied vector-valued Laplace transforms ($\alpha>0$). This result implies an inversion theorem for resolvents of generators of α-times integrated families (semigroups and cosine functions) which, in particular, provides a unified proof of previously known inversion formulae for α-times integrated semigroups.

1. Introduction. Let X be a Banach space and let $L_{\text {loc }}^{1}([0, \infty) ; X)$ denote the vector space of functions $f:[0, \infty) \rightarrow X$ which are Bochner integrable on $[0, R]$ for all $R>0$. For a function $f \in L_{\mathrm{loc}}^{1}([0, \infty) ; X)$, the Laplace transform \hat{f} is given by

$$
\hat{f}(\lambda)=\int_{0}^{\infty} f(t) e^{-\lambda t} d t
$$

for those complex values λ for which the integral exists. It is a well known fact that any Laplace transformable function $f \in L_{\mathrm{loc}}^{1}([0, \infty) ; X)$ is determined by its Laplace transform, as the following theorem shows.

Theorem $1.1(\boxed{\mathrm{ABHN}}$, Theorem 1.7.7] $)$. Let $f \in L_{\mathrm{loc}}^{1}([0, \infty) ; X)$ be such that $\hat{f}(\lambda)$ converges for some $\lambda \in \mathbb{C}$. Let $t>0$ be a Lebesgue point of f. Then

$$
f(t)=\lim _{n \rightarrow \infty}(-1)^{n} \frac{1}{n!}\left(\frac{n}{t}\right)^{n+1} \hat{f}(n)\left(\frac{n}{t}\right) .
$$

Recall that $t>0$ is a Lebesgue point of a function $f \in L_{\text {loc }}^{1}([0, \infty) ; X)$ if $\lim _{h \rightarrow 0} h^{-1} \int_{t}^{t+h}\|f(s)-f(t)\| d s=0$. Every point of continuity is a Lebesgue point of f and almost all points are Lebesgue points of f (see [ABHN, p. 16]).

The above theorem provides us with a vector-valued version of the classical Post-Widder inversion formula for the Laplace transform; see [P, W].

[^0]Such a limit is known as a real inversion formula since only properties of $\hat{f}(\lambda)$ for large real λ are involved. In recent years, the Post-Widder formula has been fruitfully used in numerical applications (see for instance [MCPS, SB]).

The main result of this note, Theorem 2.1 below, is an integrated PostWidder formula for λ^{α}-multiplied Laplace transforms (and Laplace-Stieltjes transforms) of vector-valued functions. This theorem allows us to obtain inversion formulae for resolvents of generators of (α-times) integrated semigroups and integrated cosine families of operators. Such formulae in particular recover and extend to α-times integrated semigroups other previously known results in the literature (see [C, VV]). The paper ends with a discussion of the canonical example of an integrated family, formed by the so-called Riesz kernels.
2. The main result. Let X be an arbitrary complex Banach space and let $f:(0, \infty) \rightarrow X$ be a measurable function such that

$$
\begin{equation*}
\sup _{t>0}\left\|t^{-\gamma} e^{-\omega t} f(t)\right\|=: M<\infty \tag{2.1}
\end{equation*}
$$

for some $\gamma>-1$ and $\omega \geq 0$. Clearly, the Laplace transform \hat{f} exists at least on the open right half-plane $\Re \lambda>\omega$.

The following is the main result of the paper.
Theorem 2.1. Let γ, ω and f be as above. Then, for every $\alpha \in(0, \gamma+1)$ and for any Lebesgue point $t>0$ of f,

$$
f(t)=\left.\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \frac{(-1)^{n}}{n!}\left(\frac{n}{s}\right)^{n+1} \frac{d^{n}}{d \lambda^{n}}\left(\lambda^{\alpha} \hat{f}(\lambda)\right)\right|_{\lambda=n / s} d s
$$

This formula may be considered as an α-times integrated version of the Post-Widder formula. In the next lemma it is shown that the conditions on f and on α ensure that the Post-Widder approximant

$$
L_{n, s}\left[\lambda^{\alpha} \hat{f}(\lambda)\right]:=\left.\frac{(-1)^{n}}{n!}\left(\frac{n}{s}\right)^{n+1} \frac{d^{n}}{d \lambda^{n}}\left(\lambda^{\alpha} \hat{f}(\lambda)\right)\right|_{\lambda=n / s} \quad(s>0)
$$

is Bochner integrable near the origin for n sufficiently large, so that the integral in Theorem 2.1 is actually convergent.

Lemma 2.2. Let $f:(0, \infty) \rightarrow X, \gamma, \omega$ and α be as in the assumptions of Theorem 2.1. Then the function $L_{n,(\cdot)}\left[\lambda^{\alpha} \hat{f}(\lambda)\right]$ is Bochner integrable in $(0, t)$ for every $t>0$ and every $n>\omega t$.

Proof. First of all, notice that, due to the growth conditions on f, the integral $\int_{0}^{\infty} f(u) u^{k} e^{-\lambda u} d u$ is Bochner convergent for every $\lambda>\omega$ and $k \geq 0$.

