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Abstract. Let T be a bounded linear operator on X = (
P
`q)p with 1 ≤ q <∞ and

1 < p < ∞. Then T is a commutator if and only if for all non-zero λ ∈ C, the operator
T − λI is not X-strictly singular.

1. Introduction. When studying derivations on a general Banach alge-
bra A, a problem that arises is to classify the commutators in the algebra,
i.e., elements of the form AB −BA. A natural class of algebras to consider
are spaces L(X) of all (always bounded, linear) operators on the Banach
space X. After the breakthrough by Brown and Pearcy [BP] who gave a
classification of the commutators in L(X) when X is a Hilbert space, Apos-
tol [A1] initiated the study of commutators in L(X) for X a general Banach
space and gave a complete classification when X = `p, 1 < p < ∞ [A1]
and X = c0 [A2], and he proved partial results for other Banach spaces.
This topic was resuscitated 30+ years later by Dosev [D], who classified the
commutators in L(`1) and other spaces, and this line of investigation was
continued in [DJ] and [DJS].

It seems to the authors that there are two reasons for this 30+ year gap.
First, Apostol’s papers, while containing the germs of many general facts,
were focused on special spaces, and it is quite difficult to discern from his
proofs what is needed in more general spaces X to understand the structure
of commutators in L(X). Secondly, the geometry of most Banach spaces is
much more complicated than that of `p, 1 < p <∞, and c0, and this makes it
much more difficult to determine which operators on them are commutators.
Although the papers [D], [DJ], and [DJS], as well as this paper, are focused on
classifying the commutators in L(X) for special spaces X, part of their value
consists in building a machine that tells one for certain classes of Banach
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spaces what geometrical facts about a space are needed in order to classify
the commutators on the space.

For a general Banach algebra A, the only known obstruction for an ele-
ment to be a commutator was proved in 1947 by Wintner [W]. He showed
that the identity in a unital Banach algebra is not a commutator, which im-
mediately implies that no element of the form λI +K, where K belongs to
a norm closed (proper) ideal of A and λ 6= 0, is a commutator in the Banach
algebra A. While in some Banach algebras there are other obstructions (such
as the existence of traces), Wintner’s obstruction is the only one known for
L(X) for any infinite-dimensional Banach space X.

We say that a Banach space X is a Wintner space provided that every
non-commutator in L(X) is of the form λI + K, where λ 6= 0 and K lies
in a proper ideal. (In [DJ] the property of being a Wintner space was called
property P.)

Wild Conjecture. Every infinite-dimensional Banach space is a Wint-
ner space.

We do not believe that this Wild Conjecture is true. In fact, there may
be an infinite-dimensional Banach space such that every finite rank com-
mutator on X has zero trace! Nevertheless, every infinite-dimensional Ba-
nach space on which the commutators are classified is a Wintner space,
and the conjecture that every Banach space that admits a Pełczyński de-
composition (defined below) is a Wintner space is much tamer. In this
paper we verify that the spaces Zp,q := (

∑
`q)p with 1 ≤ q < ∞ and

1 < p <∞ are Wintner spaces. Each of these spaces does admit a Pełczyński
decomposition; in fact, it is clear that Zp,q is isometrically isomorphic to
(
∑
Zp,q)p. Recall that, given a sequence (Xn) of Banach spaces and p ∈

[1,∞] ∪ {0}, (
∑
Xn)p is the space of all sequences (xn) with xn ∈ Xn

and ‖(xn)‖ := ‖(‖xn‖)‖p < ∞, and the formula ‖(xn)‖ := ‖(‖xn‖)‖p
< ∞ for p = 0 is used in the sense (‖xn‖) ∈ c0. The space X is said to
have a Pełczyński decomposition provided X is isomorphic to (

∑
X)p for

some p.

2. The Main Theorem. For a Banach space X denote by SX the
unit sphere of X. We say that a linear operator between two Banach spaces
T : X → Y is an isomorphism if T is an injective bounded linear map with
closed range. If in addition T is surjective then we will say that T is an onto
isomorphism. Let X,Y and Z be Banach spaces. An operator from X to
Y is said to be Z-strictly singular provided that there is no subspace Z0

of X which is isomorphic to Z for which T |Z0 is an isomorphism. Thus an
operator is strictly singular in the usual sense if and only if it is Z-strictly
singular for every infinite-dimensional space Z. For any two subspaces (pos-
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sibly not closed)M and N of a Banach space X let d(M,N) = inf{‖m−n‖ :
m ∈ SM , n ∈ N}, so that when M ∩N = {0}, the projection from M +N
onto M with kernel N has norm d(M,N)−1.

Main Theorem. Let T be an operator on X := Zp,q, 1 ≤ q < ∞,
1 < p < ∞. Then T is a commutator if and only if for all non-zero λ ∈ C
the identity on X factors through T − λI. Consequently, X is a Wintner
space.

Remark 2.1. For p = q = 2, the Main Theorem is of course a restate-
ment of the classical Brown–Pearcy theorem [BP]. The case when p = q was
proved by C. Apostol [A1]. So, by duality (see the proof of Corollary 2.17),
it is enough to look at Zp,q when 1 ≤ q < p <∞.

