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Ψ-pseudodifferential operators and estimates for

maximal oscillatory integrals

by

Carlos E. Kenig (Chicago, IL) and Wolfgang Staubach (Edinburgh)

Abstract. We define a class of pseudodifferential operators with symbols a(x, ξ) with-
out any regularity assumptions in the x variable and explore their Lp boundedness proper-
ties. The results are applied to obtain estimates for certain maximal operators associated
with oscillatory singular integrals.

1. Introduction. The theory of pseudodifferential operators, as devel-
oped by J. J. Kohn and L. Nirenberg [11] and L. Hörmander [8], has played
a major role in the analysis of linear partial differential operators. Recall
that a pseudodifferential operator is an operator given by

a(x, D)f(x) =
1

(2π)n

\
Rn

a(x, ξ)f̂(ξ)ei〈x,ξ〉 dξ,

whose symbol a(x, ξ) is assumed to be smooth in both spatial (x) and
frequency (ξ) variables and satisfies certain growth conditions. An exam-
ple is the Sm

̺,δ symbol class introduced in Hörmander [9], consisting of
a(x, ξ) ∈ C∞(Rn × R

n) with

|∂α
ξ ∂β

xa(x, ξ)| ≤ Cα,β〈ξ〉
m−̺|α|+δ|β|,

where 〈ξ〉 = (1 + |ξ|2)1/2, m ∈ R, 0 ≤ δ ≤ ̺ ≤ 1.

An important problem in partial differential equations and harmonic
analysis is the question of Lp boundedness of pseudodifferential operators,
which has been extensively studied. Hörmander [9] showed that for 0 ≤ δ <

̺ < 1, operators with symbols in S
n(̺−1)/2
̺,δ are bounded on Lp for 1 < p < ∞.

A. Calderón and R. Vaillancourt [1] proved that if a ∈ S0
̺,̺ for 0 ≤ ̺ < 1,

then the corresponding pseudodifferential operator is bounded on L2. In a
set of unpublished lecture notes, E. M. Stein showed that if a(x, ξ) ∈ Sm

̺,δ
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and either 0 ≤ δ < ̺ = 1 or 0 < δ = ̺ < 1, then a(x, D) is of weak type
(1, 1) if m = (̺ − 1)n/2. Furthermore, a(x, D) is Lp bounded (1 < p < ∞)
if (̺− 1)|1/2− 1/p| ≥ m/n (see also Stein [16]). In [5], C. Fefferman proved

that if a ∈ S
n(̺−1)/2
̺,δ for 0 ≤ δ < ̺ < 1 then a(x, D) is bounded from L∞

to BMO.
There has also been work on operators with limited regularity and we

wish to name only a couple of authors which have inspired us in our in-
vestigation. H. Kumano-go [12], Hörmander [10] and C. H. Ching [2] gave
examples of bounded symbols which satisfy

|∂α
ξ a(x, ξ)| ≤ Cα〈ξ〉

−̺|α|,

with ̺ ≤ 1, but the corresponding operator is not bounded on L2. On the
other hand, Nagase [14] was able to show that if |∂α

ξ a(x, ξ)| ≤ Cα〈ξ〉
−|α|,

and |∂α
ξ a(x, ξ) − ∂α

ξ a(y, ξ)| ≤ Cα|x − y|σ〈ξ〉−|α|+στ for |α| ≤ n + 1, with
0 < σ ≤ 1 and 0 ≤ τ < 1, then the associated pseudodifferential operator
a(x, D) is L2 bounded. Later, R. Coifman and Y. Meyer [3] proved that if
a(x, ξ) satisfies the first condition of Nagase’s theorem and

|∂α
ξ a(x, ξ) − ∂α

ξ a(y, ξ)| ≤ Cαω(|x − y|)〈ξ〉−|α|,

where ω satisfies the condition
∑∞

j=0 ω(2−j)2 < ∞, then the Lp boundedness
holds for 1 < p < ∞.

In this paper we introduce the class of Ψ -pseudodifferential operators.
The symbols that we are considering satisfy

|∂α
ξ a(x, ξ)| ≤ Cα〈ξ〉

m−̺|α|

for certain values of m and ̺, but have no regularity assumption in the
spatial variables x. Because of this lack of regularity, the corresponding op-
erators do not have the required pseudo-local property. This means that
these operators do not necessarily decrease the singular support when they
act on distributions. Hence the name of Ψ -pseudodifferential operator is jus-
tified since these operators only look like pseudodifferential operators but
they are “pseudo-pseudodifferential” operators. We establish the bounded-
ness of these operators in certain Lp spaces and we show how they can be
used as a tool in proving boundedness results for certain maximal operators
in harmonic analysis.