Now, take $t>0$ and $n>\omega t$. Thus if $s \in(0, t)$ then $n>\omega s$, so we get

$$
L_{n, s}\left[\lambda^{\alpha} \hat{f}(\lambda)\right]=\frac{(-1)^{n}}{n!} \sum_{k=0}^{n} C_{k, n}^{\alpha}\left(\frac{n}{s}\right)^{\alpha+1+k} \int_{0}^{\infty} f(u) u^{k} e^{-(n / s) u} d u,
$$

where $C_{k, n}^{\alpha}:=(-1)^{k}\binom{n}{k}(n-k)!\binom{\alpha}{n-k}$ for $k=0, \ldots, n$. Then note that, for the constant M appearing in (2.1),

$$
\begin{aligned}
\left(\frac{n}{s}\right)^{\alpha+1+k} \int_{0}^{\infty}|f(u)| u^{k} & e^{-(n / s) u} d u \\
& \leq M\left(\frac{n}{s}\right)^{\alpha+1+k} \int_{0}^{\infty} u^{\gamma+k} e^{-((n / s)-\omega) u} d u \\
& =M \frac{(n / s)^{\alpha+1+k}}{((n / s)-\omega)^{\gamma+1+k}} \Gamma(\gamma+k+1) \\
& \leq M \Gamma(\gamma+k+1) n^{\alpha+k+1} s^{\gamma-\alpha} \quad(k=0, \ldots, n)
\end{aligned}
$$

provided that $\gamma>-1$. Therefore, the function $L_{n, s}\left[\lambda^{\alpha} \hat{f}(\lambda)\right]$ is integrable in $(0, t)$ whenever $\alpha \in(0, \gamma+1)$.

REmark 2.3. In order to ensure the Bochner integrability of $L_{n,(\cdot)}\left[\lambda^{\alpha} \hat{f}(\lambda)\right]$ near the origin, it is enough to assume that the given function f is in $L_{\text {loc }}^{1}([0, \infty) ; X)$, it is Laplace transformable, and its Laplace transform \hat{f} satisfies

$$
\int_{R}^{\infty} \lambda^{\alpha+k+1} \hat{f}^{(k)}(\lambda) d \lambda<\infty \quad \text { for every } k \in \mathbb{N} \text { and } R>0
$$

Under these weaker assumptions, the inversion formula in Theorem 2.1 also holds.

Proof of Theorem 2.1. Let $t>0$ be a Lebesgue point of f. Denote

$$
\mathcal{I}_{n}(t):=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} L_{n, s}\left[\lambda^{\alpha} \hat{f}(\lambda)\right] d s
$$

The convergence of this integral for $n>\omega t$ follows from Lemma 2.2. As before, write

$$
L_{n, s}\left[\lambda^{\alpha} \hat{f}(\lambda)\right]=\frac{(-1)^{n}}{n!} \sum_{k=0}^{n} C_{k, n}^{\alpha}\left(\frac{n}{s}\right)^{\alpha+1+k} \int_{0}^{\infty} f(u) u^{k} e^{-(n / s) u} d u
$$

for $s \in(0, t)$ and $n>\omega t$. Using Fubini's Theorem we get

$$
\mathcal{I}_{n}(t)=\frac{(-1)^{n}}{n!} \frac{1}{\Gamma(\alpha)} \sum_{k=0}^{n} C_{k, n}^{\alpha} \int_{0}^{\infty} u^{k} f(u) \mathcal{K}_{n}(u) d u
$$

where

$$
\mathcal{K}_{n}(u):=\int_{0}^{t}(t-s)^{\alpha-1}\left(\frac{n}{s}\right)^{\alpha+k+1} e^{-(n / s) u} d s \quad(u>0)
$$

Making the change of variable $z=(n / s) u-(n / t) u$, we obtain

$$
\begin{aligned}
\mathcal{K}_{n}(u) & =\frac{n e^{-(n / t) u}}{u^{\alpha+k}} t^{\alpha-k-1} \int_{0}^{\infty} z^{\alpha-1}(t z+n u)^{k} e^{-z} d z \\
& =\frac{n e^{-(n / t) u}}{u^{\alpha+k}} t^{\alpha-1} \sum_{j=0}^{k}\binom{k}{j}\left(\frac{n u}{t}\right)^{k-i} \Gamma(\alpha+j) .
\end{aligned}
$$

Then

$$
\mathcal{I}_{n}(t)=\frac{(-1)^{n}}{n!} n t^{\alpha-1} \int_{0}^{\infty} u^{-\alpha} f(u) e^{-(n / t) u} \Phi_{n, t, \alpha}(u) d u
$$

where, for $u>0$,

$$
\Phi_{n, t, \alpha}(u):=\sum_{k=0}^{n} C_{k, n}^{\alpha} \sum_{j=0}^{k}\binom{k}{j}\left(\frac{n u}{t}\right)^{k-j} \frac{\Gamma(\alpha+j)}{\Gamma(\alpha)}=(-1)^{n}\left(\frac{n u}{t}\right)^{n}
$$

see [VV, Lemma 3.1] for the general formula. Hence we get

$$
\begin{equation*}
\mathcal{I}_{n}(t)=\frac{n^{n+1}}{n!} t^{\alpha-n-1} \int_{0}^{\infty} u^{n-\alpha} e^{-(n / t) u} f(u) d u \tag{2.2}
\end{equation*}
$$