The strategy for proving the Main Theorem is the same as that in [D],
[DJ], and [DJS]. The main problem is to prove structural results for Zp,q,
1 ≤ q < p < ∞, so that [DJ] can be applied. To get started, we show in
Proposition 2.9 that the Zp,q-strictly singular operators coincide with the
set MZp,q of those operators T on Zp,q such that the identity on Zp,q does
not factor through T . We also need that MZp,q is closed under addition,
so that MZp,q is the largest (proper) ideal in L(MZp,q). This is part of
Proposition 2.9.

We begin with a discussion of how isomorphic copies of `q in Zp,q, 1 ≤
q < p < ∞, are situated in Zp,q. We are primarily interested in passing to
a subspace which is situated in a canonical fashion. Much of what we need
is known and for Zp,2 is partly contained in [O]. We do not assume famil-
iarity with arguments involving Zp,q, but we do assume a basic knowledge
of techniques using block basic sequences, gliding hump arguments, small
perturbations of operators, and how they are applied in the study of `q. This
material can be found in standard texts, including [LT1, Chapter 1]. This
allows us in many places to avoid writing long strings of inequalities when
an argument is standard.

First, if X is a subspace of Zp,q that is isomorphic to `q, then for all ε > 0
there is a subspace Y of X that is (1 + ε)-isomorphic to `q. This follows
from a general result of Krivine and Maurey [KM] about stable Banach
spaces, but can be proved in an elementary way using James’ [J] proof of
the non-distortability of the norm on `1. Indeed, by passing to a subspace
and making a small perturbation, we can assume that X = spanxn with
(xn) a normalized block basis of the usual basis for Zp,q and where (xn) is
equivalent to the usual basis for `q. James’ argument shows that there is a
normalized block basis (yn) of (xn) such that for all scalar sequences (an),

(2.1)
∥∥∥∑

n

anyn

∥∥∥ ≥ (1 + ε)−1
(∑

n

|an|q
)1/q

.
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Let us recall the argument for (2.1): Suppose that (xn) is a normalized
basic sequence in some Banach space satisfying (2.1) with 1 + ε replaced by
K > 1. Partition N into infinitely many disjoint infinite sets (Nk). It may be
that for some k and all scalars (an),∥∥∥ ∑

n∈Nk

anxn

∥∥∥ ≥ K−1/2
( ∑
n∈Nk

|an|q
)1/q

.

If not, choose for each k a finitely non-zero sequence (bn)n∈Nk
so that yk :=∑

n∈Nk
bnxn has norm one and (

∑
n∈Nk

|bn|q)1/q > K1/2. It is easy to check
that the sequence (yk) satisfies (2.1) with 1 + ε replaced by K1/2 > 1.
Iterating, we get a normalized sequence (yn) in spanxn which is disjointly
supported with respect to (xn) and which satisfies (2.1). Finally, pass to any
subsequence of (yn) that is a true block basis of (xn). This does it, because
if (zk) is a disjoint sequence in Zp,q, then ‖

∑
k zk‖ ≤ (

∑
k ‖zk‖q)1/q.

If T : X → Y is an operator between Banach spaces and Z is a subspace
of X, define

(2.2) f(T,Z) = inf{‖Tz‖ : z ∈ Z, ‖z‖ = 1} (= ‖T−1
|Z ‖

−1).

Then f(T,Z) > 0 iff T|Z is an isomorphism; f(T,Z) = ‖T‖ > 0 iff T|Z is a
multiple of an isometry; and ‖T‖ ≥ f(T,Z1) ≥ f(T,Z2) if Z1 ⊂ Z2 ⊂ X.

Lemma 2.2. Let T be an operator from `q into Zp,q, 1 ≤ q < p < ∞.
Then, for all ε > 0, there exists a block subspace Z of `q (i.e. Z is the closed
linear span of a block basis of the unit vector basis for `q) which is isometric
to `q and such that ‖T |Z‖ ≤ f(T,Z) + ε.

Proof. If T is strictly singular, which is to say that f(T,Z) = 0 for
all infinite-dimensional subspaces Z of `q, then this is a standard textbook
exercise. So we can assume, by passing to a suitable block subspace spanned
by a block basis of the unit vector basis (δn) of `q, that T is an isomorphism.
Using the fact that subspaces of Zp,q which are isomorphic to `q contain
smaller subspaces almost isometric to `q, and keeping in mind that the ε > 0
gives wiggle room, Lemma 2.2 reduces to the case where the operator maps
`q into an isometric copy of `q, which of course is easy and is contained e.g.
in [AK, Section 2.1].

Lemma 2.3. Let T : Zp,q → Zp,q (1 ≤ q < p <∞) be an operator. Then,
for every positive integer m, limk→∞ ‖(P[1,m]T )|P[k,∞)Zp,q‖ = 0, where P[m,n]

is the projection from Zp,q onto the direct sum from the mth `q to the nth `q.

Proof. Suppose not. Then there exist a positive integer m, a positive
number δ and a normalized block basis (xn) of the natural basis for Zp,q
which is equivalent to the unit vector basis of `p and such that ‖P[1,m]Txn‖
≥ δ. By passing to a subsequence of (xn), we may assume that (P[1,m]Txn) is
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equivalent to the unit vector basis of `q. This yields an obvious contradiction
since q < p and T is bounded.