In Section 2, we define ΨΨDOs and discuss their boundedness. In Sec-
tion 3, we give some applications to estimates for local maximal operators
of oscillatory singular integrals of the type considered by S. Wainger [19],
I. I. Hirschman [7], C. Fefferman [4], Fefferman and Stein [6] and A. Mi-
yachi [13]. We also prove a theorem similar to P. Sjölin’s [15] for oscilla-
tory singular integrals but for the kernels considered in [4]. The proof of
Sjölin’s result is based on the multidimensional version of Carleson–Hunt’s
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theorem, [15], but for the oscillatory singular kernels that we are consid-
ering, we can avoid the use of this difficult result by using ΨΨDOs. To
some extent, this can be viewed as a related investigation to that of Stein
and Wainger [18]. The difference between our and their result is that they
establish the L2 boundedness of the global maximal operators associated
to oscillatory singular integrals with polynomial phases where the degree
of the polynomial is larger than or equal to 2 and the kernel is Calderón–
Zygmund, while we prove the Lp boundedness (2 ≤ p ≤ ∞) of local maximal
operators associated to oscillatory singular integrals with linear phases and
Hirschman–Wainger kernels [7], [19].

The difference between local and global maximal operators is that in the
local case the supremum is taken over a compact set but in the global case
one takes the supremum over an unbounded open set.

2. Ψ-pseudodifferential operators and their Lp boundedness. In
this section we define the Ψ -pseudodifferential operators which are crucial
in all our further investigations.

Definition 2.1. Let a(x, ξ) ∈ C∞(Rn
ξ ) be a measurable function in x

and let

‖∂α
ξ a(x, ξ)‖L∞

x
≤ Cα〈ξ〉

m−̺|α|

for some m ∈ R, ̺ ≤ 1 and some constant Cα. We denote by L∞Sm
̺ the

class of symbols with this property.

Given this class of symbols we make the following definition.

Definition 2.2. A Ψ -pseudodifferential operator (ΨΨDO for short) is
an operator a(x, D) which is given by

a(x, D)f =
1

(2π)n

\
Rn

a(x, ξ)f̂(ξ)ei〈x,ξ〉 dξ, f ∈ S .

Thus we do not assume any regularity in the spatial variable x and this will
cause singularities for the Schwartz kernel K(x, y) of the operator a(x, D)
which might go beyond the set {(x, x); x ∈ R

n}. Our main concern, however,
is the question of Lp boundedness of the ΨΨDOs. To this end we start with
the following:

Proposition 2.3. Let a(x, ξ) ∈ L∞Sm
̺ , 0 ≤ ̺ ≤ 1. Assume that m <

n(̺ − 1)/p and 1 ≤ p ≤ 2. Then the operator a(x, D) is bounded from Lp

to Lp.

Proof. We want to show that

(2.1) ‖a(x, D)u‖Lp . ‖u‖Lp .
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Here and below, a . b means a ≤ Cb for some constant C. We will also
denote all generic constants by C even though they might be different from
line to line. Our strategy in proving the theorem is to use a Littlewood–Paley
decomposition of the symbol a(x, ξ). So let {ϕk} ∈ C∞

0 (Rn) be a Little-
wood–Paley partition of unity with suppϕ0 ⊂ {ξ; |ξ| ≤ 2} and suppϕk ⊂
{ξ; |ξ| ∼ 2k} for k ≥ 1.

Furthermore, for all multi-indices α,

(2.2) |∂α
ξ ϕ0(ξ)| ≤ cα, N 〈ξ〉−N for all N,

(2.3) |∂α
ξ ϕk(ξ)| ≤ cα2−k|α| for some cα > 0 and k = 1, 2, . . . ,

and

(2.4) ϕ0(ξ) +

∞∑

k=1

ϕk(ξ) = 1, ∀ξ.

Using this, we decompose the symbol a(x, ξ) as

(2.5) a(x, ξ) = a0(x, ξ) +

∞∑

k=1

ak(x, ξ)

with ak(x, ξ) = a(x, ξ)ϕk(ξ), k = 0, 1, . . . .
We shall proceed by estimating the Lp norm of each term separately. So

the first step is to establish the Lp boundedness of

(2.6) a0(x, D)u(x) =
1

(2π)n

\
a0(x, ξ)û(ξ)ei〈x,ξ〉 dξ.