Notice that for every non-negative integer $n>\alpha+1$,

$$
\frac{n^{n+1}}{n!} t^{\alpha-n-1} \int_{0}^{\infty} u^{n-\alpha} e^{-(n / t) u} d u=\frac{n^{\alpha}}{n!} \Gamma(n+1-\alpha)
$$

which tends to $1(n \rightarrow \infty)$, since $\Gamma(u+1) \sim u^{u+1 / 2} e^{-u} \sqrt{2 \pi}$ as $u \rightarrow \infty$ (see [T]). Thus, to obtain the assertion of the theorem, it is enough to check that

$$
\mathcal{J}_{n}(t):=\mathcal{I}_{n}(t)-\frac{n^{\alpha}}{n!} \Gamma(n+1-\alpha) f(t) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

To do so, set

$$
G(s):=\int_{t}^{s}(f(u)-f(t)) d u=F(s)-F(t)-f(t)(s-t)
$$

where $F(s):=\int_{0}^{s} f(u) d u$ for $s \geq 0$. Then $\|F(s)\| \leq \tilde{M} s^{\gamma+1} e^{\omega s}(s \geq 0)$ for some $\tilde{M}>0$. This readily implies that the function G is exponentially bounded, that is, there exist some constants $\mu \geq 0$ and $C>0$ such that $\|G(s)\| \leq C e^{\mu s}$ for every $s \geq 0$. We may assume that $\mu \geq \omega$. On the other hand, the fact that t is a Lebesgue point of f implies that $\|G(s)\|=o(|s-t|)$ as $s \rightarrow t$.

By integration by parts, for $n>\max \{\mu t, \alpha\}$ we have

$$
\begin{aligned}
\mathcal{J}_{n}(t) & =\frac{n^{n+1}}{n!} t^{\alpha-n-1} \int_{0}^{\infty} u^{n-\alpha} e^{-(n / t) u}(f(u)-f(t)) d u \\
& =\frac{n^{n+1}}{n!} t^{\alpha-n-1} \int_{0}^{\infty}\left(\frac{n u^{n-\alpha}}{t}-(n-\alpha) u^{n-\alpha-1}\right) e^{-(n / t) u} G(u) d u \\
& =\frac{n^{n+1}}{n!} t^{\alpha-n-1} \int_{0}^{\infty}\left(\frac{n u}{t}-(n-\alpha)\right) u^{n-\alpha-1} e^{-(n / t) u} G(u) d u \\
& =\frac{n^{n+2}}{n!} \frac{1}{t} \int_{0}^{\infty}\left(y-\frac{n-\alpha}{n}\right) y^{n-\alpha-1} e^{-n y} G(t y) d y
\end{aligned}
$$

Let now $\varepsilon>0$ and choose $0<\delta<1$ such that if $|y-1|<\delta$ then

$$
\begin{equation*}
\frac{1}{t}\|G(t y)\|<\varepsilon|y-1| . \tag{2.3}
\end{equation*}
$$

Divide $\mathcal{J}_{n}(t)$ into three integrals $\mathcal{J}_{1, n}(t), \mathcal{J}_{2, n}(t)$ and $\mathcal{J}_{3, n}(t)$ whose intervals of integration are $(0,1-\delta),(1-\delta, 1+\delta)$ and $(1+\delta, \infty)$, respectively.

First, we are going to estimate $\mathcal{J}_{1, n}(t)$. Take $n>(\alpha+1) / \delta$. In this case, the function $y \mapsto y^{n-\alpha-1} e^{-n y}$ is increasing on $(0,1-\delta)$, and therefore

$$
\begin{aligned}
\left\|\mathcal{J}_{1, n}(t)\right\| & \leq \frac{n^{n+2}}{n!} \frac{1}{t} \int_{0}^{1-\delta}\left|y-\frac{n-\alpha}{n}\right| y^{n-\alpha-1} e^{-n y}\|G(t y)\| d y \\
& \leq \frac{n^{n+2}}{n!} \frac{1}{t}(1-\delta)^{n-\alpha-1} e^{-n(1-\delta)} \int_{0}^{1-\delta}\|G(t y)\| d y=: a_{n}
\end{aligned}
$$

where we have used that $\delta /(\alpha+1) \leq(n-\alpha) / n-y<1$ for all $y \in(0,1-\delta)$. Then, by Stirling's formula,

$$
a_{n}=O\left(n^{3 / 2}\left((1-\delta) e^{\delta}\right)^{n}\right) \quad \text { as } n \rightarrow \infty
$$

and therefore $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, since $(1-\delta) e^{\delta}<1$. Therefore, $\left\|\mathcal{J}_{1, n}(t)\right\|<\varepsilon$ for n large enough.