Lemma 2.4. Let T be an operator from `q into Zp,q (1 ≤ q < p < ∞).
Then, for all ε > 0, there exist a positive integer N and a block subspace X
of `q which is isometric to `q and such that ‖(P[N,∞)T )|X‖ < ε.

Proof. If T is strictly singular then there is a normalized block basis (xn)
of the unit vector basis (δn) of `q such that ‖T|spanxn

‖ < ε, and we are done.
Otherwise, by passing to a suitable block subspace of (δn), we can assume
that T is an isomorphism and hence f(T, `q) > 0. By Lemma 2.2, for a
value of δ = δ(ε) to be specified momentarily, we can pass to another block
subspace, say Z, such that

‖T|Z‖ < f(T,Z) + δf(T, `q) ≤ (1 + δ)f(T,Z),

and, by replacing T with ‖T|Z‖−1T , also ‖T|Z‖ = 1. Moreover, just as in
Lemma 2.2, we can assume that Tδn are disjointly supported in Zp,q. This
reduces to the case where ‖T‖ = 1 and f(T, `q) > (1 + δ)−1.

Now if ‖P[N,∞)T|span (δk)∞k=n
‖ > ε for all N and n, we get N1 < N2 < · · ·

and a normalized block basis (xn) of (δn) such that for all k,

‖P[Nk,Nk+1)Txk‖ > ε.

Keeping in mind that (Txn) is disjointly supported and thus has an upper
q estimate and a lower p estimate, we see that for all m,

(1 + δ)−1m1/q

≤
∥∥∥ m∑
k=1

Txk

∥∥∥ ≤ ∥∥∥ m∑
k=1

(I − P[Nk,Nk+1))Txk
∥∥∥+

∥∥∥ m∑
k=1

P[Nk,Nk+1)Txk

∥∥∥
≤
( m∑
k=1

‖(I − P[Nk,Nk+1))Txk‖q
)1/q

+
( m∑
k=1

‖P[Nk,Nk+1)Txk‖p
)1/p

≤
( m∑
k=1

(‖Txk‖p − ‖P[Nk,Nk+1
)Txk‖p)q/p

)1/q
+m1/q

≤
( m∑
k=1

(1− εp)q/p
)1/q

+m1/p = m1/q(1− εp)1/p +m1/p,

which gives a contradiction if (1 + δ)(1− εp)1/p < 1.

We also need that copies of `q in Zp,q contain almost isometric copies of
`q which are almost norm one complemented in Zp,q. This can be done using
the special structure of Zp,q, but in fact it follows from the general results of
Lemmas 2.5 and 2.6, which were proved by G. Schechtman and the second
author recently when they discussed a preliminary version of this paper (and
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probably also thirty years ago), and the lemmas may well be somewhere in
the literature. We state the lemmas for spaces with an unconditional basis,
but the same proofs (modulo incorporating some standard theory of Banach
lattices into the proof) yield the same result for general Banach lattices. In
the proofs we assume the reader is familiar with the notions of p-convex and
p-concave function lattices and the related notions of p-convexification and
p-concavification of spaces with a monotone unconditional basis; see, e.g.,
[LT2, 40–58].

Lemma 2.5 (W. Johnson and G. Schechtman). Suppose that X has an
unconditionally monotone basis with p-convexity constant one, and (xk)nk=1
(n ∈ N∪{∞}) is a disjoint sequence in X such that for some 0 < θ < 1 and
all scalars (αk),

(2.3) θ
(∑

k

|αk|p
)1/p

≤
∥∥∥∑

k

αkxk

∥∥∥ ≤ (∑
k

|αk|p
)1/p

.

Then there is an unconditionally monotone norm !·! on X with p-convexity
constant one such that for all scalars (αk),

(1) θ!x! ≤ ‖x‖ ≤ !x! for all x ∈ X;
(2) (

∑
k |αk|p)1/p = !

∑
k αkxk!.

Proof. Without loss of generality we assume that xk ≥ 0 for all k so that
the closed span of (xk) is a sublattice of X. Assume first that p = 1. By
the lattice version of the Hahn–Banach theorem and the hypothesis on (xk)
there is a linear functional x∗ ≥ 0 on X with ‖x∗‖ ≤ θ−1 so that 〈x∗, xk〉 = 1
for all k. Define !·! on X by !x! := ‖x‖ ∨ 〈x∗, |x|〉. This clearly does the job.
In the general case, apply the case p = 1 to the p-concavification of X and
take the p-convexification of the resulting norm.

Lemma 2.6 (W. Johnson and G. Schechtman). Suppose that X has an
unconditionally monotone basis with p-convexity constant one (1 ≤ p <∞),
and (xk)nk=1 (n ∈ N∪{∞}) is a disjoint sequence of unit vectors in X which
is isometrically equivalent to the unit vector basis for `p. Then spanxk is
norm one complemented in X.

Proof. Since the unit ball of `p is weak∗ compact, the case n =∞ follows
from the case n < ∞, so we assume n < ∞. We can also assume that
xk ≥ 0 for all k and that the union of the supports of the xk is the entire
unconditional basis for X.