By the definition of the symbol class L∞Sm
̺ , inequality (2.2), and the Leibniz

rule, we realize that

(2.7) |∂α
ξ a0(x, ξ)| ≤ cα, N 〈ξ〉−N for all N,

and all multi-indices α. Hence if we look at the Schwartz kernel of a0(x, D)

(2.8) K(x, y) =
1

(2π)n

\
a0(x, ξ)ei〈x−y,ξ〉dξ,

and integrate by parts, we obtain, for all integers M > 0,

(2.9) |K(x, y)| . 〈x − y〉−2M
\
|(1 − ∆ξ)

Ma0(x, ξ)| dξ.

Using (2.7) and choosing M > n/2, we see that both integrals
T
|K(x, y)| dx

and
T
|K(x, y)| dy are convergent and Schur’s lemma yields

(2.10) ‖a0(x, D)u‖Lp . ‖u‖Lp .

Now let us analyze ak(x, D)u(x) = (2π)−n
T
ak(x, ξ)û(ξ)ei〈x,ξ〉dξ for k ≥ 1.

Using the definition of L∞Sm
̺ , inequality (2.3) and the Leibniz rule we realize

that

(2.11) |∂α
ξ ak(x, ξ)| ≤ cα2k(m−̺|α|) for some cα > 0 and k = 1, 2, . . .
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where we have also used the assumption ̺ ≤ 1. We note that ak(x, D)u(x)
can be written as

(2.12) ak(x, D)u(x) =
\
Kk(x, y)u(x − y) dy

with

(2.13) Kk(x, y) =
1

(2π)n

\
ak(x, ξ)ei〈y,ξ〉 dξ = ǎk(x, y),

where ǎk denotes the inverse Fourier transform of ak(x, ξ) with respect to ξ.
One observes that

‖ak(x, D)u‖p
Lp =

\∣∣∣\Kk(x, y)u(x − y) dy
∣∣∣
p
dx(2.14)

=
\∣∣∣∣\Kk(x, y)σk(y)

1

σk(y)
u(x − y) dy

∣∣∣∣
p

dx,

with weight functions σk(y) which will be chosen in a moment. Therefore,
Hölder’s inequality yields

(2.15) ‖ak(x, D)u‖p
Lp

≤
\{\

|Kk(x, y)|p
′
|σk(y)|p

′
dy

}p/p′
{\|u(x − y)|p

|σk(y)|p
dy

}
dx

where 1/p + 1/p′ = 1. Now for an l > n/p, we define a class of weight
functions by setting

(2.16) σk(y) =

{
2−k̺n/p, |y| ≤ 2−k̺,

2−k̺(n/p−l)|y|l, |y| > 2−k̺.

By Hausdorff–Young’s theorem and the estimate (2.11), first for α = 0 and
then for |α| = l, we have\

2−kp′̺n/p|Kk(x, y)|p
′
dy ≤ 2−kp′̺n/p

{\
|ak(x, ξ)|pdξ

}p′/p
(2.17)

. 2−kp′̺n/p
{ \

|ξ|∼2k

2pmk dξ
}p′/p

. 2kp′(m−n(̺−1)/p),

and

(2.18)
\
2−k̺p′(n/p−l)|Kk(x, y)|p

′
|y|p

′l dy

. 2−k̺p′(n/p−l)
{\

|∇l
ξak(x, ξ)|p dξ

}p′/p

. 2−k̺p′(n/p−l)
{ \

|ξ|∼2k

2kp(m−̺l) dξ}p′/p . 2kp′(m−n(̺−1)/p).
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Hence, splitting the integral into |y| ≤ 2−k̺ and |y| > 2−k̺ yields
{\

|Kk(x, y)|p
′
|σk(y)|p

′
dy

}p/p′

. {2kp′(m−n(̺−1)/p)}p/p′(2.19)

= 2kp(m−n(̺−1)/p).

Furthermore if we choose l > n/p then

(2.20)
\ dy

|σk(y)|p
= 2k̺n

\
|y|≤2−k̺

dy + 2k̺p(n/p−l)
\

|y|>2−k̺

|y|−pl dy = C(n),

a constant that only depends on the dimension n. Thus (2.14) yields

(2.21) ‖ak(x, D)u‖Lp . 2k(m−n(̺−1)/p)‖u‖Lp .