Now, applying to $\mathcal{J}_{2, n}(t)$ the estimate (2.3), we get

$$
\begin{aligned}
\left\|\mathcal{J}_{2, n}(t)\right\| & \leq \varepsilon \frac{n^{n+2}}{n!} \int_{1-\delta}^{1+\delta}\left|y-\frac{n-\alpha}{n}\right||y-1| y^{n-\alpha-1} e^{-n y} d y \\
& =\varepsilon \frac{n^{n+2}}{n!} \int_{1-\delta}^{1+\delta}\left|y-1+1-\frac{n-\alpha}{n}\right||y-1| y^{n-\alpha-1} e^{-n y} d y \\
& \leq \varepsilon \frac{n^{n+2}}{n!} \int_{1-\delta}^{1+\delta}\left((y-1)^{2}+\left(1-\frac{n-\alpha}{n}\right)(y+1)\right) y^{n-\alpha-1} e^{-n y} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\varepsilon \frac{n^{n+2}}{n!} \int_{0}^{\infty}\left(y^{2}-\left(1+\frac{n-\alpha}{n}\right) y+\left(2-\frac{n-\alpha}{n}\right)\right) y^{n-\alpha-1} e^{-n y} d y \\
& =\varepsilon \frac{n^{\alpha}}{n!}\left(\Gamma(n-\alpha+2)-\left(1+\frac{n-\alpha}{n}\right) n \Gamma(n-\alpha+1)\right. \\
& \left.\quad+\left(2-\frac{n-\alpha}{n}\right) n^{2} \Gamma(n-\alpha)\right) \\
& =\varepsilon \frac{n^{\alpha}}{n!}(\Gamma(n-\alpha+1)+2 \alpha n \Gamma(n-\alpha)) .
\end{aligned}
$$

Thus, the fact that $\lim _{n \rightarrow \infty} \frac{n^{\beta}}{n!} \Gamma(n-\beta+1)=1$ for all $\beta \geq 0$ implies that

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{n!}(\Gamma(n-\alpha+1)+2 \alpha n \Gamma(n-\alpha))=1+2 \alpha
$$

Hence, $\left\|\mathcal{J}_{2, n}(t)\right\|<2(1+\alpha) \varepsilon$ for all sufficiently large n.
To estimate $\mathcal{J}_{3, n}(t)$, take $n_{0} \in \mathbb{N}$ such that $n_{0}>\mu t$ and let $n>n_{0}$. Thus, the function $y \mapsto y^{n-n_{0}-\alpha} e^{-\left(n-n_{0}\right) y}$ is decreasing on $(1+\delta, \infty)$. Then we have

$$
\begin{aligned}
\left\|\mathcal{J}_{3, n}(t)\right\| & \leq \frac{n^{n+2}}{n!} \frac{1}{t} \int_{1+\delta}^{\infty}\left(y-\frac{n-\alpha}{n}\right) y^{n-\alpha-1} e^{-n y}\|G(t y)\| d y \\
& \leq \frac{n^{n+2}}{n!} \frac{C}{t} \int_{1+\delta}^{\infty} y^{n-\alpha} e^{-n y} e^{\mu t y} d y \\
& =\frac{n^{n+2}}{n!} \frac{C}{t} \int_{1+\delta}^{\infty} y^{n-n_{0}-\alpha} e^{-\left(n-n_{0}\right) y} y^{n_{0}} e^{-\left(n_{0}-\mu t\right) y} d y \\
& \leq \frac{n^{n+2}}{n!} \frac{C}{t} \frac{(1+\delta)^{n-n_{0}-\alpha}}{e^{\left(n-n_{0}\right)(1+\delta)}} \int_{1+\delta}^{\infty} y^{n_{0}} e^{-\left(n_{0}-\mu t\right) y} d y=: b_{n}
\end{aligned}
$$

As before, Stirling's formula applies to show that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, and we find that $\left\|\mathcal{J}_{3, n}(t)\right\|<\varepsilon$ for large enough n. The proof is complete.

REMARK 2.4. There are some particular cases in which the inversion formula in Theorem 2.1 can be obtained as a consequence of Theorem 1.1for example, when the function is the integral of order $\alpha>0$ of a suitable function.

For $\alpha>0$, set $j_{\alpha}(t):=t^{\alpha-1} \Gamma(\alpha)^{-1}, t>0$. Let $g \in L_{\mathrm{loc}}^{1}([0, \infty) ; X)$ be an exponentially bounded function. Thus, $f:=j_{\alpha} * g$ satisfies the assumptions of Theorem 2.1, where $*$ is the usual convolution on \mathbb{R}^{+}. Notice that $\lambda^{\alpha} \hat{f}(\lambda)$ $=\hat{g}(\lambda)$ for appropriate complex values of λ. Therefore, by Theorem 1.1 and
the dominated convergence theorem, for every $t>0$,

$$
\begin{aligned}
f(t) & =j_{\alpha} *\left(\lim _{n \rightarrow \infty}(-1)^{n} \frac{1}{n!}\left(\frac{n}{(\cdot)}\right)^{n+1} \hat{g}^{(n)}\left(\frac{n}{(\cdot)}\right)\right)(t) \\
& =\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \frac{(-1)^{n}}{n!}\left(\frac{n}{s}\right)^{n+1} \hat{g}^{(n)}\left(\frac{n}{s}\right) d s \\
& =\left.\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \frac{(-1)^{n}}{n!}\left(\frac{n}{s}\right)^{n+1} \frac{d^{n}}{d \lambda^{n}}\left(\lambda^{\alpha} \hat{f}(\lambda)\right)\right|_{\lambda=n / s} d s
\end{aligned}
$$

Thus the interest of Theorem 2.1 relies upon the fact that it provides an inversion formula for those functions $\varphi:(\omega, \infty) \rightarrow X$ which are not necessarily a Laplace transform, but such that $\lambda^{-\alpha} \varphi(\lambda)$ is a Laplace transform for some $\alpha>0$; see [ABHN, Example 2.2.4]. Important classes of functions in this situation involve general α-times integrated semigroups or integrated cosine functions (see next section).