First proof. The idea is to situate X between L1(µ) and L∞(µ) with µ
a probability measure so that both inclusions have norm one. Since X has
p-convexity constant one, it then follows from an argument in [JMST, p. 14]
that in fact Lp(µ) ⊃ X with the inclusion having norm one. We set this
up so that

∑
k xk is the constant n1/p function and the norm of each xk in
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L1(µ) is n1/p/n = n−1/p′ ; this forces the Lp(µ) norm of each xk to be one.
Since in X the sequence (xk) is 1-equivalent to the unit vector basis for `np ,
the injection IX,p from X into Lp(µ) is an isometry on span (xk)nk=1. But
of course span (xk)nk=1 is norm one complemented in Lp(µ) and hence also
in X.

To effect this situation, use the lattice version of the Hahn–Banach the-
orem to get x∗ ≥ 0 in X∗ such that for each k, 〈x∗, xk〉 = n−1/p′ . Define a
seminorm on X by ‖x‖1 := 〈x∗, |x|〉. This is an L1 (semi)norm on X and the
inclusion from X into this L1 space has norm one. The L∞ structure on X
is defined by specifying n−1/p

∑
k xk to be the constant one function; i.e., by

taking the unit ball to be those vectors x in X such that |x| ≤ n−1/p
∑

k xk.

Second proof. As in the proof of Lemma 2.5, we use p-concavification to
reduce to the case p = 1, but in a different way. In the p-concavification
X(1/p) of X, the sequence (xpk) is a disjoint sequence that is 1-equivalent
to the unit vector basis of `n1 , so there is a norm one functional x∗ ≥ 0
in (X(1/p))∗ such that 〈x∗, xpk〉 = 1 for all k. The (semi)norm ‖x‖p :=
〈x∗, |x|p〉1/p turns X into an abstract Lp space and (xk) are disjoint unit
vectors in this abstract Lp space, hence in it (xk) is 1-equivalent to the unit
vector basis for `np and span(xk) is norm one complemented (either do a di-
rect argument or use the deeper fact [LT2, Theorem 1.b.2] that an abstract
Lp space is isometrically lattice isomorphic to Lp(µ) for some measure µ).
Since ‖·‖p ≤ ‖·‖X and in X the sequence (xk) is 1-equivalent to the unit vec-
tor basis for `np , we conclude that span (xk) is also norm one complemented
in X.

Lemma 2.7. Let X be a subspace of Zp,q, 1 ≤ q < p < ∞, which is
isomorphic to Zp,q. Then for all ε > 0, there is a subspace Y of X that is
(1 + ε)-isomorphic to Zp,q and (1 + ε)-complemented in Zp,q.

Proof. Write X =
∑

kXk where each Xk is isomorphic to `q and the
sum is (isomorphically) an `p-sum. By the remarks at the beginning, we
can assume by passing to subspaces of each Xk that Xk has a normalized
basis (xn,k)∞n=1 that is (1 + εk)-equivalent to the unit vector basis of `q with
εk ↓ 0 as fast as we like. Also, by doing a small perturbation we can assume
that (xn,k)n,k are disjointly supported with respect to the canonical basis
for Zp,q. Finally, using Lemmas 2.3 and 2.4 we can assume, by passing to
a subsequence of subspaces of (Xk), that there are N1 < N2 < · · · such
that for all k, ‖P[Nk,Nk+1)x − x‖ ≤ εk‖x‖ for all x in Xk. Doing one more
perturbation, we might as well assume in fact that P[Nk,Nk+1) is the identity
onXk. Using Lemmas 2.5 and 2.6, we get a projectionQk from P[Nk,Nk+1)Zp,q
onto Xk with ‖Qk‖ ≤ 1 + εk. Then

∑
kQkP[Nk,Nk+1) is a projection from

Zp,q onto X of norm at most 1 + ε1.
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Remark. Note that the argument for Lemma 2.7 also shows that if T is
a Zp,q-strictly singular operator on Zp,q = (

∑
Yk)p with each Yk isometrically

isomorphic to `q, then f(T, Yk)→ 0 as k →∞.

Proposition 2.8. Let T be a Zp,q-strictly singular operator on Zp,q,
1 ≤ q < p < ∞. Then for all ε > 0, there is a subspace X of Zp,q which is
isometrically isomorphic to Zp,q and such that ‖T |X‖ < ε. Consequently, the
set of Zp,q-strictly singular operators on Zp,q is a linear subspace of L(Zp,q).

Proof. As usual, write Zp,q = (
∑
Yk)p with each Yk isometrically iso-

morphic to `q. By passing to subspaces of each Yk, we can by Lemma 2.2
assume that for each k, ‖T|Yk

‖ < f(T, Yk) + 2−k, so that ‖T|Yk
‖ → 0 by the

Remark after Lemma 2.7. Let X = (
∑

n Ykn)p, where kn ↑ is chosen so that∑
n ‖T|Ykn

‖ < ε.