Summing up and using the bounds for a0(x, D) and ak(x, D), we obtain

‖a(x, D)u‖Lp ≤ ‖a0(x, D)u‖Lp +
∞∑

k=1

‖ak(x, D)u‖Lp(2.22)

. ‖u‖Lp +
∞∑

k=1

2k(m−n(̺−1)/p)‖u‖Lp

We observe that the series above converges if m < n(̺−1)/p. This ends the
proof of the proposition.

Remark 2.4. If 0 ≤ ̺ ≤ 1 then the L2 boundedness result is sharp.
In fact, following the example of Hörmander [10] one can see that if m ≥
n(̺−1)/2 then there are symbols a(x, ξ) in the Hörmander class Sm

̺, 1 whose

corresponding Kohn–Nirenberg quantization is not bounded on L2. Since
obviously Sm

̺, 1 ⊂ L∞Sm
̺ , it follows at once that our L2 result is sharp.

The condition m < n(̺ − 1)/2 also guarantees L∞ boundedness. More
precisely, we have

Proposition 2.5. Let a(x, ξ) ∈ L∞Sm
̺ . Assume that m < n(̺ − 1)/2

and 0 ≤ ̺ ≤ 1. Then the operator a(x, D) is bounded from L∞ to L∞.

Proof. We will use the same technique as in the proof of Proposition 2.3.
Observing that for u ∈ L∞,

(2.23) ‖ak(x, D)u‖L∞ ≤ ‖u‖L∞

\
|Kk(x, y)| dy,

one only needs to estimate
T
|Kk(x, y)| dy. We split the integral into\

|Kk(x, y)| dy =
\

|y|≤2−k̺

|Kk(x, y)| dy +
\

|y|>2−k̺

|Kk(x, y)| dy(2.24)

=: I1 + I2.
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To estimate I1 we use the Cauchy–Schwarz inequality and (2.17) for the
case p = p′ = 2. Hence

(2.25) I1 ≤
{ \

|y|≤2−k̺

dy
}1/2{\

|Kk(x, y)|2 dy
}1/2

. 2k(m−n(̺−1)/2).

To estimate I2 we use again the Cauchy–Schwarz inequality and (2.18) for
the case p = p′ = 2. This yields

I2 ≤
{ \

|y|>2−k̺

|y|−2l dy
}1/2{\

|Kk(x, y)|2|y|2l dy
}1/2

(2.26)

. 2k(m−n(̺−1)/2).

Thus

(2.27) ‖ak(x, D)u‖L∞ . 2k(m−n(̺−1)/2)‖u‖L∞

for k = 1, 2, . . . . Summing up and using the hypothesis on m and the bounds
for a0(x, D) and ak(x, D), we obtain

(2.28) ‖a(x, D)u‖L∞ . ‖u‖L∞ +
∞∑

k=1

2k(m−n(̺−1)/2)‖u‖L∞ . ‖u‖L∞ ,

as desired.

Remark 2.6. For 0 ≤ ̺ ≤ 1 the L∞ result in Proposition 2.5 is sharp.
In fact, if we consider the symbol a(ξ) = ϕ(ξ)|ξ|mei|ξ|1−̺

∈ L∞Sm
̺ , where

ϕ = 0 near zero and ϕ = 1 for large ξ, then it is known that the operator
associated to this symbol does not map L∞ to L∞ if m ≥ n(̺ − 1)/2 (see
e.g. Miyachi [13]).

A consequence of the previous propositions is

Theorem 2.7. Let a(x, ξ) ∈ L∞Sm
̺ , 0 ≤ ̺ ≤ 1. Then if m < n(̺− 1)/2

then a(x, D) is a bounded operator from Lp to Lp for all p ∈ [2,∞]. For

̺ = 1 and m < 0 the range of p for which the operator is Lp bounded is

[1,∞].

Proof. This follows by interpolating the L2 result of Proposition 2.3 with
the L∞ result of Proposition 2.5. The last claim follows from the interpola-
tion between the L1 result of Proposition 2.3 and L∞ boundedness result of
Proposition 2.5, which are valid for m < 0 and ̺ = 1.

We conclude this section by noting that the number of derivatives needed
in the ξ variables need not be infinite. Indeed, by following our proofs one
can reduce the number of derivatives to a finite number depending on the
dimension n.
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3. Applications to maximal operator estimates. In this section we
consider certain maximal functions associated with strongly singular integral
operators and oscillatory integrals. In each case we can establish bounded-
ness in Lp for the local maximal operators.