To end this section, we point out that there exists a well known version of Theorem 1.1 in which the Laplace-Stieltjes transform \mathcal{L}_{S} of vector-valued Lipschitz continuous functions is considered. If $F: \mathbb{R}^{+} \rightarrow X$ is a Lipschitz continuous function, that is,

$$
\sup _{t, s \geq 0} \frac{\|F(t)-F(s)\|}{|t-s|}<\infty,
$$

then the Laplace-Stieltjes transform of F is given by

$$
\mathcal{L}_{S}(F)(\lambda):=-F(0)+\lambda \int_{0}^{\infty} e^{-\lambda t} F(t) d t
$$

for those λ greater than the exponential growth bound of F. It follows from Theorem 1.1 that if $F: \mathbb{R}^{+} \rightarrow X$ is a Lipschitz continuous function such that $F(0)=0$ then

$$
F(t)=\left.\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n!}\left(\frac{n}{t}\right)^{n+1} \frac{d^{n}}{d \lambda^{n}}\left(\frac{\mathcal{L}_{S}(F)(\lambda)}{\lambda}\right)\right|_{\lambda=n / s}, \quad t>0
$$

See ABHN, Theorem 2.3.1].
As a consequence of Theorem 2.1, we further obtain the following inversion formula for Laplace-Stieltjes transforms:

Corollary 2.5. Let $F: \mathbb{R}^{+} \rightarrow X$ be a Lipschitz continuous function such that $F(0)=0$. Let $t>0$. Then

$$
F(t)=\left.\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n!} \int_{0}^{t}\left(\frac{n}{s}\right)^{n+1} \frac{d^{n}}{d \lambda^{n}}\left(\mathcal{L}_{S}(F)(\lambda)\right)\right|_{\lambda=n / s} d s
$$

Proof. Under these assumptions, $\hat{F}(\lambda)=\lambda^{-1} \mathcal{L}_{S}(F)(\lambda)$ for λ large enough. Moreover, $\|F(t)\| \leq C t$ for every $t \geq 0$ and some $C>0$. Then it suffices to apply Theorem 2.1 for $\alpha=1$.
3. Applications. We show here that Theorem 2.1 applies to α-times integrated semigroups and α-times integrated cosine families, obtaining in this way appropriate inversion formulae of Euler's type for these families.
3.1. Euler's exponential type formula for α-times integrated semigroups. Let X be a Banach space and let $\alpha>0$. A strongly continuous family $\left(S_{\alpha}(t)\right)_{t \geq 0} \subseteq \mathcal{B}(X)$ of bounded operators on X is called an α-times integrated semigroup if $S_{\alpha}(0)=0$ and

$$
\begin{equation*}
\Gamma(\alpha) S_{\alpha}(t) S_{\alpha}(s)=\int_{t}^{t+s}(t+s-r)^{\alpha-1} S_{\alpha}(r) d r-\int_{0}^{s}(t+s-r)^{\alpha-1} S_{\alpha}(r) d r \tag{3.1}
\end{equation*}
$$

for every $s, t \geq 0$. Moreover, $\left(S_{\alpha}(t)\right)_{t \geq 0}$ is called non-degenerate if $S_{\alpha}(t) x=0$ for all $t \geq 0$ implies $x=0$. A 0 -times integrated non-degenerate semigroup is a C_{0}-semigroup.

Assume that the function $S_{\alpha}:[0, \infty) \rightarrow \mathcal{B}(X)$ has a Laplace transform whenever $\lambda>\omega$ for some $\omega \in \mathbb{R}$. In this case, there exists a unique operator A on X satisfying $(\omega, \infty) \subseteq \rho(A)$ and such that

$$
R(\lambda, A):=(\lambda-A)^{-1}=\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S_{\alpha}(t) d t, \quad \lambda>\omega
$$

Such an operator A is called the generator of $\left(S_{\alpha}(t)\right)_{t \geq 0}$. See ABHN, H2] for the general theory of integrated semigroups.