Proposition 2.9 below is an immediate consequence of Lemma 2.7 and
Proposition 2.8. Actually Proposition 2.8 says that the set of all Zp,q-strictly
singular operators on Zp,q is an ideal and Lemma 2.7 tells us that it is
maximal.

Proposition 2.9. Let 1 ≤ q < p < ∞. The set of all Zp,q-strictly
singular operators on Zp,q is equal to MZp,q and forms the unique maximal
ideal in L(Zp,q).

Let (Xi)∞i=0 be a sequence of Banach spaces. In our case, all the (Xi)’s
are uniformly isomorphic to Zp,q so that their `p direct sum (

∑∞
i=0Xi)p

is isomorphic to (
∑∞

i=0 Zp,q)p, which in turn is isometrically isomorphic to
Zp,q. We are interested in the case when (Xi) is a sequence of subspaces
of Zp,q which are uniformly isomorphic to Zp,q, span

⋃∞
i=0Xi is dense in

Zp,q and the mapping that identifies Xi, 0 ≤ i < ∞, in Zp,q with Xi in
(
∑∞

j=0Xj)p extends to an isomorphism from Zp,q onto (
∑∞

j=0Xj)p. Since
commutators are preserved under similarity transformations, without con-
fusion we will identify an operator on (

∑∞
i=0Xi)p with the corresponding

operator on span (Xi)∞i=0 = Zp,q. For x = (xi) ∈ (
∑∞

i=0Xi)p with xi ∈ Xi,
we define the right and left shifts as follows:

R(x) = (0, x0, x1, . . .), L(x) = (x1, x2, . . .).

Let A = {T ∈ L((
∑∞

i=0Xi)p) :
∑∞

n=0R
nTLn is strongly convergent}. By

Lemma 3 in [D], if T is in A, then T is a commutator. The proof of the next
theorem shows that if T is a Zp,q-strictly singular operator on Zp,q then there
is an `p-decomposition of Zp,q such that T is in A and hence is a commutator.

Theorem 2.10. Let 1 ≤ q < p < ∞. If T : Zp,q → Zp,q is Zp,q-strictly
singular, then T is a commutator.

Proof. We first make a partition of the natural numbers to infinitely
many infinite subsets, denoted by N =

⋃∞
n=0 In. For each n≥ 1, (

∑
i∈In Zp,q)p
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is isometric to Zp,q and the restriction of T to
∑

i∈In Zp,q is Zp,q-strictly
singular. By Proposition 2.8, for each n there is a subspace Xn of

∑
i∈In Zp,q

such that Xn is isometric to Zp,q and ‖T |Xn‖ < εn. Moreover, by Lemma 2.6
Xn can be chosen 1-complemented in

∑
i∈In Zp,q. By passing to appropriate

subspaces ofXn, we can assume that the complement Zn toXn in
∑

i∈In Zp,q
contains a 1-complemented subspace that is uniformly isomorphic (actually
even isometric) to Zp,q and hence Zn is uniformly isomorphic to Zp,q by the
Pełczyński decomposition method [LT1, p. 54] (the decomposition method
applies because Zp,q is isometric to (

∑∞
i=0 Zp,q)p). So we get a sequence

(Xn)∞n=1 of subspaces of (
∑∞

n=0 Zp,q)`p such that

(1) Xn is isometric to Zp,q and 1-complemented in Zp,q;
(2) ‖T |Xn‖ < εn;
(3) ‖

∑∞
n=1 xn‖ = (

∑∞
n=1 ‖xn‖p)1/p for all xn ∈ Xn;

(4) Zp,q = (
∑∞

n=1Xn)p ⊕X0 and X0 is isomorphic to Zp,q.

Let R and L be the right shift and left shift with respect to the `p-
decomposition (Xn)∞n=0 of Zp,q. Then it is easy to see [D, Lemma 3] that∑∞

n=0R
nTLn is strongly convergent if

∑
n εn <∞.

The following lemma is a direct consequence of Lemmas 2.3 and 2.4. We
omit the proof.

Lemma 2.11. Let T be an operator on Zp,q, 1 ≤ q < p < ∞. Then for
any sequence (εi) of positive numbers, there exist an infinite subset M of
positive integers and a subspace Zi of the ith `q which is isometric to `q for
all i ∈ M and such that for all k ∈ M, ‖

∑
i∈M, i6=k PiT |Zk

‖ < εk, where Pi
is the projection from Zp,q onto the ith `q.

Let T be an operator on a Banach space X. The left essential spectrum
of T is defined to be the set

σl.e.(T ) = {λ ∈ C : inf
x∈SY

‖(λ− T )x‖ = 0 for all Y ⊂X with codimY <∞}.

Apostol proved in [A1] that σl.e.(T ) is non-empty for all operators T on any
infinite-dimensional X.

Proposition 2.12. Let T be an operator on Zp,q, 1 ≤ q < p <∞. Then
either there is a λ ∈ C and a subspace Y of Zp,q that is isomorphic to Zp,q
and (T −λI)|Y is Zp,q-strictly singular, or there is a λ ∈ C and a subspace Y
of Zp,q that is isomorphic to Zp,q and such that (T−λI)|Y is an isomorphism
and d((T − λI)(Y ), Y ) > 0.