Let us first consider singular integrals that are given by convolution with
the distribution on R

n that away from the origin agrees with the function

(3.1) Ka,b(x) =
ei|x|a

|x|n+b
ϕ(x)

with b ∈ R, a ∈ (−∞, 0]∪(1,∞) and ϕ a radial smooth compactly supported
function, equal to 1 in the unit ball. Consider the strongly singular integral
operator Tf(x) = Ka,b(x) ∗ f(x). This operator is bounded on Lp, provided
that a < 0, b < −an/2, 1 < p < ∞ and |1/2 − 1/p| ≤ (an/2 + b)/an (see
Hirschman [7], Wainger [19], Stein [17], C. Fefferman [4] and Miyachi [13]).
Setting

β =
an/2 + b

a − 1
and Ka,b

t (x) =
1

tn−β
Ka,b

(
x

t

)
,

we are interested in the Lp estimates for the maximal operator

(3.2) T∗f(x) := sup
0<t<1

|(Ka,b
t ∗ f)(x)|.

Using the Fourier transform, one can write T∗ as

(3.3) T∗f(x) :=
1

(2π)n
sup

0<t<1

∣∣∣
\
(Ka,b

t )∧(ξ)f̂(ξ)ei〈x,ξ〉 dξ
∣∣∣.

Since

(Ka,b)∧(ξ) =
ei|ξ|α

|ξ|β
θ(ξ) with α =

a

a − 1
, β =

an/2 + b

a − 1

and θ(ξ) is a smooth function on R
n, which vanishes near zero, and equals

1 outside a bounded set (this is essentially the case), the Fourier transform

of Ka,b
t is

(3.4) (Ka,b
t )∧(ξ) =

ei|tξ|α

|ξ|β
θ(tξ).

Therefore to estimate T∗ it is enough to estimate\ei|t(x)ξ|α

|ξ|β
θ(t(x)ξ)f̂(ξ)ei〈x,ξ〉 dξ

for an arbitrary measurable function t(x) ∈ [0, 1]. So we are dealing with
estimates for a ΨΨDO with symbol

ei|t(x)ξ|α

|ξ|β
θ(t(x)ξ) ∈ L∞S−β

1−α = L∞S
−(an/2+b)/(a−1)
1/(1−a)

.

Thus we have the following
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Theorem 3.1.

(i) If a > 1 and b > a(n/p − n/2) or a < 0 and b < a(n/p − n/2) then

T∗ : Lp → Lp is bounded for 1 ≤ p ≤ 2.
(ii) If a > 1 and b > 0 or a < 0 and b < 0 then T∗ : Lp → Lp is bounded

for 2 ≤ p ≤ ∞.

Proof. (i) follows from Proposition 2.3 and (ii) follows from Theorem 2.7.
Next let

(3.5) T a,b
λ (f)(x) =

\
Rn

ei〈λ,y〉Ka,b(y)f(x − y) dy,

with λ ∈ R
n. It was shown by Sjölin [15] that for an appropriate Calderón–

Zygmund kernel K, the operator

Cf(x) := sup
λ∈Rn

∣∣∣
\

Rn

ei〈λ,y〉K(y)f(x − y) dy
∣∣∣

is bounded in L2(Rn).
For l < 1 we define the maximal operator T ∗f(x) := sup|λ|<l |Tλf(x)|.

Then we have

Theorem 3.2. T ∗ is bounded from Lp(Rn) → Lp(Rn) for 2 ≤ p ≤ ∞,
provided a > 1, b > 0.

Proof. Once again, after linearization and using the Fourier transform,
we are led to study a ΨΨDO

(3.6) T (x, D)f(x) =
1

(2π)n

\
Rn

ei|ξ−λ(x)|α

|ξ − λ(x)|β
θ(ξ − λ(x))ei〈x,ξ〉f̂(ξ) dξ

where λ(x) is an arbitrary measurable function with |λ(x)| < l < 1, and α,
β, θ as defined previously. A calculation shows that

∣∣∣∣∂
γ
ξ

{
ei|ξ−λ(x)|α

|ξ − λ(x)|β
θ(ξ − λ(x))

}∣∣∣∣ ≤ Cγ,l〈ξ〉
an/2+b

1−a
−

|γ|
1−a for |λ| < l.

Now to prove the claim, apply Theorem 2.7.
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