Corollary 3.1. Let $A: D(A) \subseteq X \rightarrow X$ be the generator of an α-times integrated semigroup $\left(S_{\alpha}(t)\right)_{t \geq 0}$ such that $\left\|S_{\alpha}(t)\right\| \leq C t^{\gamma} e^{\omega t}, t \geq 0$, for some $\gamma>\alpha-1$ and $\omega \geq 0$. Then, for every $t>0$ and every $x \in X$,

$$
S_{\alpha}(t) x=\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left(\frac{n}{s}\right)^{n+1} R\left(\frac{n}{s}, A\right)^{n+1} x d s
$$

Proof. Let $x \in X$. Set $f(t):=S_{\alpha}(t) x$ for $t \geq 0$. Notice that f is continuous on $[0, \infty)$ since $\left(S_{\alpha}(t)\right)_{t \geq 0}$ is strongly continuous. By definition, $R(\lambda, A) x=\lambda^{\alpha} \hat{f}(\lambda)$ for λ large enough. Moreover, the resolvent equation gives us $\left((-1)^{n} / n!\right)\left(d^{n} / d \lambda^{n}\right) R(\lambda, A) x=R(\lambda, A)^{n+1} x$. Now, the claim follows directly from Theorem 2.1 since $\alpha \in(0, \gamma+1)$.

The above corollary extends previous results in this setting (see [C, Theorem 3.1] for n-times integrated semigroups, $n \in \mathbb{N}$, and [VV, Theorem 3.1] for exponentially bounded α-times integrated semigroups and $0<\alpha<1$), and provides a unified proof for them.

A large number of examples of α-times integrated semigroups satisfying the assumptions of Corollary 3.1 can be found in [H1].
3.2. α-times integrated cosine functions. Let X be a Banach space and let $\alpha>0$. A strongly continuous family $\left(C_{\alpha}(t)\right)_{t \geq 0} \subseteq \mathcal{B}(X)$ is an α-times integrated cosine function if $C_{\alpha}(0)=0$ and

$$
\begin{align*}
& 2 \Gamma(\alpha) C_{\alpha}(t) C_{\alpha}(s) \tag{3.2}\\
& =\quad \int_{t}^{t+s}(t+s-r)^{\alpha-1} C_{\alpha}(r) d r-\int_{0}^{s}(t+s-r)^{\alpha-1} C_{\alpha}(r) d r \\
& \quad+\int_{t-s}^{t}(r-t+s)^{\alpha-1} C_{\alpha}(r) d r+\int_{0}^{s}(r+t-s)^{\alpha-1} C_{\alpha}(r) d r
\end{align*}
$$

for every $0<s<t$. The family $\left(C_{\alpha}(t)\right)_{t \geq 0}$ is called non-degenerate if $C_{\alpha}(t) x=0$ for every $t \geq 0$ implies $x=0$. If the Laplace transform of $C_{\alpha}(\cdot):[0, \infty) \rightarrow \mathcal{B}(X)$ converges in (ω, ∞) for some $\omega \geq 0$, then there exists a unique operator A on X such that

$$
\lambda R\left(\lambda^{2}, A\right):=\lambda\left(\lambda^{2}-A\right)^{-1}=\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} C_{\alpha}(t) d t, \quad \lambda>\omega
$$

See for example EK, M2. This operator A is called the generator of $\left(C_{\alpha}(t)\right)_{t \geq 0}$. A 0-times integrated cosine function is the usual cosine function.

As a consequence of Theorem 2.1, one obtains the following result, which seems to be new.

Corollary 3.2. Let $A: D(A) \subseteq X \rightarrow X$ be the generator of an α times integrated cosine function $\left(C_{\alpha}(t)\right)_{t \geq 0}$ for which there exist constants $\gamma>\alpha-1$ and $\omega \geq 0$ satisfying $\left\|C_{\alpha}(t)\right\| \leq C t^{\gamma} e^{\omega t}$ for $t \geq 0$. Then, for every $x \in X$ and $t>0$,

$$
C_{\alpha}(t) x=\left.\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \frac{(-1)^{n}}{n!}\left(\frac{n}{s}\right)^{n+1} \frac{d^{n}}{d \lambda^{n}}\left(\lambda R\left(\lambda^{2}, A\right)\right)\right|_{\lambda=n / s} d s
$$

Proof. Similar to the proof of Corollary 3.1.
Particular examples of generators of α-times integrated cosine functions are provided by those of α-times integrated semigroups. In fact, if an operator B on a Banach space is such that B and $-B$ are both generators of α-times integrated semigroups then $A=B^{2}$ is the generator of an α-times integrated cosine function; see [AK, EK]. In this case the explicit calculation of $\left(d^{n} / d \lambda^{n}\right)\left(\lambda R\left(\lambda^{2}, A\right)\right)$ is simple:

$$
\frac{d^{n}}{d \lambda^{n}}\left(\lambda R\left(\lambda^{2}, A\right)\right)=\frac{1}{2}\left[R(\lambda,-i B)^{n+1}+R(\lambda, i B)^{n+1}\right]
$$

Example 3.3. For $\alpha, t>0$, the Riesz kernel is the function $R_{t}^{\alpha-1}$ defined by

$$
R_{t}^{\alpha-1}(s):=\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \chi_{(0, t)}(s), \quad s>0 .
$$