Proof. Let (εi) be a sequence of positive reals decreasing to 0 fast. Let
(Z̃i)i∈M be a sequence of subspaces satisfying the conclusion of Lemma 2.11.
By Lemma 2.6, for each i ∈ M , Z̃i is 1-complemented in the ith `q. Let
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R̃i be a contractive projection from the ith `q onto Z̃i. Let Pi be the nat-
ural projection from Zp,q onto the ith `q and set Q̃i = R̃iPi. Since for all
k ∈M , ‖

∑
i∈M,i6=k PiT | eZk

‖<εk and Q̃iPi = Q̃i, it follows that for all k ∈M ,
‖
∑

i∈M,i 6=k Q̃iT | eZk
‖ < εk. For each i ∈ M , consider the operator Q̃iT | eZi

:

Z̃i → Z̃i. Let λi be any number in σl.e.(Q̃iT | eZi
). Then there is a subspace Zi

of Z̃i which is isometric to `q and hence 1-complemented in the ith `q such
that ‖(Q̃iT −λiI)|Zi‖ < εi. Since (λi) is uniformly bounded by ‖T‖, by tak-
ing a limit of a subsequence of (λi) and passing to an infinite subset J of M ,
we get a complex number λ such that for all i ∈ J , ‖(Q̃iT −λI)|Zi‖ < εi. Let
Ri be a contractive projection from the ith `q onto Zi and let Qi = RiPi.
Then for all k ∈ J , ‖

∑
i∈J, i6=kQiT |Zk

‖ < εk and ‖(QkT − λI)|Zk
‖ < εk.

This immediately implies that for all k ∈ J , ‖((
∑

i∈J QiT )− λI)|Zk
‖ < 2εk.

Let Ỹ = (
∑

i∈J Zi)p. Then Q =
∑

i∈J Qi is a contractive projection from
Zp,q onto Ỹ and ‖(QT−λI)|eY ‖ < 2

∑
i εi. Since ‖(QT−λI)|(P

i∈J, i≥k Zi)p
‖ <∑

i≥k εi, it is straightforward to check that (QT − λI)|eY is Zp,q-strictly sin-
gular if (εi)i is summable. Now consider the operator ((I − Q)T )|eY . If it
is Zp,q-strictly singular, then (T − λI)|eY = (QT − λI)|eY + ((I − Q)T )|eY is
Zp,q-strictly singular by Proposition 2.8. If it is not Zp,q-strictly singular,
then (T −λI)|eY is not Zp,q-strictly singular and hence there is a subspace Y
of Ỹ that is isomorphic to Zp,q and such that for some µ > 0 and all norm
one vectors y in Y , ‖(T − λI)y‖ > µ. By Lemma 2.7 we may assume that
Y is 1 + ε-isomorphic to Zp,q and by Proposition 2.8 we can assume that
‖(QT −λI)|Y ‖ < 3−1µ. So ‖(I−Q)T (y)‖ > µ−3−1µ = 2µ/3 for all y ∈ SY .
Hence if y1, y2 are in Y and ‖(T − λI)y1‖ = 1 (so that ‖y1‖ ≥ µ−1),

‖(T − λI)y1 − y2‖ ≥
1
2
‖(I −Q)[(T − λI)y1 − y2]‖ =

1
2
‖(I −Q)Ty1‖

≥ 1
2
· 2
3
· µ‖y1‖ ≥

1
3
.

This implies that d((T − λI)(Y ), Y ) ≥ 1/3.

To prove our last theorem, we use the following lemma which is an im-
mediate consequence of Theorems 3.2 and 3.3 in [DJ].

Lemma 2.13. Let X be a Banach space such that X is isomorphic to
(
∑
X)p, p ∈ [1,∞]∪{0}. Let T be a bounded linear operator on X such that

there exists a subspace Y of X such that Y is isomorphic to X, T |Y is an
isomorphism, d(TY, Y ) > 0 and Y + T (Y ) is complemented in X. Then T
is a commutator.

An infinite-dimensional Banach space X is said to be complementably
homogeneous if every subspace of X that is isomorphic to X must contain
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a smaller subspace that is isomorphic to X and is complemented in X. It
is clear that if X is complementably homogeneous then MX , the set of
operators T on X such that the identity does not factor through T , is equal
to the set of X-strictly singular operators on X. Lemma 2.7 implies that Zp,q
is complementably homogeneous for 1 ≤ q < p < ∞. (We did not attempt
to check that Zp,q is complementably homogeneous for other values of p and
q because that is not needed to prove our Main Theorem.)

Let T be a bounded linear operator on the complementably homogeneous
space X. An important fact which was used repeatedly in [D, DJ, DJS] is
that in certain spaces of this type, if there exists a subspace Y of X such
that Y is isomorphic to X, T |Y is an isomorphism and d(Y, TY ) > 0, then
there is a subspace Z of Y isomorphic to X and such that Z + T (Z) is
complemented in X. The next lemma gives a formulation of this fact for a
general class of spaces for which the statement is true.

Lemma 2.14. Let X be a complementably homogeneous Banach space.
Let T be a bounded linear operator on X for which there is a subspace Y
of X isomorphic to X such that T |Y is an isomorphism and d(Y, TY ) > 0.
Then there is a subspace Z of Y isomorphic to X and such that Z + T (Z)
is complemented in X.