These kernels play a central role in the study of Banach algebras $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$ of Sobolev type, which are in close relationship with α-times integrated semigroups and integrated cosine functions. Here, we are not concerned with these algebras, whose definition and first properties can be seen in [GM, for instance. Among these properties, we mention that the function $R_{t}^{\alpha-1}$ is a multiplier of the Banach algebra $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$ with respect to either the usual convolution product $*$ or the cosine convolution product $*_{c}$ on \mathbb{R}^{+}, which are given for $f, g \in \mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$ by

$$
f * g(t):=\int_{0}^{t} f(t-s) g(s) d s, \quad t>0
$$

and

$$
f *_{c} g(t):=\frac{1}{2}\left(f * g(t)+\int_{t}^{\infty} f(s-t) g(s) d s+\int_{t}^{\infty} g(s-t) f(s) d s\right), \quad t>0 .
$$

In both cases, as a multiplier, $\left\|R_{t}^{\alpha-1}\right\| \leq C t^{\alpha} e^{\omega t}(t>0)$.
In view of Theorem 2.1 we have the following.
Corollary 3.4. Let $\alpha>0$ and $\omega \geq 0$. Then for every $g \in \mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$ and $t>0$ we have

$$
R_{t}^{\alpha-1} \bullet g=\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left(\frac{n}{s}\right)^{n+1} e_{n / s}^{*(n+1)} \bullet g d s
$$

in the norm of $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$, where

$$
e_{\lambda}^{*(n+1)}(r)=\frac{r^{n}}{n!} e_{\lambda}(r) \quad(r \geq 0)
$$

and • is either the usual convolution $*$ or the cosine convolution $*_{c}$ in $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$.

Proof. Note that for every $\lambda>\omega$ and $n \in \mathbb{N}$ one has

$$
e_{\lambda}:=e^{-\lambda(\cdot)}=\lambda^{\alpha} \int_{0}^{\infty} R_{t}^{\alpha-1} e^{-\lambda t} d t
$$

and

$$
\frac{(-1)^{n}}{n!} \frac{d^{n}}{d \lambda^{n}} e_{\lambda}=e_{\lambda}^{*(n+1)}
$$

Hence it is enough to take $f(t)=R_{t}^{\alpha} \bullet g$ in the formula of Theorem 2.1 to obtain the result.

REMARK 3.5. The formula in the preceding corollary serves to illustrate Theorem 2.1 in a canonical situation, as regards α-times integrated semigroups. For simplicity, assume $\alpha>1$. The equality

$$
R_{t}^{\alpha-1}(r)=\lim _{n \rightarrow \infty} \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left(\frac{n}{s}\right)^{n+1} \frac{r^{n}}{n!} e^{-(n / s) r} d s, \quad t>0
$$

holds as a particular case of the fact that Theorem 1.1 remains true when one replaces functions like f with Dirac masses:

For $r>0$,

$$
\delta_{r}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n!}\left(\frac{n}{\cdot}\right)^{n+1} \hat{\delta}_{r}^{(n)}\left(\frac{n}{\cdot}\right)=\lim _{n \rightarrow \infty}\left(\frac{n}{\cdot}\right)^{n+1} \frac{r^{n}}{n!} e^{-(n / \cdot) r}
$$

in the sense of weak convergence of measures. In fact, for each continuous function F on $[0, \infty)$ with $\lim _{t \rightarrow \infty} F(t)=0$ we have

$$
F_{n}(r):=\frac{1}{n!} \int_{0}^{\infty}\left(\frac{n}{s}\right)^{n+1} r^{n} e^{-(n / s) r} F(s) d s=\frac{n^{n+1}}{n!} \int_{0}^{\infty} t^{n-1} e^{-n t} F\left(\frac{r}{t}\right) d t
$$

with

$$
\frac{n^{n+1}}{n!} \int_{0}^{\infty} t^{n-1} e^{-n t} d t=1
$$

Therefore

$$
F_{n}(r)-F(r)=\frac{n^{n+1}}{n!} \int_{0}^{\infty} t^{n-1} e^{-n t}[F(r / t)-F(r)] d t
$$

and so by standard methods involving the partition of the integration domain $(0, \infty)$ into two parts $\{|t-1| \leq \delta\}$ and $\{|t-1|>\delta\}$, for suitable small $\delta>0$, one gets $\lim _{n \rightarrow \infty} F_{n}(r)=F(r)$. (In this connection, for the sake of completeness, let us point out that integration by parts gives us

$$
\begin{aligned}
\frac{n^{n+1}}{n!} \int_{1+\delta}^{\infty} t^{n-1} e^{-n t} d t & =\frac{1}{(n-1)!} \int_{n(1+\delta)}^{\infty} y^{n-1} e^{-y} d y \\
& =\sum_{k=1}^{n-1} \frac{(1+\delta)^{n-k} n^{n-k}}{(n-k)!} e^{-(1+\delta) n}+\int_{(1+\delta) n}^{\infty} e^{-y} d y
\end{aligned}
$$

and this expression tends to 0 as $n \rightarrow \infty$ by the Stirling formula and the fact that $y \mapsto e^{-y}$ is integrable.)

Corollary 3.4 tells us that the above numerical limit holds indeed for convolution and in the norm of $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha} e^{\omega t}\right)$.