Proof. Since X is complementably homogeneous, there is a subspace W
of TY that is isomorphic to X and is the range of some projection PW .
Then (T |Y )−1W is also isomorphic to X and is the range of the projection
(T |Y )−1PWT . Consequently, without loss of generality we assume that Y
and TY are complemented in X.

The main step of the proof consists in finding a subspace Y1 of Y that is
isomorphic to X and such that there is a projection PTY1 onto TY1 for which
PTY1Y1 = {0}. Having done that, we have, as mentioned above, a projection
PY1 onto Y1. Then PTY1 + PY1(I − PTY1) is a projection onto Y1 + TY1, so
that Z := Y1 satisfies the conclusions of the lemma.

We now turn to the proof of the main step. Let P be a projection from
X onto Y . Since d(Y, TY ) > 0 and T |Y is an isomorphism, it follows that
T ′ := (I − P )TP is an isomorphism on Y , where I is the identity oper-
ator on X. Let W be a subspace of T ′(Y ) that is isomorphic to X and
complemented in X. Then Y1 := (T ′|Y )−1(W ) is also isomorphic to X and
complemented in X. Let PW be a projection from X onto W . Let S be the
inverse of the isomorphism T (y) 7→ T ′(y), y ∈ Y . Then it is straightforward
to verify that PTY1 := SPW (I − P ) is a projection from X onto TY1 such
that PTY1Y1 = {0}.

The root of the proof of Theorem 2.15 goes back to [A1]; see also [DJ,
Lemma 4.1].
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Theorem 2.15. Let X be a complementably homogeneous Banach space
isomorphic to (

∑
X)p, p ∈ [1,∞]∪{0}, and suppose the set of all X-strictly

singular operators on X form an ideal in L(X). Let T : X → X be a bounded
linear operator such that T − λ′I is not X-strictly singular for any λ′ ∈ C.
If there is a λ ∈ C and a subspace Y of X isomorphic to X and such that
(T − λI)|Y is X-strictly singular then T is a commutator.

Proof. Since X is complementably homogeneous, by passing to a sub-
space of Y , we may assume that Y is complemented in X. Let I − P be a
bounded projection from X onto Y . By passing to a further subspace of Y ,
we can assume additionally that PX contains a complemented subspace iso-
morphic to X and hence PX is isomorphic to X by Pełczyński’s decompo-
sition method [LT1, p. 54]. To simplify the notation, set Tλ := T −λI. Then
Tλ(I −P ) is X-strictly singular. Now we consider the operator (I −P )TλP .
If it is not X-strictly singular, then there is a subspace Z of PX that is
isomorphic to X and such that (I − P )TλP |Z is an isomorphism. By pass-
ing to a subspace of Z, we may assume that Z is complemented in X. By
the construction, we immediately get d(Z, (I − P )TλPZ) > 0 and hence
d(Z, TλZ) > 0. By Proposition 2.1 in [DJ], d(Z, TZ) > 0. By Lemma 2.14,
we may assume Z+TZ is complemented in X and hence T is a commutator
in virtue of Lemma 2.13. If (I − P )TλP is X-strictly singular, we write

Tλ = Tλ(I − P ) + (I − P )TλP + PTλP.

Since Tλ is notX-strictly singular, PTλP is notX-strictly singular by the hy-
pothesis that the X-strictly singular operators are closed under addition. Let
A be an isomorphism from PX onto (I −P )X and let B : (I − P )X → PX
be its inverse, so that BAP = P and AB(I − P ) = I − P . We define an
operator S on X by

√
2S = P +AP − (I − P ) +B(I − P ).

A direct computation shows that S2 = I.
Now we consider the operator R := 2(I −P )STλSP . We claim that R is

not X-strictly singular. To see this, substitute for S in the expression for R
and compute

R = APTλP + [AP − (I − P )]TλAP − (I − P )TλP =: APTλP + α− β.
The operator β is X-strictly singular by assumption and α is X-strictly
singular because AP has range (I−P )X and Tλ(I−P ) is X-strictly singular.
We mentioned above that PTλP is not X-strictly singular, so also APTλP
is not X-strictly singular because A is an isomorphism on PX, and hence
R = 2(I − P )STλSP is also not X-strictly singular.

Therefore there is a complemented subspace Z of PX such that Z is
isomorphic to X and d(Z, STλS(Z)) > 0. That is, d(S(Z), TλS(Z)) > 0. By
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Proposition 2.1 in [DJ] again, d(S(Z), TS(Z)) > 0. Hence T is a commutator
by Lemmas 2.14 and 2.13.

Corollary 2.16. Let X be a complementably homogeneous Banach
space such that X is isomorphic to (

∑
X)p, p ∈ [1,∞] ∪ {0}, and the set

of all X-strictly singular operators on X form an ideal in L(X) and are
commutators in L(X). Assume that for every operator T on X either there
is a λ ∈ C and a subspace Y of X that is isomorphic to X and such that
(T − λI)|Y is X-strictly singular, or there is a λ ∈ C and a subspace Y
of X that is isomorphic to X and such that (T − λI)|Y is an isomorphism
and d((T − λI)(Y ), Y ) > 0. Then T ∈ L(X) is a commutator if and only if
T − λ′I is not X-strictly singular for every non-zero λ′ ∈ C. Consequently,
X is a Wintner space.