REMARK 3.6. If $S_{\alpha}(t)$ is an α-times integrated semigroup on a Banach space X satisfying

$$
\begin{equation*}
\left\|S_{\alpha}(t)\right\| \leq C t^{\alpha} \quad(t>0) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 0} \Gamma(\alpha+1) t^{-\alpha} S_{\alpha}(t) x=x \quad(x \in X) \tag{3.4}
\end{equation*}
$$

then there exists a bounded Banach algebra homomorphism

$$
\pi_{\alpha}: \mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha}\right) \rightarrow \mathcal{B}(X)
$$

with dense range, so that π_{α} extends to the multiplier algebra of $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha}\right)$ with the usual convolution $*$, and we get $S_{\alpha}(t)=\pi_{\alpha}\left(R_{t}^{\alpha-1}\right)$. Conversely, if we have a bounded Banach algebra homomorphism $\pi_{\alpha}: \mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha}\right) \rightarrow \mathcal{B}(X)$ with dense range then $S_{\alpha}(t):=\pi_{\alpha}\left(R_{t}^{\alpha-1}\right)$ is an α-times integrated semigroup satisfying (3.3) and (3.4).

For α-times integrated cosine functions there is a similar result, with the only difference that the homomorphism π_{α} has to be replaced with a homomorphism $\gamma_{\alpha}: \mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha}\right) \rightarrow \mathcal{B}(X)$ with respect to the cosine convolution product $*_{c}$ in $\mathcal{T}_{+}^{(\alpha)}\left(t^{\alpha}\right)$.

Actually, the family $\left(R_{t}^{\alpha-1}\right)_{t \geq 0}$ is an α-times integrated semigroup and an α-times integrated cosine family since it satisfies the functional equations (3.1) and (3.2).

Notice that starting from Corollary 3.4, with a direct proof independent of Theorem 2.1, one can prove Corollary 3.1 and Corollary 3.2 (for $\gamma=\alpha$ and $\omega=0$) by just considering the image of $R_{t}^{\alpha-1} \bullet g$ and of its integral expression under the homomorphisms π_{α} and γ_{α}, respectively.

Thus it seems reasonable to consider the Riesz kernels as canonical integrated families, in the present setting. For all the above facts we refer the reader to GM], GMM] and M2.

The authors would like to thank the referee for a careful reading of the text and valuable suggestions which have improved the paper.

This research has been partially supported by Projects MTM2010-16679 of the M.C.Y.T., Spain, and E-64 of the D.G. Aragón. The second author was also partially supported by a FPU Grant from the Ministry of Education of Spain.

References

[ABHN] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs Math. 96, Birkhäuser, Basel, 2001.
[AK] W. Arendt and H. Kellerman, Integrated solutions of Volterra integrodifferential equations and applications, in: Volterra Integro-Differential Equations in Banach Spaces and Applications (Trento, 1987), G. Da Prato and M. Iannelli (eds.), Pitman Res. Notes Math. 190, Longman, New York, 1989, 21-51.
[C] V. Cachia, Convergence at the origin of integrated semigroups, Studia Math. 187 (2008), 199-218.
[EK] O. El-Mennaoui and V. Keyantuo, Trace theorems for holomorphic semigroups and the second order Cauchy problem, Proc. Amer. Math. Soc. 124 (1996), 1445-1458.
[GMM] J. E. Galé, M. M. Martínez and P. J. Miana, Katznelson-Tzafriri type theorem for integrated semigroups, submitted.
[GM] J. E. Galé and P. J. Miana, One-parameter groups of regular quasimultipliers, J. Funct. Anal. 237 (2006), 1-53.
[H1] M. Hieber, Integrated semigroups and differential operators on L^{p} spaces, Math. Ann. 291 (1991), 1-16.
[H2] -, Laplace transforms and α-times integrated semigroups, Forum Math. 3 (1991), 595-612.
[MCPS] D. Melini, V. Cannelli, A. Piersanti and G. Spada, Post-seismic rebound of a spherical Earth: new insights from the application of the Post-Widder inversion formula, Geophys. J. Int. 174 (2008), 672-695.
[M1] P. J. Miana, α-Times integrated semigroups and fractional derivation, Forum Math. 14 (2002), 23-46.
[M2] -, Almost-distribution cosine functions and integrated cosine functions, Studia Math. 166 (2005), 171-180.
[P] E. L. Post, Generalized differentiation, Trans. Amer. Math. Soc. 32 (1930), 723-781.
[SB] G. Spada and L. Boschi, Using the Post-Widder formula to compute the Earth's viscoelastic Love numbers, Geophys. J. Int. 166 (2006), 309-321.
[T] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939.
[VV] F. Vajzović and R. Vugdalić, Two exponential formulas for α-times integrated semigroups ($\alpha \in \mathbb{R}^{+}$), Sarajevo J. Math. 1 (2005), 93-115.
[W] D. V. Widder, The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc. 36 (1934), 107-200.

José E. Galé, María M. Martínez, Pedro J. Miana
Departamento de Matemáticas e IUMA
Universidad de Zaragoza
50009 Zaragoza, Spain
E-mail: gale@unizar.es
maria@unizar.es
pjmiana@unizar.es

[^0]: 2010 Mathematics Subject Classification: Primary 44A10; Secondary 47D62.
 Key words and phrases: vector-valued Laplace transform, real inversion, Post-Widder formula, α-times integrated semigroup, α-times integrated cosine function.