Proof. Let T be an operator onX such that T−λI is notX-strictly singu-
lar for all λ ∈ C. If there is a λ ∈ C and a subspace Y of X that is isomorphic
toX and such that (T−λI)|Y is an isomorphism and d((T − λI)(Y ), Y ) > 0,
by Lemmas 2.14 and 2.13, T is a commutator. If there is a λ ∈ C and a sub-
space Y of X that is isomorphic to X and such that (T −λI)|Y is X-strictly
singular, then by Lemma 2.15, T is a commutator.

Finally we complete the proof of our Main Theorem:

Corollary 2.17. The space X := Zp,q with 1 ≤ q <∞ and 1 < p <∞
is a Wintner space. In fact, if T is an operator on X, then T is a commutator
if and only if for all non-zero λ ∈ C, the operator T −λI is not inMX (i.e.,
the identity on X factors through T − λI).

Proof. For 1 ≤ q < p <∞, Corollary 2.16 applies to give the desired con-
clusions. The other cases follow from the obvious facts that if X is reflexive
and T is an operator on X, then T is inMX (respectively, is a commutator)
if and only if T ∗ is inMX∗ (respectively, is a commutator).

3. Open problems. Our first question concerns general classes of Ba-
nach spaces.

Question 1. Is every infinite-dimensional Banach space a Wintner
space?

As we mentioned in the introduction, there may be an infinite-dimen-
sional Banach space on which every finite rank commutator has zero trace.
A less striking negative example would be an infinite-dimensional Banach
space on which every operator is of the form λI + T with T nuclear.

Question 1.1. If X admits a Pełczyński decomposition, is X a Wintner
space?

Question 1.2. What if alsoMX is an ideal in L(X)?
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Question 1.3. What if also X is complementably homogeneous?

We next turn to special spaces.

Question 2. Is every C(K) space a Wintner space when K is a compact
Hausdorff space? What if also K is metrizable?

Question 2.1. Is C[0, 1] a Wintner space?

An affirmative answer to Question 1.3 gives an affirmative answer to
Question 2.1, but we suspect that Question 2.1, while difficult, is much easier
than Question 1.3.

Question 3. Is every complemented subspace of Lp := Lp(0, 1), 1 ≤ p
<∞, a Wintner space?

In regard to Question 3, it is open whether every infinite-dimensional
complemented subspace of L1 is isomorphic to either L1 or to `1. There
are, on the other hand, uncountably many different (up to isomorphism)
complemented subspaces of Lp for 1 < p 6= 2 < ∞ [BRS], including the
Wintner spaces Lp [DJS], `p [A1], `p ⊕ `2 [D], and Zp,2. All of these are
complementably homogeneous and haveMX as an ideal, but `p ⊕ `2, while
the direct sum of two spaces that admit Pełczyński decompositions, does not
itself admit a Pełczyński decomposition.

Question 3.1.2. Is Rosenthal’s space Xp (see [R]) a Wintner space?

The space Xp, 2 < p < ∞, was the first “non-obvious” complemented
subspace of Lp and it has played a central role in the modern development
of the structure theory of Lp. It is small in the sense that it embeds isomor-
phically into `p ⊕ `2 (`p is the only complemented subspace of Lp that does
not contain any subspace isomorphic to `p⊕ `2), but not as a complemented
subspace. The space Xp does not admit a Pełczyński decomposition, but it
does admit something analogous (a “p, 2” decomposition) which might serve
as a substitute. Not every operator in MXp is Xp-strictly singular because
you can map Xp isomorphically into a subspace of Xp that is isomorphic to
`p⊕ `2 and no isomorphic copy of Xp in `p⊕ `2 can be complemented. Prob-
ably the ideas in [JO] can be used to show thatMXp is an ideal in L(Xp),
but we have not yet tried to check this.

The famous problem, due to Brown and Pearcy, whether every compact
operator on `2 is a commutator of compact operators, is still open. In fact,
nothing is known in a more general setting, so we ask:

Question 4. For what Banach spaces X is every compact operator a
commutator of compact operators? Is this true for every infinite-dimensio-
nal X? Is it true for some infinite-dimensional X?
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Question 5. Assume that X is a complementably homogeneous Wintner
space that has a Pełczyński decomposition and that MX is an ideal in LX .
If T is not inMX and T is a commutator, does there exist a complemented
subspace X1 of X that is isomorphic to X and such that (I − PX1)T |X1 is
an isomorphism? Here PX1 is a projection onto X1.

For X = `p, 1 ≤ p ≤ ∞, or c0 or Lp, 1 ≤ p ≤ ∞, or Zp,q, 1 ≤ q <∞ and
1 < p <∞, the proofs that X is a Wintner space show that Question 5 has
an affirmative answer.

Finally there is the obvious problem to give an affirmative answer to.

Question 6. Is Zp,q a Wintner space for values of p and q not covered
by the Main Theorem?
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